
Measuring similarity of service interfaces

Ali Aı̈t-Bachir?

Supervised by Pr. Marie-Christine Fauvet
University of Grenoble, LIG (MRIM)
385 rue de la bibliotheque – B.P. 53

38041 Grenoble Cedex 9, France

Abstract. In this paper, we present a similarity measure between be-
havioural interfaces of Web services. This measure computes the differ-
ence value of simulation between two service interfaces. In our previous
work we implemented an algorithm to detect the exact location of dif-
ferences between service interfaces in a tool namely BESERIAL [1]. The
similarity measure is based on the results of the detection algorithm. In
our case study, this measure is used to select the most suitable service
to substitute a previous one, which is no longer available at design time.

1 Introduction

Web service interfaces can be described from two aspects: i) The structural as-
pect models the provided operations, and the schema of the messages that the
service can send and receive. These operations can be described by using WSDL
for instance. ii) The behavioural aspect refers to the control flow between the
operations and establishes their inter-dependencies. In conversational services,
such behavioural interfaces can be described using BPEL for instance. Never-
theless, Finite State Machines (FSM) is the formal model adapted in our work
to describe behavioural interfaces [7]. In this paper, we do not consider semantic
aspects of operation definitions.

Client applications are meant to consume provided operations in a service
interface. Conversations between a client application and a service are loosly
coupled. Thus, if the service evolves and provides a new interface, then incom-
patibilities may arise as a client application does no longer match the new in-
terface. The provided interface of a service evolves from a previous definition
to a new one by means of basic differences (addition, deletion and modifica-
tion of operations). The exact location of these differences can be detected and
resolved instead of programing a new client application whose required inter-
face is compatible with the new interface definition. However, if the service is
no more available, there is no choice left to developers than to substitute this
service by another one, at design time. If there exists no service whose interface
simulates the old service interface, it is interesting to discover another service
whose interface has a minimum number of differences with the previous one.
? This author is partially funded by the Web Intelligence project granted by the French

Rhône-Alpes Region

This paper is structured as follows. First, Section 2 introduces the running
example. Section 3 gives details on the quantitative simulation measure. Sec-
tion 4 shows some experimental results. Then, Section 5 gives a panel of the
related work on the diagnosis of differences in service interfaces. Finally, Sec-
tion 6 concludes and sketches the future work.

2 Case study

As a running example, we consider a scenario where a car factory interacts
with one of its provider of goods and services. The service provider describes
its operations in WSDL and the control flow is established using BPEL process
protocol. Figure 1 (a) illustrates the activity diagram of the provided interface
of the provider service. This provider processes service and goods orders from
the car factory. The provider receives a service order which can be updated
by its client (the car factory) only if the invoice is not sent yet (see the flow
which loops back to the ReceiveServiceOrder activity). Once the service invoice
is sent, the provider waits for the transfer from the client to finally send him
the ShipmentTrackingNumber (STN). On the other hand, when a GoodsOrder is
received, a GoodsInvoice is immediately sent to the client. This former can either
send his CreditCardDetails, to pay the invoice, or update his order by sending
a new GoodsOrder (see the flow which loops back to the ReceiveGoodsOrder
activity). The client pays the invoice, and then the provider sends him the STN.

If the service provider is no more available, the car factory will send an
invitation to tender to substitute the old provider and all candidates will provide
their behavioural interfaces. The selection criterion is that the provided interface
of the new partner must conform as much as possible to the required interface
by the car company. In other words, the new provider is such as there exists a
minimum number of changes in the new provided interface in order to simulate
the old provided interface.

*

*

*

Send

Receive
CreditCard

Details

Send
ShipmentTrackingNumber

(STN)

Receive

ServiceInvoice

Order
<ServiceOrder

>GoodsInvoice

Paid

>STN

ServiceOrdered

ServiceInvoiced

>ServiceInvoice

GoodsOrdered

GoodsInvoiced

<ServiceOrder

<GoodsOrder

<Transfer

<GoodsOrder

<CreditCardDetails

(a) (b)

Receive
ServiceOrder

Send
GoodsInvoice

GoodsOrder
Receive

Transfer

Shipped

Fig. 1. Activity diagram and FSM of the provided interface.

3 Quantitative simulation

FSM modeling: In our approach we model the behaviour of a Web service
interface using Finite State Machines [6]. Techniques exist to transform behav-
ioral service interfaces defined in other languages (e.g. BPEL) into FSMs(see
for example the WS-Engineer tool [3]). In the FSMs considered in this paper,
transitions are labelled with messages to be exchanged. When a message is sent
or received, the corresponding transition is fired.

