
SAscha: A RIA Approach for Supporting
Semantic Web Services in the Italian

Interoperability Framework

Alessandro Adamou

Università degli Studi di Roma “La Sapienza”

Abstract. SPCoop is a nationwide framework for supporting service
interoperability in the exercise and application of Italian government
policies. The very core of this framework lies in the use of Semantic Web
Services as a means to execute even complex administrative processes in
a semi-automatic way, hence the need for added semantic value in the
definition of such services. Because each participant is responsible for
both authoring its domain knowledge representation and defining the
services provided, and these tasks may be performed at different times
by different individuals who may or may not belong to the same do-
main, the problem of heterogeneous individual knowledgeability arises.
Also, the set of standards that were adopted in SPCoop includes speci-
fications that have since been replaced by newer versions and show little
coverage by existing implementations. SAscha is a Web tool intended to
address such issues, offering an essentially simple WYSIWYM approach
to annotating Web Service descriptors with SAWSDL references to con-
cepts within domain ontologies which are stored in an ad-hoc repository.
SAscha is provided as a Rich Internet Application (RIA) so as to be
deployed as an infrastructural service itself for immediate use, without
any need to resort to potentially complex client applications.1

1 Introduction

The ongoing trend of re-addressing responsibility for government processes to-
wards local and autonomous administrative units, so as to follow a quasi-federal
model, has raised a number of issues concerning the sustainability of such an
organisational model in terms of scalability and continuous integration of gover-
nance processes. In the light of the current shift of focus towards an e-Government
perspective over the last decade, such issues must be re-thought with respect to
application interoperability and an effort to push the bulk of administrative
information over the Internet. A response to these issues by the Italian institu-
tional establishment is to be found within its proposal for a National interoper-

1 This work is the result of a combined effort of the Italian National Agency for Dig-
ital Administration (CNIPA), the University of Rome “La Sapienza” - Department
of Computer Science, and the National Research Council - Institute of Cognitive
Sciences and Technologies (CNR-ISTC).



2

ability framework based on the Service-Oriented Architecture paradigm, called
SPCoop.

This framework, whose name roughly translates to Public Cooperation Sys-
tem, is essentially an SOA operating on top of a dedicated connectivity infras-
tructure called Public Connectivity System. This architecture, often shorted as
SPC, sprung to life in December 2007 as part of a full-scale normative plan, called
the Digital Administration Code, to enforce e-Government policies in Italy. SPC
is aimed at ensuring a secure, trusted and efficient means of delivering not only
the information that is exchanged between services built on top of SPCoop, but
all of the Public Administration-related network traffic. Several key principles
of the SOA doctrine are satisfied by the SPCoop core components, most signif-
icantly service loose-coupling, reuse, encapsulation, composability, contract and
discovery. All aspects will be looked into when defining these core components.

Figure 12 represents the approach taken by SPCoop on managing a service-
based transaction between two peers, which may be single administrations by
their own right as well as subjects operating on behalf of complex domains where
several administrations concur in defining a composite procedure to achieve a
common goal. Each administrative domain exposes a service endpoint, the Do-
main Gatweway, by which all SPCoop-related traffic is exchanged. Assuming
peer A has already discovered a suitable service S as being provided by peer B,
its message exchange patterns, naming and structure, as well as implementation-
related information are provided as a set of documents, forming what is called a
Service Agreement, which is stored in an ad-hoc registry loosely based on UDDI.
An object of this kind is defined per service and <provider, consumer> cou-
ple and is split in two major components: one, the common part, is defined for
the sake of reusability and contains a conceptual and logical description of the
service stored as a set of WSDL (Web Service Definition Language) 1.1 descrip-
tors, along with QoS and security specifications and (optional) natural language
documents; another, the specific part, addresses implementation-related issues
by providing further WSDL descriptors complete with binding specifications.
Once both parties retrieve the corresponding pre-existing Service Agreement,
the requested service is made available for consumption.

