
On Restaurants and Requirements: How
Requirements Engineering may be Facilitated by

Scripts

Christoph Peylo

Deutsche Telekom Laboratories, Berlin
christoph.peylo@telekom.com

Abstract. Requirements engineering is a central part of software projects.
It is assumed that two third of all errors in software projects are caused
by forgotten requirements or mutual misunderstandings in the require-
ment gathering process. Due to the inherent structure of project planning
and the project management process, it is very unlikely that this problem
will be solved unless the process itself is changed or we develop tools that
possess some intelligence to facilitate the assessment of requirements. In
this paper a position for the latter approach is formulated. It is argued
that it is feasible to establish a domain ontology based on meta informa-
tion and explanations that are represented as scripts. It is shown that
this ontology has to be constructed in a dynamic way to reflect the dy-
namics of the requirements engineering process. Finally, it is sketched
how use cases and test cases can be derived from this ontology.

1 The Difficulty of Creating Novel Things in Time and
Budget

A project is a temporary endeavour undertaken to create a unique product,
service or result [1]. Consequently, a project has a limited time frame and creates
unique deliverables like services, products or results. The success of a project
depends on the meeting of the outcome with its expected result. Thus, the
deliverables of a project have to fit in their intended niche.

Accordingly, identifying the project requirements is of uttermost importance
for any project. The project requirements describe the characteristics, i. e. con-
ditions or capabilities, that must be met by the deliverables [1]. Further steps of
project management such as establishing objectives, balancing the demands for
scope, time, cost and quality, etc., have the clear and comprehensive definition
of requirements as a prerequisite.

Hence, the identification of requirements (requirements engineering) is crit-
ical for the success or failure of a project. It is assumed that two thirds of all
errors in system development are caused by forgotten requirements or misunder-
standings.



1.1 Project Requirements and Project Risks

The understanding of project requirements must be reached (according to the
classical project management approach) in the very early stages of the project
(initiation stage), in order to formulate the project scope statement.

The project scope statement describes the project’s deliverables and the work
that is to be accomplished to create them. Frequently, it is quite a coarse grained
level of detail in which the conditions and capabilities of the intended system are
described at that time. Nevertheless, this will build the basis for further planning
during the next stages.

From a business point of view, this is a quite disadvantageous setting: the
gathering and analysis of the key project deliverables and the decision of how to
supply them is in a project phase before there is a signed contract. Consequently,
the time and work in this phase is not payed by the intended customer-to-be.
It is quite common in large projects to get compensation for feasibility studies,
but this does not apply to all projects.

In summary, if this stage is not performed well, it is unlikely that the project
will be successful in meeting the expectations of the stakeholders.

2 On the Difficulty to Represent Understanding with
Imprecise Formalisms

To understand the project requirements it is important to understand the back-
ground, i. e. the business processes from which the need of a new product or
service has arisen. This helps to understand the stakeholder’s needs, wants and
expectations and what has to be achieved to satisfy a contract.

Alas, the setting of such a task is often quite complex. The general back-
ground is often quite specialized and not easy to understand, business processes
are sometimes ill defined. The terminology used by the stakeholders may differ
from the vocabulary of the requirements engineer or, even worse some terms may
be used with a slightly different semantics (which usually becomes apparent later
in the project). Last but not least, some terms may turn out to be not terms at
all but business processes (cf. [2]).

Thus, there are numerous and well known reasons (cf. [3]) why requirements
are left out or not fully understood:

– Business processes are ill defined. A business process may consist of several
sub-processes which may be too trivial for the stakeholders to mention.

– Terms are used with (slightly) different semantics.
– Business processes of a new (innovative) setting are ill defined.
– Novel business processes may interfere with existing business processes.
– There are contradictionary processes involved.

It would be necessary to describe the system and its background in a comprehen-
sive and almost complete way to eliminate all sources of those mistakes. There
are hardly any projects where there is time and budget for such a comprehensive



approach. It is important to remember that in the initiation phase of a project a
contract is not signed, i. e. there is no or insufficient compensation for an in-depth
approach available.

