
Uniform Access to Domotic Environments
through Semantics

Dario Bonino, Emiliano Castellina, and Fulvio Corno

Politecnico di Torino, Torino, Italy
{dario.bonino, emiliano.castellina, fulvio.corno}@polito.it

Abstract. This paper proposes a Domotic OSGi Gateway (DOG) able
to expose different domotic networks as a single, technology neutral,
home automation system. The adoption of a standard framework such
as OSGi, and of sophisticated modeling techniques stemming from the
Semantic Web research community, allows DOG to go beyond simple
automation and to support reasoning-based intelligence inside home en-
vironments. By exploiting the DogOnt ontology for automatic device
generalization, syntactic and semantic command validation, and inter-
network scenario definition, DOG provides the building blocks for evolv-
ing current, isolated, home automation plants into so-called Intelligent
Domotic Environments, where heterogeneous devices and domotic sys-
tems are coordinated to behave as a single, intelligent, proactive system.
The paper introduces the DOG architecture by looking at functionali-
ties provided by each of its components and by describing features that
exploit ontology-modeling.

1 Introduction

Domotic systems, also known as home automation systems, have been available
on the market for several years, however only in the last few years they started
to spread also over residential buildings, thanks to the increasing availability of
low cost devices and driven by new emerging needs on house comfort, energy
saving, security, communication and multimedia services.

Current domotic solutions suffer from two main drawbacks: they are pro-
duced and distributed by various electric component manufacturers, each having
different functional goals and marketing policies; and they are mainly designed
as an evolution of traditional electric components (such as switches and relays),
thus being unable to natively provide intelligence beyond simple automation
scenarios. Proliferation of technologies and communication protocols causes in-
teroperation problems that prevent different domotic plants or components to
interact with each other, unless specific gateways or adapters are used. The
roots of domotic systems in simple electric automation, on the other hand, pre-
vent satisfying the current requirements of home inhabitants, who are becoming
more and more accustomed to technology and require more complex interaction
possibilities.

In the literature, solutions to these issues usually propose smart homes [1],
i.e., homes pervaded by sensors and actuators and equipped with dedicated hard-
ware and software tools that implement intelligent behaviors. Involved costs are
very high and prevented, until now, a real diffusion of such systems, that still
retain an experimental and futuristic connotation.

The approach proposed in this paper lies somewhat outside the smart home
concept, and is based on extending current domotic systems, by adding hardware
devices and software agents for supporting interoperation and intelligence.
Our solution takes an evolutionary approach, in which commercial domotic sys-
tems are extended with a low cost device (embedded PC) allowing interoperation
and supporting more sophisticated automation scenarios.

Currently available home-automation solutions rely on a hardware compo-
nent called residential [2] or home gateway [3] originally conceived for providing
Internet connectivity to smart appliances available in a given home. This com-
ponent, in our approach, is evolved into an interoperation system, called DOG
(Domotic OSGi Gateway), where connectivity and computational capabilities
are exploited to bridge, integrate and coordinate different domotic networks.
DOG exploits OSGi as a coordination framework for supporting dynamic mod-
ule activation, hot-plugging of new components and reaction to module failures.
Internal and external operations are based on the DogOnt ontology and allow
supporting services that go beyond simple automation, enabling reasoning-based
intelligence inside domotic environments. Internal ontology-powered operations
include automatic device generalization, syntactic and semantic command vali-
dation and support the definition of inter-network scenarios. External applica-
tions can exploit DogOnt-based operations to implement sophisticated reasoning
on home properties, either off-line or on-line, by interacting with DOG in real-
time.

Cost and flexibility concerns take a significant part in the platform design
and we propose an open-source solution capable of running on low cost hardware
systems such as the ASUS eeePC 701.

The paper is organized as follows: in Section 2 the DOG platform is described,
starting from high-level design issues and including the description of platform
components and their interactions, while in Section 3 ontology-driven tasks in
DOG are described and finally Section 4 draws conclusions.

2 DOG Architecture

DOG is a domotic gateway designed to respond to different requirements, rang-
ing from simple bridging of network-specific protocols to complex interaction
support. These requirements can be attributed to 3 priority levels: level 1 prior-
ities include all the features needed to control different domotic systems using
a single, high-level, communication protocol and a single access point, level 2
priorities define all the functionalities needed for defining inter-network automa-
tion scenarios and to allow inter-network control, e.g., to enable a Konnex switch
to control an OpenWebNet light, and level 3 requirements are related to intel-

ligent behaviors, to user modeling and to adaptation. Table 1 summarizes the
requirements, grouped by priority.

