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A lattice-based data structure, called a compressed lattice, is proposed as a
generic data structure. It is closely related to a concept lattice and can be used in
applications such as machine learning, information retrieval and document
browsing. The data structure, essentially a bipartite graph with an embedded-
lattice, combines desirable features of concept lattices in a structure that allows
for a flexible mechanism of scaling the size of the embedded-lattice, by means
of defined operations that compress and expand the embedded lattice. A
compression strategy or criterion is required to guide this process.

1 Introduction

“Knowledge is of two kinds: we know a subject ourselves or we know
where we can find information upon it”

Samuel Johnson, quoted in Boswell 1791

The use and application of concept lattices is an area of active and promising research
in various fields of study such as information retrieval [2], software engineering [11],
and machine learning  [5,6,10].

Here a lattice-based data structure is defined that contains features of both a
concept lattice and bipartite graph. The data structure is described in reference to a
generic information retrieval problem that is essentially a query operation on a
database (section 2). Examples are given of query operations on bipartite graphs and
concept lattices. After discussing the merits of both approaches, a compressed lattice
is defined as a lattice from which some of the concepts have been removed, subject to
a set of so-called compressed lattice properties. An equivalent query on a compressed
lattice is also defined. A compressed lattice in essence allows the removal or
“compression” of concepts in a concept lattice in such a way that the resulting
structure retains the desirable properties of the lattice. It is essentially a bipartite graph
with an embedded-lattice. Its properties ensure that removed lattice concepts can be
re-instated.

We end by discussing the implementation and use of these ideas as well as
promising (albeit preliminary) results of compressed lattices. We argue that a lattice
may contain many concepts that are redundant (due, for example, to noisy data) and
that these can be removed via the compressed lattice operations. Examples of other
approaches to constrain the lattice size are also briefly mentioned. Finally a number of
key questions are posed. These are topics for further research.
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2 An Information Retrieval (IR) Problem Definition

This paper assumes a working knowledge of concept lattices and readers are referred
to [1, 4] for a formal introduction.

Consider a domain of discourse in which each element of a set of entities, Ent =
{e1, e2, …, ej} possesses one or more observable attributes from a set of attributes Attr
= {a 1, a2, …, ak}. We refer to entities to as objects, whilst attributes are sometimes
referred to as features or descriptors. The triple C = 

�
Ent, Attr, I � , where I is a binary

relation between Ent and Attr, I ⊆ Ent × Attr, is referred to as a context and denotes
this domain of discourse. The binary relation I, also called an incidence relation,
identifies the attributes of each entity.

Consider a set S and arbitrary elements x, y and z in S. A partial ordering relation
�  on S is one that is reflexive (x �  x), antisymmetric (x �  y ^ y �  x �  x = y) and
transitive (x �  y ^ y �  z �  x 

�
 z). The set S in conjunction with an associated partial

ordering relation �  is called a partially ordered set or poset and is denoted by � S, ��� .
For x, y ∈ S, x ≠ y, x is said to cover y, indicated by y �  x when y �  x and there is no
z ∈ S, z ≠ x, z ≠ y such that y �  z and z �  x. Some texts refer to x as the parent or
predecessor of y. Similarly y is referred to as the child or successor of x.

One way of visually representing a poset is by means of a directed acyclic graph in
which elements of the poset form the nodes and a directed arc is drawn from node y to
x iff y  �  x. This graph is called a Hasse diagram and provides a natural data structure
for representing a poset. By convention, instead of showing the direction of arcs
explicitly in the Hasse diagram, node x is shown above node y if y �  x.

For this problem domain we define a database D = � S, ���  related to context C as
consisting of a set, S, of concepts which are partially ordered by the relation � . The
database is restricted in that the maximal elements are the attributes (Attr) in C and
the minimal elements are the objects (Ent) in C. In addition D may contain any
number of such intermediate concepts M (i.e. S = Attr ∪ Ent ∪ M) . The upward
closure of any concept c, indicated by UpwardClosure(D, c), is the set of concepts
greater than or equal to c in terms of the partial ordering. The downward closure is the
set of concepts that are less than or equal to c, and is indicated by
DownwardClosure(D, c). The extent of a concept is defined as the set of objects in its
downward closure. Similarly the intent of a concept is the set of attributes in its
upward closure.