Consequently, it is quite common to concentrate on the representation of
the functional requirements with use cases. A use case describes the interaction
between a system and a request that originates from outside of that system.
Use cases represent that interaction as a sequence of single steps and events to
achieve a specific goal. There are several representation schemes (most common:
the Uml use case diagram in various versions) to graphically express this kind
of interaction. The meaning (or semantics) of the use case is not represented
by the well defined building blocks of the formalism [4], [5], but shall constitute
itself (helped by various annotations) in the mind of the reader. This approach
is quite common but prone to misunderstandings.

Admittedly, those representation formalisms have a certain beauty: they rep-
resent complex interactions in a compact way that may be perceived quickly
(at least in comparison to lengthy (and often tiresome to read) definitions in
natural language). Due to their seeming clarity and formality they are often
over-estimated. Nevertheless, they are deceptive with respect to their precision
and expressiveness. There main limitations are:

1. Weak and not well defined semantics of relations.1

2. The expressiveness of graphical representation schemes is limited per se to a
fragment of first order logic (existential quantified, conjunctive connected).
Trying to extend the symbology by annotations (to cover modal or second
order constructs) will increase the confusion, not the expressiveness.

3. Use cases represent the interaction in the communication between user and
system. Commonly, they refer to sub processes and documents that are in-
terchanged during those process steps without explaining the content in full
detail. Thus, generally, it is not possible to decide by the study of a use
case whether the process flow may lead to the desired result (i. e. the system
output may be achieved, given the set of input).

After this synopsis of the requirements gathering process and the difficulties
that exist in avoiding misunderstandings it is concluded that either this process
should be upvalued considerably (in terms of time and money), or tools for
facilitating this process on a more semantic level should be applied.2

In the remaining part of this paper, an approach is sketched how existing Ai
concepts could be deployed for this purpose.

1 This is no new insight, as shown by Woods [6].
2 There are several approaches that try to support the requirements engineering pro-

cess in linking use cases to contextual scenarios (e. g. [7] and [8]). But the represen-
tation of scenarios is done in natural language and suffers from the known problems
connected with that approach (cf. sec. 2 and sec. 4).



3 Contributions from AI

How can Ai facilitate the requirements engineering process, and, more specifi-
cally, how can Ai contribute to avoid misunderstandings? From an Ai perspec-
tive, the problem is situated in the context of formalizing domain knowledge and
to explain and to communicate this knowledge (cf. [9], [10]).

3.1 On Explanations and Understanding

Explanation can be regarded as the process by which we make sense of the
world [11]. Thus, we construct structures from which knowledge can be derived
at a later stage. Explanations seem to be linked to the process where knowl-
edge structures are constructed or communicated. Thus, explanations connect
phenomenon in a systematic way to make outcomes predictable. Whereas expla-
nations reflect the process of understanding, knowledge seems to be more about
the management of realization. Thus, knowledge can be understood as a tertiary
relation (someone assigns someone knowledge about something).3

At a very basic level explanation equals understanding: We believe that we
understand why a person is doing what he is doing if we can point to a script
that he or she is following [11]. A script is a structured representation describing
a stereotyped sequence of events in a particular context and forms a very basic
knowledge structure [11]. In that sense the famous restaurant script [13] was
used to understand the basic interactions in a restaurant. This script-type of
understanding is equivalent to making sense and is to be distinguished from
the deeper (cognitive) understanding, of course. For the purpose of this paper
making sense will do. Thus, scripts as condensed or compiled explanations may
be considered as suitable building blocks for a system with a shallow degree of
self-awareness.4

3.2 The Structure of a Script

As stated above, a script models a flow of action in a specific setting. To under-
stand this setting, i. e. to interact in a limited communication [11], it is necessary
to tag structural information to its building blocks to facilitate the semantic pro-
cessing in a computer system. The components of scripts are

– Entry conditions that must be met before the script may be started.5
– Results or conditions that are true once the script has terminated. Thus, a

script has a specific setting as an entry condition and after the script termi-
nated, the setting (the state of affairs) is different from the initial setting.6

3 This holds true especially in educational contexts, see [12].
4 A script resembles goals and scenarios in the Cosmod-Re approach of Pohl [14].

