
Handling instance coreferencing in the KnoFuss
architecture

Andriy Nikolov, Victoria Uren, Enrico Motta and Anne de Roeck

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov, v.s.uren, e.motta, a.deroeck}@open.ac.uk

Abstract. Finding RDF individuals that refer to the same real-world
entities but have different URIs is necessary for the efficient use of data
across sources. The requirements for such instance-level integration of
RDF data are different from both database record linkage and ontology
schema matching scenarios. Flexible configuration and reuse of different
methods is needed to achieve good performance. Our data integration
architecture, called KnoFuss, implements a component-based approach,
which allows flexible selection and tuning of methods and takes the on-
tological schemata into account to improve the reusability of methods.

1 Introduction

Finding coreferent data instances, which come from different sources but describe
the same real-world entity, has for a long time been recognized as an important
problem within the database research community [1], [2]. Now, with the growth
of the amount of RDF data on the Web [3] this problem gains importance in
the Semantic Web context. Different sources may contain information about the
same real-world entity but identify it using different URIs. A further problem
arises when different sources use different ontologies to describe the same entity.
Instance coreferencing, which involves discovery of explicit mappings between
identical instances and unifying their URIs, is thus necessary for the efficient
usage of Semantic Web data [4].
So far, in the Semantic Web research community, the main emphasis of the on-
tology integration research has been put on integrating ontological schemata [5].
While it is possible to apply some of these tools to the task of instance coreferenc-
ing, they are not optimized to perform it. On the other hand, simple adoption of
methods produced for database integration can also lead to complications. The
data represented in RDF and structured according to an ontological schema lan-
guage (like RDFS or OWL) has certain features, which require existing record
linkage algorithms to be changed and adjusted. In particular, ontologies define
hierarchical relations between classes and properties, which can be exploited.
This paper presents the instance matching approach adopted by the KnoFuss
knowledge fusion architecture [6] and its initial evaluation. The framework fo-
cuses on the task of data-level integration of ontological data (also called knowl-
edge fusion) and is based on the principles formulated in the domain of problem-
solving methods [7]. Each basic coreferencing algorithm (e.g., machine-learning

classifier) is represented as a problem-solving method. Each method’s inputs,
outputs, capabilities and configuration settings are formally described. The meth-
ods are organized into a library and are selected and invoked according to their
capabilities. In order to increase the flexibility of the system, the methods’ con-
figuration parameters depend on the context in which they are applied, and class
hierarchy is taken into account.
The rest of the paper is organized as follows: in the section 2 we provide a brief
overview of the most relevant approaches. Section 3 outlines the main concepts
of the KnoFuss architecture and describes its approach to the instance matching
problem. Section 4 describes our initial experiments. Finally, section 5 briefly
discusses existing limitations and necessary future work.

2 Related Work

The instance coreferencing problem (also known as record linkage [1]) has, for a
long time, been a focus of research within the database community and a number
of solutions were proposed (see [2] and [8] for survey). We can roughly classify
these methods into three groups:

– Manually constructed rules.
– Supervised methods.
– Unsupervised methods.

Manually constructed rules are applicable in cases when a unique object primary
key is available. In these cases, instances can be identified with a high degree of
accuracy. However, such primary keys are very domain-dependent, which makes
it impossible to reuse such methods on a large scale. Supervised methods in-
clude machine learning algorithms, which can be adapted to a wide range of
domains. These algorithms view record linkage as either classification ([1], [9],
[10]) or clustering ([11]). Given a set of training examples, a machine-learning
algorithm can be used to produce a decision model. These algorithms are more
generic but require sufficient training data. Unsupervised methods include such
generic similarity measures as string similarity (edit distance, Jaro-Winkler, Lev-
enshtein) and set similarity (cosine, Jaccard, TF-IDF) metrics [12]. While they
are the most generic, these techniques still require their parameters (weights and
thresholds) to be configured in order to produce results with sufficient accuracy.
These parameters must be either set manually or learned from training examples
(e.g., [9]). These techniques were later adapted to the Semantic Web domain,
where the research was primarily concentrated on matching schema-level infor-
mation [5].
Individual matching algorithms can be combined in order to improve the over-
all matching performance. This approach was implemented in several systems
applied either to schema matching ([13], [14]) or data matching ([15], [16]). All
such systems apply different matching algorithms (e.g., edit distance, n-gram,
SoundEx) and then combine their results to make final decisions. Most systems
keep the set of methods they use and configuration information internally ([17],

