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Automated Reasoning for Mizar:
Artificial Intelligence through Knowledge Exchange

Josef Urban∗

Charles University in Prague

Abstract
This paper gives an overview of the existing link between the Mizar project for formalization

of mathematics and Automated Reasoning tools (mainly the Automated Theorem Provers (ATPs)).
It explains the motivation for this work, gives an overview of the translation method, discusses the
projects and works that are based on it, and possible future projects and directions.

1 Introduction and Motivation

1.1 Why Mizar?

The Mizar proof assistant [Rud92, RT99] was chosen by the author for experiments with automated rea-
soning tools because of its focus on building the large formal Mizar Mathematical Library (MML) [RT03].
This formalization effort was started in 1989 by the Mizar team, and its main purpose is to verify a large
body of mainstream mathematics in a way that is close and easily understandable to mathematicians,
allowing them to build on this library with proofs from more and more advanced mathematical fields.
This formalization goal has influenced:

• the choice of a relatively human-oriented formal language in Mizar

• the choice of the declarative Mizar proof style (Jaskowski-style natural deduction)

• the choice of first-order logic and set theory as unified common foundations for the whole library

• the focus on developing and using just one human-obvious [Rud87] first-order justification rule in
Mizar

• and the focus on making the large library interconnected, usable for more advanced formalizations,
and using consistent notation.

There are other systems and projects that are similar to Mizar in some of the above mentioned aspects.
For example, building large and advanced formal libraries seems to be more and more common today,
probably also because of the recent large formalization projects like Flyspeck [CLR06] that require a
number of previously proved nontrivial mathematical results. In the work that is described here, Mizar
thus should be considered as a suitable particular choice of a system for formalization of mathematics,
which uses relatively common and accessible foundations, and produces a large formal library written in
a relatively simple and easy-to-understand style. Some of the author’s systems described below also work
with other than Mizar data: for example, the learning from proofs has been experimentally instantiated
to learn from Hales’ proof of the Jordan Curve Theorem done in HOL Light1 [HSA06], while MaLARea
has already been successfully used for reasoning over problems from the large formal SUMO ontology2

[NP01].

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 1-16
∗A large part of the work described here was supported by a Marie Curie International Fellowship within the 6th European

Community Framework Programme.
1http://lipa.ms.mff.cuni.cz/~urban/holpademo.html
2http://www.ontologyportal.org/reasoning.html
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1.2 Benefits of cooperation

There are three kinds of benefits in linking proof assistants like Mizar and their libraries with Automated
Reasoning technology and particularly ATPs:

• The obvious benefits for the proof assistants and their libraries. Automated Reasoning can provide
a number of tools and strong methods that can assist formalization.

• The (a bit less obvious) benefits for the field of Automated Reasoning. For example, research
in automated reasoning over very large libraries is painfully theoretical (and practically useless)
until such libraries are really available for experiments. Mathematicians (and scientists, and other
human “reasoners”) typically know a lot of things about the domains of discourse, and use the
knowledge in many ways that include many heuristical methods. It thus seems unrealistic (and
limiting) to develop the automated reasoning tools solely for problems that contain only a few
axioms, make little use of previously accumulated knowledge, and do not attempt to further accu-
mulate and organize the body of knowledge.

• The benefits for the field of general Artificial Intelligence. These benefits are perhaps the least
mentioned ones3, however to the author they appear to be the strongest long-term motivation for
this kind of work. In short, the AI fields of deductive reasoning and the inductive reasoning
(represented by machine learning, data mining, knowledge discovery in databases, etc.) have so far
benefited relatively little from each other’s progress. This is an obvious deficiency in comparison
with the human mind, which can both inductively suggest new ideas and problem solutions based
on analogy, memory, statistical evidence, etc., and also confirm, adjust, and even significantly
modify these ideas and problem solutions by deductive reasoning and explanation, based on the
understanding of the world. Repositories of “human thought” that are both large (and thus allow
the inductive methods), and have precise and deep semantics (and thus allow deduction) should
be a very useful component for cross-fertilization of these two fields. Large formal mathematical
libraries are currently the closest approximation to such a computer-understandable repository of
“human thought” usable for these purposes. To be really usable, the libraries however again have
to be presented in a form that is easy for existing automated reasoning tools to understand.

As mentioned above, Mizar is not the only system that can be used for experiments with auto-
mated reasoning and AI methods, and the work described here is related to a number of other works
and projects. A lot of work on translating Mizar for automated reasoning tools was previously done
in the ILF project [DW97]. The Isabelle/HOL system has been recently linked to first-order ATP sys-
tems [MP08, MP06], and this link is already widely used by the Isabelle community. The SAD proof
verification system [VLP07] has been using ATP systems quite extensively. A translation of the Cyc
knowledge base to first-order logic exists [RPG05], as well as a translation of the above mentioned
SUMO ontology [PS07]. Machine learning and other complementary AI methods for formal mathemat-
ics have been studied, e.g., in [DFGS99, Len76, Col02, CMSM04, Faj88],

1.3 Structure of this paper

In Section 2 we give a brief overview of the Mizar extensions over pure first-order logic, like its type
system and second-order constructs. Section 3 summarizes the methods that are used for translating the
Mizar formalism and library to a pure first-order format suitable for automated reasoning tools. Section 4

3This may also be due to the frequent feeling of too many unfulfilled promises and too high expectations from the general AI,
that also led to the current lack of funding for projects mentioning Artificial Intelligence.
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shows several automated reasoning, proof assistance, and AI experiments and projects that are based on
the current translation. Section 5 discusses some future possibilities.

2 Main Mizar extensions to pure first-order logic

2.1 Mizar types

Mizar is to a large extent a first-order system (using set-theoretical axioms), enhanced with a num-
ber of extensions that (are supposed to) make the formalization in Mizar more human-friendly. The
largest of these extensions is the Mizar type system. Mizar allows defining types from first-order pred-
icates. The difference between types and predicates in Mizar is not semantic: both are first-order
predicates. The difference is technical and practical: representing some predicates as Mizar types al-
lows the use of several type-related automations in Mizar. An example of this is automated use of
type hierarchies, i.e., hierarchies saying that the descendant type is a subclass of the ancestor type.
Table 1 shows such a hierarchy of type definitions started at the Mizar type “Matrix of m,n,D” in
the article MATRIX 1 [Jan91]. The exact meaning of the symbols and definitions mentioned there can
be best explored in a linked presentation. A particular one (also used for linking with ATP tools) is
available at http://www.tptp.org/MizarTPTP, where the following type hierarchy starts at http:
//www.tptp.org/MizarTPTP/Articles/matrix_1.html#M1.

These type declarations allow Mizar to automatically infer that any term with the type “Matrix of
m,n,D” has also the following types, i.e., that the corresponding predicates hold about the term:

Matrix of D
tabular FinSequence of D*
FinSequence-like PartFunc of NAT,D*
Function-like Relation of NAT,D*
Subset of [:NAT,D*:]
Element of bool [:NAT,D*:]
set

It can be seen that these Mizar types consist of several parts: they can have one or more (un-
parameterized) adjectives like tabular, Finsequence-Like, and Function-like, and a (possibly
parametrized) type radix like Matrix of m,n,D, Matrix of D, FinSequence of D*, PartFunc of
NAT,D*, Relation of NAT,D*, etc. While only unidirectional widening hierarchies (like the one in
Table 1) are allowed for the type radices, the mechanisms used for Mizar adjectives allow practically
arbitrary Horn clauses (called clusters in Mizar), which results in fixpoint-like algorithms for comput-
ing the complete set of adjectives of a given term. For example, a term of the above mentioned type
“Matrix of m,n,D” would automatically inherit all the adjectives of its type’s ancestors (tabular,
Finsequence-like, and Function-like), but it would also get all adjectives added by Mizar clusters
to this initial set of adjectives. An example of such a cluster4 is:

registration
cluster FinSequence-like -> finite set;
end;

This can be understood as the Horn clause:

finite :- FinSequence-like.

4http://www.tptp.org/MizarTPTP/Articles/finseq_1.html#CC1
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Table 1: Hierarchy of type definitions for “Matrix of m,n,D”
definition
let D be non empty set;
let m, n be Nat;
mode Matrix of m,n,D -> Matrix of D means :Def3: :: MATRIX 1:def 3
len it = m & ( for p being FinSequence of D st p in rng it holds len p = n );
end;

definition
let D be set ;
mode Matrix of D is tabular FinSequence of D*;
end;

definition
let D be set;
redefine mode FinSequence of D -> FinSequence-like PartFunc of NAT,D;
end;

definition
let X, Y be set;
mode PartFunc of X,Y is Function-like Relation of X,Y;
end;

definition
let X, Y be set;
redefine mode Relation of X,Y -> Subset of [:X,Y:];
end;

definition
let X be set;
mode Subset of X is Element of bool X;
end;

definition
let X be set;
mode Element of X -> set means :Def2: :: SUBSET 1:def 2
it in X if not X is empty otherwise it is empty;
end;

which adds the adjective finite to the set of adjectives of any term which already has the adjective
Finsequence-like. In this way the Mizar terms can get relatively large numbers of adjectives auto-
matically, making significant portions of formal reasoning obvious to Mizar.

Mizar structure types are a special kind of Mizar types that are intended to encode mathematical
structures, usually consisting of a carrier set and some operations on it. Typical examples are algebraic
structures like groups, rings, and vector spaces, but there are also many other structures like topolog-
ical and metric spaces. These structures have a special implementation in Mizar (providing additional
automations) that differs from those of other Mizar types. This has both advantages and disadvantages,
see [LR07] for a discussion and an alternative implementation of structures relying on the standard type
mechanisms in Mizar.
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2.2 Mizar second-order constructs
Mizar axiomatics is Tarski-Grothendieck set theory with strong axiom of choice. This is an extension
of ZFC that adds arbitrarily large inaccessible cardinals to the universe. This extension is used to model
some parts of category theory in Mizar. However, for practically all applications it is enough to think of
Mizar’s axiomatics as ZFC with strong choice. Particularly, the standard Replacement (Fraenkel) Axiom
scheme5 (“image of any set under any definable function is again a set”) is used:

scheme :: TARSKI:sch 1
Fraenkel { A()-> set, P[set, set] }:
ex X st for x holds x in X iff ex y st y in A() & P[y,x]
provided for x,y,z st P[x,y] & P[x,z] holds y = z;

The expression P[set, set] here declares a “second-order” predicate variable. Its Mizar semantics is
that it can be instantiated with any Mizar formula with two free variables of the type set. Once Mizar
has to allow such second-order mechanisms for the axiomatics, it is advantageous for human authoring
to allow them also for regular theorems. For example, the Separation (Comprehension) scheme6 (“any
definable subclass of a set is again a set”):

scheme :: XBOOLE_0:sch 1
Separation { A()-> set, P[set] } :
ex X being set st for x being set holds

x in X iff x in A() & P[x];

can be inferred from Replacement, but is much more often used in MML (490 uses of Separation vs. 24
uses of Replacement), and probably in normal mathematics too. The Replacement scheme is commonly
used in mathematics to produce Fraenkel (Abstract) terms, i.e., terms of the form

{ N - M where M,N is Integer : N < M }

Neither the schemes nor the Fraenkel terms can be directly expressed in pure first-order logic.

3 MPTP: Translating Mizar for Automated Reasoning tools

The translation of Mizar and MML to pure first-order logic is described in detail in [Urb03, Urb04,
Urb07b, US07]. This section provides an overview of the translation using the MPTP (Mizar problems
for Theorem Proving) system. In addition to the logical extensions mentioned above in Section 2, the
translation from Mizar to pure first-order logic also has to deal with a number of practical issues related
to the Mizar implementation, implementations of first-order ATP systems, and the most frequent uses of
the translation system.

3.1 MPTP 0.1

The first version of MPTP is described in detail in [Urb03, Urb04]. This version was used for initial ex-
ploration of the usability of ATP systems on the Mizar Mathematical Library (MML). The first important
number obtained was the 41% success rate of ATP-reproving of about 30000 MML theorems from other
Mizar theorems and definitions selected from the corresponding MML proofs.

No previous evidence about the feasibility and usefulness of ATP methods on a very large library
like MML was available prior to the experiments done with MPTP 0.17, sometimes leading to overly
5http://www.tptp.org/MizarTPTP/Articles/tarski.html#S1
6http://www.tptp.org/MizarTPTP/Articles/subset_1.html#S1
7A lot of work on MPTP was inspired by the previous work done in the ILF project [DW97] on importing Mizar. However it
seemed that the project had stopped before it could finish the export of the whole MML to ATP problems, and provide some
initial overall statistics of ATP success rate on MML.
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pessimistic views on such a project. Therefore the goal of this first version was to relatively quickly
achieve a “mostly-correct” translated version of the whole MML that would allow assessment of the
potential of ATP methods for this large library. Many shortcuts and simplifications were therefore taken
in this first MPTP version, naming at least the following:

• Mizar formulas were directly exported to the DFG [HKW96] syntax used by the SPASS [WBH+02]
system. SPASS seemed to perform best on MPTP problems, probably because of its handling of
sort theories. SPASS also has a built-in efficient clausifier [NW01], which the other efficient
provers like E [Sch02] and Vampire [RV02] did not have at that time (CNF was the main category
of the CASC competition until 2006).