We consider the problem of retrieving a set of objects relevant (in some abstract
and as yet undefined way) to a specific query. The query is formulated as a set of
attributes in the form Q = {a 1, a2, …., a m} and different query operations can be
defined on D. The result of a specific query operation O based on D with respect to
query Q is indicated by O (D, Q). A query operation may return any number of
concepts from D. For convenience, we place an extra restriction on the query
operation: that the operation may return only non-object concepts.

Notwithstanding the foregoing, we choose to interpret the final results in terms of
objects, namely those objects that are in the union of the extents of the concepts
returned by the query operation (i.e. the union of a number of possibly intersecting
attribute downward closures). As a consequence the results of a query can be
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interpreted as clusters of objects represented by the concepts returned by the query
operation.

Different query operations may be evaluated in terms of the information retrieval
(IR) metrics, precision and recall. Conversely using the same query operation,
different databases of the same context can be evaluated against each other in terms of
these metrics. Clearly only concepts in a given database can be returned. Therefore it
can be expected that a database containing “meaningful” concepts will return
concepts that result in high precision and recall values. We argue that a compressed
lattice is a versatile data structure to represent various databases of this type and could
prove useful in researching information retrieval and machine learning strategies.

2.1 A Bipartite Database and Query Operation

nw

DG FR BN RD

nclb mo 2lg 1lglwllsk

SWMZBR LE

nw Needs water
lw Lives in water
ll Lives on land
nc Needs chlorophyl
1lg 1 leaf germination
2lg 2 leaf germination
mo Is motile
lb Has limbs
sk Suckles young

Attributes

LE Leech
BR Bream
FR Frog
DG Dog
SW Spike-weed
RD Reed
BN Bean
MZ Maize

Entities/objects

LE
BR
FR
DG
SW
RD
BN
MZ

Incidence relation
nw lw ll nc 1lg 2lg mo lb sk

Fig. 1. The living context and its associated bipartite graph

The simplest example of a database is that of a bipartite graph (essentially
representing the incidence relation) with objects at the bottom, attributes at the top
and arcs from each object to all the attributes it possesses in a specific context as
illustrated in figure 1. This simple context, called the living context, is taken from
Ganter [2] and was originally used in an Hungarian educational film.

Consider OBP(D, Q), a query operation on a bipartite database. For a query Q we
define OBP (D, Q) = Q. As an trivial example we see that for Q = {mo, lw} the query
OBP(D, Q) would return {mo, lw}, effectively referencing the set of objects {LE, BR,
FR, DG, SW, RD}. This can be verified by inspecting the Hasse diagram of the
database for DownwardClosure(D, mo) = {LE, BR, FR, DG} and
DownwardClosure(D, lw) = {LE, BR, FR, SW, RD}.

A shortcoming of the bipartite database and of OBP is the fact that the query
operation returns a very general set of objects, each of which has any, but not all, of
the attributes specified in the query Q. In IR terms the query operation has low
precision but high recall. One way of improving the precision is to introduce a new
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intermediate concept called “mo_lw” that groups all objects that possesses both mo
and lw into the database. This concept would be connected via upward-arcs to mo and
lw and all objects possessing mo and lw would have upward-arcs to the new concept.
In this way, a query operation might be able to use the new concept in arriving at the
results of the query.

Continuing this line of thought, the other end of the spectrum would be to use a
concept lattice as the database. This option is discussed in the next section.

2.1 A Lattice Database and Query Operation

nw

n4n3n2n1

n8

n6n5

n7

n10

n9

n13n11 n12

DG FR BN RD

nclb mo 2lg 1lglwllsk

SWMZBR LE

{nw,nc}
{nw,lw}{nw,ll}

{nw,mo}

{nw,mo,
lb} {nw,nc,1lg}

{nw,mo,
lw}

{nw,ll,
lw} {nw,ll,nc}

{nw,lw,
nc,1lg}

{nw,ll,
nc,1lg}

{nw,mo,
lb,lw}

{nw,mo,
lb,ll}

{sk} {lb} {mo} {ll} {nw} {lw} {2lg} {nc} {1lg}

Fig. 2. An EA-lattice of the living context

Figure 2 is a concept lattice for the living context. Note that a modified version of the
Galois lattice called an entity-attribute lattice or EA-lattice is used. It has clearly
partitioned sets of attributes, objects and intermediate concepts. Consequently it also
has a slightly revised ordering relation compared to that of a Galois lattice. The
universal- and empty concepts of the lattice have been excluded from the database.
(They are, however, implied.) The intents of some of the concepts are shown as a
guide.