But this approach is a methodology (cf. [15]) which does not result in a system as
proposed here.

5 In the famous restaurant script these include a restaurant that is open and a customer
that is hungry.

6 In the restaurant script effects of the script are that the customer is not hungry and
has less money.



– Roles as placeholders for actors or objects in actions that the individual
participants perform.

– Scenes that reflect temporary aspects of a script. A scene works like a script
in a script. It encapsulates operations that change the state of affairs.

– The entities involved as objects or passive parts in that script.
– A set of well defined actions. Actions are distinguished by the arity of the

relation (e. g. transitive verbs are a binary relation, double-transitive verbs
a tertiary relation), and a type restriction with respect to roles and entities.

Those components offer the tools, by which a lightweight understanding may
be modeled. Logically, entities may be modeled as predicates, actions may be
represented as relations on roles. Roles are variables (with type restrictions) for
entities. A state of affairs may be represented as a list of predicates that hold in
that moment.

3.3 Example: the Restaurant Script

The classic example of Schank’s theory is the restaurant script. The script theory
is closely related to Schank’s concept of conceptual dependencies [13]. According
to that concept, the meaning of natural language sentences should be expressed
by using conceptual primitives. In the example given below the conceptual depen-
dencies are marked using uppercase letters and a typewriter font. The meaning
of these primitives is as follows:

PTRANS: Transfer of the physical location of an object (i.e. go).
MBUILD: Building new information of old information (i.e. decide).
MTRANS: Transfer of mental information (i.e. tell).
ATRANS: Transfer of an abstract relationship (i.e. give).
MOVE: Movement of a body part by its owner.
ATTEND: Focusing of a sense organ toward a stimulus (e.g. listen).

The subject of the sentences is represented by S which is a role and con be
instatiated by any agent. The script consists out of four scenes:

Scene 1: Entering: S PTRANS S into restaurant, S ATTEND eyes to tables, S
MBUILD where to sit, S PTRANS S to table, S MOVE S to sitting position.

Scene 2: Ordering: S PTRANS menu to S (menu already on table), S MBUILD
choice of food, S MTRANS signal to waiter, waiter PTRANS to table, S MTRANS
’I want food’ to waiter, waiter PTRANS to cook.

Scene 3: Eating: Cook ATRANS food to waiter, waiter PTRANS food to S, S
INGEST food.

Scene 4: Exiting: waiter MOVE write check, waiter PTRANS to S, waiter ATRANS
check to S, S ATRANS money to waiter, S PTRANS out of restaurant.

It is not compulsory to adopt the concept of conceptual dependencies to utilize
scripts. Nevertheless, it is necessary to define entities, roles and operations (i. e.
actions) in a way, that offers some generality and transferability. Thus, a set of
universals with predefined semantics and support for roles seems to be helpful.7

7 Further work will include an analysis how ongoing efforts on semantic modeling
could be integrated in this approach (cf. [16]).



3.4 Semantic Expressiveness

As sketched above, a script transforms one state of affairs into another state.
States may be modeled adequately with a fragment of first order logic (existential
quantified, conjunctive connected predicates). Accordingly, entities, e. g. objects
or actors, that are referred to in a script may be formalized as well by a set of
attributes, i. e. as predicates. Generally, first order logic is not sufficient to model
the dynamic interdependencies and actions in a domain, due to the necessity of
modal, temporal or second order (quantification about predicates) constructs.
These language constructs have to be provided by modeling the actions and
roles accordingly. Thus, type restrictions and quantifications on predicates or
attributes have to be considered in the process of defining and implementing
roles.