• One simple method of handling sorts (encoding as predicates and relativization) was chosen for the
export, yielding standard (untyped) first-order formulas, from which the original type information
could not be recovered and used for different encodings.

• Mizar proofs were not exported. Only the lists of MML references (theorems and definitions) used
for proof of each MML theorem were remembered for re-creation of ATP problems corresponding
to Mizar proofs (see Section 3.2.4 for overview of the problem creation in MPTP). The proof
structure and internal lemmas8 were forgotten.

• Such lists of MML references were theoretically sufficient9 as premises for re-proving of about
80% (27449 out of 33527) of theorem proofs - i.e., the Mizar proofs use only these MML refer-
ences and some implicit (background) facts like type hierarchy, arithmetical evaluations, etc. In
the Mizar proofs of the remaining ca 20% (6078) of theorems, Mizar schemes and top-level non-
theorem lemmas10 were used. These two kinds of propositions were completely ignored, making
these theorems not eligible for ATP reproving.

• The export of Mizar structure types was incomplete (some axioms were missing), abstract terms
were translated incorrectly, and the background theory computed for problems could sometimes
be too strong, possibly leading to MML-invalid (cyclic) proofs. All these shortcuts were justified
by the low frequency of such cases in MML.

Many of these simplifications made further experiments with MPTP difficult or impossible, and also
made the 41% success rate uncertain (some ATP proof could succeed, and some could fail because of
these simplifications). The lack of proof structure prevented measurement of ATP success rate on all
internal proof lemmas, and experiments with unfolding lemmas with their own proofs. Additionally,
even if only several abstract terms were translated incorrectly, during such proof unfoldings their effect
could spread much wider. Experiments like finding new proofs, and cross-verification of Mizar proofs
(described below) would suffer from constant doubt about the possible amount of error caused by the
incorrectly translated parts of Mizar, and debugging would be very hard.

3.2 MPTP 0.2

During the work on MPTP 0.1 and other Mizar-related systems, it became clear that the old internal
format used by Mizar (designed long ago, when memory and storage were expensive) was quite hard

8An Internal Lemma is a lemma proved inside a proof of a MML theorem. It can be proved either by Simple Justification
(Mizar keyword “by”) or it can have its own structured subproof (Mizar keywords “proof ... end”).
9This means that the proof should be found by a complete ATP system with unlimited resources. As mentioned above, the
practical ATP success was 41%.
10The vast majority of Mizar propositions proved at the top-level (i.e., not inside a proof of another proposition) are exported
from Mizar as theorems reusable in other articles. This is however not mandatory.
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to extend for new Mizar constructs and utilities. A new extensible and richer format seemed to be
needed for Mizar itself, and for systems like MPTP, MMLQuery [BR03], MoMM [Urb06b], MizarMode
[Urb06a, BU04], each of which had its own special-purpose exporter from Mizar doing very similar
things.

This resulted in quite a large reimplementation of Mizar described in [Urb05]. Mizar started to use
XML11 natively as its internal format produced during parsing. The internal format was significantly
extended, and it now contains a very complete semantically disambiguated form of a Mizar article,
together with a large amount of presentational information that allows quite faithful re-creation of Mizar
articles from this internal format. Because of the completeness of this format, and thanks to the wide-
spread availability of XML parsers, the need for special-purpose Mizar exporters for various systems
and the problem of their maintenance were largely eliminated. This allows quite simple combinations
of Mizar-based systems, for example both the HTML and the MPTP/TPTP parts of the MizarTPTP
presentation at http://www.tptp.org/MizarTPTP [UTSP07] are produced from the same XML form
of Mizar articles, with quite simple changes to the XSL stylesheets producing the HTML.

After this necessary upgrade of Mizar, MPTP 0.2 was started from scratch, using a simple XSL
stylesheet (instead of the Pascal exporter) to export the Mizar XML into an extended TPTP-like [SS98]
format, and using Prolog (instead of Perl) for generating ATP problems in TPTP. In MPTP 0.1 the
translated formulas were already in DFG format, and Perl (treating formulas mostly just as strings) was
enough to generate the ATP problems. This is no longer true in MPTP 0.2: the extended TPTP-like
format is (so far) not directly usable by ATPs, because it encodes Mizar types and abstract terms (and
some other things) in a generic way, allowing different translations. Prolog was therefore needed to
implement structural functions on the formulas, such as the type relativization. The MPTP 0.2 codebase
has grown from ca. 900 lines of XSLTXT12 (a compact human-friendly version of XSL) and 1500 lines
of Prolog in 2005 to ca. 2000 lines of XSLTXT and 5500 lines of Prolog in 2008. The basis of the
system remains the same, but the codebase has grown as a number of different functionalities (used by
the projects mentioned below) have been added.

In the following subsections we summarize the main translation methods and functionalities used
currently by MPTP 0.2.

3.2.1 Type translation in MPTP 0.2

MPTP extends the TPTP language to allow parametrized types like “Matrix of n,m,D”, and “tabular
FinSequence of D*” mentioned in Section 2. For example the following Mizar formula:

for G being infinite Graph, W1 being Walk of G
ex W2 being Subwalk of W1 st W1=W2;

is translated into this extended TPTP format:

! [G : (~ finite & graph), W1 : walk(G)]: (? [W2 : subwalk(W1)] : (W1=W2))

This differs from the (proposed) typed TPTP standard which only allows atomic sorts. MPTP currently
only implements the predicate encoding (relativization) of types. Type declarations with arity n are
transformed into predicates with arity n+1, and, e.g., the above formulas becomes:

! [G] :
( ( ~ finite(G) & graph(G) )
=> ! [W1] :

11See http://lipa.ms.mff.cuni.cz/~urban/Mizar.html for specification of the Mizar XML format.
12http://www.zanthan.com/ajm/xsltxt/
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( walk(G,W1)
=> ? [W2] :

( subwalk(W1,W2) & (W1=W2) ) ) )

The implicit type hierarchies and fixpoint automations used in Mizar for adjectives are replaced by ex-
plicit inclusion of the corresponding formulas into the ATP problems. For example, the cluster

cluster FinSequence-like -> finite set;

mentioned in Section 2 is translated as:

! [X] : ’FinSequence-like’(X) => finite(X)

and explicitly added to the ATP problem when needed (see Section 3.2.4). Because pretty Mizar symbol
names are largely overloaded (there are e.g. more than 100 different meanings of the symbol ’+’ in
MML), their unique disambiguated internal naming is used in MPTP. That means that the above formula
will actually look like this:

! [X] : v1_finseq_1(X) => v1_finset_1(X)

An attempt was started by the author to provide unique descriptive names for Mizar symbols13, and
these names have already been used for creating the MPTP Challenge problems (see below). However,
there are around 10000 Mizar symbols, so cooperation from other Mizar and MPTP users is needed to
incrementally improve this unique descriptive naming.

3.2.2 Translation of abstract terms in MPTP 0.2

The special all/3 predicate is used for encoding abstract terms in MPTP 0.2. For instance the following
abstract term mentioned in Section 2.2

{ N - M where M,N is Integer : N < M }

is encoded as:

all([M:integer,N:integer], minus(N,M), less(N,M))

Abstract terms are very similar to lambda terms, which are sometimes called anonymous functions.
Therefore the process of removing abstract terms and inventing fresh names for them was called deanony-
mization in [Urb07b]. It seems that a similar procedure is used in the export of lambda terms in Is-
abelle/HOL to first-order logic, with the name lambda-lifting. The procedure is very similar to Skolem-
ization, and that is why this syntactic extension could eventually become handled by standard ATP
clausifiers, or even dealt with in calculi which implement delayed transformation to normal forms (e.g.,
tableaux or [GS03]). It means that a new functor symbol is introduced, corresponding to the abstract
term in the following way:

![X]:(in(X,all_0_xx) <=> ?[N:integer,M:integer]:
(X = minus(N,M) & less(N,M))).

Here all 0 xx/0 is the newly introduced “Fraenkel” functor for the abstract term given above, the first
number in it (0) is its arity and the second number (xx) just a serial numbering of such symbols with the
same arity. Obviously Fraenkel functors with nonzero arity can arise if their context includes quantified
variables, this is similar to Skolemization. The predicate in/2 (set-theoretic membership) has to be
available for this encoding.

13http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/NiceConstructorNames
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As with Skolemization, a lot of optimizing steps can be done during deanonymization. If one abstract
term is used twice, only one Fraenkel functor is necessary. This has the additional advantage that the
equality of such terms is obvious, while for different Fraenkel functors the Extensionality axiom (“two
sets are equal if they contain the same elements”) has to be used to find out that they encode the same
term. Abstract terms are used often inside Mizar proofs, and proof-local constants often occur in them. A
fairly efficient optimization is implemented by extracting the abstract terms from the proof context, i.e.,
by generalizing the proof-local constants appearing inside a term before the definition of the correspond-
ing Fraenkel functor is created. When this is done for a whole Mizar article, the number of Fraenkel
definitions can be reduced very significantly, sometimes by a factor of 10 or even 20. This extraction
from the proof context turns out to be necessary for reproving Mizar theorems whose proofs contain
abstract terms, because for such reproving attempts only proof-external symbols and references can be
used, and Fraenkel definitions containing proof-local constants would not be accessible, possibly making
the reproving task incomplete. Such article-global generation of Fraenkel definitions is a standard pre-
processing step done immediately after the article is loaded (for MPTP processing) into Prolog, and the
abstract terms are replaced globally in all formulas by the corresponding Fraenkel functors before any
ATP problems are generated. Some of the generated Fraenkel functors are used very frequently, which
suggests that they probably deserve their own proper definition as Mizar functors.

3.2.3 Translation of schemes in MPTP 0.2

The MPTP treatment of schemes (see Section 2.2) is similar to that of the abstract terms: the instances
that are already present in the MML are used. This is sufficient for first-order reproving, and with a suf-
ficiently large body of mathematics like MML (and thus sufficiently many first-order scheme instances),
it could also be “reasonably sufficient” for proving new things (though obviously incomplete in general
in this case).

The implementation uses Mizar (compiled with a special scheme reporting directive) to print the par-
ticular instantiations of the second-order functor and predicate variables. These second-order variables in
schemes are encoded using a fresh functor or predicate symbol, so, e.g., the Separation (Comprehension)
scheme (called s1 xboole 1 in MPTP) is encoded in the extended language in this way:

? [B1: $true]: ![B2: $true]:
(in(B2,B1) <=> ( in(B2,f1_s1_xboole_0) & p1_s1_xboole_0(B2)))

i.e., in pure TPTP as:

? [B1]: (![B2]: (in(B2,B1) <=> ( in(B2,f1_s1_xboole_0) & p1_s1_xboole_0(B2))))

Here f1 s1 xboole 0 and p1 s1 xboole 0 are the fresh symbols encoding the second-order variables.
This handling is semantically sufficient for reproving of Mizar schemes, because nothing (except their
declared type restrictions) is known about these fresh first-order symbols (and therefore the proof can be
instantiated to any particular first-order functors and predicates of the proper types). However, additional
treatment is necessary when schemes are applied inside other proofs. In these cases, these symbols
first have to be replaced with the instantiations reported by Mizar. For each scheme a number of its
instances are thus obtained, again (as in the case of abstract terms) possibly containing some proof-local
constants. Again, for reproving theorems, these instances have to be extracted from the proof context by
generalizing the proof-local constants, and again this is done globally for a whole article and before any
ATP problems are generated. Obviously, there is the objection that relying on Mizar and Prolog to carry
out the second-order instantiation is a weak point of possible ATP cross-verification of Mizar proofs.
The correctness of this procedure is, however, easy to check, by checking that the original scheme proofs
(with the fresh first-order symbols) also work for the particular scheme instances (with the first-order
symbols instantiated to the Mizar-supplied instances).
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3.2.4 Problem creation and axiom selection in MPTP

There are several ways in which MPTP can create ATP problems. While the translation of the above
mentioned Mizar constructs is usually fixed, the main degree of freedom is the selection of suitable
premises from the translated MML for a particular conjecture. The most common MPTP task (used,
e.g., for the re-proving experiments described in Section 4.1) is to generate ATP problem for a given
MML theorem in such a way that all the MML theorems and definitions explicitly used in the MML
proof are included, together with additional “background” formulas encoding the knowledge that can be
used implicitly by Mizar. These background formulas encode the type hierarchy, definitional expansions,
arithmetical evaluations, properties of Mizar functors and predicates like commutativity and antisymme-
try, etc. The addition of such formulas into the ATP problems is done in a fixpoint algorithm watching
the current set of symbols in the problem (initialized with the symbols contained in the formulas that are
used explicitly in the MML proof), and adding these implicit facts when they might be needed. Several
versions of this “enriching” algorithm exist in MPTP. The more background facts are added, the more
complete the problem is (and the harder it can be for ATPs to re-prove the problem if the added axiom
is redundant14). The default MPTP version is intended to be complete in the sense that an ATP problem
corresponding to an existing Mizar proof will contain all the background axioms needed to re-play the
Mizar proof by ATPs. This is useful for debugging, however stricter (heuristical) versions are available
too. Additionally, this is an instance of the general “axiom selection” problem, for which specialized
systems like MaLARea [Urb07a, USPV08] are being used.