OMeet(D, Q) is a query operation on a lattice database and is defined as the meet of
the attributes of Q in the lattice. For the query Q={mo, lw} the resulting objects are
therefore {BR, FR, LE} since the meet of {mo, lw} is concept n7 which has an extent
of {BR, FR, LE} (i.e. objects that possesses all of the attributes in Q are returned).
Note that it is now possible to obtain a result with a higher precision due to the fact
that concepts lower down in the database discern between objects in a more granular
way.
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2.3 An Adapted Lattice Database and Query Operation

Assuming that we were looking for all the fish objects in the living context (in this
case only BR qualifies) with query Q = {mo, lw}. The lattice-based query operation
OMeet has a higher precision and recall than OBP. OMeet has however the disadvantage
that it is not tolerant of errors or ambiguity in either the context or formulation of the
query terms. Assume, for example, that we are looking for all edible plants in the
context and used the query Q={nw, nc, 1lg, 2lg}. OMeet(D, Q) would not return any
relevant objects since the meet of Q is not in the database − the meet is the empty
concept ∅ of the implied lattice. One strategy that could help in this case and increase
the tolerance for errors is to specify a query operation O for a context of n attributes
that will return the minimal concepts that have at most k ≤ n attributes, all of which all
are in Q. Since the domain of discourse as defined requires that queries only be
formulated in terms of concepts already contained in the database we can adopt one of
two strategies. The first is to redefine the query operation to examine all concepts and
return the appropriate minimal concepts. In this case, the database D is kept the same.
A second option is to modify the query operation and the database. For reasons that
will become clear, we will pursue the latter option.

nw

n4n3n2n1

n8

n6
n5

n7

n9

DG FR BN RD

nclb mo 2lg 1lglwllsk

SWMZBR LE

{nw,nc}{nw,lw}
{nw,ll}

{nw,mo}

{nw,mo,
lb} {nw,nc,1lg}

{nw,
mo,lw}

{nw,ll,
lw}

{nw,ll,
nc}

{sk} {lb} {mo} {ll} {nw} {lw} {2lg} {nc} {1lg}

Fig. 3. A database with concepts with an intent of more than three attributes removed

Removing all concepts in the lattice in figure 2 that have more than k = 3 attributes
creates the new database in figure 3. Where the original lattice concepts have been
removed, dashed-arcs indicate successors defined by the partial ordering relation1.
Note that a subset, L, of the database namely all the concepts except DG, BR, FR,
MZ, RD, SW still forms a lattice when the implied universal and empty concept is
inserted. This lattice (identified by all the concepts connected with solid arcs) does
not correspond to either the Galois or EA-lattice lattice for the given context. A query

                                                          
1 Note that, for technical reasons, there is a dashed-arc between DG and sk, even though no

concept has been removed. This is done to ensure that, by removing all intermediate
concepts, a bipartite graph having only dashed arcs can be derived.
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operation on the database in figure 3 using L now cannot discern between objects that
have more than k attributes in common.

3 Compressed Lattice Definitions

In this section the database in figure 3 is used as an example of a compressed lattice.
We define the set of approximate and exact representatives; the CompressLattice and
ExpandLattice operations; and the notion of a compressed lattice. The need for
compression strategies for creating a compressed lattice is addressed.

3.1 Approximate and Exact Representatives

Repeating the query operation OMeet for Q={nw, nc, 1lg, 2lg} in figure 3, we find that
there is no meet in the database. A revised query operation on the database as defined
below will however solve the problem. Consider the lattice, L, and exclude the
empty- and the universal concepts of L from the discussion.

Let S be the set of all meets of all subsets of Q in L. The set of approximate intent
representatives of Q in the lattice L, denoted by AIR(L, Q), is the set of minimal
concepts in S2.