Consequently, the static aspects (situations as constellations of entities at a
given point in time) are modeled with a fragment of first order logic. Actions,
as well as operations on entities, permit more advanced constructs like quantifi-
cation on predicates and additional qualifiers. This augments the expressiveness
of the whole formalism considerably. A script forms a context in which the se-
mantics for at least one - and to avoid misunderstandings: exactly one - valid
assignment and interpretation is provided.

This approach is computationally feasible, since the domain of the variables
of the predicates are restricted in most application scenarios to reasonably sized
sets of possible instantiations.

3.5 Scripts and Ontologies

Generally, a software system is intended to be representationally and inferen-
tially adequate with respect to its application area. Thus, the entities in the
software system and their real world counterparts shall be describable by the
same attributes. Inferences over attributes and entities in the system shall hold
in reality and vice versa. Thus, the conceptualization of the application domain
in the software system shall model those entities, relationships and processes
that are essential for achieving the intended level of adequacy. Such a concep-
tualization may be referred to as an ontology [17]. In this setting the role of
an ontology is twofold. It shall represent the body of knowledge from which the
deliverables of the system shall be derived and it shall provide the vocabulary
and the rules from which the interactions with the system may be described (cf.
[9]).

The ontology has to be dynamic: the project goals may be subject to change
and therefore the underlying ontology respectively. Since a project is an unique
endeavor we can not take some ontology from the shelf, but it is more likely
that each project (even if located roughly in the same domain) will need its own
ontology.

Such an ontology will be referred to as an agreed ontology to express that it
shall represent the common understanding of the domain by all stakeholders of
the project. The term agreed implies a certain dynamics as well in the process



of defining and refining the ontology. It reflects the processes as mutual under-
standing as the project group grows and implies that the formalism should be
mighty enough to tackle well known problems with respect to knowledge bases
(frame problem, non-monotone logic, etc.).

3.6 The Building Blocks of an Agreed Ontology

Accordingly, there have to be building mechanisms for both: scripts as con-
stituents of an ontolgy and the ontology itself. Given the inherent structure of a
script as outlined above it lies at hand that scripts can be defined by a context-
free grammar. Basically, a context-free grammar has four components (cf. [18]):

– A set of terminal symbols. These are the elementary symbols of the language
defined by this grammar.

– A set of nonterminal symbols or syntactic variables.
– A set of rules, where each rule consists of a nonterminal (head) and a se-

quence of terminals or nonterminals (body), by which the head may be
replaced.

– A designation of one of the nonterminals as start symbol.

Applied to this context, it is evident that scenes, roles and actions form the
nonterminal symbols of this grammar. The terminal symbols are either domains
of the syntactic variables, such as instantiations of roles (i. e. a specific user or a
specific entity) or outcomes of a script, i. e. a state of affairs.

This shall be illustrated with a scenario where a device fails, and calls for
a technician. This scenario is taken from a setting that has been accomplished
by the Deutsche Telekom Laboratories [19]. It is situated in a context where
machine-to-machine techniques are deployed to automate facility management
processes. This scenario is built up from several scenes. The scenes of the scenario
have to be applied in a distinct order, thus the scenes are numbered.

1. A device fails. A notification is sent calling for the technician. His credentials
are activated, so that he may enter the room where the device is located. A
process is triggered which waits for the technician. If the technician has not
arrived during an interval, the call is sent again.

2. The technician arrives at the building. The technician has to authorize him-
self with his credentials to be able to enter the room where the device is
located. This will trigger another event. This event includes a success pa-
rameter, stating whether the door opened or not. This can generate an alarm,
should the technician enter the wrong credentials.

3. During the repair process the device has to be queried several times. Since
the technician is authorized, the conditions for a repair process are met and
no further call is sent.

4. Once the device works again and the technician is finished the authorization
lifespan will be ended. Again, an alarm is triggered if the technician fails to
authenticate himself when leaving the location. The credentials are deacti-
vated to ensure that the technician may enter the location only in the course
of a repairing process.