2 Semantics in the SPCoop Framework

Since semi-automation and discovery are among SPCoop’s key goals in a vast,
heterogeneous and, to a certain extent, open world as is the Italian Public Ad-
ministration, the injection of a solid yet essential semantic component into its
building blocks is paramount. To achieve this, SPCoop proposes a method for
defining a semantic layer on top of its service infrastructure, which comprises
two components described as follows:

1. a shared knowledge base which all participating systems may query as well
as contribute to, by registering custom semantic models describing their own
application domains;

2 Edited from [1], page 17



3

Fig. 1. Example of service exchange between administrative domains

2. a standard for the semantic annotation of Service Agreements, so that each
of them includes appropriate references to existing semantic entities within
the aforementioned knowledge base.

As shown on Figure 23, the first component is made available as a shared
repository, named Schema and Ontology Catalog, whose functionalities are served
by the same terms as any other application service provided by administrations
that adhere to SPCoop. This repository is invisible to subjects that do not
participate in the interoperability framework and it is designed to store mainly
OWL ontologies and XML Schema definitions, yet in principle it may be adapted
as to allow further knowledge representation formats such as UML class diagrams
and so on. The Catalog, along with the Service Agreement registry mentioned
in the introduction, is part of an infrastructural layer (shorted as SICA) that
is essential for accessing the interoperability framework itself, and includes a
number of other services regarding security levels, peer indexing and transaction
monitoring.

It is worth noting that the principle of reusability also holds for the ontology
and schema pool pertaining to the Catalog. Each participating administration
is responsible for defining its operative context and is encouraged to author its
own domain-specific ontology, or set thereof, and register it with the Catalog;
however, it is not advisable that said ontologies be self-contained i.e. each re-
designed from the ground up, whereas an alternative bottom-up approach that
re-employs readily-available abstraction layers is generally preferred.

The annotation mechanism employed for Service Agreements is the SAWSDL
standard, a W3C recommendation since June 2007 that is possibly the state-
of-the-art method for semantic integration of Web Services. SAWSDL exploits
the extensibility features of each WSDL syntactic element that is intended to
convey information regarding the significance of the service being provided.
Its range spans across those WSDL descriptors, and their type-defining XML
Schemas, which are included solely in the common, reusable part of a Service

3 Fuligni, S., Use of the semantics for interoperability in the Italian Public Adminis-
trations, 2008



4

Agreement. Of the three types of attributes designed for the SAWSDL specifica-
tion, only modelReference is taken into consideration in the scope of SPCoop.
Post-discovery data formatting issues, which would require the employment of
the liftingSchemaMapping and loweringSchemaMapping attributes (used for
matching the semantic model with the structure of input and output), are not
expected in this context.

An additional requirement for SPCoop is the ability to introduce cyclic
semantic references within the Catalog, in that conceptual XML Schemas can be
retrieved from the Catalog and annotated per se using the SAWSDL indications
for annotating XML Schema documents. This feature can then be exploited to
support stand-alone annotation for XML Schema documents that are imported
by WSDL descriptors as message type definitions.

Only the knowledge which is stored in the Schema and Ontology catalog
is eligible for annotating WSDL 1.1 documents from the common part of Ser-
vice Agreements, therefore an additional requirement is that the set of model
references in a Service Agreement be consistent with the Catalog. All resource
identifiers within model reference values must, when checked against the Cata-
log, point to a semantic entity that can be resolved by the Catalog itself, given
that its inner structure maps namespaces to physical URIs that can be resolved
to a resource containing the definition of the required concept.

Though it may often be the case that the individual(s) entrusted with an-
notating the Service Agreements of a domain coincide with the same ontology
engineer(s) who modelled its knowledge in the first place, this condition is not
guaranteed to always hold. For one thing, semantic annotation exclusively occurs
in that phase of the service’s life-cycle where its Agreement is published, whereas
the formalisation of the semantics for that domain may have been previously per-
formed by a specialised operator. Also, in scenarios where a service is intended
for reuse by a multitude of providers, the corresponding Service Agreement may
be managed by a neutral third party that does not serve as an endpoint for
the service itself. Thus, it is not possible to presume any degree of competence
in ontology engineering for the end-user who is given the task of annotating a
service description, though we can make reasonable assumptions about them
being sufficiently knowledgeable with regard to common modelling standards,
like the Entity-Relationship paradigm and UML class and use case modelling
which, compounded with reasonably-presumed domain knowledge, experience
and common sense, makes them eligible for this task. It was therefore necessary
to present end-users with a tool which enabled them to efficiently perform this
task whilst hiding all the underlying complex logic from them.