Suppose a query operation for Q returns the approximate intent representatives of
Q in the lattice embedded in D, i.e. OAIR(D, Q) = AIR(D Embed, Q) where DEmbed is the
lattice embedded in D. If Q ={nw, nc, 1lg, 2lg} then S = { nw, 2lg, nc, 1lg, n4, n6,
BN} and {BN, n6} is the set of minimal elements of S. Thus OAIR returns AIR(L, Q) =
{BN, n6} for figure 3, assuming DEmbed is the lattice, L, identified in section 2.3. This
refers to the objects {BN, MZ, RD, SW}.

Inspecting the intents of the concepts in AIR(L, Q) we see that BN, for example,
has attributes in its intent that are not in Q. If we wish to restrict a query operation to
find only concepts possessing attributes in Q, then we need to define a related
operation on the database, called the exact intent representative operation.

Let S be the set of all meets of all subsets of Q in L. Let T be that subset of S
whose elements have intents that are not subsets of Q. The set of exact intent
representatives of Q with respect to a lattice L, denoted by EIR(L, Q), is the set of
minimal elements in S – T. If T = ∅ then clearly EIR(L, Q) = AIR(L, Q).

For Q = {nw, nc, 1lg, 2lg} we saw that AIR(L, Q) = {n6, BN} whilst EIR(L, Q) =
{2lg, n6} since T = {BN}. As before, OEIR(D, Q) = EIR( DEmbed, Q) = EIR(L, Q) =
{2lg, n6}.  Thus, in the present example, OEIR (D, Q) references the same set of
objects as before, namely {BN, MZ, RD, SW}.

The OEIR and OAIR operations can be applied to figure 1, in which the embedded
lattice is reduced to the set of attributes. In that case, OBP(D, Q) = OEIR(D, Q) = OAIR

(D, Q). If D is a pure lattice, as in figure 2, then OMeet(D, Q) = OEIR(D, Q) for a non-
trivial meet(Q).

The point is that both the OAIR and OEIR operations are defined in terms of a lattice.
and should the lattice be changed as in the example, for figures 1 to 3, the
                                                          
2 (x 	  S is minimal, iff 
 y 	  S such that y �  x.)
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representative sets also change. When Q has a non-trivial meet (i.e. not the universal
concept) in the lattice then EIR(D, Q) = AIR(D, Q) = Meet(D, Q). The representative
sets of Q were defined to deal with situations when Q has a trivial meet. The
operations may be seen as extentions of the meet operation.

Dual operations for AIR(D,Q) and EIR(D,Q) can be defined as follows. Q is a set
of objects and the meet and the minimal operations can be substituted by join and
maximal operations in the above definitions respectively. This defines the set of
approximate extent representatives, AER(D, Q) and the set of exact extent
representatives, EER(D, Q). If Join(D, Q) is non-trivial, Join(D, Q) = AER(D, Q) =
EER(D, Q).

Finally, it is useful to define a further related set of concepts, namely EIR(D,Q,C).
This is the set of exact intent representatives of Q excluding C. It corresponds
identically to EIR(D,Q), except that in determining the minimal elements of S above,
a designated concept, C, is specifically excluded from consideration. As a result, if C
is in EIR(D,Q), then EIR(D,Q,C) contains all the concepts that cover C, instead of C
itself. In particular, if C = meet(D,Q), then EIR(D,Q,C) is the set of concepts covering
meet(D,Q). The set of exact extent representatives excluding C, EER(D, Q, C) is
defined similarly.