4 Experiments and projects based on the MPTP

MPTP has so far been used for

• experiments with re-proving Mizar theorems and simple lemmas by ATPs from the theorems and
definitions used in the corresponding Mizar proofs

• experiments with fully automated re-proving of Mizar theorems, i.e., the necessary axioms being
selected fully automatically from the whole available MML

• finding new ATP proofs that are simpler than the original Mizar proofs

• ATP-based cross-verification of the Mizar proofs

• ATP-based explanation of Mizar atomic inferences

• inclusion of Mizar problems into the TPTP problem library, and unified web presentation of Mizar
together with the corresponding TPTP problems

• creation of the MPTP $100 Challenges for reasoning in large theories in 2007, and subsequent
creation of the MZR category of the CASC Large Theory Batch (LTB) competition in 2008

• a testbed for AI systems like MaLARea targeted at reasoning in large theories and combining
inductive techniques like machine learning with deductive reasoning

14For example, the SPASS prover has recently re-proved the Lagrange’s theorem in Mizar (http://www.tptp.org/
MizarTPTP/Articles/group_2.html#T177) from 25 premises. However the default MPTP background-adding algorithm
results in inclusion of another 135 formulas into the ATP problem, making the problem impossible to prove by existing standard
ATPs.
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4.1 Re-proving experiments

As mentioned in Section 3.1, the initial large-scale experiment done with MPTP 0.1 indicated that 41%
of the Mizar proofs could be automatically found by ATPs, if the user provides the same theorems and
definitions that are used in the Mizar proofs, plus the corresponding background formulas. As already
mentioned, this number was far from certain, e.g., out of the 27449 problems tried, 625 were shown
to be CounterSatisfiable by SPASS (pointing to various oversimplifications taken in MPTP 0.1). The
experiment was therefore repeated with MPTP 0.2, but with only 12529 problems that come from articles
that do not use internal arithmetical evaluations done by Mizar. These evaluations were not handled by
MPTP 0.2 at the time these experiments were conducted, being the last (known) part of Mizar that
could be blamed for possible ATP incompleteness. The E prover version 0.9 and SPASS version 2.1
were used for this experiment, with a 20s time limit (due to limited resources). The results (reported in
[Urb07b]) are given in Table 2. 39% of the 12529 theorems were proved by either SPASS or E, and no
countersatisfiability was found.

Table 2: Reproving of the theorems from non-numerical articles by MPTP 0.2 in 2005

description proved countersatisfiable timeout or memory out total
E 0.9 4309 0 8220 12529
SPASS 2.1 3850 0 8679 12529
together 4854 0 7675 12529

These results have thus, to a large extent, confirmed the optimistic outlook of the first measurement
in MPTP 0.1. In later (so far unreported) experiments, this ATP performance has been steadily going
up; see Table 3 for results from a 2007 run with a 60s timelimit. This is a result of better pruning
of redundant axioms in MPTP, and also of ATP development, which obviously was influenced by the
inclusion of MPTP problems into the TPTP library, forming a significant part of the FOF problems in
the CASC competition since 2006. Together, in this increased timelimit, the newer versions of E and
SPASS solved 6500 problems, i.e., 52% of them all. With the addition of Vampire and its customized
Fampire version (which alone solves 51% of the problems), the combined success rate went up to 7694
of these problems, i.e., to 61%. The caveat is that the methods for dealing with arithmetics are becoming
stronger and stronger in Mizar, and so far it is not clear how to handle them efficiently in ATPs. The
MPTP problem creation for problems containing arithmetics is thus currently quite crude, and the ATP
success rate on such problems will likely be significantly lower than on the nonarithmetical ones.

Table 3: Reproving of the theorems from non-numerical articles by MPTP 0.2 in 2007

description proved countersatisfiable timeout or memory out total
E 0.999 5661 0 6868 12529
SPASS 2.2 5775 0 6754 12529
E+SPASS together 6500 - - 12529
Vampire 8.1 5110 0 7419 12529
Vampire 9 5330 0 7119 12529
Fampire 9 6411 0 6118 12529
all together 7694 - - 12529
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4.2 Finding new proofs and the AI aspects

MPTP 0.2 was also used to try to prove Mizar theorems fully automatically, i.e., the choice of premises
for each theorem was done automatically, and all previously proved theorems were eligible. Because
giving ATPs thousands of axioms is usually hopeless15, the axiom selection was done by symbol-based
machine learning from previously available proofs. The results (reported in [Urb07b]) are given in Table
4. 2408 of the 12529 theorems were proved either by E 0.9 or SPASS 2.1 from the axioms selected by the
machine learner, and the combined success rate of this whole system was thus 19%. These experiments
have not been repeated so far, as the combination of machine learning and other axiom selection methods
have recently been under heavy development in the MaLARea system.

Table 4: Proving new theorems with machine learning support by MPTP 0.2 in 2005

description proved countersatisfiability timeout or memory out total
E 0.9 2167 0 10362 12529
SPASS 2.1 1543 0 10986 12529
together 2408 0 10121 12529

This experiment demonstrates a very real and quite unique benefit of large formal mathematical
libraries for conducting novel integration of AI methods. As the machine learner is trained on previous
proofs, it recommends relevant premises from the large library that (according to the past experience)
should be useful for proving new conjectures. A variety of machine learning methods (neural nets, Bayes
nets, decision trees, nearest neighbor, etc.) can be used for this, and their performance evaluated in the
standard machine learning way, i.e., by looking at the actual axiom selection done by the human author
in the Mizar proof, and comparing it with the selection suggested by the trained learner. However, what
if the machine learner is sometimes more clever than the human, and suggests a completely different
(and perhaps better) selection of premises, leading to a different proof? In such a case, the standard
machine learning evaluation (i.e., comparison of the two sets of premises) will say that the two sets of
premises differ too much, and thus the machine learner has failed. This is considered acceptable for
machine learning, as in general, there is no deeper concept of truth available, there are just training and
testing data. However in our domain we do have a method how to show that the trained learner was right
(and possibly smarter than the human): we can run an ATP system on its axiom selection. If a proof is
found, it provides a much stronger measure of correctness. Obviously, this is only true if we know that
the translation from Mizar to TPTP was correct, i.e., conducting such experiments really requires that
we take extra care to ensure that no oversimplifications were made in this translation.

In the above mentioned experiment, 329 of the 2408 (i.e., 14%) proofs found by ATPs used less
premises than the original MML proof, often suggesting a shorter proof. An example of such proof
shortening is discussed in [Urb07b], showing that the newly found proof is really valid. Instead of
arguing from the first principles (definitions) like in the human proof, the combined inductive-deductive
system was smart enough to find a combination of previously proved lemmas (properties) that justify the
conjecture more quickly.

15This is changing as we go: the new CASC-LTB category will hopefully spark interest in ATP systems dealing efficiently with
large numbers of unnecessary axioms.
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4.3 ATP-based explanation, presentation, and cross-verification of Mizar proofs

While proofs of whole Mizar theorems can be quite hard for ATP systems, re-proving the Mizar atomic
justification steps (called Simple Justifications in Mizar) turns out to be quite easy for ATPs. The com-
bination of E and SPASS usually solves more than 95% of such problems, and with smarter automated
methods for axiom selection a 99.8% success rate (14 unsolved problems from 6765) was achieved in
[US07]. This makes it practical to use ATPs for explanation and presentation of the (not always easily
understandable) Mizar simple justifications, and to construct larger systems for independent ATP-based
cross-verification of (possibly very long) Mizar proofs. In [US07] such a cross-verification system is
presented, using the GDV [Sut06] system (which was extended to process Jaskowski-style natural de-
duction proofs that make frequent use of assumptions (suppositions)). MPTP was used to translate Mizar
proofs to this format, and GDV together with the E, SPASS, and MaLARea systems was used to automat-
ically verify the structural correctness of proofs, and 99.8% of the proof steps needed for the 252 Mizar
problems selected for the MPTP Challenge (see below). This provides the first practical method for inde-
pendent verification of Mizar, and opens the possibility of importing Mizar proofs into other proof assis-
tants. A web presentation allowing interaction with ATP systems and GDV verification of Mizar proofs
has been set up at http://www.tptp.org/MizarTPTP (described in [UTSP07]), and a static presen-
tation using the MML Query system to translate the ATP proofs back to Mizar notation exists at http:
//lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/ (described in [UB07]). A new online ser-
vice integrating these functionalities is being built at http://octopi.mizar.org/~mptp/MizAR.html.

4.4 Use of MPTP for ATP challenges and competitions

The first MPTP problems were included into the TPTP library in 2006, and were already used for the
2006 CASC competition [Sut07]. In 2006, the MPTP $100 Challenges16 were created and announced.
This is a set of 252 related large-theory problems needed for one half (on of two implications) of the
Mizar proof of the general topological Bolzano-Weierstrass theorem. Unlike the CASC competition,
the challenge had an overall timelimit (252 * 5 minutes = 21 hours) for solving the problems, allowing
complementary techniques like machine learning from previous solutions to be experimented with trans-
parently in runtime. The challenge was won a year later by the leanCoP [OB03] system, having already
revealed several interesting approaches to ATP in large theories: goal-directed calculi like connection
tableaux (used in leanCoP), model-based axiom selection (used, e.g., in SRASS [SP07]), and machine
learning of axiom relevance (used in MaLARea). The MPTP Challenge problems were again included
into the TPTP and used for the CASC competition in 2007. In 2008, the CASC-LTB (Large Theory
Batch) division appeared for the first time, with a similar setting to the MPTP Challenges, and additional
large-theory problems from the Cyc and SUMO ontologies. A set of 245 relatively hard Mizar problems
was added to the TPTP for this purpose, coming from the most advanced parts of the Mizar library. The
problems come in four versions, containing different amounts of the previously available MML theorems
and definitions as axioms. The largest versions thus contain over 50000 axioms. This has practically led
to the inclusion of the MML into TPTP.

4.5 Development of larger AI metasystems like MaLARea on MPTP data

In Section 4.2 it is explained how the deeply defined notion of mathematical truth (implemented through
ATPs) can improve the evaluation of learning systems working on large semantic knowledge bases like
the translated MML, and how such systems can be used to find new mathematical proofs. This is,
however, only one part of the AI fun made possible by such large libraries being available to ATPs.

16http://www.tptp.org/MPTPChallenge/
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Another part is that newly found proofs can be recycled, and used again for learning in such domains.
This closed loop between using deductive methods to find proofs, and using inductive methods to learn
from existing proofs and suggest new proof directions, is the main idea behind the MaLARea [Urb07a,
USPV08] meta-system. There are many kinds of information that such an autonomous meta-system
can try to use and learn. The second version of MaLARea has just started to use structural and semantic
features of formulas for their characterization, and for improving the axiom selection. Extracting lemmas
from proofs and adding them to the set of available premises, creating new interesting conjectures and
defining new useful notions (see [Len76, Col02, Faj88] for some previous interesting work on this),
finding optimal strategies for problem classes, guiding the ATPs more closely than just by selecting
axioms, inventing policies for efficient governing of the overall inductive-deductive loop: all these are
interesting AI tasks that become relevant in this large-theory setting, and that seem to be highly relevant
for the ultimate task of doing mathematics and perhaps even generally thinking automatically.

5 Future work

There is large amount of work to be done on practically all the projects mentioned above. The MPTP
translation is by no means optimal (and especially proper encoding of arithmetics needs more experi-
ments and work). Import of ATP proofs to Mizar practically does not exist (there is a basic translator
taking Otter proof objects to Mizar, however this is very distant from the readable proofs in MML).
MPTP has mostly been used for offline problem generation so far, and its use for online ATP services
requires further work. With sufficiently strong ATP systems, the cross-verification of the whole MML
could be attempted, and work on importing detailed ATP proofs into other proof assistants could be
started. The work with second-order constructs is in some sense incomplete, and either a translation
to (finitely axiomatized) NBG set theory, or usage of higher-order ATPs would be interesting from this
point of view. More challenges and interesting presentation tools can be developed, for example an
ATP-enhanced wiki for Mizar would be quite interesting. The heuristical and machine learning meth-
ods, and combined AI metasystems, have a very long way to go, some future directions are mentioned
above. This is no longer only about mathematics: all kinds of more or less formal large knowledge bases
are becoming available in other sciences, and automated reasoning could become one of the strongest
methods for general reasoning in sciences when sufficient amount of formal knowledge exists. Strong
ATP methods for formal mathematics could also provide useful semantic filtering for larger systems for
automatic formalization of mathematical papers. This is a field that has been so far deemed to be rather
science fiction than a real possibility.
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Abstract

We describe an extension to the TLA+ specification language with constructs for writing proofs
and a proof environment, called the Proof Manager (PM), to checks those proofs. The language
and the PM support the incremental development and checking of hierarchically structured proofs.
The PM translates a proof into a set of independent proof obligations and calls upon a collection of
back-end provers to verify them. Different provers can be used to verify different obligations. The
currently supported back-ends are the tableau prover Zenon and Isabelle/TLA+, an axiomatisation of
TLA+ in Isabelle/Pure. The proof obligations for a complete TLA+2 proof can also be used to certify
the theorem in Isabelle/TLA+.