Table 1. Requirements for Home Gateways in Intelligent Domotic Environments.

Priority Requirement Description

R1 Interoperability

R1.1 Domotic network con-
nection

Interconnection of several domotic networks.

R1.2 Basic Interoperability Translation / forwarding of messages across dif-
ferent networks.

R1.3 High level network pro-
tocol

Technology independent, high-level network pro-
tocol for allowing neutral access to domotic net-
works.

R1.4 API Public API to allow external services to easily
interact with home devices.

R2 Automation
R2.1 Modeling Abstract models to describe the house devices,

their states and functionalities, to support effec-
tive user interaction and to provide the basis for
home intelligence.

R2.2 Complex scenarios Ability to define and operate scenarios involving
different networks / components.

R3 Intelligence

R3.1 Offline Intelligence Ability to detect misconfigurations, structural
problems, security issues, etc.

R3.2 Online Intelligence Ability to implement runtime policies such as en-
ergy saving or fire prevention.

R3.3 Adaptation Learning of frequent interaction patterns to ease
users’ everyday activities.

R3.4 Context based Intelli-
gence

Proactive behavior driven by the current house
state and context aimed at reaching specific goals
such as safety, energy saving, robustness to fail-
ures.

Design principles include versatility, addressed through the adoption of an
OSGi based architecture, advanced intelligence support, tackled by formally
modeling the home environment and by defining suitable reasoning mechanisms,
and accessibility to external applications, through a well defined, standard API
also available through an XML-RPC [4] interface.

DOG is organized in a layered architecture with 4 rings, each dealing with
different tasks and goals, ranging from low-level interconnection issues to high-
level modeling and interfacing (Figure 1). Each ring includes several OSGi bun-
dles, corresponding to the functional modules of the platform.

Ring 0 includes the DOG common library and the bundles necessary to con-
trol and manage interactions between the OSGi platform and the other DOG
bundles. At this level, system events related to runtime configurations, errors
or failures, are generated and forwarded to the entire DOG platform. Ring 1
encompasses the DOG bundles that provide an interface to the various domotic
networks to which DOG can be connected. Each network technology is managed
by a dedicated driver, similar to device drivers in operating systems, which ab-
stracts network-specific protocols into a common, high-level representation that
allows to uniformly drive different devices (thus satisfying requirement R1.1).
Ring 2 provides the routing infrastructure for messages travelling across network

Fig. 1. DOG architecture.

drivers and directed to DOG bundles. Ring 2 also hosts the core intelligence of
DOG, based on an abstract formal model of the domotic environment (DogOnt
ontology [5]), that is implemented in the House Model bundle (R1.2, R1.3, R2.1
and, partially, R2.2). Finally, ring 3 hosts the DOG bundles offering access to ex-
ternal applications, either by means of an API bundle, for OSGi applications, or
by an XML-RPC endpoint for applications based on other technologies (R1.4).

In the following subsections each DOG bundle is described in more detail,
focusing on provided services and functionalities; particular emphasis is given to
the House Model bundle that actually implements the DOG core intelligence.

2.1 Ring 0

DOG library This bundle acts as a library repository for all other DOG bun-
dles.
Platform manager This bundle handles the correct start-up of the whole sys-
tem and manages the life cycle of DOG bundles. The platform manager coor-
dinates bundle activations, enforcing the correct start-up order, and manages
bundle errors.
Configuration Registry The Configuration Registry implements the Config-
urator interface by maintaining and exporting bundle configuration parameters.

2.2 Ring 1

Network Drivers In order to interface domotic networks, DOG provides a set
of Network Drivers, one per each different technology (e.g., KNX, OpenWebNet,

X10 [6], etc.). Every network driver implements a “self-configuration” phase, in
which it interacts with the House Model (through the HouseModeling interface)
to retrieve the list of devices to be managed, together with a description of their
functionalities, in the DogOnt format. Every device description carries all the
needed low-level information like the device address, according to the network
dependent addressing format (simple in OpenWebNet, subdivided in group and
individual addresses in KNX, etc.).
Currently three Network Drivers have already been developed: Konnex, Open-
WebNet and Simulator. Konnex and OpenWebNet drivers translate DogMes-
sages into protocol messages of the corresponding networks. The Simulator
driver, instead, emulates a synthetic environment by either generating random
events or by re-playing recorded event traces (this allows to simulate critical
situations in a safe environment).