D1 = Compress(D0,{o1,o2,o3,o4},Up)

a b c d

n3

n1

n4

n2

o2 {a,b,c,
d,e}

o3 {b,c,
d,e}

o1 {a,b,
c,d}

e

o4 {a,e}

{a,e}

{b,c,
d,e}

{a,b,
c,d}

{b,c,d}

{a} {b} {c} {d} {e}

EA Lattice =D0

a b c d

n3

n1

n4

n2

o2 {a,b,c,
d,e}

o3 {b,c,
d,e}

o1 {a,b,
c,d}

e

o4 {a,e}

{a,e}

{b,c,
d,e}

{a,b,
c,d}

{b,c,d}

{a} {b} {c} {d} {e}

D4 = Compress(D3,n3,Up)

a b c d

n4

o2 {a,b,c,
d,e}

o3 {b,c,
d,e}

o1 {a,b,
c,d}

e

o4 {a,e}

{b,c,d}

{a} {b} {c} {d} {e}
D5 = Compress(D3,n4,Up)

a b c d

o2 {a,b,c,
d,e}

o3 {b,c,
d,e}

o1 {a,b,
c,d}

e

o4 {a,e}

{a} {b} {c} {d} {e}

D2 = Compress(D1,n1,Up)

a b c d

n3

n4

n2

o2
{a,b,c,

d,e}
o3

{b,c,
d,e}

o1
{a,b,
c,d}

e

o4 {a,e}

{a,e}

{b,c,
d,e}

{b,c,d}

{a} {b} {c} {d} {e}

D3 = Compress(D2,n2,Up)

{a,e}

a b c d

n3

n4

o2 {a,b,c,
d,e}

o3 {b,c,
d,e}

o1 {a,b,
c,d}

e

o4

{a,e}

{b,c,d}

{a} {b} {c} {d} {e}

Fig. 4. A CompressLattice example compressing a lattice to a bipartite graph

3.2 CompressLattice Operation

The CompressLattice operation removes a concept y from the embedded-lattice in the
lattice-based data structure and replaces the concept with virtual-arcs (indicated as a
dashed-arcs). These arcs interconnect all the parent- with all the child concepts of y.
Figure 4 shows an example of a lattice-based structure where all the concepts have
been removed by successively using CompressLattice operations. Similarly, figure 3
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can be verified to be the result of successive upward CompressLattice operations on
DG, BR, FR, MZ, RD, SW, n10, n11, n12, and finally n13.

It is important to note that the CompressLattice operation works from a particular
direction. In the examples, the lattice was compressed in the upward direction, but the
operation is equally valid when compressing the lattice from the top downward (or
any combination of the two). The CompressLattice operation creates a data structure
that is not a lattice. We call it a compressed lattice. Using parameter names to imply
types, the CompressLattice operation is defined as follows in terms of its pre- and
post-conditions:

CompressLattice( aCompressedLattice, aConcept,
aDirection) returns outCompressedLattice

Pre-condition:  aConcept is in aCompressedLattice, it
has at least one lattice-arc in aDirection and no
lattice-arcs in the opposite direction.

Post-condition:  outCompressedlattice retains all the
nodes and arcs of aCompressedLattice, except in the
following respects. If aConcept is an attribute or
entity concept, then lattice-arcs connecting it to
other concepts in aCompressedLattice are replaced by
virtual-arcs in outCompressedLattice. Otherwise
aConcept and its arcs are not in outCompressedLattice.
Instead, virtual-arcs link each of aConcept’s parents
to each of aConcept’s children.

3.3 Definition and Properties of Compressed Lattices

A compressed lattice is a data structure that represents a particular context C = 
�
Ent,

Attr, I � . The data structure consists of a number of concepts that are connected by one
of two types of directed arcs: lattice-arcs and virtual-arcs. The concepts are
partitioned into three sets: the attributes (of the context), the objects (of the context)
and any number of intermediate concepts. A compressed lattice contains an
embedded-lattice. The embedded-lattice is the set of all concepts complying with one
of the following: the concept is an attribute node; or at least one lattice-arc connects to
or from the concept. Note that in an embedded lattice, lattice- and/or virtual arcs may
be incident on an attribute node.

The following are compressed lattice properties. They define sufficient conditions
for a data structure to be a valid compressed lattice. Note that the conditions listed are
not disjoint − they may be related to or imply one another.
• Poset: The concepts in the compressed lattice form a poset with respect to the

partial ordering relation specified by the directed arcs (lattice or virtual)
• Context preservation: Attributes and objects in the context are present as concepts.

Objects contain in their upward closure all their attributes specified in the context,
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but no other attributes. Similarly attributes contain in their downward closure all
their objects specified in the context, but no other objects.

• Unconnected objects and attributes: Attributes may have no upward arc and
similarly objects may have no downward arcs.