1 Introduction

TLA+ is a language for specifying the behavior of concurrent and distributed systems and asserting prop-
erties of those systems [11]. However, it provides no way to write proofs of those properties. We have
designed an extended version of the language that allows writing proofs, and we have begun implement-
ing a system centered around a Proof Manager (PM) that invokes existing automated and interactive
proof systems to check those proofs. For now, the new version of TLA+ is called TLA+2 to distinguish
it from the current one. We describe here the TLA+2 proof constructs and the current state of the proof
system.

The primary goal of TLA+2 and the proof system is the mechanical verification of systems speci-
fications. The proof system must not only support the modal and temporal aspects of TLA needed to
reason about system properties, but must also support ordinary mathematical reasoning in the underlying
logic. Proofs in TLA+2 are natural deduction proofs written in a hierarchical style that we have found to
be good for ordinary mathematics [9] and crucial for managing the complexity of correctness proofs of
systems [6].

The PM computes proof obligations that establish the correctness of the proof and sends them to one
or more back-end provers to be verified. Currently, the back-end provers are Isabelle/TLA+, a faithful
axiomatization of TLA+ in Isabelle/Pure, and Zenon [2], a tableau prover for classical first-order logic
with equality. The PM first sends a proof obligation to Zenon. If Zenon succeeds, it produces an Isar
script that the PM sends to Isabelle to check. Otherwise, the PM outputs an Isar script that uses one of
Isabelle’s automated tactics. In both cases, the obligations are certified by Isabelle/TLA+. The system
architecture easily accommodates other back-end provers; if these are proof-producing, then we can
use their proofs to certify the obligations in Isabelle/TLA+, resulting in high confidence in the overall
correctness of the proof.

The TLA+2 proof constructs are described in Section 2. Section 3 describes the proof obligations
generated by the PM, and Section 4 describes how the PM uses Zenon and Isabelle to verify them. The
conclusion summarizes what we have done and not yet done and briefly discusses related work.

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 17-37
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2 TLA+ and its Proof Language

2.1 TLA

The TLA+ language is based on the Temporal Logic of Actions (TLA) [10], a linear-time temporal logic.
The rigid variables of TLA are called constants and the flexible variables are called simply variables.
TLA assumes an underlying ordinary (non-modal) logic for constructing expressions. Operators of that
logic are called constant operators. A state function is an expression built from constant operators and
TLA constants and variables. The elementary (non-temporal) formulas of TLA are actions, which are
formulas built with constant operators, constants, variables, and expressions of the form f ′, where f is
a state function. (TLA also has an  operator that is used in expressing fairness, but we ignore it
for brevity.) An action is interpreted as a predicate on pairs of states that describes a set of possible state
transitions, where state functions refer to the starting state and primed state functions refer to the ending
state. Because priming distributes over constant operators and because c′ is equal to c for any constant
c, an action can be reduced to a formula built from constant operators, constants, variables, and primed
variables.

TLA is practical for describing systems because all the complexity of a specification is in the action
formulas. Temporal operators are essentially used only to assert liveness properties, including fairness
of system actions. Most of the work in a TLA proof is in proving action formulas; temporal reasoning
occurs only in proving liveness properties and is limited to propositional temporal logic and to applying
a handful of proof rules whose main premises are action formulas. Because temporal reasoning is such
a small part of TLA proofs, we have deferred its implementation. The PM now handles only action
formulas. We have enough experience mechanizing TLA’s temporal reasoning [4] to be fairly confident
that it will not be hard to extend the PM to support it.

A formula built from constant operators, constants, variables, and primed variables is valid iff it
is a valid formula of the underlying logic when constants, variables, and primed variables are treated
as distinct variables of the logic—that is, if v and v′ are considered to be two distinct variables of the
underlying logic, for any TLA variable v. Since any action formula is reducible to such a formula, action
reasoning is immediately reducible to reasoning in the underlying logic. We therefore ignore variables
and priming here and consider only constant formulas.

2.2 TLA+

The TLA+ language adds the following to the TLA logic:

• An underlying logic that is essentially ZFC set theory plus classical untyped first-order logic with
Hilbert’s ε [13]. The major difference between this underlying logic and traditional ZFC is that
functions are defined axiomatically rather than being represented as sets of ordered pairs.

• A mechanism for defining operators, where a user-defined operator is essentially a macro that is
expanded syntactically. (TLA+ permits recursive function definitions, but they are translated to
ordinary definitions using Hilbert’s ε.)

• Modules, where one module can import definitions and theorems from other modules. A module
is parameterized by its declared variables and constants, and it may be instantiated in another
module by substituting expressions for its parameters. The combination of substitution and the
 operator introduces some complications, but space limitations prevent us from discussing
them, so we largely ignore modules in this paper.

TLA+ has been extensively documented [11]. Since we are concerned only with reasoning about its
underlying logic, which is a very familiar one, we do not bother to describe TLA+ in any detail. All of
its nonstandard notation that appears in our examples is explained.
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2.3 The Proof Language

The major new feature of TLA+2 is its proof language. (For reasons having nothing to do with proofs,
TLA+2 also introduces recursive operator definitions, which we ignore here for brevity.) We describe the
basic proof language, omitting a few constructs that concern aspects such as module instantiation that
we are not discussing. TLA+2 also adds constructs for naming subexpressions of a definition or theorem,
which is important in practice for writing proofs but is orthogonal to the concerns of this paper.

The goal of the language is to make proofs easy to read and write for someone with no knowledge of
how the proofs are being checked. This leads to a mostly declarative language, built around the uses and
proofs of assertions rather than around the application of proof-search tactics. It is therefore more akin
to Isabelle/Isar [17] than to more operational interactive languages such as Coq’s Vernacular [16]. Nev-
ertheless, the proof language does include a few operational constructs that can eliminate the repetition
of common idioms, albeit with some loss of perspicuity.

At any point in a TLA+ proof, there is a current obligation that is to be proved. The obligation
contains a context of known facts, definitions, and declarations, and a goal. The obligation claims that
the goal is logically entailed by the context. Some of the facts and definitions in the context are marked
(explicitly or implicitly) as usable for reasoning, while the remaining facts and definitions are hidden.

Proofs are structured hierarchically. The leaf (lowest-level) proof  asserts that the current
goal follows easily from the usable facts and definitions. The leaf proof

 e1, . . . ,em  o1, . . . ,on

asserts that the current goal follows easily from the usable facts and definitions together with (i) the facts
ei that must themselves follow easily from the context and (ii) the known definitions of o j. Whether a
goal follows easily from definitions and facts depends on who is trying to prove it. For each leaf proof,
the PM sends the corresponding leaf obligation to the back-end provers, so in practice “follows easily”
means that a back-end prover can prove it. A non-leaf proof is a sequence of steps, each consisting
of a begin-step token and a proof construct. For some constructs (including a simple assertion of a
proposition) the step takes a subproof, which may be omitted. The final step in the sequence simply
asserts the current goal, which is represented by the token . A begin-step token is either a level token
of the form 〈n〉 or a label of the form 〈n〉l, where n is a level number that is the same for all steps of this
non-leaf proof, and l is an arbitrary name. The hierarchical structure is deduced from the level numbers
of the begin-step tokens, a higher level number beginning a subproof.

Some steps make declarations or definitions or change the current goal and do not require a proof.
Other steps make assertions that become the current goals for their proofs. An omitted proof (or one
consisting of the token ) is considered to be a leaf proof that instructs the assertion to be accepted
as true. Of course, the proof is then incomplete. From a logical point of view, an omitted step is the
same as an additional assumption added to the theorem; from a practical point of view, it doesn’t have
to be lifted from its context and stated at the start. Omitted steps are intended to be used only in the
intermediate stages of writing a proof.

Following a step that makes an assertion (and the step’s proof), until the end of the current proof
(after the  step), the contexts contain that assertion in their sets of known facts. The assertion is
marked usable iff the begin-step token is a level token; otherwise it can be referred to by its label in a 
proof or made usable with a  step.

The hierarchical structure of proofs not only aids in reading the finished proof but is also quite useful
in incrementally writing proofs. The steps of a non-leaf proof are first written with all proofs but that
of the  step omitted. After checking the proof of the  step, the proofs omitted for other steps
in this or earlier levels are written in any order. When writing the proof, one may discover facts that
are needed in the proofs of multiple steps. Such a fact is then added to the proof as an earlier step, or
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added at a higher level. It can also be removed from the proof of the theorem and proved separately as a
lemma. However, the hierarchical proof language encourages facts relevant only for a particular proof to
be kept within the proof, making the proof’s structure easier to see and simplifying maintenance of the
proof. For correctness proofs of systems, the first few levels of the hierarchy are generally determined by
the structure of the formula to be proved—for example, the proof that a formula implies a conjunction
usually consists of steps asserting that it implies each conjunct.

As an example, we incrementally construct a hierarchical proof of Cantor’s theorem, which states
that there is no surjective function from a set to its powerset. It is written in TLA+ as:

 ∀S : ∀ f ∈ [S →  S ] : ∃A ∈  S : ∀x ∈ S : f [x] , A

where function application is written using square brackets,  S is the powerset of S , and [S → T ]
is the set of functions from S to T .

The statement of the theorem is the current goal for its top-level proof. A goal of the form ∀v : e
is proved by introducing a generic constant and proving the formula obtained by substituting it for the
bound identifier. We express this as follows, using the / construct of TLA+2:

 ∀S : ∀ f ∈ [S →  S ] : ∃A ∈  S : ∀x ∈ S : f [x] , A
〈1〉1.   S ,

 f ∈ [S →  S ]
 ∃A ∈  S : ∀x ∈ S : f [x] , A

〈1〉2.   〈1〉1

Although we could have used labels such as 〈1〉one and 〈1〉last instead of 〈1〉1 and 〈1〉2, we have found
that proofs are easier to read when steps at the same level are labeled with consecutive numbers. One
typically starts using consecutive step numbers and then uses labels like 〈3〉2a for inserting additional
steps. When the proof is finished, steps are renumbered consecutively. (A planned user interface will
automate this renumbering.)

Step 〈1〉1 asserts that for any constants S and f with f ∈ [S →  S ], the proposition to the right
of the  is true. More precisely, the current context for the (as yet unwritten) proof of 〈1〉1 contains
the declarations of S and f and the usable fact f ∈ [S →  S ], and the  assertion is its goal.
The  step states that the original goal (the theorem) follows from the assertion in step 〈1〉1.

We tell the PM to check this (incomplete) proof, which it does by having the back-end provers verify
the proof obligation for the  step. The verification succeeds, and we now continue by writing the
proof of 〈1〉1. (Had the verification failed because 〈1〉1 did not imply the current goal, we would have
caught the error before attempting to prove 〈1〉1, which we expect to be harder to do.)

We optimistically start with the proof , but it is too hard for the back-end to prove, and the
PM reports a timeout. Often this means that a necessary fact or definition in the context is hidden and
we merely have to make it usable with a  step or a  proof. In this case we have no such hidden
assumptions, so we must refine the goal into simpler goals with a non-leaf proof. We let this proof have
level 2 (we can use any level greater than 1). Since the goal itself is existentially quantified, we must
supply a witness. In this case, the witness is the classic diagonal set, which we call T .

〈1〉1.   S ,
 f ∈ [S →  S ]

 ∃A ∈  S : ∀x ∈ S : f [x] , A
〈2〉1.  T , {z ∈ S : z < f [z]}
〈2〉2. ∀x ∈ S : f [x] , T
〈2〉3.   〈2〉2

Because definitions made within a proof are usable by default, the definition of T is usable in the proofs
of 〈2〉2 and 〈2〉3. Once again, the proof of the  step is automatically verified, so all that remains is to
prove 〈2〉2. (The  step requires no proof.)
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The system accepts  as the proof of 〈2〉2 because the only difficulty in the proof of 〈1〉1 is
finding the witness. However, suppose we want to add another level of proof for the benefit of a human
reader. The universal quantification is proved as above, by introducing a fresh constant:

〈2〉2. ∀x ∈ S : f [x] , T
〈3〉1.   x ∈ S  f [x] , T
〈3〉2.   〈3〉1

Naturally, the  step is verified. Although the system accepts  as the proof of 〈3〉1 (remember
that it could verify 〈2〉2 by itself), we can provide more detail with yet another level of proof. We write
this proof the way it would seem natural to a person—by breaking it into two cases:

〈3〉1.   x ∈ S  f [x] , T
〈4〉1.  x ∈ T
〈4〉2.  x < T
〈4〉3.   〈4〉1, 〈4〉2

The (omitted) proof of the  statement 〈4〉1 has as its goal f [x] , T and has the additional usable fact
x ∈ T in its context.