2.3 Ring 2

Message Dispatcher This bundle acts as an internal router, delivering mes-
sages to the correct destinations, be they the network drivers (commands and
state polls) or other DOG bundles (notifications). Routing is driven by a rout-
ing table where network drivers are associated to high-level device identifiers,
enabling DOG to deliver commands to the right domotic network.
Executor The Executor validates commands received from the API bundle, ei-
ther directly or through the XML-RPC protocol. Commands are syntactically
validated, by checking the relation between the DogMessage type declaration and
the DogMessage content, and semantically validated, by checking them against
the set of commands modeled by the HouseModel ontology. If all checks are
passed, the Executor forwards messages to the Message Dispatcher for the fi-
nal delivery. Otherwise messages are dropped, avoiding to generate a platform
inconsistent state.
Status The Status bundle caches the states of all devices controlled by DOG
by listening for notifications coming from network drivers. This state cache is
extensively used in DOG to reduce network traffic on domotic busses, and to
filter out un-necessary commands, e.g., commands whose effects leave the state
of the destination devices unchanged.
House Model The House Model is the core of intelligence of the DOG platform.
It is based on a formal model of the house defined by instantiating the DogOnt
ontology [5]. DogOnt is a OWL meta-model for the domotics domain describing
where a domotic device is located, the set of its capabilities, the technology-
specific features needed to interface it, and the possible configurations it can
assume. Additionally, it models how the home environment is composed and
what kind of architectural elements and furniture are placed inside the home.

It is organized along 5 main hierarchy trees (Figure 2), including: Building
Thing, modeling available things (either controllable or not); Building Envi-
ronment, modeling where things are located; State, modeling the stable con-
figurations that controllable things can assume; Functionality, modeling what
controllable things can do; and Domotic Network Component, modeling peculiar

features of each domotic plant (or network). The BuildingThing tree subsumes

Uncontrollable

Controllable

Konnex component

...

BTicino component

Discrete state

Continuous state
State

Query functionality

Notification functionality

Control functionality

Functionality

Room

Garden

Garage

Building Environment

Domotic network component

Building ThingDogOnt

....

Fig. 2. An overview of the DogOnt ontoloy

the Controllable concept and its descendants, which are used to model devices
belonging to domotic systems or that can be controlled by them.

Devices are described in terms of capabilities (Functionality concept) and
possible configurations (State concept). Functionalities are mainly divided in
Continuous and Discrete, the former describing capabilities that can be vari-
ated continuously and the latter referring to the ability to change device config-
urations in a discontinuous manner, e.g., to switch on a light. In addition they
are also categorized depending on their goal, i.e. if they allow to control a de-
vice (Control Functionality), to query a device condition (Query Functionality)
or to notify a condition change (Notification Functionality). Each functionality
instance defines the set of associated commands and, for continuous functionali-
ties, the range of allowed values, thus enabling runtime validation of commands
issued to devices. Devices also possess a state instance deriving from a State sub-
class, which describes the stable configurations that a device can assume. Each
State class defines the set of allowed state values; states, like functionalities, are
divided in Continuous and Discrete.

DOG uses the DogOnt ontology for implementing several functionalities (Sec-
tion 3) encompassing command validation at run-time, using information
encoded in functionalities, stateful operation, using the state instances asso-
ciated to each device, device abstraction leveraging the hierarchy of classes
in the controllable subtree. The last operation, in particular, allows to deal with
unknown devices treating them as a more generic type, e.g., a dimmer lamp can
be controlled as a simple on/off lamp. Ontology instances used to model environ-
ments controlled by DOG are created off-line by means of proper editing tools,
some of which are currently being designed by the authors, and may leverage
auto-discovery facilities provided by the domotic systems interfaced by DOG.

2.4 Ring 3

API Services provided by DOG are exposed to external OSGi-based applications
by means of the API bundle that allows to retrieve the house configuration, to
send commands to devices managed by DOG and to receive house events.
XmlRPC The XmlRPC bundle simply provides an XML-RPC endpoint for ser-
vices offered by the API bundle, thus enabling non-OSGi applications to exploit
DOG services.