• Unique intermediate concepts3: No two intermediate concepts may have the same
extent or the same intent. This property implies that any intermediate concept has
at least two upward and two downward arcs. This does not preclude attributes and
objects from having the same extent or intent respectively. Such concepts are
represented as different concepts in a compressed lattice.

• Empty intent: No concept may have an empty intent (i.e. all objects must possess at
least one attribute but some attributes may not have any object possessing the
attribute). This limits the contexts for which a valid compressed lattice may be
constructed. Although the property is not strictly required, the practical benefits of
contexts that do not conform to this requirement are not immediately clear.

• Embedded-lattice: The set of all concepts together with the ordering used in the
embedded-lattice, constitute a lattice when appropriately connected to the implied
universal and the empty lattice concepts.

• Meet and join: Consider any set, S, of concepts connected via lattice-arcs. Any
subset of S has at most one meet or no meet at all (the lattice property). Similarly
any subset of S has at most one join or no join at all.

• Intermediate virtual-arcs: Intermediate concepts may not have any virtual-arcs to
any other intermediate concepts. Their virtual-arcs must end in an attribute concept
or start at an entity concept.

• Exact representative connection: Let I(C) be the intent of any concept C in a
compressed lattice. Let SEmbed and SFull be the sets of exact intent representatives of
I(C) excluding C in the embedded lattice and fully elaborated EA-lattice,
respectively. Then a lattice arc connects C to each element of SEmbed if the element
is also in SFull and a virtual arc connects C to every other element of SEmbed. A
similar property holds for the set of exact extent representatives of E(C) excluding
C, where E(C) is the extent of C. These dual properties are critical in ensuring that
the closure operations function as expected.

• Arc duplication: A concept may only have one arc (either lattice or virtual) to any
concept that covers it.

• Cover: A concept may not have an arc to any other concept to which it is indirectly
linked4.

The definition and properties show that a compressed lattice is essentially a bipartite
graph that contains an embedded-lattice. Furthermore the compressed lattice
properties ensure a well-defined and unique structure for a given context and a given
sequence of compressed lattice operations. A number of operations can be defined on
a compressed lattice, but the most important are:
• ApproximateRepresentatives and ExactRepresentatives for an intent and extent
• CompressLattice and ExpandLattice (described in the next section)
                                                          
3 This is not a property of Galois lattices. For example, the Galois lattice of the living context

(not shown here) does not possess this property.
4 Concept x is indirectly linked to concept y iff  it has a path via one or more intermediate

concepts.
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• Closure and LatticeClosure, where LatticeClosure follows only lattice-arcs when
discovering concepts whilst Closure follows any type of arc

• InsertNewLatticeObject, i.e. insert a new object into the context and embedded-
lattice by using a modified incremental lattice construction algorithm

• InsertNewVirtualObject, an alternative to InsertNewLatticeObject that does not use
a computationally expensive lattice construction algorithm to update the
embedded-lattice. The object is inserted into the compressed lattice by simply
creating virtual-arcs to its exact representatives

3.4 ExpandLattice Operation

A complementary operation to CompressLattice, namely ExpandLattice, can be
defined to enlarge the embedded lattice of a compressed lattice. The operation works
in a particular direction, starting with a concept that has virtual arcs in that direction.

In the downward direction starting with concept C, the operation determines what
the children of C would be in the fully elaborated (“uncompressed”) EA-lattice. To do
this requires the determination of the set of exact extent representatives excluding C,
of the extent of C. Concepts in this set but not yet in the compressed lattice are
inserted into it. C is directly connected to these concepts by lattice-arcs and C’s
virtual arcs are removed. To comply with compressed lattice and “pure” lattice
properties5 further generation of concepts and/or creation, removal or re-labelling of
arcs may be necessary. Similar remarks apply pari passu when expanding a given
concept in the upward direction.