[18]). However, some frameworks implement a more flexible approach, in which
the library of methods is extensible and configuration parameters can be ad-
justed. For instance, the FOAM framework [19] incorporates the configuration
architecture called APFEL [20], which exploits user feedback in order to learn
optimal configuration parameters of atomic methods. eTuner [21] proposes to
achieve the same goal in an automated way by constructing a permuted version
of the ontology to be mapped. The mappings between the initial and artificial on-
tology (known in advance) are used as a gold standard for the learning algorithm,
which produces optimal configuration parameters. Thus, the component-based
approaches on the one hand provide more flexibility to the matching process,
while on the other hand try to minimize the necessary user effort.
As was said, so far the task of instance coreferencing has not received as much
attention. A particularly interesting example of a component-based system fo-
cused on the data-level integration is MOMA [16]. It is an adaptation of the
COMA schema integration system [14]. The system employs an extensible li-
brary of matching methods conforming to a uniform interface, invokes them
separately and combines their results afterwards. Another system described in
[22] specially focuses on coreferencing instances using links between them and
the authors report good performance. However, in our view, there is still a need
for the solutions specifically aimed at integrating Semantic Web data. RDF data
structured according to RDFS or OWL ontologies and coming from different
sources possesses a number of features, which make the integration process dif-
ferent from the one accepted in the database community. Among others, these
features include the following:

– Unlike in the database schema, the classes of instances in the ontology are or-
ganized into a hierarchy. This hierarchy can be exploited when implementing
and configuring individual matching methods.

– Database schema imposes a harder restriction on the instance structure
(fields in the table are pre-defined). This is not always true for DL-based
ontologies with an open-world assumption: in particular, a whole set of prop-
erties for an individual is not always known in advance.

– The traditional database integration scenario implies that the integrated
table has to conform to a single target schema and integrated records have
the same structure. This requires schema-level discrepancies to be resolved
before instance-level matching can take place. In the Semantic Web domain
this condition is not compulsory: establishing that two instances are the same
can be valuable even without translating all associated properties according
to a single ontology.

3 KnoFuss architecture

3.1 Method library organization

As was said, there are several existing methods used to solve the coreferenc-
ing problem, which vary with respect to their degree of generality and require-
ments. It is recognized that tuning the methods is crucial for achieving good

performance [21]. The same method can be applied in different contexts, but
its parameters have to be adjusted. We developed an architecture for knowledge
fusion called KnoFuss based on the principles of problem-solving methods [7].
The overall architecture is aimed at covering three stages of the data integration
process: instance coreferencing, inconsistency detection and inconsistency reso-
lution. The last two stages are needed in order to point out different alternatives
to the user and to enable ontological reasoning over the integrated dataset, if it
is necessary. In this paper we only focus on the coreferencing stage.
The main components of the architecture are the library of methods and the fu-
sion ontology, which describes the necessary meta-level configuration data. The
fusion ontology describes two kinds of entities:

– Task and methods descriptors. This information is used to perform method
selection and assign method parameters.

– Intermediate knowledge structures. These structures represent meta-level de-
scriptors of methods’ inputs and outputs (e.g., known schema-level map-
pings, resulting mappings between individuals.)

A method descriptor contains the generic conditions of its applicability in the
form of a SPARQL query, default parameters of the method and the method’s
default reliability (at the moment this is a value between 0 and 1). An example
describing a coreferencing method is given in the table 1. The parameters given

Table 1. Matcher method descriptor

Method Label-based Jaro-Winkler matcher

Inputs
SourceKnowledgeBase :type KnowledgeBase;
TargetKnowledgeBase :type KnowledgeBase;

Outputs
MergeSets :type list of MergeSet - Set of
possible mappings between instances of source and
target knowledge bases

Tackles Coreferencing

Selection criterion
SELECT ?uri WHERE {
?uri rdfs:label ?label }

Reliability 0.9

Description
A generic method, which performs matching based on the
label similarity measured using Jaro-Winkler metrics.

