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Abstract. In the last ten years, several approaches for knowledge discovery in 
databases based upon the construction of a concept lattice have been developed. 
Most of them are dedicated to binary or propositional descriptions. This paper 
presents an approach to build a particular concept lattice, called the Generaliza-
tion Space, for relational descriptions. It is based upon an iterative reformula-
tion of the descriptions into a sequence of languages more and more expressive. 
The anytime property of the algorithm allows one to use it on large databases, 
and experiments show that its complexity grows linearly with the number of de-
scriptions.  

1   Introduction 

Several approaches for Knowledge Discovery in Databases based on the construction 
of a concept lattice have been developed in the last ten years [11], [6], [19], [16]. 
Concept lattices -or Galois lattices [1], [21] - give a formal framework to organize 
concepts into a hierarchy. The main diff iculty in using concept lattices lies in their 
construction. Guénoche analysis the four main algorithms of concept lattice construc-
tion for binary descriptions and shows that they are not suitable for large databases 
because of their exponential complexity [14]. More recent works show that it is easier 
to build a partial concept lattice (the complexity is quadratic with the number of de-
scriptions) than the complete one [8], [13]. 
Our research concerns the automatic organization of relational descriptions, i.e. data 
represented using an expressive formalism such as first-order logic, description lo-
gics, conceptual graphs, …, into a particular concept lattice. To avoid the inherent 
problem of combinatorial explosion due to the relations, we propose to take gradually 
into account the relations. The approach presented here, called KIDS, extends the 
propositional approach COING [2] to a relational framework. Given a set of objects 
described using conceptual graphs [20] and domain knowledge represented in a gen-
eralization lattice, COING builds the propositional Generalization Space of the ob-
jects. Thanks to an iterative reformulation of the descriptions, KIDS progressively 
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enriches this space with more and more expressive descriptions at each step of the 
algorithm. 

In the following section, we remind some definitions about concept lattices and de-
fine the Generalization Space. Our algorithm to construct a relational Generalization 
Space is described in the third part. We first briefly recall the main aspects of the 
propositional algorithm COING and then explain how it is extended to a relational 
framework in the KIDS system. In the next section, we present an application of our 
approach to organize a Chinese characters database. These experiments show the 
feasibilit y of the proposed approach. A comparison with related works is given in the 
part 5. We give in section 6 directions for futur work. 

2   Concept lattice, partial concept lattice and generalization space  

2.1   Concept lattice  

A concept lattice (also called a Galois lattice) is a conceptual hierarchy built on a set 
of objects O described by a set of descriptions D [1], [21]. A node ni of the lattice is 
called a "(formal) concept". It is a pair (oi, di) where oi -the coverage of the concept- is 
the subset of O covered by the node and di -the description of the concept- is a subset 
of D which are common to all the objects of oi. 

A partial ordering relation among the nodes, the subsumption relation, is defined as 
follows : let n1 = (o1, d1) and n2 = (o2, d2), n1 ≤ n2 iif o1 ⊆ o2 and d2 ⊆ d1. In the 
Hasse diagram representing the lattice, the nodes are organized according to this 
relation: there is an edge between n1 and n2, if n1 ≤ n2 and there is no other node n3 in 
the lattice such that n1 ≤ n3 ≤ n2. n1 is a parent of n2 and n2 is a child of n1. The concept 
lattice is the set of all  the concepts supplied with this partial order.  

A concept lattice is redundant. Given a concept n = (o, d), its coverage o belongs 
to the coverage of each ancestor of n and its description d appears in the description 
of each descendant of n. Two partial concept lattices have been defined to limit re-
dundancy: 

- The X’-inheritance concept lattice is represented by all the pairs (o, d’ ) 
where  d’ is the non redundant elements of d [11], 

- The X’-pruned Galois lattice [11], also called the Galois sub-hierarchy 
[8], is generated from the X’ -inheritance concept lattice by eliminating 
the pairs whose d’ set is empty. The pruned lattice contains less nodes 
than the concept lattice associated, its structure is not necessarily a lat-
tice, but it allows one to reconstruct the concept lattice without loss of 
information. 
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2.2   Generalization Space  