Note that the CompressLattice and ExpandLattice operations are not symmetric in
that the one does not reverse the other. In most instances a single CompressLattice
operation cannot destroyed the portion of the compressed lattice that an
ExpandLattice operation builds. It is however always possible to completely compress
a lattice into a bipartite graph or to use ExpandLattice operations to completely
rebuild the lattice from a bipartite graph. Our implementation of this latter series of
operations indicates that it is computationally more expensive than using a
“traditional” incremental lattice construction algorithm to construct a lattice. The
context preservation and exact representative connection properties of a compressed
lattice play important roles in the ability to rebuild the lattice.

ExpandLattice is defined below in terms of its pre- and post conditions. Again,
parameter names imply their corresponding types.

ExpandLattice( aCompressedLattice, aConcept, aDirection)
returns outCompressedLattice

Pre-condition:  aConcept is a concept in
aCompressedLattice that has virtual-arcs in aDirection.

                                                          
5 The properties labeled above as Embedded-lattice and Meet and join  embody the lattice

properties to be retained by a compressed lattice.
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Post-condition: outCompressedlattice retains all the
nodes and arcs of aCompressedLattice, except in the
following respects. If aDirection is down (up), then
all possible child (parent) concepts of aConcept that
would occur in the associated EA lattice are inserted
into outCompressedLattice’s embedded lattice.
Additional concepts are created and arcs are created,
removed or relabelled if and only if necessary to
maintain compressed lattice (including embedded-
lattice) properties.

As an example of the ExpandLattice operation, consider figure 4 with the compressed
lattices D0 to D5. When starting with D5, i.e. the bipartite graph, the following order of
ExpandLattice operations will reconstruct D0 (using �  to indicate “downward”): D4 =
ExpandLattice(D5, c, � ); D2 = ExpandLattice(D4, e, � ); D1 = ExpandLattice(D2, a, � )
and finally D0 is the result of successive ExpandLattice calls that expand the concepts
n1, n2 and n3 in a downward direction. Note that ExpandLattice(D4, e, � ) does not
produce D3 because D3 does not contain all of e’s children that exist in the underlying
and implied full lattice, D0.

3.5 Pruning Strategies and Criteria for Creating Compressed Lattices

Section 2 defined a very specific domain of discourse of which there are three
components: the context, the database and the query operation. A compressed lattice
is such a database. The separation of the database and query operation as well as the
requirement that results only be formulated in terms of non-object concepts actually
represented in the database creates an interesting deviation from some traditional
information retrieval approaches: the organization of the database co-determines the
outcome of the of the query operation in that for a given context the result of a query
may be different, depending on the compressed lattice being used to represent the
context. The question that arises is thus: “Are there databases derived from
compressed lattices that, on average, result in better retrieval for the same context?”

Limited experimental results (currently unpublished) show that there are indeed
better methods of organization. Specifically, it appears that a database consisting of
the complete lattice of a given context need not, in general, be the best database. In
many instances significantly compressed lattices performed better. Further
experimentation is required in order to explore compression strategies and node
pruning criteria that lead to optimal performance.

In general, there are a number of possible compression strategies that seem to
deserve such exploration. The most obvious is the one stated above where the lattice
is compressed up to a specific level. It is useful to have a pruning strategy combined
with a threshold on the embedded-lattice size. The embedded-lattice is then
repeatedly compressed until the lattice size is below the threshold. This can be
combined with an adapted incremental lattice construction algorithm where the
pruning mechanism is invoked after each individual object or batch of objects has
been inserted into the compressed lattice. Combinations of the operation
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InsertNewVirtualObject can also be used. This has the added advantage of limiting
the size of the lattice and therefore the time taken to build a compressed lattice.

Compression strategies that have been preliminarily tested use a combination of
the following:
• Compress concepts with an intent of size smaller than t and larger than u.
• Compression is based on the number of arcs to child or parent concepts in the

lattice.
• Compression is based on EP(c), an estimate of prior probability of the concept c.

EP(c) is the number of objects in the intent of c divided by the total number of
concepts in the context. Refer to Oosthuizen [10] for a discussion and examples

• Compress, based on the difference between an estimate of the expected probability
ExP(c)6 and EP(c). This concept property performed the best in most preliminary
test results.