Parameters

Threshold 0.87

in the method’s descriptor are default ones, which are used in cases where there
is no additional information available. An application context object serves as a
bridge between the method and the domain of application. Each method can be
linked to different contexts. Application context defines the parameters of the
method in more specific conditions. Selection criteria of the application context
objects can be organized hierarchically (see Fig. 1).

Fig. 1. Method selection via the hierarchical application contexts.

The workflow starts when the system receives a new set of data as its input. The
method selection process is performed in two stages. First, the set of applicable
methods is selected by running the selection criteria queries on the incoming
data. Then, the context-dependent configuration parameters are defined using
the available selection criteria of each applicable method. If a method is used in
a context in which it has not be used before (for an unknown class), the new
application context is defined for objects of this class. The parameters of this
context are copied from the default method parameters. After that, each method
is invoked and the mappings are produced. A reliability value assigned to each
mapping depends on the reliability value assigned to the context in which the
method was invoked.

3.2 Exploiting subsumption relations

The hierarchy of classes can be exploited to reuse the parameters of a method
in new contexts. Typically, a matching method makes a decision based on a set
of attributes. For instance, a machine learning method requires training data
to learn a decision model. In order to train a method to match individuals of
a certain class we need sufficient training examples. Obtaining these for each
ontological class is often not feasible. Ontological schemata can be exploited in
two ways:

– Training instances belonging to different subclasses of the same superclass
can be combined together.

– Training instances belonging to a subclass can be used to learn a generic
decision model for its superclass.

Let’s assume that in the ontology we have a class C and its subclasses C1...Cn

and for each class we have a set of known individuals Di. For subsets of these
individuals Ti v Di we also know the correct identity relations. Pairs of these
individuals constitute the training set Si where pairs of coreferent individuals
serve as positive examples and pairs of non-coreferent individuals constitute
negative examples. Let fi represent a set of potentially relevant attributes for
each class Ci. This set can be constructed in different ways, e.g., it may include
the values of all outgoing properties, all outgoing and incoming properties or all
properties within a range n, accept only literals or individuals as well, etc. In
the current version we include the following values as relevant:
– values of all datatype properties of individuals in Di.
– values of the rdfs:label property of the objects of all relations where individ-

uals in Di are subjects (outgoing relations).
– values of the rdfs:label property of the subjects of all relations where indi-

viduals in Di are objects (incoming relations).

Now, supposedly, we only have training instances for a subset of classes C1...Cn,
i.e., |Si| > 0 where i ≤ m < n and |Si| = 0 where i > m. The learning algorithm
takes as input a set of training examples S and relevant attributes f and produces
a decision model h : (x; y) → P (x ≡ y). During the configuration phase we train
the learning algorithm to produce m+1 decision models: for each Ci where i < m
and the superclass C. The learning algorithm for the superclass C will take as
input the union of all training sets S =

⋃m
i=1 Si. The set of relevant features will

only contain the features of the class C: f =
⋂n

i=1 fi. Then the accuracy of each
learned model is evaluated on a set of test examples. The algorithm is included
into the library of matching methods and each learned model is described as
a separate application context. The reliability of the algorithm in each context
is assigned according to the achieved accuracy on the test set. If the accuracy
achieved for the model trained for the exact subclass Ci is less than for the
superclass C then such a model will not be chosen.

3.3 Summary

The design of the KnoFuss architecture was aimed at achieving the flexibil-
ity of coreferencing (and data integration in general) by allowing the context-
dependent configuration and selection of methods. The requirements for a data-
level matching system partially differ from the requirements for a schema-level
matching system. In particular, traditional matching methods must be tuned for
the specific structure of matched entities. Because of that, the desired degree of
granularity for the configuration settings is higher: it is not enough to configure
the method for a whole dataset (as, e.g., done in [21] for schema matching),
instead it must be done for the specific entity types. On the other hand, because
of the greater variety of data types and structures when dealing with ontological
data in comparison with databases, it is hard to reconfigure the method settings
for each particular type of data, so reusing the methods and their parameters is
desired. Using the hierarchy of classes and properties can be helpful in achieving
that.

4 Evaluation

In our experiments we tested the applicability of several fusion methods to match
RDF individuals coming from different sources. We were not interested so much
in maximizing the coreferencing performance, but rather in the issues of reap-
plying the same method for different types of data and for different datasets.