Given a set of object descriptions and a generalization language, the Generalization 
Space is a pruned inheritance concept lattice where each node description is the most 
specific generalization of the descriptions of the objects covered by the node. In the 
case of a propositional generalization language, the most specific generalization of a 
set of descriptions is unique. In the other case, a node description contains all the most 
specific generalizations –w.r.t. the considered generalization language– of the set of 
descriptions. 
Deriving a pruned inheritance concept lattice from a concept lattice is easy. However, 
existing methods to build concept lattices are not suitable for large databases because 
of their exponential complexity with the number of objects [14]. In the following part, 
we present our ascending approach to build Generalization Spaces: COING builds a 
propositional Generalization Space while KIDS enriches that Generalization Space 
with relational descriptions.  

3   Building a Generalization Space 

3.1   A Generalization Space for propositional data  

Given a set of objects described using conceptual graphs [20] and domain knowledge 
represented in a generalization lattice [11], COING builds the propositional Generali-
zation Space of the descriptions [2]. In order to deal with the problem of generalizing 
relational descriptions [15], COING reformulates each conceptual graph describing an 
object into a set of independant arcs. The main advantage of this reformulation is to 
limit the complexity of the GS construction (in the worst case quadratic with the 
number of objects, and linear in pratice [2]). This reformulation has been initially 
proposed in [12]. 
COING is an ascending method: it starts from the descriptions as sets of arcs to build 
the nodes. Each arc of the descriptions is generalized w.r.t. the generalization lattice. 
The generalized arcs covering the same set of objects are clustered into the same 
node, and then filtered in order to keep only the most specific ones1. The following 
figure 1 presents the propositional Generalization Space built by COING for the three 
houses h1, h2 and h3. 

                                                           
1 The reader interested in a more precise presentation of COING should refer to [2], [3].  
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Fig. 1. A Generalization Space for propositional data. 

This Generalization Space contains two class nodes (n1 and n2) and three object 
nodes corresponding to the houses (box nodes). The node n2, for example, clusters 
the houses h2 and h3. Its coverage is { h2, h3} and its description is the arc [Win-
dow]->(color)->[Gray]. This node indicates that h2 and h3 have at least a 
gray window in common in their descriptions and that this property is not shared by 
any other object considered. Thanks to the inheritance structure of the GS, we may 
add the description of the root node (n1) to this description. More precisely, we add 
the arcs from n1 which are not generalizations of arcs from n2, for example the arc 
[Window]->(Size)->[Big]. Thus, the node n2 indicates that the two houses 
h2 and h3 have window(s), which have a size (Small,Big) and a color (Gray, 
Black). 

If COING has a low complexity, it does not take into account the relational aspect 
of the descriptions: the graphs describing the objects are decomposed into a set of 
independent arcs and relations among arcs are lost. In the following section, we give 
the principle of our approach to extend COING to a relational framework.  

3.2 A Generalization Space for relational data  

KIDS gradually enriches the propositional Generalization Space built by COING 
while using a sequence of language which is made more and more expressive at each 
iteration. The property of the Generalization Space used in KIDS is the following : 

If there exists a common sub-graph SG among the descriptions of a given set 
of objects o, then there is a node in the GS built by COING whose coverage 
contains o and whose complete description -completed with the inherited arcs- 
contains the arcs of SG.  

This property allows us to use the propositional GS in order to find sub-graphs 
generalizing a set of object descriptions. The idea is to search for more and more 
complex sub-graphs. The heuristic used by KIDS to enrich the propositional Gener-
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alization Space is based on the fact that a sub-graph of i arcs is a sub-graph of (i-1) 
arcs + 1 arc. We defined the notion of candidate node : a node of the GS is a candi-
date node for KIDS at level i i f it has been modified at level i  - 1. 

In practice, KIDS starts with the propositional GS built by COING using a lan-
guage of arcs (COING is the 1st level of KIDS). At its second level, KIDS reformu-
lates object descriptions based upon a language of two connected arcs. At its third 
level, KIDS reformulates object descriptions based upon a language of three con-
nected arcs, etc. . Let us notice that at a given level, KIDS does not reformulate the 
descriptions of all the objects, but only the descriptions of objects appearing in the 
candidate nodes.  