We continue refining the proof in this way, stopping with an  or  proof when a goal is obvi-
ous enough for the back-end prover or for a human reader, depending on who the proof is being written
for. A  statement can guide the prover or the human reader by listing helpful obvious consequences of
known facts. For example, the proof of 〈4〉1 might be  x < f [x]. The proof is now finished: it contains
no omitted sub-proofs. For reference, the complete text of the proof is given in Appendix B.

Our experience writing hand proofs makes us expect that proofs of systems could be ten or more
levels deep, with the first several levels dictated by the structure of the property to be proved. Our method
of numbering steps makes such proofs manageable, and we are not aware of any good alternative.

This example illustrates how the proof language supports the hierarchical, non-linear, and incremen-
tal development of proofs. The proof writer can work on the most problematic unproved steps first,
leaving the easier ones for later. Finding that a step cannot be proved (for example, because it is invalid)
may require changing other steps, making proofs of those other steps wasted effort. We intend to provide
an interface to the PM that will make it easy for the user to indicate which proofs should be checked and
will avoid unnecessarily rechecking proofs.

The example also shows how already-proved facts are generally not made usable, but are invoked
explicitly in  proofs. Global definitions are also hidden by default and the user must explicitly make
them usable. This makes proofs easier to read by telling the reader what facts and definitions are being
used to prove each step. It also helps constrain the search space for an automated back-end prover,
leading to more efficient verification. Facts and definitions can be switched between usable and hidden
by  and  steps, which have the same syntax as . As noted above, omitting the label from a step’s
starting token (for example, writing 〈4〉 instead of 〈4〉2) makes the fact it asserts usable. This might be
done for compactness at the lowest levels of a proof.

The example also indicates how the current proof obligation at every step of the proof is clear, having
been written explicitly in a parent assertion. This clear structure comes at the cost of introducing many
levels of proof, which can be inconvenient. One way of avoiding these extra levels is by using an assertion
of the form  A, which asserts that proving A proves the current goal, and makes A the new current
goal in subsequent steps. In our example proof, one level in the proof of step 〈2〉2 can be eliminated by
writing the proof as:

〈2〉2. ∀x ∈ S : f [x] , T
〈3〉1.    x ∈ S  f [x] , T
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 

〈3〉2.  x ∈ T
〈3〉3.  x < T
〈3〉4.   〈3〉2, 〈3〉3

where the proofs of the  steps are the same as before. The  statement changes the current goal
of the level-3 proof to f [x] , T after adding a declaration of x and the usable fact x ∈ S to the context.
This way of proving a universally quantified formula is sufficiently common that TLA+2 provides a 
construct that allows the  assertion 〈3〉1 and its  proof to be written  x ∈ S .

There is a similar construct,  f ∈ S for proving an existentially quantified goal ∃x ∈ S : e,
which changes the goal to e[x := f ]. For implicational goals e⇒ f , the construct  e changes the goal
to f . No other constructs in the TLA+2 proof language change the form of the current goal. We advise
that these constructs be used only at the lowest levels of the proof, since the new goal they create must
be derived instead of being available textually in a parent assertion. (As a check and an aid to the reader,
one can at any point insert a redundant  step that simply asserts the current goal.)

The final TLA+2 proof construct is  x : e, which introduces a new symbol x that satisfies e. The
goal of the proof of this  step is ∃x : e, and it changes the context of subsequent steps by adding a
declaration of x and the fact e. A more formal summary of the language appears in Appendix A.

The semantics of a TLA+2 proof is independent of any back-end prover. Different provers will have
different notions of what “follows easily”, so an  proof may be verified by one prover and not
another. In practice, many provers such as Isabelle must be directed to use decision procedures or spe-
cial tactics to prove some assertions. For this purpose, special standard modules will contain dummy
theorems for giving directives to the PM. Using such a theorem (with a  step or  proof) will cause
the PM not to use it as a fact, but instead to generate special directives for back-end provers. It could
even cause the PM to use a different back-end prover. (If possible, the dummy theorem will assert a
true fact that suggests the purpose of the directive.) For instance, using the theorem Arithmetic might be
interpreted as an instruction to use a decision procedure for integers. We hope that almost all uses of this
feature will leave the TLA+2 proof independent of the back-end provers. The proof will not have to be
changed if the PM is reconfigured to replace one decision procedure with a different one.

3 Proof Obligations

The PM generates a separate proof obligation for each leaf proof and orchestrates the back-end provers
to verify these obligations. Each obligation is independent and can be proved individually. If the system
cannot verify an obligation within a reasonable amount of time, the PM reports a failure. The user
must then determine if it failed because it depends on hidden facts or definitions, or if the goal is too
complex and needs to be refined with another level of proof. (Hiding facts or definitions might also help
to constrain the search space of the back-end provers.)

When the back-end provers fail to find a proof, the user will know which obligation failed—that is,
she will be told the obligation’s usable context and goal and the leaf proof from which it was generated.
We do not yet know if this will be sufficient in practice or if the PM will need to provide the user with
more information about why an obligation failed. For example, many SAT and SMT solvers produce
counterexamples for an unprovable formula that can provide useful debugging information.

The PM will also mediate the certification of the TLA+2 theorem in a formal axiomatization of TLA+2

in a trusted logical framework, which in the current design is Isabelle/TLA+ (described in Section 4.2).
Although the PM is designed generically and can support other similar frameworks, for the rest of this
paper we will limit our attention to Isabelle/TLA+. Assuming that Isabelle/TLA+ is sound, once it has
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certified a theorem we know that an error is possible only if the PM incorrectly translated the statement
of the theorem into Isabelle/TLA+.

After certifying the proof obligations generated for the leaf proofs, called the leaf obligations, cer-
tification of the theorem itself is achieved in two steps. First, the PM generates a structure lemma (and
its Isabelle/TLA+ proof) that states simply that the collection of leaf obligations implies the theorem.
Then, the PM generates a proof of the theorem using the already-certified obligations and structure
lemma. If Isabelle accepts that proof, we are assured that the translated version of the theorem is true in
Isabelle/TLA+, regardless of any errors made by the PM.

Of course, we expect the PM to be correct. We now explain why it should be by describing how
it generates the leaf obligations from the proof of a theorem. (Remember that we are considering only
TLA+2 formulas with no temporal operators.) Formally, a theorem in TLA+2 represents a closed proof
obligation in the TLA+2 meta-logic of the form (Γ 
 e), where Γ is a context containing all the dec-
larations, definitions, facts (previous assumptions or theorems) and the assumptions introduced in the
theorem using an  clause (if present), and e is a TLA+2 formula that is the goal of the theorem.

A closed obligation (Γ 
 e) is true if e is entailed by Γ in the formal semantics of TLA+ [11]. It is
said to be provable if we have a proof of e from Γ in Isabelle/TLA+. Because we assume Isabelle/TLA+

to be sound, we consider any provable obligation to be true. A claim is a sentence of the form π : (Γ 
 e),
where π is a TLA+2 proof. This claim represents the verification task that π is a proof of the proof
obligation (Γ 
 e). The PM generates the leaf obligations of a claim by recursively traversing its proof,
using its structure to refine the obligation of the claim. For a non-leaf proof, each proof step modifies
the context or the goal of its obligation to produce an obligation for its following step, and the final 
step proves the final form of the obligation. More precisely, every step defines a transformation, written
σ.τ : (Γ 
 e) −→ (∆ 
 f ), which states that the input obligation (Γ 
 e) is refined to the obligation (∆ 
 f )
by the step σ.τ. A step is said to be meaningful if the input obligation matches the form of the step. (An
example of a meaningless claim is one that involves a  step whose input obligation does not have a
universally quantified goal.) A claim is meaningful if every step in it is meaningful.

The recursive generation of leaf obligations for meaningful claims and transformations is specified
using inference rules, with the interpretation that the leaf obligations generated for the claim or transfor-
mation at the conclusion of a rule is the union of those generated by the claims and transformations in
the premises of the rule. For example, the following rule is applied to generate the leaf obligations for a
claim π : (Γ 
 e) when π is a sequence of n steps, for n > 1.

σ1. τ1 : (Γ 
 e) −→ (∆ 
 f ) σ2. τ2 · · · σn. τn : (∆ 
 f )
σ1. τ1 σ2. τ2 · · · σn. τn : (Γ 
 e)

The leaf obligations of the claim in the conclusion are the union of those of the claim and transformation
in the premises. As an example of leaf obligations generated by a transformation, here is a rule for the
step σ.τ where σ is the begin-step level token 〈n〉 and τ is the proposition p with proof π.

π : (Γ, [¬e] 
 p)
〈n〉 . p  π : (Γ 
 e) −→ (Γ, p 
 e)

The rule concludes that the refinement in this step is to add p to the context of the obligation, assuming
that the sub-proof π is able to establish it. The leaf obligations generated by this transformation are the
same as those of the claim in the premise of the rule. The goal e is negated and added to the context
as a hidden fact (the square brackets indicate hiding). We can use ¬e in a  proof or  statement,
and doing so can simplify subproofs. (Because we are using classical logic, it is sound to add ¬e to the
known facts in this way.) The full set of such rules for every construct in the TLA+2 proof language is
given in appendix A.
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A claim is said to be complete it its proof contains no omitted subproofs. Starting from a complete
meaningful claim, the PM first generates its leaf obligations and filters the hidden assumptions from
their contexts. (Filtration amounts to deleting hidden facts and replacing hidden operator definitions with
declarations.) The PM then asks the back-end provers to find proofs of the filtered obligations, which are
used to certify the obligations in Isabelle/TLA+. The PM next writes an Isar proof of the obligation of the
complete meaningful claim that uses its certified filtered leaf obligations. The following meta-theorem
(proved in Appendix A.4) ensures that the PM can do this for all complete meaningful claims.

Theorem 1 (Structural Soundness Theorem). If π : (Γ 
 e) is a complete meaningful claim and every leaf
obligation it generates is provable after filtering hidden assumptions , then (Γ 
 e) is provable.

Isabelle/TLA+ then uses this proof to certify the obligation of the claim. From the assumptions that the
Isabelle/TLA+ axiomatization is faithful to the semantics of TLA+2 and that the embedding of TLA+2 into
Isabelle/TLA+ is sound, it follows that the obligation is true.

4 Verifying Proof Obligations

Once the PM generates the leaf obligations, it must send them to the back-end provers. The one non-
obvious part of doing this is deciding whether definitions should be expanded by the PM or by the
prover. This is discussed in Section 4.1. We then describe the state of our two current back-end provers,
Isabelle/TLA+ and Zenon.

4.1 Expanding Definitions

Expansion of usable definitions cannot be left entirely to the back-end prover. The PM itself must do it
for two reasons:
• It must check that the current goal has the right form for a , , or  step to be

meaningful, and this can require expanding definitions.
• The encoding of TLA+ in the back-end prover’s logic would be unsound if a modal operator like

prime (′) were encoded as a non-modal operator. Hence, encoding a definition like O(x) , x′ as an
ordinary definition in the prover’s logic would be unsound. All instances of such operators must
be removed by expanding their definitions before a leaf obligation is sent to the back-end prover.
Such operator definitions seldom occur in actual TLA+ specifications, but the PM must be able to
deal with them.

Another reason for the PM to handle definition expansion is that the Isabelle/TLA+ object logic does
not provide a direct encoding of definitions made within proofs. We plan to reduce the amount of
trusted code in the PM by lambda-lifting all usable definitions out of each leaf obligation and introducing
explicit operator definitions using Isabelle’s meta equality (≡). These definitions will be expanded before
interacting with Isabelle.

4.2 Isabelle/TLA+

The core of TLA+2 is being encoded as a new object logic Isabelle/TLA+ in the proof assistant Is-
abelle [14]. One of Isabelle’s distinctive features that similar proof assistants such as Coq [16] or
HOL [7, 8] lack is genericity with respect to different logics. The base system Isabelle/Pure provides
the trusted kernel and a framework in which the syntax and proof rules of object logics can be defined.
We have chosen to encode TLA+2 as a separate object logic rather than add it on top of one of the ex-
isting logics (such as ZF or HOL). This simplifies the translation and makes it easier to interpret the
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error messages when Isabelle fails to prove obligations. A strongly typed logic such as HOL would have
been unsuitable for representing TLA+2, which is untyped. Isabelle/ZF might seem like a natural choice,
but differences between the way it and TLA+ define functions and tuples would have made the encod-
ing awkward and would have prevented us from reusing existing theories. Fortunately, the genericity
of Isabelle helped us not only to define the new logic, but also to instantiate the main automated proof
methods, including rewriting, resolution- and tableau provers, and case-based and inductive reasoning.
Adding support for more specialized reasoning tools such as proof-producing SAT solvers [5] or SMT
solvers such as haRVey [3] will be similarly helped by existing generic interfaces.

