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Abstract. In the last ten yeas, several approaches for knowledge discovery in
databases based uponthe cnstruction o a mncept lattice have been devel oped.
Most of them are dedicaed to binary or propasitional descriptions. This paper
presents an approach to buld a particular concept lattice cdl ed the Generali za-
tion Spae for relational descriptions. It is based uponan iterative reformula-
tion d the descriptions into a sequence of languages more and more expressve.
The anytime property of the dgorithm allows one to use it on large databases,
and experiments show that its complexity grows linealy with the number of de-
scriptions.

1 Introduction

Several approacdhes for Knowledge Discovery in Databases based onthe @nstruction
of a concept lattice have been developed in the last ten yeas [11], [6], [19], [16].
Concept lattices -or Galois lattices [1], [21] - give aformal framework to organize
concepts into a hierarchy. The main dfficulty in using concept lattices lies in their
construction. Guénoche analysis the four main algorithms of concept lattice @nstruc-
tion for binary descriptions and shows that they are not suitable for large databases
because of their exporential complexity [14]. More recent works show that it iseasier
to buld a partial concept lattice (the cmmplexity is quadratic with the number of de-
scriptions) than the complete one[8], [13].

Our reseach concerns the auttomatic organization d relational descriptions, i.e. data
represented using an expressve formalism such as first-order logic, description lo-
gics, conceptual graphs, ..., into a particular concept lattice To avoid the inherent
problem of combinatorial explosion die to the relations, we propase to take gradudly
into acourt the relations. The gproach presented here, cdled KIDS, extends the
propasitional approach COING [2] to a relational framework. Given a set of objeds
described using conceptual graphs [20] and danain knowledge represented in a gen-
erdizaion lattice, COING builds the propasitional Generalizaion Space of the ob-
jeds. Thanks to an iterative reformulation o the descriptions, KIDS progressvely
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enriches this gacewith more and more expressve descriptions at ead step of the
agorithm.

In the foll owing sedion, we remind some definitions about concept lattices and de-
fine the Generalizaion Space Our algorithm to construct a relational Generalizaion
Spaceis described in the third part. We first briefly recdl the main aspeds of the
propasitional algorithm COING and then explain haw it is extended to a relational
framework in the KIDS system. In the next sedion, we present an application d our
approach to arganize aChinese dharaders database. These experiments ow the
feasibility of the proposed approach. A comparison with related works is given in the
part 5. We give in sedion 6 drections for futur work.

2 Concept lattice, partial concept lattice and generalization space

2.1 Concept lattice

A concept lattice (also cdled a Galois lattice) is a mnceptua hierarchy bult on a set
of objeds O described by a set of descriptions D [1], [21]. A node n of the latticeis
cdled a"(formal) concept”. It isapair (0, d) where o, -the coverage of the concept- is
the subset of O covered by the node and d, -the description of the wncept- is a subset

of D which are dommonto all the objeds of o,

A partia ordering relation among the nodes, the subsumption relation, is defined as

follows: let ny = (04, d;) and n, = (0,, dy), Ny < nyiif 04 O 0, and d, O dj. In the

Has® diagram representing the lattice, the nodes are organized acwrding to this

relation: there is an edge between n, and n,, if n, < n,and there is no aher node n,in

the lattice such that n,< n,< n,. n,isaparent of n,and n,is a child of n,. The concept
latticeisthe set of all the cmncepts uppied with this partial order.

A concept latticeis redundant. Given a concept n = (o, d), its coverage o belongs
to the mverage of eat ancestor of n and its description d appeas in the description
of ead descendant of n. Two partial concept lattices have been defined to limit re-
dundancy:

- The X'-inheritance @ncept lattice is represented by all the pairs (o, d')

where d' isthe nonredundant elements of d [11],

- The X' -pruned Galois lattice [11], also cdled the Galois sub-hierarchy
[8], is generated from the X’ -inheritance @ncept lattice by eliminating
the pairs whose d’ set is empty. The pruned lattice @ntains less nodes
than the @ncept lattice aciated, its gructure is not necessarily a lat-
tice but it alows one to recmnstruct the concept lattice without loss of
information.
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2.2 Generalization Space

Given a set of objed descriptions and a generalization language, the Generdlizaion
Spaceis apruned inheritance @ncept lattice where eat nock description is the most
spedfic generalization of the descriptions of the objeds covered by the noce. In the
case of a propasitional generalization language, the most spedfic generalization of a
set of descriptionsis unique. In the other case, anode description contains all the most
spedfic generalizaions —w.r.t. the considered generalization language— of the set of
descriptions.