An FSM is a tuple (S, L, T, s0, F) where: S is a finite set of states, L a set
of events (actions), T the transition function (T : S × L −→ S). s0 is the initial
state such as s0 ∈ S, and F the set of final states such as F ⊂ S. The transition
function T associates a source state s1 ∈ S and an event l1 ∈ L to a target state
s2 ∈ S. In this model, a transition is defined as a tuple containing a source state,
a label and a target state.

Figure 1 (b) illustrates the FSM of the running example which describes the
behavioural interface of the service provider. We only consider the observable be-
haviour of a service, thus internal activities are hidden. Activities meant to send
and to receive messages are modeled. The message m is denoted by >m (respec-
tively <m) when it is sent (respectively received). Each conversation initiated
by a client starts an execution of the corresponding FSM.

We use the following notations (examples refer to the FSM depicted in the
right side of the Figure 1(b)):

– s• is the set of outgoing transitions from s.
(e.g. GoodsInvoiced• = {(GoodsInvoiced,<CreditCardDetails,Paid),
(GoodsInvoiced, <GoodsOrder,GoodsOrdered) }).

– Label(t) is the label1 of the transition t.
(e.g. Label((GoodsInvoiced,<CreditCardDetails,Paid))=<CreditCardDetails)

– The Label operator is generalised to a set of transitions. For example, if
T =

⋃n
i=1{ti} then Label(T) =

⋃n
i=1{Label(ti)}; where n =‖ T ‖.

– ‖ X ‖ is the cardinality of the set X.

In our previous work, we implemented an algorithm which is meant to detect
the exact location of changes while comparing two FSMs P and P ′ (which re-
spectively models the old provider and the new provider interfaces). A difference
is detected if and only if the new interface does not simulate the behaviour of
the previous interface. The outcome is a set Res of tuples (si, ti, sj, tj) where si
and sj are states of P and P ′ respectively, while ti and tj are either null values
or outgoing transitions of si and sj respectively.

Figure 2 shows three differences between P and P ′. The first difference is a
deletion of the operation < ServiceOrder , which means that the new provider
does not allow its client to update its service order. This difference causes an in-
compatibility with the required interface of the client as he can not use this oper-
ation any more. The second difference is an addition of the operation < Transfer .

1 In deterministic FSMs, ∀t1 ∈ s•, t2 ∈ s• : Label(t1) 6= Label(t2).

However, this difference does not cause any incompatibility as the added opera-
tion provides a new option to its client. The third difference is the modification
of the operation > STN by the operation > ASN (Advanced Shipment No-
tice). An incompatibility will arise because the client can not recognize this new
operation.

<ServiceOrder

>STN

<ServiceOrder

>GoodsInvoice

<Transfer
Paid

Modification

Deletion

>ServiceInvoice

<GoodsOrder

>GoodsInvoice
>ServiceInvoice<GoodsOrder

<CreditCardDetails

<GoodsOrder

<CreditCardDetails

<ServiceOrder

<Transfer
<Transfer

P FSM (old provider) P’ FSM (new provider)

<GoodsOrder

GoodsOrdered

GoodsInvoiced

ServiceOrdered

ServiceInvoiced

Shipped

Addition

>ASN

Shipped

Paid

ServiceInvoiced

ServiceOrderedGoodsOrdered

GoodsInvoiced

OrderOrder

Fig. 2. Differences between the old and the new provider FSMs.

Quantitative simulation: In the detection algorithm, P and P ′ are traversed
in parallel. A set of reached pair of states Rps is built such as Rps ⊆ S × S′,
where S is a set of P ’s states and S′ is a set of P ′’s states. For each pair of states
(si, sj) ∈ Rps, we compute a quantitative simulation function Qs. This function
returns a score of differences between si’s outgoing transitions and sj’s outgoing
transitions. Qs : S × S′ → [0..1] is defined as follows:

Qs((si, sj)) =

{
1 if, si• = {}P‖Diff ((si,sj))‖

i=1 Weight(Di)+‖Label(si•)∩Label(sj•)‖
‖Diff ((si,sj))‖+‖Label(si•)∩Label(sj•)‖ otherwise

(1)

Where: Diff ((si, sj)) is a set of differences pinpointed at the state pair (si, sj)
such as Diff ((si, sj)) ⊆ Res, and Di ∈ Diff ((si, sj)) for i = 1.. ‖ Diff ((si, sj)) ‖.
The function Weight returns a penalty value2 for each type of difference, and
0 6 Weight(Di) < 1. The sum of all penalties in the state pair is added
to the score of the common labels of the outgoing transitions. Common la-
bels of the outgoing transitions of si and sj refer to the case where no differ-
ence is detected. Thus, a highest score is attributed (see (1): ‖ Label(si•) ∩
Label(sj•) ‖). To compute the quantitative simulation of the pair state, the sum
of difference score and similarity score is divided by the number of these dif-
ferences and similarities between the outgoing transitions of si and sj (see (1):
‖ Diff ((si, sj)) ‖ + ‖ Label(si•)∩ Label(sj•) ‖). For example, in Figure 2, if the
value of the deletion penalty is set to 0.5, then the quantitative simulation is:
Qs((ServiceOrdered ,ServiceOrdered)) = 0.5+1

1+1 = 0.75.