3 Ontology-based interoperation in DOG

Differently from currently available solutions for domotic interoperability, DOG
is strongly based on semantics and exploits the DogOnt ontology to tackle
many issues, related to internal working and to interaction with external appli-
cations. Following sections describe in more detail how DogOnt is exploited in
DOG’s internal operations.

3.1 Start-up

In the start-up phase, information contained in the DogOnt ontology instanti-
ation that models the controlled environment, and exposed through the House
Model bundle, is queried to configure network drivers and to deal with unknown
device types. When a DOG instance is run, DOG bundles are started, with a
bootstrap order defined by the Platform Manager bundle. The House Model is
one of the first available services and is used by network drivers to get the list
of their managed devices. The first interaction step involves querying a DogOnt
instantiation, using constructs defined in the W3C standard query language for
RDF (SPARQL [7]), for extracting device descriptions (Figure 3), filtered
by technology (e.g., searching specific DomoticNetworkComponent instances).
Each device description contains the device name as well as all the low level
details needed by drivers to communicate with the corresponding real device.

SELECT ?x WHERE
{ ?x a d:OpenWebNetComponent} (a)

SELECT ?x WHERE
{ ?x a d:KonnexComponent} (b)

Fig. 3. SPARQL queries for retrieving all BTicino OpenWebNet (a) and all KNX (b) devices in
DogOnt.

Once the complete device list is received, each driver builds a mapping table
for translating high-level commands and states defined in DogOnt into suit-
able sequences of protocol-specific messages. In this phase, drivers can possibly
find unsupported devices, i.e., devices that they cannot control as no mapping

between high and low level messages is defined, yet. In this case, a further in-
teraction with the House Model requests a generalization step for instances
of unknown devices. For each unknown device, the House Model retrieves the
super-classes and provides their descriptions back to the network drivers. In this
way specific devices (e.g., a dimmer lamp) can be treated as more generic and
simpler ones (e.g., a lamp), for which network drivers have the proper mapping
information. This automatic reconfiguration capability is the key to deal with
unsupported devices and sustains DOG scalability: even if devices (and their
formalization) evolve more rapidly than drivers, they can still be controlled by
DOG, although in a restricted manner.

3.2 Runtime command validation

At runtime, the DogOnt instantiation exposed by the House Model is exploited
to semantically validate received requests and internally generated commands.
For each DogMessage requiring the execution of a command, i.e., requiring an
action on a given domotic component, the command value is validated against
the set of possible values defined in DogOnt for that component type. Validation
proceeds as follows: when a DogMessage containing a command needs valida-
tion, the House Model queries DogOnt for allowed commands (Figure 4) and, if
necessary, retrieves the allowed range associated to each of its parameters. If the
DogMessage command complies with constraints extracted from the ontology
model, the command is considered valid and propagation to the DOG Mes-
sage Dispatcher is allowed, otherwise the command is rejected and the message
dropped without any further consequences (except logging).

SELECT ?h WHERE
{ d:DimmerLamp rdfs:subClassOf ?q.
?q rdfs:subClassOf ?y.
?y rdf:type owl:Restriction.
?y owl:onProperty d:hasFunctionality.
?y owl:hasValue ?z.
?z a ?p. ?p rdfs:subClassOf ?l.
?l rdf:type owl:Restriction.
?l owl:onProperty d:commands.
?l owl:hasValue ?h}

Fig. 4. The SPARQL query needed to retrieve the commands that can be issued to a specific device,
e.g. a DimmerLamp.

3.3 Inter-network scenarios

Together with validation and automatic generalization of devices, the semantic
House Model assumes a crucial role in the definition of scenarios and commands
involving more than one domotic network. This is a typical case for home sce-
narios, i.e., for commands that coordinate different devices to reach a given

high-level goal, for example to set-up a comfortable environment for watching
the TV.

If a scenario involves devices belonging to different domotic plants, the ab-
straction introduced by DogOnt allows to define operations in a technology neu-
tral way and to properly generate the corresponding DogMessages that are then
converted into network specific calls.

Example A very common scenario, available in almost all domotic environments
is the “switch-all-lights-off” scenario, that turns off all the lights of a given
domotic home. If the sample home contains more than one domotic plant, DOG
allows to implement the scenario easily, by means of its House Model bundle.
Thanks to the abstraction provided by the DogOnt instantiation managed by
the House Model, the “switch-all-lights-off” can be simply modeled by a rule
stating that all Lamp devices shall receive an OFF command, defined by the
basic OnOffFunctionalityInstance associated to each Lamp (Figure 5).