The current encoding supports only a core subset of TLA+2, including propositional and first-order
logic, elementary set theory, functions, and the construction of natural numbers. Support for arithmetic,
strings, tuples, sequences, and records is now being added; support for the modal part of TLA+2 (vari-
ables, priming, and temporal logic) will be added later. Nevertheless, the existing fragment can already
be used to test the interaction of the PM with Isabelle and other back-end provers. As explained above,
Isabelle/TLA+ is used both as a back-end prover and to check proof scripts produced by other back-end
provers such as Zenon. If it turns out to be necessary, we will enable the user to invoke one of Isabelle’s
automated proof methods (such as auto or blast) by using a dummy theorem, as explained at the end
of Section 2.3. If the method succeeds, one again obtains an Isabelle theorem. Of course, Isabelle/TLA+

can also be used independently of the PM, which is helpful when debugging tactics.

4.3 Zenon

Zenon [2] is a tableau prover for classical first-order logic with equality that was initially designed to
output formal proofs checkable by Coq [16]. Zenon outputs proofs in an automatically-checkable format
and it is easily extensible with new inference rules. One of its design goals is predictability in solving
simple problems, rather than high performance in solving some hard problems. These characteristics
make it well-suited to our needs.

We have extended Zenon to output Isar proof scripts for Isabelle/TLA+ theorems, and the PM uses
Zenon as a back-end prover, shipping the proofs it produces to Isabelle to certify the obligation. We have
also extended Zenon with direct support for the TLA+2 logic, including definitions and rules about sets
and functions. Adding support in the form of rules (instead of axioms) is necessary because some rules
are not expressible as first-order axioms, notably the rules about the set constructs:

e ∈ S P[x := e]
e ∈ {x ∈ S : P}

subsetOf
∃y ∈ S : e = d[x := y]

e ∈ {d : x ∈ S }
setOfAll

Even for the rules that are expressible as first-order axioms, adding them as rules makes the proof search
procedure much more efficient in practice. The most important example is extensionality: when set
extensionality and function extensionality are added as axioms, they apply to every equality deduced by
the system, and pollute the search space with large numbers of irrelevant formulas. By adding them as
rules instead, we can use heuristics to apply them only in cases where they have some chance of being
useful.

Adding support for arithmetic, strings, tuples, sequences, and records will be done in parallel with the
corresponding work on Isabelle/TLA+, to ensure that Zenon will produce proof scripts that Isabelle/TLA+

will be able to check. Temporal logic will be added later. We also plan to interface Zenon with Isabelle,
so it can be called by a special Isabelle tactic the same way other tools are. This will simplify the PM by
giving it a uniform interface to the back-end provers. It will also allow using Zenon as an Isabelle tactic
independently of TLA+.
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5 Conclusions and Future Work

We have presented a hierarchically structured proof language for TLA+. It has several important features
that help in managing the complexity of proofs. The hierarchical structure means that changes made
at any level of a proof are contained inside that level, which helps construct and maintain proofs. Leaf
proofs can be omitted and the resulting incomplete proof can be checked. This allows different parts
of the proof to be written separately, in a non-linear fashion. The more traditional linear proof style, in
which steps that have not yet been proved can be used only if explicitly added as hypotheses, encourages
proofs that use many separate lemmas. Such proofs lack the coherent structure of a single hierarchical
proof.

The proof language lets the user freely and repeatedly make facts and definitions usable or hidden.
Explicitly stating what is being used to prove each step makes the proof easier for a human to understand.
It also aids a back-end prover by limiting its search for a proof to ones that use only necessary facts.

There are other declarative proof languages that are similar to TLA+2. Isar [17] is one such language,
but it has significant differences that encourage a different style of proof development. For example, it
provides an accumulator facility to avoid explicit references to proof steps. This is fine for short proofs,
but in our experience does not work well for long proofs that are typical of algorithm verification that
TLA+2 targets. Moreover, because Isabelle is designed for interactive use, the effects of the Isar proof
commands are not always easily predictable, and this encourages a linear rather than hierarchical proof
development style. The Focal Proof Language [1] is essentially a subset of the TLA+2 proof language.
Our experience with hierarchical proofs in Focal provides additional confidence in the attractiveness of
our approach. We know of no declarative proof language that has as flexible a method of using and
hiding facts and definitions as that of TLA+2.

The PM transforms a proof into a collection of proof obligations to be verified by a back-end prover.
Its current version handles proofs of theorems in the non-temporal fragment of TLA+ that do not involve
module instantiation (importing of modules with substitution). Even with this limitation, the system
can be useful for many engineering applications. We are therefore concentrating on making the PM
and its back-end provers handle this fragment of TLA+ effectively before extending them to the complete
language. The major work that remains to be done on this is to complete the Zenon and Isabelle inference
rules for reasoning about the built-in constant operators of TLA+. There are also a few non-temporal
aspects of the TLA+2 language that the PM does not yet handle, such as subexpression naming. We
also expect to extend the PM to support additional back-end provers, including decision procedures for
arithmetic and for propositional temporal logic.

We do not anticipate that any major changes will be needed to the TLA+2 proof language. We do
expect some minor tuning as we get more experience using it. For example, we are not sure whether
local definitions should be usable by default. A graphical user interface is being planned for the TLA+

tools, including the PM. It will support the non-linear development of proofs that the language and the
proof system allow.
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A Details of the PM

We shall now give a somewhat more formal specification of the PM and prove the key Structural Sound-
ness Theorem 1. We begin with a quick summary of the abstract syntax of TLA+2 proofs, ignoring the
stylistic aspects of their concrete representation. (See [12] for a more detailed presentation of the proof
language.)

Definition 2 (TLA+2 Proof Language). TLA+2 proofs, non-leaf proofs, proof steps and begin-step tokens
have the following syntax, where n ranges over natural numbers, l over labels, e over expressions, Φ over
lists of expressions, o over operator definitions, Ψ over sets of operator names, ~β over lists of binders
(i.e., constructs of the form x and x ∈ e used to build quantified expressions), and α over expressions or
 . . .  forms.

(Proofs) π F  |  |  Φ  Ψ | Π

(Non-leaf proofs) Π F σ.   π

| σ. τ Π

(Proof steps) τ F  Φ  Ψ |  Φ  Ψ |  o
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|  e |  ~β |  Φ

| α  π |  α  π |  ~β : e  π
(Begin-step tokens) σ F 〈n〉 | 〈n〉 l

A proof that is not a non-leaf proof is called a leaf proof. The level numbers of a non-leaf proof must all
be the same, and those in the subproof of a step (that is, the π in α  π, etc.) must be strictly greater
than that of the step itself.

A.1 The Meta-Language

The PM uses proofs in the TLA+2 proof language (Definition 2) to manipulate constructs in the meta-
language of TLA+2. This meta-language naturally has no representation in TLA+2 itself; we define its
syntax formally as follows.

Definition 3 (Meta-Language). The TLA+2 meta-language consists of obligations, assumptions and de-
finables with the following syntax, where e ranges over TLA+2 expressions, x and o over TLA+2 identifiers,
and ~x over lists of TLA+2 identifiers.

(Obligations) φ F (h1, . . . ,hn 
 e) (n ≥ 0)
(Assumptions) h F  x | o , δ | φ |

[
o , δ

]
|

[
φ
]

(Definables) δ F φ |  ~x : e

The expression after 
 in an obligation is called its goal. An assumption written inside square brackets
[ ] is said to be hidden; otherwise it is usable. For any assumption h, we write h (read: h made usable) to
stand for h with its brackets removed if it is a hidden assumption, and to stand for h if it is not hidden. A
list of assumptions is called a context, with the empty context written as q; we let Γ, ∆ and Ω range over
contexts, with Γ,∆ standing for the context that is the concatenation of Γ and ∆. The context Γ is Γ with
all its hidden assumptions made usable. The obligation (q
 e) is written simply as e. The assumptions
 x, o , δ and

[
o , δ

]
bind the identifiers x and o respectively. We write x ∈ Γ if x is bound in Γ and

x < Γ if x is not bound in Γ. The context Γ,h is considered syntactically well-formed iff h does not bind
an identifier already bound in Γ.

An obligation is a statement that its goal follows from the assumptions in its context. TLA+2 already de-
fines such a statement using  . . . , but the contexts in such statements have no hidden assump-
tions or definitions. (To simplify the presentation, we give the semantics of a slightly enhanced proof
language where proof steps are allowed to mention obligations instead of just TLA+2  . . . 
statements.) We define an embedding of obligations into Isabelle/TLA+ propositions, which we take as
the ultimate primitives of the TLA+2 meta-logic.

Definition 4. The Isabelle/TLA+ embedding (−)Isa of obligations, contexts and definables is as follows:

(Γ 
 e)Isa = (Γ)Isa e(
 ~x : e

)
Isa = λ~x. e

( q)Isa =

(Γ, x)Isa = (Γ)Isa
∧

x.

(Γ,o , δ)Isa = (Γ)Isa
∧

o.
(
o ≡ (δ)Isa

)
=⇒

(Γ,φ)Isa = (Γ)Isa
(
(φ)Isa

)
=⇒

For example, (P, [( x 
 P(x))] 
 ∀x : P(x))Isa =
∧

P. (
∧

x. P(x)) =⇒∀x : P(x). Note that usable
and hidden assumptions are treated identically for the provability of an obligation.

The embedding of ordinary TLA+2 expressions is the identity because Isabelle/TLA+ contains TLA+2

expressions as part of its object syntax. Thus, we do not have to trust the embedding of ordinary TLA+2
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expressions, just that of the obligation language. In practice, some aspects of TLA+2 expressions, such
as the indentation-sensitive conjunction and disjunction lists, are sent by the PM to Isabelle using an
indentation-insensitive encoding.While Isabelle/TLA+ can implicitly generalize over the free identifiers
in a lemma, we shall be explicit about binding and consider obligations provable only if they are closed.

Definition 5 (Well-Formed Obligations). The obligation (Γ 
 e) is said to be well-formed iff it is closed
and (Γ 
 e)Isa is a well-typed proposition of Isabelle/TLA+.

Definition 6 (Provability). The obligation (Γ 
 e) is said to be provable iff it is well-formed and (Γ 
 e)Isa
is certified by the Isabelle kernel to follow from the axioms of the Isabelle/TLA+ object logic.

We trust Isabelle/TLA+ to be sound with respect to the semantics of TLA+2, and therefore provability to
imply truth. Formally, we work under the following trust axiom.

Axiom 7 (Trust). If φ is provable, then it is true.

We state a number of useful facts about obligations (which are all theorems in Isabelle/TLA+), omitting
their trivial proofs. The last one (Fact 13) is true because TLA+ is based on classical logic.

Fact 8 (Definition). If (Γ,o,∆ 
 e) is provable, then (Γ,o , δ,∆ 
 e) is provable if it is well-formed.

Fact 9 (Weakening). If (Γ,∆ 
 e) is provable, then (Γ,h,∆ 
 e) is provable if it is well-formed.

Fact 10 (Expansion). If (Γ,o , δ,∆ 
 e) is provable, then (Γ,o , δ,∆[o := δ] 
 e[o := δ]) is provable.

Fact 11 (Strengthening). If (Γ,o,∆ 
 e) or (Γ,o , δ,∆ 
 e) is provable and o is not free in (∆ 
 e),
then (Γ,∆ 
 e) is provable.

Fact 12 (Cut). If (Γ,∆ 
 e) is provable and (Γ, (∆ 
 e) ,Ω 
 f ) is provable, then (Γ,Ω 
 f ) is provable.

Fact 13. If (Γ,¬e,∆ 
 e) is provable, then (Γ,∆ 
 e) is provable.

The /  steps change the visibility of definitions in a context (Definition 14 below). Note that
changing the visibility of a definition does not affect the provability of an obligation because the Isabelle
embedding (Definition 4) makes all hidden definitions usable.

Definition 14. If Γ is a context and Ψ a set of operator names, then:

1. Γ with Ψ made usable, written ΓΨ, is constructed from Γ by replacing all assumptions of the
form

[
o , δ

]
in Γ with o , δ for every o ∈ Ψ.

2. Γ with Ψ made hidden, written ΓΨ, is constructed from Γ by replacing all assumptions of
the form o , δ in Γ with

[
o , δ

]
for every o ∈ Ψ.

A sequence of binders ~β in the TLA+2 expressions ∀~β : e or ∃~β : e can be reflected as assumptions.