2 How penalty values are set is out of the scope of this paper.

Mean quantitative simulation: Once the quantitative simulation is computed
to all state pairs, a mean quantitative simulation value of P and P ′ can be defined
as follows :

Mqs(P, P ′) =
∑‖Qs‖

i=1 Qs(PSi)
‖ Rps ‖

(2)

Where: PSi is a pair of states such as PSi ∈ Rps for i = 1.. ‖ Rps ‖. In
the running example, if all the penalty values are set to 0.5 then the mean
quantitative simulation is: Mqs(P, P ′) = 0.875.

4 Tests and results in BESERIAL

For validation purposes, we built a test collection consisting of 20 process sce-
narios from the xCBL3 textual description of order management choreographies.
These two-party choreographies describe possible document exchanges between
trading partners in an Order Management business process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

S
im

ul
at

io
n

V
al

ue

Test Number

Mean Quantitative Simulation

Fig. 3. Graph results of the process order collection test.

In BESERIAL4, one interface is compared to a collection of interfaces. In Fig-
ure 3, the graph shows which interface yields less incompatibilities with respect
to the interface given as reference. In this example, the interface which simulates
as much as possible the given one yields a mean quantitative simulation value of
0.97. The worst result is 0.14. The interfaces in tests number 14, 15 and 16 are
selected as candidates to substitute the old service.

5 Related work

Compatibility test of interfaces has been widely studied in the context of Web
service conversations. Most of approaches, which focus on the behavioural dimen-
sion of interfaces, rely on similarity calculus to check, at design time, whether
3 XML Common Business Library (http://www.xcbl.org/).
4 http://www-clips.imag.fr/mrim/User/ali.ait-bachir/WebServices/WebServices.html

http://www.xcbl.org/

or not interfaces described for instance by automata are compatible [2]. The
behavioural interface describes the structured activities of a business process.
Checking interface compatibility is thus based on bi-similarity algorithms [5].
These approaches do not deal with the quantification of interface simulation.

In [6], authors introduced a technique to diagnosis message structure miss-
matches between service interfaces and to fix them with adapters. An extention
of this technique is applied to reslove missmatches between service protocols.
The proposed iterative algorithm builds a missmatch tree to help developers to
choose the suitable adapter each time and incompatibility is detected. However,
this technique can only be applied to protocols which describe a sequence of op-
erations. More complex flow controls, such as loops and options, are not taken
into consideration. Recent research has addressed interface similarity measures
issues. In [4], authors present a similarity measure for labeled directed graphs
inspired by the simulation and bi-simulation relations on labeled transition sys-
tems. The presented algorithm returns a value of a simulation measure but does
not tell us more about the location of incompatibilities.

6 Future work

In this paper we focused on the calculus of the differences between two be-
havioural interfaces. Ongoing work aims at extending this work towards two
directions: i) detecting complex incompatibilities including structural aspects,
ii) guiding analysts in fixing detected incompatibilities. As we compare two dif-
ferent versions of a same service, we identify adequately the delta introduced by
the new version. Nevertheless, if we compare two completely different services,
the semantics of operations or data types must be considered.

References

1. A. Ait-Bachir, M. Dumas, and M.-C. Fauvet. BESERIAL: Behavioural service
analyser. In Proc. of the BPM Int. Conf., pages 374–377. Springer, 2008.

2. L. Bordeaux, G. Salan, D. Berardi, and M. Mecella. When are two web services
compatible? In Proc. of the TES Int. Conf., pages 15–28. Springer, 2004.

3. H. Foster, S. Uchitel, J. Magee, and J. Kramer. WS-Engineer: A tool for model-
based verification of web service compositions and choreography. In Proc. of the
IEEE Int. Conf. on Software Engineering (ICSE), pages 771–774, 2006.

4. N. Lohmann. Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In Proc. of the BPM Int. Conf., number 5240 in LNCS,
pages 132–147. Springer, 2008.

5. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility of bpel
processes. In Proc. of the Advanced Int. Conf. on Telecom. and Int. Conf. on Internet
and Web Applications and Services, pages 147–156. IEEE, 2006.

6. H. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-
automated adaptation of service interactions. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, pages 993–1002. ACM, 2007.

7. J. Pathak, S. Basu, and V. Honavar. Modeling web service composition using sym-
bolic transition systems. In Proc. of the 21st Conf. on Artificial Intelligence Work-
shop on AI-driven Technologies for Service-Oriented Computing, pages 65–80. AAAI
Press, 2006.

	Measuring similarity of service interfaces
	Ali Aït-Bachir