At each level, KIDS may refine the description of existing nodes (it consists in 
linking an arc to an existing sub-graph) or add new nodes to the Generalization Space 
found at the previous level. Thus, the GS is not completely reconstructed at each 
iteration of KIDS and the KIDS algorithm is “anytime”. The node descriptions at a 
given iteration (level) are maximally specific w.r.t. the language corresponding to this 
level. If a node description generalized an object description then this object is neces-
sarily in the coverage of that node.  

Another main aspect of KIDS, is that it uses the propositional learner COING to 
perform the reformulated descriptions. In order to allow COING to do this, we have 
defined the notion of "abstract arc". The reader should refer to [4] for a more precise 
presentation of the KIDS algorithm. Complexity results of KIDS are given in section 
4.2.  

Figure 2 above presents a relational Generalization Space found by KIDS for the 
three houses h1, h2 and h3.At the 2nd level, KIDS found common sub-structures which 
were not find by COING. For example, the node n1 show the fact that the three 
houses have (at least) two windows and that each of them have a color (W&B or 
Black) and a size (unknown, Small or Big). Furthermore, KIDS clusters h1 and 
h2 into a node, and only these two houses, since they have a small black window in 
common and this window does not appear in the description of h3 (even if h3 has a 
small window and a black window but it is not the same window). This similarity was 
not found by COING and required to use KIDS (at the second level, first iteration) 
since it is a particular composition of two arcs. It is useless to perform KIDS at the 
next level since the use of structures of three connected arcs allows ones to reformu-
late the descriptions without loosing information [4].  
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Fig. 2. A relational Generalization Space for three houses  

4 Experimentations on a Chinese characters database 

This section presents an application of the above method in the framework of the 
construction of classifications of Chinese characters. We briefly remind the context of 
this work2. These experiments aim to show the feasibilit y of KIDS in terms of com-
plexity and to ill ustrate its interest for relational data organization.  

4.1   Description of the relational data 

The database considered is a collection of 6780 Chinese characters. Each character is 
represented by a conceptual graph. Characters are described by : their initial and final 
pronunciation, the ton of this pronunciation, the components (between 1 and 5) and 
their relative positions and the key component. For example, the conceptual graph of 

                                                           
2 For more information about this application, the reader should refer to [2]. 
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figure 3 represents the character , which is composed of the radicals C5381 and 
C2843, which is pronounced “  qing ” , which is in ton 2 and means "feeling".   
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Fig. 3. Conceptual graph describing the character  . 

Part of the generalization lattices used for Chinese characters is presented on the 
following figure 4:  
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Fig. 4. Part of the generalization lattices for Chinese characters. 

4.2   Complexity results 

We evaluated KIDS on several databases of characters composed of 10 to 160 or 416 
characters. Figure 5 shows the total time required for generating the GS for these 
databases using the COING (KIDS 1st level) and the KIDS algorithms.  
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Fig. 5. Average execution time of KIDS on Chinese characters databases. 

As shown on figure 5, in practice, the CPU time of the proposed algorithms is lin-
ear (it is quadratic in the worst case for COING [2]) with the number of objects. This 
results may be surprising because, as it manipulates sub-graphs, KIDS introduces a 
complexity factor. In effect, the theoretical complexity of KIDS in the worst case is 
exponential. However, the combinatorial explosion due to the generalization of sub-
graphs is limited since the bigger the level of KIDS is (i.e. the more complex are the 
graphs to generalize) the less the number of sub-graphs to perform is.  

The level introduces a multiplicative factor; the time necessary to move to the next 
level is very close to be constant (cf. figure 5).  

During these experiments, we also evaluated the evolution of the number of nodes 
of the GS as a function of the algorithm used. For COING, this number is in the worst 
case in O(N) [2]. Figure 15 summarizes these results. 
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Fig. 6. Evolution of the number of nodes of the GS. 