Furthermore, the need for such an application was triggered by the lack of a
proper third-party support for the 1.1 version of the WSDL specification, which
was adopted by SPCoop long before version 2.0 became a W3C recommendation
and cannot be upgraded due to institutional constraints. Although some tools
and APIs like Woden are scheduled to fully support for WSDL 1.1 in the future,
most existing tools currently offer exclusive support for those elements that are
common to both versions of the specification.



5

The SAscha tool was developed to address these issues, and is offered as
a Rich Internet Application with an option to deploy it as an infrastructure-
supportive service on the Web available anytime, anywhere.

Fig. 2. Overview of semantic integration mechanisms in SPCoop

3 The SAscha Component Model

Despite being presented as an AJAX application, SAscha, its two initials in-
definitely standing for Semantic Annotation or Service Agreement, is entirely
written in Java. Its UI component, remote interfaces and transport layer are
compiled into AJAX-compliant markup and scripts through the Google Web
Toolkit, whereas the engine itself can be run through any Web Container with
servlet support (Tomcat, JBoss...). This approach entails loose coupling between
user interface and application logic, as depicted on the diagram in Figure 3. The
server-side APIs which are currently utilised for parsing and rendering resources



6

back and forth are: the SourceForge OWL API for ontologies, IBM WSDL4J
for WSDL documents and embedded schemas, a modified version of the LSDIS
SAWSDL4J API, plus a custom add-on to accommodate the extra SPCoop
requirement for supporting stand-alone XML Schema documents, i.e. not im-
ported by a WSDL descriptor. The OWL API, in turn, is a flexible library that
allows plugging-in of several reasoning engines like Pellet and FaCT++.

Because Google Web Toolkit’s Remote Procedure Call API enforces certain
restrictions on the Java objects that can be passed across a RPC, it is not possible
to directly exploit object models from the aforementioned APIs, therefore we
provide an intermediate object model which satisfies GWT serialisation policies
and at the same time conveys the essential information to allow all resources, be
they ontologies, schemas or Web Service descriptors, to be presented to the user
in a convenient manner. Transformations between intermediate and server-side
object models are performed by three specialised Java objects called engines.
Annotations can then be merged to an XML file whose physical location is then
passed as an HTTP header for the client to download.

Currently, the system is fed its resources by means of resolving physical URIs
or by the user’s local file system with respect to ontologies, and only by the local
file system with respect to Service Agreement components and stand-alone XML
Schemas. As the availability of infrastructural services for querying the Schema
and Ontology Catalog closes in, this scenario is bound for change in short time.

Fig. 3. Information flow between user interface and application engine in SAscha

4 User Perspective

From an end-user standpoint, the SAscha tool offers a comparative, SAWSDL-
versus-Ontology interface, displaying annotation sources i.e. ontologies on the



7

right side, and annotation targets i.e. WSDL descriptors and XML Schemas on
the left side. One key factor for the tool to appeal to end-users with reasonable
modelling notions but litte to no knowledge of the Semantic Web is to closely
follow the principle of least astonishment in terms of resource presentation. In
accordance to such principles, SAscha tends to minimise conflicts by providing
the same visualisation paradigms for both the annotation source and target. Each
resource type can be viewed as a tree structure, a stack panel whose components
are tables where information is grouped per item type (e.g. classes, properties
and individuals for ontologies; messages, port types and operations for WSDL
and so on), and a plain source code view. Annotations can be performed through
mechanisms following a drag-and-drop metaphor, although the ability to directly
edit the target source code is currently being considered. Users can highlight one
or more concepts from the ontology tree or stack view and drag them to the node
representing the item they wish to extend with a modelReference attribute,
optionally binding an arbitrary prefix to each namespace. In a situation where
such an attribute comprehends more URI references, each of them is treated as
a tree node per se. These nodes can then be removed through a context menu
action if need be.