The scenario is comprised of several actions that result in specific situations,
i.e. events. The scenario is represented with a grammar in Backus-Naur form as
given below. The terminal symbols are enclosed with quotes. Head and tails of the
rules are separated by a ’::=’, ’,’ is used as concatenation and ’;’ as termination
symbol.

1. accessAndServiceControl::=queryStateOfDevice;

2. queryStateOfDevice::= device, deviceWorks;

3. queryStateOfDevice::= device, deviceFails, isAuthorized,

queryStateOfDevice;

4. queryStateOfDevice::= device, deviceFails, callTechnician,

waitingForTechnician;

5. device ::= "specificDevice";

6. deviceWorks ::= "deviceWorks";

7. deviceFails ::= "deviceFails";

8. callTechnician::= technician, notifyTechnician;

9. technician ::= "specificTechnician";

10. notifyTechnician ::= "technicianNotified";

11. setCredentials::= "techniciansCredentialsActivated";

12. unsetCredentials ::= "techniciansCredentialsDeactivated";

13. waitingForTechnician::= openDoor;

14. waitingForTechnician::= callTechnician, waitingForTechnician;

15. openDoor::= arrivesTechnician, setCredentials, authenticate,

isAuthorized;

16. soundAlarm::= setCredentials, authenticate, isNotAuthorized;

17. arrivesTechnician= "technicianHasArrived";

18. authenticate::= credentials, isAuthorized;

19. authenticate::= invalidInput, isNotAuthorized;

20. credentials ::= "credentials";

21. invalidInput::= "invalidInput";

22. isAuthorized ::= "isAuthorized";

23. isNotAuthorized ::= "isNotAuthorized";

24. repairDevice ::= queryStateOfDevice, leaveRoom;

25. leaveRoom::= authenticate, unsetCredentials;

The terminal symbols in this example are placeholders for specific instantiations
of roles, e. g. a specific technician, location or device, or situations. A situation
s is a configuration (cf. sec. 3.4) which holds true for all state of affairs ∆ in the
system at a given point t in time.8 Thus: ∆t � s∧∆t 2 ¬s. It surely is a challenge
to model the action and role part in a way that supports explanations and
allows quantifications. Nevertheless, although the exact definition and modeling
of actions and roles may be demanding in specific cases, it is considered that this
does not present an obstacle in principle to this approach. Since there are several
approaches documented and available, where this problem has been solved (c.f.
[11]).

8 For example, ∆t may be the set of all relations in a database system at a specific
point of time t.



3.7 Constructing Agreed Ontologies

Scripts form the nonterminal vocabulary of an agreed ontoloy, the terminals are
representations of outcomes of scripts. The challenge to define the rules for the
ontology is quite demanding, since they model the order and interdependencies
of scripts and the dynamics of the ontology depends on them.

The dynamics is achieved by adding new scripts to the ontology, removing
and modifying existing scripts or changing the order of the scripts. This shall
be sketched by extending the service scenario given above with further use cases
from that domain. 9

Access and Service Control: Maintenance personnel are given key (e. g. RFID
tags, access cards) for accessing facilities and identification at devices to be
maintained. Tags store employee credentials, doors to be used, work orders
as well as operations carried out. The usage of doors is monitored and alerts
are generated if needed.

Inventory Management: Every asset may have one or more unique identifier.
This provides knowledge of the connected devices, their functionalities, and
attributes. Automatic inventory of assets using fixed and handheld readers
helps locating displaced and mobile assets. Absence of a reading event can
be used to detect stolen equipment.

Predictive Maintenance: Continuous monitoring of operational (e.g. load)
and non-operational (e.g. temperature) parameters using sensors to predict
breakdowns. Estimate individual maintenance intervals for different equip-
ments. Using maintenance history (data logging) to analyze tradeoffs be-
tween cost to maintain old equipment and investment in new equipment.

Remote Control: Remotely monitor and query about the status of individual
persons (in terms of location) and devices. Devices shall be reconfigured
remotely.