This graph shows that the number of nodes of the GS grows until a specific level –
2nd level for the small bases and 3rd level for the largest – then it becomes constant. 
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This may be explained by the fact that from a specific level, KIDS does not allow to 
create new nodes, but only to enrich the description of existing ones.  

5 Related Works  

A Generalization Space is a pruned inheritance concept lattice since nodes whose 
description is empty do not appear in it. If this may be considered as a drawback for 
some applications, Dicky shows that this structure contains the same information that 
the concept lattice but requires less memory [8]. Furthermore, the pruned inheritance 
concept lattice is a useful structure to discover a set of association rules as it allows 
one to directly extract valid and informative rules [19], [5].  

Recent works [8], [13] show that it is easier to build a partial lattice (quadratic 
complexity with the number of objects) than the complete one (exponential complex-
ity). Experiments ill ustrate that the complexity of the Generalization Space construc-
tion (for COING and KIDS) is, in practice, linear with the number of objects [4]. 

An important limitation of most existing methods to build concept lattices is that 
they are dedicated to binary or propositional descriptions [21], [6], [11]. The KIDS 
approach considers descriptions represented using a more expressive language -the 
conceptual graph formalism. Other works deal with the construction of concept lat-
tices for conceptual graphs [17], [12].  

The complexity of GRAAL is depending on the complexity of the generalization 
relation defined on the considered sub-graphs [17]. In practice, Liquière limits the 
graphs to locally injective ones since the complexity of the generalization relation is 
polynomial for such graphs. The main difference between KIDS and GRAAL is that 
in KIDS one does not have to limit a priori the structure of the graphs describing the 
objects to be able to perform them with a reasonable complexity. Another advantage 
of KIDS lies in its anytime property which allows one to stop the process at anytime 
and to have a result.  

The approach proposed by Godin [12] and the one developed in COING are quiet 
similar. They are both based on a graph reformulation into a set of independent arcs. 
In order to "reconstruct" sub-graph from the set of independent arcs describing a node 
of the lattice, Godin uses the fact that the decomposition of a sub-graph as a set of 
independent arcs may be done without loosing information if the considered sub-
graph has some properties (a same concept type appears only once in the sub-graph). 

Incremental approaches to build a concept lattice [6], [11], or a partial one [8], 
[13] update the lattice whenever new objects or new features are added in O or in D. 
Our approach is not incremental: the addition of a new object requires a complete 
reconstruction of the GS. This is a consequence of using a generalization lattice over 
the types describing the objects and searching for maximally specific generalizations.  

6 Conclusion and futur works 

We presented an approach to build a relational Generalization Space. This approach is 
based upon an iterative reformulation of the descriptions into a sequence of languages 
more and more expressive. The complexity of this anytime algorithm is, in practice, 
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linear with the number of objects. The databases used to evaluate this work concern 
different domains : Chinese characters, car colli sion reports, paleontological data and 
the DNA sequence. 

The first perspective of this work is to provide KIDS with a more eff icient process-
ing of numerical data. Currently, the numerical information contained in the descrip-
tions is processed as symbols; the implicit order existing among numbers is not taken 
into account. A preprocessing on descriptions would make it possible to determine a 
hierarchy of generalization on numerical values. 

Another possible improvement of the algorithm is to define methods to evaluate 
the interest of KIDS for a given database. Indeed, when the concepts in the objects of 
a conceptual graphs database appear only once, it is not necessary to apply KIDS to 
this database, because the decomposition does not cause any loss of information. On 
the contrary, if a concept appears several times in the objects descriptions (like in the 
houses), it is not possible to differentiate them. So, we can consider a pre-processing 
on the data to evaluate the maximal level to which KIDS needs to be applied. 

References 

1. Barbut, M., & Montjardet, B. (1970). Ordre et classification. Hachette. 
2. Bournaud, I. (1996). Regroupement conceptuel pour l’organisation de connaissances. Thèse 

de Doctorat, Université de Paris VI, France. 
3. Bournaud, I. & Ganascia, J.G. (1997). Accounting for Domain Knowledge in the Construc-

tion of a Generalization Space. ICCS, Lectures Notes in AI n°1257, Springer-Verlag, pp. 
446-459. 