Imports and external references are supported for both the annotation source
and target. Typically, these imports are automatically resolved based on their
declared physical locations, but users are given the ability to override such refer-
ences by providing those resource themselves. Upon resolution failure, for each
reference that was not resolved, users will be prompted for a manual override,
which they might want to ignore, in which case the parsing/reasoning process
will continue without. With respect to ontologies, users may also specify whether
reasoning should be performed only on the active ontology, or the whole transi-
tive imports closure, or even a given set of unrelated ontologies.

Tree-like representations for WSDL and XSD documents are quite straight-
forward, in that they mimic the nested structure from the corresponding XML
syntax, with the exception of strictly implementation-related WSDL constructs
(binding, service and port being the most frequent) which do not belong
to the common portion of Service Agreements. As for ontology presentation, a
number of factors were considered regarding which elements should be depicted
as nodes. As with most common ontology authoring tools, the base for tree rep-
resentation is the class hierarchy, as inferred by a server-side reasoning API.
However, it is desirable to append individuals and properties to the very same
class hierarchy, so as to offer a single view spanning across most of the concepts
that can serve as SAWSDL annotation sources. In the light of this desired fea-
ture, individuals are appended as children of those class nodes which they are
instances of. Datatype and object properties are also appended to nodes repre-
senting classes which feature them in their property domain declarations, with
missing properties still being available in the corresponding tables on the stack
view. Other information that does not fit the chosen representation is displayed
in a collapsible diagnostics panel located at the lower portion of the UI.



8

These choices were the result of a number of technical and interaction-related
considerations, which take into account the limitations of common JavaScript
engines as well as the end-user impact of a potential overly redundant view.
Providing the user with an option to prune both trees according to some degree
of granularity is currently being considered. An insight to the SAscha client
application running in a Web browser is given in Figure 4.

Fig. 4. Screenshot of the SAscha application running in Safari

5 Related Work

When mentioning semantics in Rich Internet Applications, a prior distinction
is needed as to which phases of the approach involve the exploitation of se-
mantic potential in the course of development. One approach is to promote the
creation of semantic relationships between components of the software system
itself, no matter what the ultimate task of the application. This technique en-
hances modelling, deployment and integration, yet at the time of writing, no
practical approach regarding rapid RIA application development offers seman-
tics at modelling time. On the other hand, there is a variety of hosted-mode
tools which are focused in content towards the Semantic Web, employing tech-
nologies such as AJAX, OpenLaszlo, Silverlight and Flash. One good example is
the media monitoring service filtrbox, a RIA developed in Adobe Flex for smart
syndication, ranking and noise control over news, blogs, RSS and so on. As for



9

ontology authoring, a prominent example is offered by the comprehensive seman-
tic toolkit TopBraid live, combining Flex 2 technology with the strong-typed and
object-oriented model offered by ActionScript 3.

On the side of existing Semantic Web Services tools there is none, to our
knowledge, that supports all standard-specific requirements that Web Service
descriptors must meet for the corresponding services to operate in SPCoop.
Some systems are projected towards standards which could be seen as succes-
sors to the original, SAWSDL-enhanced WSDL 1.1 specification. Others opt for
separate views with respect to WSDL outlines and ontology graphs, which is
an acceptable, even desirable feature from a conceptual standpoint, but falls
short of immediacy and does not lend itself to comparative decision support.
For comparison, we have put aside Web Service discovery tools like Lumina and
focused on state-of-the-art annotation technologies, further elaborating on the
implementation report as in [5]. The LSDIS Radiant plugin for Eclipse, WSMO
Studio and Semantic Tools for Web Services by IBM alphaWorks were picked
as terms of comparison by which SAscha was measured:

Table 1. Comparison of semantic Web Service annotation tools

SAWSDL
Model
References

WSDL 1.1
Support

Stand-alone
XSD Support

Shared UI
Perspective

Radiant yes partial yes yes

WSMO Studio yes partial no no

Semantic Tools for WS no yes no N/A

SAscha yes yes yes yes

The alphaWorks Semantic Tools for Web Services use annotations in Web
Services Semantics (WSDL-S) format and were not updated to support its
successor SAWSDL. As for the partial WSDL 1.1 support offered by Radi-
ant and WSMO Studio, this is limited to those constructs that are common
to both 1.1 and 2.0 versions, with WSMO offering additional support for the
attrExtensions element, therefore WSDL 1.1 message parts are not eligible for
annotation by either systems. Finally, only Radiant seemed to feature a common
view for representing and interacting with annotation source and target - what
is called “Shared UI Perspective” in the table.

6 Conclusion and Future Work

Despite still being in a pre-alpha status and covering a set of niche requirements
for the Italian e-Government platform exclusively, several development plans are
being taken into account. The adaptation of SAscha so that it would take ad-
vantage of all the features and services provided by the SPCoop framework,
with regard to Schema and Ontology Catalog query services, was somehow par-
tially hindered by the unavailability of such services and specifications at the



10

time of development, and is planned for as soon as these services are up and
running. A client-side and server-side extension to support the extraction, navi-
gation and repackaging of Service Agreements (which essentially comprises two
DEFLATE-compressed archives, one for each part) is also being developed.

Aside from the aforementioned SPCoop-specific issues, we have classified
further development scenarios as follows:

1. Decision support, which can be provided by comparing SAWSDL annota-
tions against a given ontology pattern and suggesting its best matches with
the active ontology, if any;

2. Adding support for schema mappings;
3. Full WSDL 1.1 and 2.0 support, including non-normative semantic annota-

tion e.g. on binding elements;
4. Enabling natural language comments on WSDL constructs by means of the

wsdl:documentation node (currently under development).

From a general-purpose perspective, forking the application into two separate
projects, one for full support of context-independent SAWSDL chores and one
scaled down for SPCoop specifications, is a viable option. However, it is most
likely that the public release will be a single package available under a permis-
sive free-software license such as LGPL. This package would be stripped of its
SPCoop-specific funtionalities, which may then be made available as separate
modules.

References

[1] Armenia, S., Baldoni, R., Fuligni, S., Mecella, M., Raia, A., Tortorelli, F. : Sistema
pubblico di cooperazione: Quadro Tecnico d’Insieme (2005)

[2] Erl, T. : SOA Principles: An introduction to the Service-Orientation paradigm
(2005-2006)

[3] Fuligni, S., Gangemi, A., Tortorelli, F. et al. : Le ontologie come infrastruttura
concettuale per lo sviluppo dei servizi assistiti da tecnologie semantiche nella Pubblica
Amministrazione (2008)

[4] Sheth, A., Verma, K. : Semantically Annotating a Web Service (2007)
[5] SAWSDL Candidate Recommendation Implementation Report (2007)

http://www.w3.org/2002/ws/sawsdl/CR/
[6] Radiant http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1
[7] WSMO Studio http://www.wsmostudio.org
[8] Semantic Tools for Web Services http://www.alphaworks.ibm.com/tech/wssem
[9] Baldoni, R., Fuligni, S., Mecella, M., Tortorelli, F. : The Italian e-Government

Service-Oriented Architecture. Strategic Vision and Technical Solutions (2007)
[10] Baldoni, R., Fuligni, S., Mecella, M., Tortorelli, F. : The Italian e-Government

Enterprise Architecture: A Comprehensive Introduction with Focus on the SLA Issue
(2008)

[11] Balkić, Z., Pešut, M., Jović, F. : Semantic Rich Internet Application (RIA) Mod-
eling, Deployment and Integration (2007)

[12] Adamou, A. : Una Rich Internet Application per l’annotazione degli Accordi di
Servizio nel Sistema Pubblico di Cooperazione (2008)