Deriving a pruned inheritance mncept lattice from a concept latticeis easy. However,
existing methods to build concept lattices are naot suitable for large databases becaise
of their exporential complexity with the number of objeds[14]. In the following peart,
we present our ascending approach to buld Generdlizaion Spaces: COING builds a
propasitional Generalizaion Space while KIDS enriches that Generalization Space
with relational descriptions.

3 Building a Generalization Space

3.1 A Generalization Spacefor propositional data

Given a set of objeds described using conceptual graphs [20] and damain knowledge
represented in a generalizaion lattice [11], COING buil ds the propasitional Generali-
zdion Spaceof the descriptions [2]. In order to ded with the problem of generalizing
relational descriptions[15], COING reformulates ead conceptual graph describing an
objed into a set of independart arcs. The main advantage of this reformulationis to
limit the complexity of the GS construction (in the worst case quadratic with the
number of objeds, and linea in pratice [2]). This reformulation has been initially
proposed in [12].

COING is an ascending method it starts from the descriptions as sts of arcsto buld
the nodes. Each arc of the descriptions is generalized w.r.t. the generalization lattice
The generdized arcs covering the same set of objeds are dustered into the same
node, and then filtered in order to kegp orly the most spedfic onest. The following
figure 1 presents the propasitional Generalizaion Spacebuilt by COING for the three
howses hl, h2 and h3

1 The reader interested in amore predse presentation o COING shoud refer to [2], [3].
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Fig. 1. A Generalization Spacefor propasitional data.

This Generalization Space ontains two classnodes (n1 and n2 and three objed
nodes correspondng to the houses (box noas). The node n2, for example, clusters
the houses h2 and h3 Its coverage is {h2, h3} and its description is the ac [ W n-
dow] - >(col or)->[ Gray]. This noce indicaes that h2 and h3 lave & least a
gr ay window in commonin their descriptions and that this property is not shared by
any aher objed considered. Thanks to the inheritance structure of the GS, we may
add the description d the roat node (n1) to this description. More predsely, we ald
the acs from n1 which are nat generalizations of arcs from n2, for example the ac
[ Wndow] ->(Si ze)->[ Bi g] . Thus, the node n2 indicaes that the two houses
h2 and h3 fave wi ndow( s) , which have asize(Smal | , Bi g) and a wlor (G ay,
Bl ack) .

If COING has alow complexity, it does not take into acourt the relational asped
of the descriptions: the graphs describing the objeds are decompased into a set of
independent arcs and relations among arcs are lost. In the foll owing section, we give
the principle of our approach to extend COING to arelational framework.

3.2 A Generalization Spacefor relational data

KIDS gradually enriches the propasitional Generalization Space built by COING
whil e using a sequence of language which is made more and more expressve & eat
iteration. The property of the Generalization Spaceused in KIDS is the following :
If there exsts a comnon sub-graph $5 among the descriptions of a gven set
of objeds o, then there is a noce in the GS bult by COING whose cverage
contains 0 andwhose cmplete description -completed with the inherited arcs-
contains the arcs of SG.
This property allows us to use the propasitional GS in order to find sub-graphs
generalizing a set of objed descriptions. The ideais to seach for more and more
complex sub-graphs. The heuristic used by KIDS to enrich the propasitional Gener-
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alization Spaceis based onthe fad that a sub-graph o i arcsis a sub-graph o (i-1)
arcs + 1 arc. We defined the notion o canddate noce : a node of the GSis a candi-
date nodefor KIDS at level i if it has been modified at level i - 1.

In pradice KIDS starts with the propasitional GS built by COING using a lan-
guage of arcs (COING is the 1° level of KIDS). At its soond level, KIDS reformu-
lates objed descriptions based upona language of two conneded arcs. At its third
level, KIDS reformulates objed descriptions based upona language of three ©n-
neded arcs, etc. . Let us natice that at a given level, KIDS does nat reformulate the
descriptions of all the objeds, but only the descriptions of objeds appeaing in the
candidate nodes.