The script for access and service control was explained in detail in sec. 3.6.
The other use cases may be represented as scripts in analogous way.10 A simple
example grammar that models an ontology for this facillity management setting
is given below:11

1. FacilityManagementOntology::= InventoryManagement, PredictiveMaintenance,

RemoteControl, AccessAndServiceControl;

2. InventoryManagement ::= establishedAutoID;

3. PredictiveMaintenance ::= establishedPMProcesses, remoteControl;

4. AccessAndServiceControl ::= establishedAASProcesses, remoteControl;

5. RemoteControl::= "establishedRemoteControl";

9 Additionally, it might be necessary to ensure global consistency of the outcomes of
the different scripts. The approach of assumption based truth maintenance systems
(Atms) [20] can be deployed to solve this problem. A script of this approach roughly
plays the role of an assumption in de Kleer’s concept.

10 In this context use cases are subsumed by scripts.
11 The grammar is represented in BNF, terminal symbols are enclosed with quotes.



It is obvious that the scenarios are not independent from each other but
imply an order. Thus, to enable predictive maintenance remote monitoring has
to be established. The granularity can be increased, by splitting the scenario of
access and service control in two scenarios: an access control and a service control
scenario. This leads to a change in the definition of the inventory management
process:

1. AccessAndServiceControl ::= remoteControl, AccessControl;

2. AccessControl ::= "establishedACProcesses";

3. InventoryManagement::= AccessControl, establishedAutoId;

It is possible to change a sequence or to edit the starting conditions or the
outcome of a script. Thus, by manipulating the grammar the ontology of the
domain of interest can be managed. In addition an Atms could administer the
consistency of the general state of affairs of the model of the application domain.
Since each script affects the state of affairs of the whole system and the changes
that have been applied by the operations of a script are recorded, each state
of affairs can be tracked down to the scripts involved. Thus, it may be easily
discovered, if starting conditions of a script never appear or if scripts lead to
inconsistencies.

Since scripts not only model the interaction flow but are more detailed with
respect to the semantics of the process and the outcome, scripts may even act
as blue print for test cases. Consequently, this approach enables to transfer the
methodology of test driven development to the requirement engineering process.
As production code in this setting has to pass the predefined test cases, new
requirements would have to be formulated as scripts and checked against the so
far agreed ontology. Consequently, it can be decided for each requirement (that
is well-formed in terms of the ontology’s grammar) whether it may be derived, is
subsumed, leads to contradictions or augments the set of requirements gathered
so far.

4 Conclusion

In this paper a position was formulated that points out some general deficits in
requirements engineering. It was argued that the tools to represent functional
requirements of a non-trivial software system are commonly restricted in their
semantic expressiveness and thus inept to establish mutual understanding con-
cerning those processes. Misunderstandings will easily arise due to the ill defined
semantics of the representation formalism: each stakeholder will underlay his or
her individual semantic reference system for understanding. To describe the sys-
tem‘s functional requirements in a comprehensive way in natural language is
possible in theory but not feasible either. It is known from experience that large
volumes are scarcely read by their target audience.

Thus, it is argued that this problem can be solved by an agreed ontology
that models the understanding of the target system in a way that explanations
on functional requirements can be given. This ontology should be implemented
in a system that forms the semantic grounding of all assumptions about the



domain of interest and the interactions within the future software system. Mis-
understandings and contradictions can be managed due to its semantic-enabled
constituents, i. e. scripts, and the internal management of the system.

5 Consequences and Further Work

Although the argumentation in this paper did not provide detailed examples,
it should be comprehensible, that this approach is technically feasible and will
hold true. Future work will provide comprehensive examples and flesh out the
approach.

Nevertheless, applying this approach to software projects will result in a ma-
jor change in the administrative setting of a project and communication between
the stakeholders that will hinder its acceptance. The biggest issue in that respect
is that presently, the documentation of all relevant organisational stipulations
is essentially paper-based. Utilizing this approach would mean to transfer an
essential part of the project documentation, i. e. the written and signed require-
ments specification, to a different medium. The legal issues are no hindrance,
since a system that implements this approach could be serialized and signed with
the certificates of the stakeholders. Nevertheless, major shifts in administrative
procedures are not done lightly. Thus, future work will have to prove that the
benefit of this approach to software engineering will outweigh the inconvenience
of changing an administrative process.