4.1 Experimental datasets

We performed our initial tests with datasets from the domain of scientific pub-
lications. Our datasets were structured according to the SWETO-DBLP ontol-
ogy1, which extends the FOAF ontology, and contained instances of three types:
foaf:Person, opus:Article and opus:Article in Proceedings. The last two are sub-
classes of the class opus:Publication. We used three different datasets (Table
2):

1. AKT EPrints archive2. This is a small dataset containing information about
papers produced within the AKT research project.

2. Rexa dataset. This dataset was extracted from the Rexa search server3 de-
veloped in the University of Massachusets.

3. SWETO DBLP dataset. A well-known publicly available dataset listing pub-
lications from the computer science domain.

Table 2. Datasets used in experiments.

Class Person Article Article in Proceedings

Properties foaf:name rdfs:label rdfs:label
opus:year opus:year
opus:journal name opus:book title
opus:volume

Number of individuals

AKT 417 39 244

Rexa (selected subset) 1401 149 400

DBLP 403168 331331 541050

Number of matching pairs

AKT vs Rexa 641 16 101

AKT vs DBLP 379 20 110

Rexa vs DBLP 1076 89 257

The AKT dataset was extracted using a specially constructed wrapper tool.
Then the AKT individuals were used to extract a subset of data from the Rexa
1 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus august2007.rdf
2 http://eprints.aktors.org/
3 http://www.rexa.info/

search server. The labels of individuals were passed as search queries to the Rexa
server and the dataset was constructed from the search results.
We manually found the correct mappings between individuals from all three
datasets (see Table 2). We did not fix the URI unification errors within datasets,
so a dataset could contain more than one individual for the same entity. Because
of this one individual could have more than one match in other dataset (e.g.,
for the class Person there was more matched between AKT and Rexa, than
individuals in AKT).

4.2 Tested methods

We performed experiments with the following matching algorithms:

– Jaro-Winkler applied to the label directly (without considering permuta-
tions).

– L2 Jaro-Winkler applied only to the label.
– Average L2 Jaro-Winkler only over properties common for the Publication

class.
– Average L2 Jaro-Winkler over all available properties.
– Adaptive learning clustering algorithm employing TF-IDF and N-gram met-

rics [11].

In our preliminary tests we had compared Jaro-Winkler with other string sim-
ilarity metrics (edit distance and Levenshtein) and found that it outperforms
others. Therefore in our test we used it as a representative of string similarity
matching methods. In order to cover the cases when the tokens in two multi-
word string labels have different formats (e.g., ”Enrico Motta” and ”Motta,
Prof. Enrico”) we used L2 Jaro-Winkler algorithm([12]), when both compared
values are tokenized, each pair of tokens is compared using the standard Jaro-
Winkler measure and the maximal total score is selected. We assumed that the
algorithms did not have any domain specific knowledge, so for each individual
only its immediate datatype properties were considered. Thus, for instance, we
did not use such common heuristics as analyzing co-authors to disambiguate
a person. Also the links between the paper and its authors were not used for
learning. In order to test our algorithms we employed the following procedure.
First, each algorithm was trained and applied to the set of individuals belonging
to direct classes: Article, Article in Proceedings and Person. Then the sets of
the classes Article and Article in Proceedings were merged and the algorithm
was applied to the superclass Publication. Only the properties common for both
classes were involved. In all experiments the set of individuals was randomly
divided into three parts, of which 1/3 was used for training and 2/3 for testing.
For the string similarity metrics the only learned parameter was the threshold.
This procedure was repeated 5 times for each method.

4.3 Experimental results

The results we obtained are shown in the table 4.3 (redundant and irrelevant
results are filtered out). As a performance metric we used the F1 measure, which

combines precision and recall and is commonly employed (e.g., [23]). Standard
deviation of this measure obtained after 5 tests (σ) is given to indicate the ro-
bustness of the algorithm. The results have shown that the algorithm shows

Table 3. Test results.