At ead level, KIDS may refine the description d existing nods (it consists in
linking an arc to an existing sub-graph) or add new nodes to the Generalizaion Space
found at the previous level. Thus, the GS is not completely reconstructed at ead
iteration o KIDS and the KIDS agorithm is “anytime”. The node descriptions at a
given iteration (level) are maximally spedfic w.r.t. the language crrespondngto this
level. If anode description generalized an oljed description then this objed is neces-
sarily in the cverage of that node.

Ancther main asped of KIDS, is that it uses the propasitional leaner COING to
perform the reformulated descriptions. In order to allow COING to dothis, we have
defined the nation o "abstrad arc”. The reader shoud refer to [4] for amore predse
presentation d the KIDS algorithm. Complexity results of KIDS are given in sedion
4.2.

Figure 2 above presents a relational Generalization Spacefound byKIDS for the
threehouwses h1, h2 and h3At the 2™ level, KIDS foundcommon sub-structures which
were not find by COING. For example, the node nl1 show the fad that the three
houses have (at least) two windows and that ead of them have acolor (W&B or
Bl ack) andasize(unknown, Smal | or Bi g). Furthermore, KIDS clusters hl and
h2 into a node, and oy these two houses, since they have asmall black window in
common and this window does not appea in the description d h3 (even if h3 hes a
small window and a black window but it is not the same window). This smil arity was
not found byCOING and required to use KIDS (at the second level, first iteration)
sinceit is a particular compasition d two arcs. It is uselessto perform KIDS at the
next level since the use of structures of threeconreded arcs all ows ones to reformu-
late the descriptions without loosing information [4].
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Fig. 2. A relational Generali zation Spacefor threehouses

4  Experimentationson a Chinese characters database

This ®dion presents an applicaion o the dove method in the framework of the
construction d clasdficaions of Chinese dharaders. We briefly remind the mntext of
this work?. These experiments aim to show the feasibility of KIDS in terms of com-
plexity and to ill ustrate itsinterest for relational data organization.

4.1 Description of therelational data

The database mnsidered isa mlledion d 6780Chinese tharaders. Each charader is
represented by a cnceptual graph. Charaders are described by : their initial and final
pronurciation, the ton d this pronurciation, the comporents (between 1 and 5 and
their relative paositions and the key comporent. For example, the conceptua graph o

2 For more information about this applicaion, the reader shoud refer to [2].
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=3
figure 3 represents the dharader rﬁ , Which is composed o the radicds C5381and
C2843 which ispronourced “ ging”, which isinton 2and means "feding".

[ql_ (followed) > [ing]

J I\EﬁE [ton2] f (sameini) __y, [false]

(samefin) > [false]

(tone) (pronunciation) (key)

! / (sameton) [false]
Sl g
[“feeling”] (means) __ ™ [c2852] (composed) c3381] _ (position) [left]

(frequency) — X~ (composed) m\f[:u)
[high] - (nbcomponents) g
\[2] [2843] _ (position) _y, [right]
\ (sameini) _y, [true]
(samefin) [true]
(sameton) g [true]

Fig. 3. Conceptual graph describing the charader 'r%

Part of the generalization lattices used for Chinese dharaders is presented onthe
following figure 4:

an en ang  ing

followed position tone pronunciation composed means

Fig. 4. Part of the generali zation lattices for Chinese dharaders.

4.2 Complexity results
We evaluated KIDS on several databases of charaders composed of 10to 160 o 416

charaders. Figure 5 shows the total time required for generating the GS for these
databases using the COING (KIDS 1% level) and the KIDS algorithms.
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Fig. 5. Average exeautiontime of KIDS on Chinese dharaders databases.

As down onfigure 5, in pradice the CPU time of the propased algorithmsis lin-
ea (it is quadratic in the worst case for COING [2]) with the number of objeds. This
results may be surprising because, as it manipulates sub-graphs, KIDS introduces a
complexity fador. In effed, the theoreticd complexity of KIDS in the worst case is
exporential. However, the combinatorial explosion die to the generalizaion o sub-
graphs is limited since the bigger the level of KIDSis (i.e. the more complex are the
graphsto generalize) the lessthe number of sub-graphsto performiis.