4. Bournaud, I., Courtine, M. & Zucker, J.D. (2000). Abstractions for Knowledge Organization 
of Relational Descriptions. Symposium on Abstraction, Reformulation and Approximation,  
SARA'2000, Lectures Notes in AI n°1864, Springer-Verlag, pp. 87-106. 

5. Bournaud, I. & Courtine, M. (2001). Un Espace de Généralisations pour l’Extraction de 
Règles d’Association. Journées Francophones d’Extraction et de Gestion des Connaissances, 
EGC 2001, H.Briand et F.Guill et (Eds), Editions Hermès, pp. 129-135.  

6. Carpineto, C. & Romano, G. (1993). GALOIS : An order-theoretic approach to conceptual 
clustering. Tenth International Conference on Machine Learning, pp33-40.  

7. Chein, M. & Mugnier, M.L. (1992). Conceptual Graphs : Fundamental Notions. Revue 
d'Intelli gence Artificielle, Volume 6, Numéro 4 , pp.365-406.  

8. Dicky, H., Dony, C., Huchard, M. & Libourel, T. (1994). Un algorithme d’ insertion avec 
restructuration dans les hiérarchies de classes. Actes de Langages et Modèles à Objets, Gre-
noble. 

9. Fisher D. (1987). Knowledge Acquisition Via Incremental Conceptual Clustering. In: 
Michalski, R.S., Carbonell , J., Mitchell , T.(eds.): Machine Learning: An Artificial Intell i-
gence Approach. San Mateo, CA, Morgan Kaufmann. II , pp. 139-172. 

10.Gennari, J. H., Langley, P., Fisher, D. (1989). Models of incremental concept formation. 
Artificial Intelli gence 40-1(3), pp.11-61. 

11.Godin, R., Mineau, G., Missaoui, R. & Mili , H. (1995a). Méthodes de classification concep-
tuelle basées sur les treilli s de Galois et applications. Revue d'Intelli gence Artificielle, Vo-
lume 9, Numéro 2, pp.105-137. 

12.Godin, R., Mineau, G., & Missaoui, R. (1995b). Incremental structuring of knowledge 
bases. International Knowledge Retrieval, Use and Storage for Eff iciency, Santa Cruz, pp. 
179-198.  

13.Godin, R., & Chau, T.T. (2000). Comparaison d’algortihmes de construction de hiérarchies 
de classes. L’Objet, Volume 5, Number 2, pp.321-338. 

M. Courtine & I. Bournaud ICCS’01 Int’l. Workshop on Concept Lattices−based KDD

74



14.Guénoche, A. (1990). Construction du treilli s de Galois d’une relation binaire. Mathémati-
ques Informatique et Sciences Humaines, Volume 109, pp.41-53. 

15.Haussler, D. (1989). Learning conjunctive concepts in Structural Domains. Machine Learn-
ing, Volume 4, pp.7-40. 

16.Hereth, J., Stumme G., Wil le, R., & Will e, U. (2000). Conceptual Knowledge Discovery and 
Data Analysis, Technical Report n°2092, Technische Universitat Darmsadt. 

17.Liquière, M. & Sallantin, J. (1998). Structural machine learning with Galois lattice and 
Graphs. Fifteenth International Conference on Machine Learning. 

18.Michalski, R.S., & Stepp, R. (1982). Learning from observations: conceptual clustering. In 
Machine Learning: An Artificial Approach, Volume 1, Tioga Publishing. 

19.Simon, A. (2000). Outils de classificatoires par objets pour l’extraction de connaissances 
dans des bases de données. Thèse de Doctorat, Université de Henri Poincaré Nancy 1, 
France. 

20.Sowa, J.F. (1984). Conceptual Structures : Information Processing in Mind and Machine, 
Readings, Massachusetts, Addison-Wesley.  

21.Will e, R. (1982). Restructuring Lattice Theory. Symposium of Ordered Sets, I.Rival (Ed), 
pp.445-470. 

 
 

M. Courtine & I. Bournaud ICCS’01 Int’l. Workshop on Concept Lattices−based KDD

75