Datasets Article Article in Proceeedings Publication Person

AKT/Rexa

Direct Jaro-Winkler (label)
F1 0.9 0.83 0.88 0.29
σ 0.09 0.07 0.02 0.01

L2 Jaro-Winkler (label)
F1 0.9 0.9 0.92 0.84
σ 0.04 0.02 0.01 0.004

L2 Jaro-Winkler (label+year)
F1 0.81 0.93 0.91
σ 0.07 0.01 0.05

L2 Jaro-Winkler (all)
F1 0.58 0.74
σ 0.1 0.03

Clustering
F1 0.70 0.78 0.81
σ 0.40 0.09 0.01

AKT/DBLP

Direct Jaro-Winkler (label)
F1 0.89 0.95 0.93 0.10
σ 0.05 0.02 0.03 0.01

L2 Jaro-Winkler (label)
F1 0.72 0.52 0.57 0.64
σ 0.07 0.02 0.02 0.02

L2 Jaro-Winkler (label+year)
F1 0.87 0.86 0.89
σ 0.08 0.01 0.02

L2 Jaro-Winkler (all)
F1 0.19 0.53
σ 0.10 0.03

Clustering
F1 0.84 0.89 0.91
σ 0.11 0.05 0.02

Rexa/DBLP

Direct Jaro-Winkler (label)
F1 0.91 0.91 0.91 0.90
σ 0.01 0.02 0.01 0.004

L2 Jaro-Winkler (label)
F1 0.74 0.70 0.71 0.72
σ 0.03 0.01 0.01 0.01

L2 Jaro-Winkler (label+year)
F1 0.91 0.86 0.88
σ 0.01 0.01 0.01

L2 Jaro-Winkler (all)
F1 0.87 0.88
σ 0.02 0.01

Clustering
F1 0.89 0.85 0.87
σ 0.05 0.05 0.04

similar performance when it is applied to the superclass (column Publication)
compared to when it is applied to the direct class (columns Article and Arti-
cle in Proceedings). Using an incomplete description of instances is compensated
by the greater amount of training instances. Also, as expected, a decision model
over the combined dataset usually was more robust considering the standard
deviation.

However, our initial tests discovered another issue: often the performance of a
given metric varied greatly when applied to a different pair of datasets. This
happened for two main reasons:

– Different format for the values of the same properties. For instance, DBLP
and AKT used different order of the first and last name in the foaf:name
values). This led the standard Jaro-Winkler metric to perform very badly for
the class Person when matching AKT vs Rexa and AKT vs DBLP, while
being the best for the Rexa/DBLP pair.

– Different amounts of similar instances within one dataset. Applying L2 Jaro-
Winkler to the paper title resulted in large amount of false positives when
finding matches in the DBLP data (0.57 for AKT and 0.71 for Rexa). While
L2 Jaro-Winkler is less sensitive to the format, it is also less able to find the
correct match in the presence of many candidates.

A common technique used to improve the matching performance is to use rela-
tions between entities to confirm the candidate matches [16]: if pairs of objects
(A1, B1) and (A2, B2) are related using some object properties in their respec-
tive knowledge bases and pairs (A1, A2) and (B1, B2) are candidates for match,
then our confidence in these matches is reinforced. Applying this technique for
our datasets helped to raise the matching precision. In particular, for all three
pairs of datasets the precision for the class Person raised to 100%. However, it
also significantly reduced the recall in cases when two datasets contained dif-
ferent lists of papers for a person. Also, it did not have a similar positive effect
for the Publication individuals because papers with very similar names, in most
cases, had the same authors as well.
These issues point to a further important challenge related to the fact that the
method’s performance and optimal configuration depends not only on the type
of incoming data, but also on the features, which are specific for a particular
data source. In the database domain, aligning different formats was considered
a pre-condition of coreferencing. This is hard to achieve when dealing with a
large variety of datatypes and sources, not always known in advance. Making a
correct choice of the method for a new and unknown source is a non-trivial task.
While the KnoFuss architecture allows such fine-grained specification of applica-
tion contexts, the capabilities of learning from known examples are limited and
manual configuration of optimal parameters for each source is not feasible. We
found several heuristics helpful in solving the problem:

– Translating property values into a canonical representation. This can only
be done if the type and format of the value is known in advance.

– Parallel application of methods and comparing their results. Such features as
low discriminating power of a method (too many matching candidates with
a very similar values of the metrics) or high degree of disagreement with
other methods can indicate that a method is not suitable in a particular
environment.

– Presenting the user with several candidate matches for approval and giving
preference to the methods with higher degree of agreement.

However, we still need to study the applicability of these heuristics in a quanti-
tative evaluation.