4 Implementation and Discussion of Preliminary Results

The compressed lattice data structure and associated operations have been
implemented and tested in C++. To construct the lattice a new incremental lattice
construction algorithm was developed. This algorithm is currently being compared to
other documented incremental construction algorithms such as Godin [5] and
Oosthuizen [8]. Early indications are promising. The algorithm is explicitly relies
upon exact representative and approximate representative sets. (The algorithm’s main
loop has an invariant and terminating condition that is based on these.) It has been
extended to operate on compressed lattices by incrementally inserting new objects as
well as the required new intermediate concepts into an embedded-lattice whilst
maintaining the compressed lattice properties.

The potential gain in computational efficiency of having a compressed lattice
should be weighed against the advantages of having a larger and more complete set of
concepts available in a particular domain. Results however suggest that a compressed
lattice may be a useful generic data structure for various IR and machine learning
problem domains.

In Oosthuizen [9, 10] and Kourie and Oosthuizen [7], a data structure based on a
modified lattice was proposed as a means to reduce the number of concepts in a
lattice. That data structure (also called a compressed lattice) was a limited version of
the compressed lattice data structure defined above. It did not retain the lattice
properties and other desirable properties (e.g. context preservation) of the data
structure proposed above. Despite those limitations, improved results in lattice-based
machine learning tests were achieved. It was argued that although a structure such as
a lattice contains a concept node for every possible combination of objects supported
by the data, it seemed to contain many concepts that are not, in some sense, useful or
meaningful. Removing them appeared to improve the outcome.

                                                          
6 ExP(c) = EP(a1) × EP(a2) × … × EP(an) and where ai is an attribute in the intent of c. This

estimate assumes that the attributes are independent.
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One application of this idea was to remove concepts in the embedded-lattice that
are the meets of statistically independent attributes. Being randomly related, these
attributes will to occur in any number of combinations in a given context. As a result,
a large number of concepts are generated in a lattice to reflect these random
relationships. Indeed, the theoretical limit of the lattice size is for example reached
when all attributes in the context are statistically independent [10]. Such concepts are
not really worth learning as rules in a machine learning context and are therefore in
some sense not “meaningful”.

The compressed lattice we described here is a more generalised and versatile
version of this approach. Alternative methods of reducing concepts are also discussed
in [10]. Godin [5] on the other hand also proposed ways of reducing concepts in a
lattice called a pruned concept lattice. In general a compressed lattice is not directly
comparable to a pruned concept lattice but the two concepts can be combined.

Finally, the scaling of the size of a compressed lattice has an interesting
implication in IR contexts. In a lattice the results of a query operation OEIR(D, Q) is
the intersection or conjunction of the downward closures of the attributes in Q (i.e. the
meet) and can be expressed as in equation 1. In the bipartite graph OEIR(D, Q) is the
union of the downward closures of the attributes in Q expressed as in equation 3. By
iteratively scaling the lattice the conjunctive expression progressively turns into a
disjunctive expression with an intermediate expressions typified by equation 2. For a
suitable compression strategy, a proximity based query operation can thus be defined.

OEIR(D, Q) = a1 �  a2 � … �  an for ai ∈ Q, provided Meet(Q) is non-trivial (1)

OEIR(D, Q) = (a1,1 �  a1,2 �  … a1,j)   (a2,1 �  a2,2 �  … �  a2,k)  …   (an,1 �  an,2 �
… �  an,x) for ay,z ∈ Q

(2)

OEIR(D, Q) = a1   a2  …   an for ai ∈ Q (3)

5 Conclusion and Areas of Further Research

We defined a compressed lattice as a generic lattice-based data structure that shows
promise in many field of research due to its close resemblance to that of a lattice. A
number of critical questions remain:
• In what areas of application is a compressed lattice beneficial? Specifically: is a

compressed lattice more suitable than a Galois lattice in areas where the latter has
proven successful?

• What compression strategies and criteria should be used and in which areas of
application? Specifically, is there a universal compression strategy applicable to
many areas of application or is a compression strategy domain specific?

• What is the relation of a compressed lattice and associated operations to other
fields of research in databases, rough sets, etc given its seeming ability to deal with
ambiguity?

The authors intend pursuing these and related areas of research. Initial results indicate
that the answers to these and other questions hold promise in many applications. In
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addition, the previously mentioned lattice construction algorithm is being evaluated
against documented incremental lattice construction algorithms.
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