The level introduces a multi pli cative fador; the time necessry to move to the next
level isvery close to be mnstant (cf. figure 5).

During these experiments, we dso evaluated the evolution d the number of nodes
of the GS asafunction d the dgorithm used. For COING, this number isin the worst
casein O(N) [2]. Figure 15 summarizes these results.
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Fig. 6. Evolution d the number of nodes of the GS.

This graph shows that the number of nodes of the GS grows until a spedfic level —
2" level for the small bases and 3° level for the largest — then it becomes constant.
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This may be explained by the fad that from a spedfic level, KIDS does not alow to
crede new nodes, but only to enrich the description o existing ores.

5 Related Works

A Generdizaion Spaceis a pruned inheritance @ncept lattice since nodes whose
description is empty do nd appea in it. If this may be mnsidered as a drawbadk for
some goplications, Dicky shows that this gructure mntains the same information that
the mncept lattice but requires lessmemory [8]. Furthermore, the pruned inheritance
concept lattice is a useful structure to discover a set of asciation rules as it alows
oneto dredly extrad valid and informativerules[19], [5].

Recent works [8], [13] show that it is easier to buld a partia lattice (quadratic
complexity with the number of objeds) than the complete one (exporential complex-
ity). Experiments ill ustrate that the complexity of the Generalizaion Space onstruc-
tion (for COING and KIDYS) is, in pradice, linea with the number of objeds[4].

An important limitation d most existing methods to buld concept lattices is that
they are dedicaed to binary or propasitional descriptions [21], [6], [11]. The KIDS
approach considers descriptions represented using a more expressve language -the
conceptua graph formalism. Other works ded with the @nstruction o concept lat-
ticesfor conceptual graphs[17], [12].

The mmplexity of GRAAL is depending onthe complexity of the generalization
relation defined onthe @nsidered sub-graphs [17]. In pradice Liquiére limits the
graphs to locdly injedive ones snce the mmplexity of the generalization relation is
polynomial for such graphs. The main dfference between KIDS and GRAAL is that
in KIDS one does not have to limit a priori the structure of the graphs describing the
objeds to be ale to perform them with a reasonable complexity. Ancther advantage
of KIDS liesin its anytime property which all ows one to stop the processat anytime
andto have aresult.

The gproach proposed by Godin [12] and the one developed in COING are quiet
similar. They are both based ona graph reformulation into a set of independent arcs.
In order to "reconstruct” sub-graph from the set of independent arcs describinganode
of the lattice, Godin uses the fad that the decomposition d a sub-graph as a set of
independent arcs may be done withou loosing information if the nsidered sub-
graph has some properties (a same mncept type gppeas only oncein the sub-graph).

Incremental approadhes to buld a cncept lattice [6], [11], or a partial one [8],
[13] update the lattice whenever new objeds or new fedures are alded in O or in D.
Our approach is not incremental: the aldition d a new objed requires a wmplete
recnstruction d the GS. Thisis a mnsequence of using a generalization lattice over
the types describing the objeds and searching for maximally spedfic generalizations.

6 Conclusion and futur works

We presented an approach to buld arelational Generalization Space This approadis
based uponan iterative reformulation o the descriptions into a sequence of languages
more and more expressve. The complexity of this anytime dgorithm is, in pradice,
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linea with the number of objeds. The databases used to evaluate this work concern
different domains: Chinese charaders, car colli sion reports, paleontologicd data and
the DNA sequence

Thefirst perspedive of thiswork isto provide KIDS with amore dficient process-
ing d numericd data. Currently, the numericd information contained in the descrip-
tionsis procesed as ymbals; the implicit order existing among numbersis nat taken
into acount. A preprocessng on ascriptions would make it posshle to determine a
hierarchy dof generalizaion on nunericd values.

Another possble improvement of the dgorithm isto define methods to evaluate
the interest of KIDS for a given database. Indeed, when the concepts in the objeds of
a aonceptual graphs database gpea only orce, it is not necessary to apply KIDS to
this database, because the decompasition daes not cause any loss of information. On
the oontrary, if a mncept appeas wvera times in the objects descriptions (like in the
houses), it is not posdgble to dfferentiate them. So, we can consider a pre-processng
on the data to evaluate the maximal level to which KIDS neals to be gplied.
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