References

1. Project Management Institute, ed.: A guide to the project management body of
knowledge: PMBOK guide. 3 edn. Project Management Institute, Inc. (2004)

2. Knauss, E.: Einsatz computergestützter Kritiken für Anforderungen.
Softwaretechnik-Trends 27 (2007)

3. Wiegers, K.: Software Requirements. Microsoft Press (2005)
4. Jeckle, M., Rupp, C., Zengler, B., Queins, S., Hahn, J.: Uml 2.0 - Neue

Möglichkeiten und alte Probleme. Informatik Spektrum 27 (2004) 323 – 332
5. Nalepa, G., Wojnicki, I.: Using UML for Knowledge Engineering - A Critical

Overview. In Baumeister, J., Seipel, D., eds.: 3rd Workshop on Knowledge En-
gineering and Software Engineering (KESE 2007) at the 30th Annual German
Conference on Artificial Intelligence. (2007) 37 – 47

6. Woods, W.: What’s in a Link: Foundations for Semantic Networks. In Borow, D.,
Collins, A., eds.: Representation and Understanding. Academic-Press, New York
(1975) 36–81

7. Sutcliffe, A.: Scenario-based requirements analysis. Requirements Engineering
Journal 3 (1998) 48 – 65

8. Allmann, C.: Situations- und szenariobasierte Entwicklung von Anforderungen in
der technischen Entwicklung. Softwaretechnik-Trends 28 (2008)

9. Walton, D.: Can Argumentation Help AI to Understand Explanation. Künstliche
Intelligenz 2 (2008) 8 – 11

10. Richter, M.: Logik versus Approximation. Künstliche Intelligenz 4 (2004) 62 – 64



11. Schank, R., Kaas, A., Riesbeck, C.: Inside case-based Explanation. Lawrence
Erlbaum Associates, Inc. (1994)

12. Peylo, C.: Wissen und Wissensvermittlung im Kontext von internetbasierten intel-
ligenten Lehr- und Lernumgebungen. Volume 257 of Dissertationen zur künstlichen
Intelligenz. Akad. Verl.- Ges. Aka, Berlin (2002)

13. Schank, R., Abelson, R.: Scripts, Plans, Goals and Understanding. Lawrence
Erlbaum Associates, Hilsdale, New Jersey (1977)

14. Pohl, K., Sikora, E.: The Co-Development of System Requirements and Functional
Architecture. In Krogstie, J., Opdahl, A., Brinkkemper, S., eds.: Conceptual Mod-
elling in Information Systems Engineering. Springer, Berlin, Heidelberg, New York
(2007)

15. Bramsiepe, N., Sikora, E., K.Pohl: Ableitung von Systemfunktionen aus Zielen
und Szenarien. Softwaretechnik-Trends 28 (2008)

16. Colomb, R.: Ontology and the Semantic Web. IOS Press, Amsterdam (2007)
17. Guarino, N.: Formal Ontology and Information Systems. In Guarino, N., ed.:

Formal Ontology in Information Systems. Proceedings of the First International
Conference, June 6-8, Trento, Italy, Amsterdam, Berlin, Oxford, Tokyo, Washing-
ton, IOS Press (1998) 3–19

18. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers, Principles, Techniques, &
Tools. Addison-Wesley, Reading, Massachussets (2007)

19. Krishnamurthy, S., Anson, O., Sapir, L., Glezer, C., Rois, M., Shub, H., Schlöder,
K.: Automation of Facility Management Processes using Machine-to-Machine
Technologies. In: The Internet of Things. Volume 4952 of LNCS. Springer, Berlin,
Heidelberg, New York (2008) 68 – 86

20. de Kleer, J.: An assumption based truth maintenance system. Artificial Intelligence
(1986)