Definition 15 (Binding Reflection). If ~β is a list of binders with each element of the form x or x ∈ e, then
the reflection of ~β as assumptions, written

∥∥∥~β∥∥∥, is given inductively as follows.∥∥∥ q∥∥∥ = q ∥∥∥~β, x∥∥∥ =
∥∥∥~β∥∥∥, x

∥∥∥~β, x ∈ e
∥∥∥ =

∥∥∥~β∥∥∥, x, x ∈ e
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A.2 Interpreting Proofs

Let us recall some definitions from section 3.

Definition 16 (Claims and Transformations). A claim is a judgement of the form π : (Γ 
 e) where π is a
TLA+2 proof. A transformation is a judgement of the form σ.τ : (Γ 
 e) −→ (∆ 
 f ) where σ is a begin-
step token and τ a proof step. A claim (respectively, transformation) is said to be complete if its proof
(respectively, proof step) does not contain any occurrence of the leaf proof .

The PM generates leaf obligations for a claim using two mutually recursive procedures, checking and
transformation, specified below using the formalism of a primitive derivation.

Definition 17. A primitive derivation is a derivation constructed using inferences of the form

D1 · · · Dn

E (n ≥ 0)

where E is either a claim or a transformation, and D1, . . . ,Dn are primitive derivations or obligations.
An obligation at the leaf of a primitive derivation is called a leaf obligation.

Definition 18 (Checking and Transformation). The primitive derivations of a claim or transformation
are constructed using the following checking and transformation rules.

1. Checking rules

(Γ 
 e)
 : (Γ 
 e)


 : (Γ 
 e)



〈0〉 .  Φ  Ψ : (Γ 
 e) −→ (∆ 
 f ) (∆ 
 f )
 Φ  Ψ : (Γ 
 e)



π : (Γ 
 e)
σ.   π : (Γ 
 e)


σ.τ : (Γ 
 e) −→ (∆ 
 f ) Π : (∆ 
 f )

σ.τ Π : (Γ 
 e)
non-

2. Transformation

σ.  Φ : (ΓΨ 
 e) −→ (∆ 
 f )
σ.  Φ  Ψ : (Γ 
 e) −→ (∆ 
 f )

 

σ.  Φ : (Γ 
 e) −→ (∆ 
 f )
σ.  Φ  Ψ : (Γ 
 e) −→ (∆Ψ 
 f )

 

σ.  o , δ : (Γ 
 e) −→
(
Γ,

[
o , δ

]

 e

)  (o < Γ)

σ.  q: (Γ 
 e) −→ (Γ 
 e)
0

σ.  q: (Γ 
 e) −→ (Γ 
 e)
0

σ.  Φ : (Γ 
 e) −→ (∆ 
 f ) (∆,Γ0 
 e0)
σ.  Φ, (Γ0 
 e0) : (Γ 
 e) −→ (∆, (Γ0 
 e0) 
 f )

1

σ.  Φ :
(
Γ0,

[
φ
]
,Γ1 
 e

)
−→ (∆ 
 f )

σ.  Φ,φ : (Γ0,φ,Γ1 
 e) −→ (∆ 
 f )
1

σ.  q: (Γ 
 e) −→ (Γ 
 e)
0

σ.  q: (Γ 
 e) −→ (Γ 
 e)
0

σ.  ~β : (Γ,u 
 e[x := u]) −→ (∆ 
 f )

σ.  u,~β : (Γ 
 ∀x : e) −→ (∆ 
 f )
1
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(Γ 
 S ⊆ T ) σ.  ~β : (Γ,u,u ∈ T 
 e[x := u]) −→ (∆ 
 f )

σ.  u ∈ T,~β : (Γ 
 ∀x ∈ S : e) −→ (∆ 
 f )
2

σ.  Ω : (Γ 
 e[x := w]) −→ (∆ 
 f )
σ.  w,Ω : (Γ 
 ∃x : e) −→ (∆ 
 f )

1

(Γ 
 T ⊆ S ) (Γ 
 w ∈ T ) σ.  Ω : (Γ,w ∈ T 
 e[x := w]) −→ (∆ 
 f )
σ.  w ∈ T,Ω : (Γ 
 ∃x ∈ S : e) −→ (∆ 
 f )

2

(Γ,e 
 g)
σ.  g : (Γ 
 e⇒ f ) −→ (Γ,g 
 f )



π : (Γ, [¬e] ,∆ 
 f )
〈n〉 . (∆ 
 f )  π : (Γ 
 e) −→ (Γ, (∆ 
 f ) 
 e)

1

π : (Γ, 〈n〉 l , (∆ 
 f ) , [¬e] ,∆ 
 f )
〈n〉 l. (∆ 
 f )  π : (Γ 
 e) −→ (Γ, 〈n〉 l , (∆ 
 f ) , [〈n〉 l] 
 e)

2

σ. (g 
 e)  π : (Γ 
 e) −→ (∆ 
 f )
σ.  g  π : (Γ 
 e) −→ (∆ 
 f )



π : (Γ, (∆ 
 f ) 
 e)
〈n〉 .  (∆ 
 f )  π : (Γ 
 e) −→ (Γ, [¬e] ,∆ 
 f )

1

π : (Γ, 〈n〉 l , (∆ 
 f ) , [〈n〉 l] 
 e)
〈n〉 l.  (∆ 
 f )  π : (Γ 
 e) −→ (Γ, 〈n〉 l , (∆ 
 f ) , [¬e] ,∆ 
 f )

2

π :
(
Γ 
 ∃~β : p

)
σ.  ~β : p  π : (Γ 
 e) −→

(
Γ,

∥∥∥~β∥∥∥, p 
 e
) 

The inference rules in the above definition are deterministic: the conclusion of each rule uniquely de-
termines the premises. However, the rules are partial; for example, there is no rule that concludes a
transformation of the form σ. x ∈ S : (Γ 
 B∧C) −→ (∆ 
 f ).

Definition 19. A claim or a transformation is said to be meaningful if it has a primitive derivation.

Definition 20 (Generating Leaf Obligations). A meaningful claim or transformation is said to generate
the leaf obligations of its primitive derivation.

In the rest of this appendix we limit our attention to complete meaningful claims and transformations.

A.3 Correctness

If the leaf obligations generated by a complete meaningful claim are provable, then the obligation in the
claim itself ought to be provable. In this section we prove this theorem by analysis of the checking and
transformation rules.

Definition 21 (Provability of Claims and Transformation).
1. The claim π : (Γ 
 e) is provable iff it is complete and meaningful and the leaf obligations it gener-

ates are all provable.
2. The transformation σ.τ : (Γ 
 e) −→ (∆ 
 f ) is provable iff it is complete and meaningful and the

leaf obligations it generates are all provable.

Theorem 22 (Correctness).
(1) If π : (Γ 
 e) is provable, then (Γ 
 e) is provable.
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(2) If σ.τ : (Γ 
 e) −→ (∆ 
 f ) is provable and (∆ 
 f ) is provable, then (Γ 
 e) is provable.

Proof. Let D be the primitive derivation for the claim in (1) and let E be the primitive derivation for the trans-
formation in (2). The proof will be by lexicographic induction on the structures of D and E, with a provable
transformation allowed to justify a provable claim.
〈1〉1. If π : (Γ 
 e) is provable, then (Γ 
 e) is provable.

〈2〉1. Case π is , i.e.,D =
(Γ 
 e)

 : (Γ 
 e)
. Obvious

〈2〉2. Case π is  is impossible because π : (Γ 
 e) is complete.

〈2〉3. Case π is  Φ  Ψ, i.e.,

D =

E0
〈0〉 .  Φ  Ψ : (Γ 
 e) −→ (∆ 
 f ) (∆ 
 f )

 Φ  Ψ : (Γ 
 e)
.

〈3〉1. (∆ 
 f ) is provable By Definition 21.
〈3〉2. Qed By 〈3〉1, i.h. (inductive hypothesis) for E0.

〈2〉4. Case π is σ.  π0, i.e.,D =

D0
π0 : (Γ 
 e)

σ.   π0 : (Γ 
 e)
. By i.h. forD0.

〈2〉5. Case π is σ.τ Π, i.e.,

D =

E0
σ.τ : (Γ 
 e) −→ (∆ 
 f )

D0
Π : (∆ 
 f )

σ.τ Π : (Γ 
 e)
non-.

〈3〉1. (∆ 
 f ) is provable By i.h. forD0.
〈3〉3. Qed By 〈3〉1, i.h. for E0.

〈2〉6. Qed By 〈2〉1, . . . , 〈2〉5.
〈1〉2. If σ.τ : (Γ 
 e) −→ (∆ 
 f ) is provable and (∆ 
 f ) is provable, then (Γ 
 e) is provable.

〈2〉1. Case τ is  Φ  Ψ, i.e.,

E =

E0
σ.  Φ : (ΓΨ 
 e) −→ (∆ 
 f )
σ.  Φ  Ψ : (Γ 
 e) −→ (∆ 
 f )

 .

〈3〉1. (ΓΨ 
 e) is provable By i.h. for E0.
〈3〉2. Qed By 〈3〉1, Definition 14.

〈2〉2. Case τ is  Φ  Ψ, i.e.,

E =

E0
σ.  Φ : (Γ 
 e) −→ (∆ 
 f )

σ.  Φ  Ψ : (Γ 
 e) −→ (∆Ψ 
 f )
 .

〈3〉1. (∆ 
 f ) is provable By provability of (∆Ψ 
 f ) and Definition 14.
〈3〉2. Qed By 〈3〉1, i.h. for E0.

〈2〉3. Case τ is  o , δ with o < Γ, i.e.,

E =
σ.  o , δ : (Γ 
 e) −→

(
Γ,

[
o , δ

]

 e

) .
〈3〉1. o is not free in e By o < Γ and closedness of (Γ 
 e).
〈3〉2. Qed By 〈3〉1, strengthening (Fact 11).

〈2〉4. Case τ is  q, i.e., E =
σ.  q: (Γ 
 e) −→ (Γ 
 e)

0. Obvious
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〈2〉5. Case τ is  q, i.e., E =
σ.  q: (Γ 
 e) −→ (Γ 
 e)

0. Obvious

〈2〉6. Case τ is  Φ,φ, i.e.,

E =

E0
σ.  Φ : (Γ 
 e) −→ (∆0 
 f ) (∆0,Γ0 
 e0)
σ.  Φ, (Γ0 
 e0) : (Γ 
 e) −→ (∆0, (Γ0 
 e0) 
 f )

1

〈3〉1. (∆0,Γ0 
 e0) is provable By Definition 21.
〈3〉2. (∆0,Γ0 
 e0) is provable By 〈3〉1, Definition 4.
〈3〉3. (∆0 
 f ) is provable By provability of (∆0, (Γ0 
 e0) 
 f ), 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3, i.h. for E0

〈2〉7. Case τ is  Φ,φ, i.e.,

E =

E0
σ.  Φ :

(
Γ0,

[
φ
]
,Γ1 
 e

)
−→ (∆ 
 f )

σ.  Φ,φ : (Γ0,φ,Γ1 
 e) −→ (∆ 
 f )
1.

〈3〉1.
(
Γ0,

[
φ
]
,Γ1 
 e

)
is provable By provability of (∆ 
 f ), i.h. for E0.

〈3〉2. Qed By 〈3〉1,
(
Γ0,

[
φ
]
,Γ1 
 e

)
Isa = (Γ0,φ,Γ1 
 e)Isa (Definition 4).

〈2〉8. Case τ is  q, i.e., E =
σ.  q: (Γ 
 e) −→ (Γ 
 e)

0. Obvious

〈2〉9. Case τ is  q, i.e., E =
σ.  q: (Γ 
 e) −→ (Γ 
 e)

0. Obvious

〈2〉10. Case τ is  u,~β, i.e.,

E =

E0

σ.  ~β : (Γ,u 
 e[x := u]) −→ (∆ 
 f )

σ.  u,~β : (Γ 
 ∀x : e) −→ (∆ 
 f )
1.

〈3〉1. (Γ,u 
 e[x := u]) is provable By i.h. for E0.
〈3〉2. Qed By 〈3〉1 and predicate logic.

〈2〉11. Case τ is σ.  u ∈ T , i.e.,

E =
(Γ 
 S ⊆ T )

E0

σ.  ~β : (Γ,u,u ∈ T 
 e[x := u]) −→ (∆ 
 f )

σ.  u ∈ T,~β : (Γ 
 ∀x ∈ S : e) −→ (∆ 
 f )
2.

〈3〉1. (Γ,u,u ∈ T 
 e[x := u]) is provable By i.h on E0.
〈3〉2. (Γ,u,u ∈ S 
 u ∈ T ) is provable

〈4〉1. (Γ,u 
 S ⊆ T ) is provable By Definition 21, weakening (Fact 9).
〈4〉2. Qed By 〈4〉1, Definition of ⊆.

〈3〉3. (Γ,u,u ∈ S 
 e[x := u]) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3 and predicate logic.