Lamp(?x)^hasState(?x,?y)^DiscreteState(?y)^
^valueDiscrete(?y,?z)^equals(?z,"ON")->
valueDiscrete(?y,"OFF")

Lamp(?x)^hasState(?x,?y)^ContinuousState(?y)^
valueContinuous(?y,?z)^ge(?z,0)->
valueContinuous(?y,0)

Fig. 5. The switch-all-lights-off rule, in Turtle notation.

This rule, when triggered by a call to the API bundle, requires a reason-
ing step, called Transitive Closure, that allows to propagate properties (e.g.,
functionalities) along the ontology hierarchy, thus allowing to recognize all the
instances of Lamp descendants as Lamps. For each of them, a suitable DogMes-
sage is generated, carrying detailed information about the destination device,
modeled in the ontology by subclassing the proper DomoticNetworkComponent.
Resulting DogMessages are then propagated by the Message Dispatcher to the
network drivers, which, in turn, power off the corresponding lamp devices, be
they simple lamps, dimmers or very complex illumination systems.

4 Conclusions

This paper proposed the DOG platform as a means to smoothly evolve simple,
isolated domotic networks into comprehensive, home-wide Intelligent Domotic
Environments. Several issues have been addressed related to network interop-
eration, to flexible integration and to cost affordability. Based on a sound, dy-
namic framework such as OSGi, DOG allows to manage different networks in a
light-weight manner, exploiting the DogOnt ontology to support complex inter-
operation, generalization and validation tasks.

DOG has been implemented in Java, as a set of 12 OSGi bundles running on
the Equinox open source framework [8]. The DogOnt ontology is managed by the
HouseModel using the HP Jena API [9] while the XML-RPC module exploits the
Apache XML-RPC API [10]. DOG is currently released under the Apache license
and can be freely downloaded at http://domoticdog.sourceforge.net. This
web site also publishes a video demonstration of DOG, the DOG documentation
files and links to download the DogOnt model. DOG runs over very cheap devices
such as an ASUS eeePC 701 (which costs less than 300 Euros), and it is used
by the authors to interoperate a BTicino MyHome demo-box and a Konnex
demo-box crafted by using off-the-shelf components from Merten and Siemens.

Many interesting research streams stem from this first work on semantics-
based domotic interoperation; the authors are currently using the DogOnt model
to perform structural and functional reasoning on the environment controlled
by DOG and, at the same time, they are developing semantic-based autonomic
policies for DOG, in order to exploit the DogOnt formal model to achieve desired
home configurations, even in case of device failures.

5 Acknowledgements

This work has been partially funded by the European Commission under the
EU IST 6th framework program, project 511598 “COGAIN: Communication
by Gaze Interaction”. The sole responsibility of this work lies with the authors
and the Commission is not responsible for any use that may be made of the
information contained therein.

References

1. Scott Davidoff, Min Kyung Lee, John Zimmerman, and Anind Dey. Principle of
Smart Home Control. In Proceedings of the Conference on Ubiquitous Computing,
pages 19–34. Springer, 2006.

2. Sheng-Luen Chung and Wen-Yuan Chen. MyHome: A Residential Server for
Smart Homes. Knowledge-Based Intelligent Information and Engineering Systems,
4693/2007:664–670, 2007.

3. Home gateway technical requirements: Residential profile. Technical report, Home
Gateway Initiative, 2008.

4. Dave Winer. XML-RPC specification. Technical report, UserLand Software, 2003.
5. D. Bonino and F. Corno. DogOnt - Ontology Modeling for Intelligent Domotic

Environments. In 7th International Semantic Web Conference, Lecture Notes on
Computer Science, pages 790–803. Springer-Verlag, 2008.

6. Dave Rye. The X10 PowerHouse powerline interface. Technical report, X10 Pow-
erHouse, 2001.

7. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF (W3C recommendation). http://www.w3.org/TR/rdf-sparql-query/, Jan-
uary 2008.

8. The Eclipse Equinox project. http://www.eclipse.org/equinox/.
9. The HP Jena API. http://jena.sourceforge.net/.

10. The Apache XML-RPC API. http://ws.apache.org/xmlrpc/.