5 Conclusion and Future Work

In this paper, we have discussed the problem of instance-level integration of onto-
logical data. There are several important features, which make this task different
from both the problem of database record linkage and ontology schema match-
ing. We presented a coreferencing approach implemented in our KnoFuss fusion
architecture. The approach is based on the combination of different methods and
their reuse taking into account subsumption relations defined by the ontological
schema. We performed experiments with publicly available datasets, which sup-
ported our initial design decisions, in particular, reusing training data between
subclasses of a common ancestor. However, in order to make the architecture
applicable in a wide context and validate its usefulness, further work is required.
Our primary directions include:

– Performing tests with datasets from other sources and domains, in particular,
involving bigger variety of classes and more complex ontology structure.

– Addressing the issue of choosing appropriate methods for a new information
source, especially, in the presence of noisy data.

– Performing tests with datasets structured according to different ontologies.
Adjusting the system to take into account uncertain schema mappings pro-
duced by automatic schema matching systems.

6 Acknowledgements

This work was funded by the X-Media project (www.x-media-project.org) spon-
sored by the European Commission as part of the Information Society Technolo-
gies (IST) programme under EC grant number IST-FP6-026978. The authors
would like to thank Steffen Rendle and Karen Tso for providing their object
identification tool [11].

References

1. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American
Statistical Association 64(328) (1969) 1183–1210

2. Winkler, W.E.: Overview of record linkage and current research directions. Techni-
cal Report 2006-2, Statistical Research Division. U.S. Census Bureau., Washington,
DC 20233. (2006)

3. Ding, L., Finin, T.: Characterizing the semantic web on the web. In: 5th Inter-
national Semantic Web Conference. Volume 4273 of Lecture Notes in Computer
Science., Atlanta, GA, USA (2006) 242–257

4. Bouquet, P., Stoermer, H., Giacomuzzi, D.: OKKAM: Enabling a web of entities.
In: WWW2007 Workshop i3: Identity, Identifiers and Identification, Banff, Canada
(2007)

5. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (DE)
(2007)

6. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: KnoFuss: A comprehensive ar-
chitecture for knowledge fusion. In: 4th International Conference on Knowledge
Capture (K-CAP 2007). Poster session., Whistler, BC, Canada (2007) 185–186

7. Motta, E.: Reusable Components for Knowledge Modelling. Volume 53 of Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam (1999)

8. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1) (2007) 1–16

9. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), Washington DC (2003) 39–48

10. Singla, P., Domingos, P.: Object identification with attribute-mediated depen-
dences. In: 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PAKDD-2005), Porto, Portugal (2005) 297–308

11. Rendle, S., Schmidt-Thieme, L.: Object identification with constraints. In: 6th
IEEE International Conference on Data Mining (ICDM). (2006)

12. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for
matching names and records. In: KDD Workshop on Data Cleaning and Object
Consolidation. (2003)

13. Doan, A., Domingos, P., Halevy, A.: Learning to match database schemas: A
multistrategy approach. Machine Learning 50(3) (2003) 279–301

14. Do, H.H., Rahm, E.: COMA: A system for flexible combination of schema matching
approaches. In: VLDB ’02: Proceedings of the 28th international conference on
Very Large Data Bases, VLDB Endowment (2002) 610–621

15. Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for information integration:
A profiler-based approach. In Kambhampati, S., Knoblock, C.A., eds.: IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), Acapulco, Mexico
(2003) 53–58

16. Thor, A., Rahm, E.: MOMA - a mapping-based object matching system. In: 3rd
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA
(2007)

17. Straccia, U., Troncy, R.: oMAP: Combining classifiers for aligning automatically
owl ontologies. In: 6th International Conference on Web Information Systems
Engineering (WISE). Volume 3806/2005 of Lecture Notes in Computer Science.,
New York, NY US (2005) 133–147

18. Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-AO: Aligning ontologies with Falcon.
In: K-CAP Workshop on Integrating Ontologies, Banff (CA) (2005) 87–93

19. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer, New York,
NY US (2007)

20. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with
APFEL. In: 4th International Semantic Web Conference (ISWC-2005). Volume
3729 of Lecture Notes in Computer Science., Galway, Ireland (2005) 186–200

21. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.S.: eTuner: Tuning schema match-
ing software using synthetic scenarios. VLDB Journal 16 (2007) 97–122

22. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM (2005) 85–96

23. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2002), Edmonton, Alberta, Canada, ACM (2002)