〈2〉12. Case τ is  w,Ω, i.e.,

E =

E0
σ.  Ω : (Γ 
 e[x := w]) −→ (∆ 
 f )
σ.  w,Ω : (Γ 
 ∃x : e) −→ (∆ 
 f )

1.

〈3〉1. (Γ 
 e[x := w]) is provable By i.h. for E0.
〈3〉2. Qed By 〈3〉1.

〈2〉13. Case τ is  w ∈ T,Ω and:

E =
(Γ 
 T ⊆ S ) (Γ 
 w ∈ T )

E0
σ.  Ω : (Γ,w ∈ T 
 e[x := w]) −→ (∆ 
 f )

σ.  w ∈ T,Ω : (Γ 
 ∃x ∈ S : e) −→ (∆ 
 f )
2.
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〈3〉1. (Γ,w ∈ T 
 e[x := w]) is provable By i.h. for E0.
〈3〉2. (Γ 
 w ∈ T ) is provable By Definition 21.
〈3〉3. (Γ 
 e[x := w]) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. (Γ 
 w ∈ S ) is provable

〈4〉1. (Γ,w ∈ T 
 w ∈ S ) is provable By Definition 21, Definition of ⊆.
〈4〉2. Qed By 〈4〉1, 〈3〉2, cut (Fact 12).

〈3〉5. Qed By 〈3〉3, 〈3〉4, and predicate logic.

〈2〉14. τ is  g, i.e.,

E =
(Γ,e 
 g)

σ.  g : (Γ 
 e⇒ f ) −→ (Γ,g 
 f )
.

〈3〉1. (Γ,e,g 
 f ) is provable By weakening (Fact 9).
〈3〉2. (Γ,e 
 g) is provable By Definition 21.
〈3〉3. (Γ,e 
 f ) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. (Γ 
 e⇒ f ) is provable By 〈3〉3.

〈2〉15. σ.τ is 〈n〉 . (Ω 
 g)  π, i.e.,

E =

D0
π : (Γ, [¬e] ,Ω 
 g)

〈n〉 . (Ω 
 g)  π : (Γ 
 e) −→ (Γ, (Ω 
 g) 
 e)
1.

〈3〉1. (Γ, [¬e] , (Ω 
 g) 
 e) is provable By weakening (Fact 9).
〈3〉2. (Γ, [¬e] ,Ω 
 g) is provable By i.h. forD0.
〈3〉3. (Γ, [¬e] 
 e) is provable By 〈3〉1, 〈3〉2, cut (Fact 12).
〈3〉4. Qed By 〈3〉3, Fact 13.

〈2〉16. Case σ.τ is 〈n〉 l. (Ω 
 g)  π, i.e.,

E =

D0
π : (Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,Ω 
 g)

〈n〉 l. (Ω 
 g)  π : (Γ 
 e) −→ (Γ, 〈n〉 l , (Ω 
 g) , [〈n〉 l] 
 e)
2.

〈3〉1. (Γ, 〈n〉 l , (Ω 
 g) , [¬e] , [〈n〉 l] 
 e) is provable
By provability of (Γ, 〈n〉 l , (Ω 
 g) , [〈n〉 l] 
 e), weakening (Fact 9).

〈3〉2.
(
Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,

[
(Ω 
 g)

]

 e

)
is provable By 〈3〉1, expansion (Fact 10).

〈3〉3. (Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,Ω 
 g) is provable By i.h. forD0.
〈3〉4. (Γ, 〈n〉 l , (Ω 
 g) , [¬e] 
 e) is provable By 〈3〉2, 〈3〉3, cut (Fact 12).
〈3〉5. (Γ, [¬e] 
 e) is provable By 〈3〉4, strengthening (Fact 11).
〈3〉6. Qed By 〈3〉5, Fact 13.

〈2〉17. τ is  g  π, i.e.,

E =

E0
σ. (g 
 e)  π : (Γ 
 e) −→ (∆ 
 f )
σ.  g  π : (Γ 
 e) −→ (∆ 
 f )

.

By i.h. for E0.

〈2〉18. τ is 〈n〉 .  (Ω 
 g)  π, i.e.,

E =

D0
π : (Γ, (Ω 
 g) 
 e)

〈n〉 .  (∆ 
 f )  π : (Γ 
 e) −→ (Γ, [¬e] ,Ω 
 g)
1.

〈3〉1. (Γ, [¬e] , (Ω 
 g) 
 e) is provable By i.h. forD0, weakening (Fact 9).
〈3〉2. (Γ, [¬e] 
 e) is provable By provability of (Γ, [¬e] ,Ω 
 g), 〈3〉1, cut (Fact 12).
〈3〉3. Qed By 〈3〉2, Fact 13.
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〈2〉19. σ.τ is 〈n〉 l.  (Ω 
 g)  π, i.e.,

E =

D0
π : (Γ, 〈n〉 l , (Ω 
 g) , [〈n〉 l] 
 e)

〈n〉 l.  (Ω 
 g)  π : (Γ 
 e) −→ (Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,Ω 
 g)
2.

〈3〉1. (Γ, 〈n〉 l , (Ω 
 g) , [¬e] , [〈n〉 l] 
 e) is provable By i.h. forD0, weakening (Fact 9).
〈3〉2.

(
Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,

[
(Ω 
 g)

]

 e

)
is provable By 〈3〉1, expansion (Fact 10).

〈3〉3. (Γ, 〈n〉 l , (Ω 
 g) , [¬e] 
 e) is provable
By 〈3〉2, provability of (Γ, 〈n〉 l , (Ω 
 g) , [¬e] ,Ω 
 g), cut (Fact 12).

〈3〉4. (Γ, [¬e] 
 e) is provable By 〈3〉3, strengthening (Fact 11).
〈3〉5. Qed By 〈3〉4, Fact 13.

〈2〉20. Case τ is  ~β : p  π, i.e.,

E =

D0

π :
(
Γ 
 ∃~β : p

)
σ.  ~β : p  π : (Γ 
 e) −→

(
Γ,

∥∥∥~β∥∥∥, p 
 e
) .

〈3〉1.
(
Γ,∃~β : p 
 e

)
is provable By provability of

(
Γ,

∥∥∥~β∥∥∥, p 
 e
)
, predicate logic.

〈3〉2.
(
Γ 
 ∃~β : p

)
is provable By i.h. forD0.

〈3〉3. Qed By 〈3〉1, 〈3〉2, cut (Fact 12).

〈2〉21. Qed By 〈2〉1, . . . , 〈2〉20
〈1〉3. Qed By 〈1〉1, 〈1〉2.

�

A.4 Constrained Search

The correctness theorem (22) establishes an implication from the leaf obligations generated by a com-
plete meaningful claim to the obligation of the claim. It is always true, regardless of the provability of
any individual leaf obligation. While changing the visibility of assumptions in an obligation does not
change its provability, a back-end prover may fail to prove it if important assumptions are hidden. As
already mentioned in Section 3, the PM removes these hidden assumptions before sending a leaf obli-
gation to a back-end prover. Therefore, in order to establish the Structural Soundness Theorem (1), we
must prove a property about the result of this removal.

Definition 23 (Filtration). The filtered form of any obligation φ, written (φ)f , is obtained by deleting
all assumptions of the form

[
φ0

]
and replacing all assumptions of the form

[
o , δ

]
with o anywhere

inside φ.

For example,
(
 x,

[
y , x

]

 x = y

)
f = ( x,y 
 x = y). We thus see that filtration can render a

true obligation false; however, if the filtered form of an obligation is true, then so is the obligation.

Lemma 24 (Verification Lemma). If (φ)f is provable, then φ is provable.

Proof Sketch. By induction on the structure of the obligation φ, with each case a straightforward conse-
quence of facts 8 and 9. �

Definition 25 (Verifiability). The obligation φ is said to be verifiable if (φ)f is provable.

We now prove the Structural Soundness Theorem (1).

Theorem 1. If π : φ is a complete meaningful claim and every leaf obligations it generates is verifiable,
then φ is true.
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Proof.
〈1〉1. For every leaf obligation φ0 generated by π : φ, it must be that φ0 is provable.

〈2〉1. Take φ0 as a leaf obligation generated by π : φ.
〈2〉2. (φ0)f is provable By assumption and Definition 25.
〈2〉3. Qed By 〈2〉2, Verification Lemma 24.

〈1〉2. φ is provable By 〈1〉1, Correctness Theorem 22.
〈1〉3. Qed By 〈1〉2, Trust Axiom 7.

�
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B A TLA+2 Proof of Cantor’s Theorem

The following is the complete TLA+2 proof of Cantor’s theorem referenced in Section 2.3.

 ∀S : ∀ f ∈ [S →  S ] : ∃A ∈  S : ∀x ∈ S : f [x] , A
〈1〉1.   S ,

 f ∈ [S →  S ]
 ∃A ∈  S : ∀x ∈ S : f [x] , A

〈2〉1.  T , {z ∈ S : z < f [z]}
〈2〉2. ∀x ∈ S : f [x] , T
〈3〉1.   x ∈ S  f [x] , T
〈4〉1.  x ∈ T 
〈4〉2.  x < T 
〈4〉3.   〈4〉1, 〈4〉2

〈3〉2.   〈3〉1
〈2〉3.   〈2〉2

〈1〉2.   〈1〉1

As an example, the leaf obligation generated (see Appendix A.3) for the proof of 〈4〉1 is:(
〈1〉1 , (S , f , f ∈ [S →  S ] 
 ∃A ∈  S : ∀x ∈ S : f [x] , A),
S ,
 f , f ∈ [S →  S ],
T , {z ∈ S : z < f [z]},[
¬ (∃A ∈  S : ∀x ∈ S : f [x] , A)

]
,

〈2〉2 , ∀x ∈ S : f [x] , T ,[
¬ (∀x ∈ S : f [x] , T )

]
,

〈3〉1 , ( x, x ∈ S 
 f [x] , T ),
 x, x ∈ S ,[
¬ ( f [x] , T )

]
,

〈4〉1 , (x ∈ T 
 f [x] , T ),
x ∈ T

 f [x] , T

)
.

Filtering its obligation (see Definition 23) and expanding all definitions gives:(
S ,
 f , f ∈ [S →  S ],
 x, x ∈ S ,
x ∈ {z ∈ S : z < f [z]} 
 f [x] , {z ∈ S : z < f [z]}

)
.

In Isabelle/TLA+, this is the following lemma:

lemma
∧

S .∧
f . f ∈ [S →  S ] =⇒(∧

x.
�

x ∈ S ;

x ∈ {z ∈ S : z < f [z]}
�

=⇒ f [x] , {z ∈ S : z < f [z]}
)

37
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Abstract

This paper describes the SZS ontologies that provide status values for precisely describing what
is known or has been established about logical data. The ontology values are useful for describ-
ing existing logical data, and for automated reasoning software to describe their input and output.
Standards for presenting the ontology values are also provided.

1 Introduction

The real use of automated reasoning software - automated theorem proving (ATP) systems and other
tools - is not as standalone software that a user invokes directly, but rather as embedded components
of more complex reasoning systems. For one example, NASA’s certifiable program synthesis system
[6] embeds the SSCPA ATP system harness [20], the ATP systems E [13], SPASS [24], Vampire [12],
and the GDV derivation verifier [17]. For another example, SRI’s BioDeducta system [14] embeds the
ATP system SNARK [15], and the BioBike integrated knowledge base and biocomputing platform [10].
In this embedded context automated reasoning software is typically treated as a black box with known
processing capabilities. In order to use the software, the host system must know how to invoke the
software, how to pass data into the software, and how to accept data produced by the software.

The data passed in to and out from automated reasoning software typically consists of logical data,
e.g., formulae, derivations, interpretations, etc., and status values that describe what is known or has been
established about the logical data, e.g., the nature of the formulae, their theoremhood or satisfiability, a
reason why the software could not process the data, etc. For software that works with first-order logic,
the de facto standard for expressing logical data is the TPTP language [19] (and it is expected that this
will soon extend to higher-order logic [4]). The SZS ontologies that are linked to the TPTP are used by
some automated reasoning software to express the status values. This paper describes the SZS ontologies
and their use by automated reasoning software.

The status information output by current automated reasoning software varies widely in quantity,
quality, and meaning. At the low end of the scale, for example, an ATP system might report only an
assurance that the input problem’s conjecture is a theorem of the axioms (the wonderful “yes” output).
In some cases the claimed status is misleading, e.g., when a clause normal form refutation based ATP
system claims that a first-order input problem consisting of axioms and a conjecture is “unsatisfiable”,
it typically means that the conjecture is a theorem of the axioms. At the high end of the scale, for
example, a tool such as Infinox might report that a set of formulae does not have a finite model, or, for
another example, a set of formulae might be tagged as representing a Herbrand interpretation. In order to
seamlessly embed automated reasoning software in more complex reasoning systems, it is necessary to
correctly and precisely specify status values for the input and output data. The SZS ontologies provide
fine grained ontologies of status values that are suitable for this task.

The SZS success ontology provides status values to describe what is known or has been successfully
established about the relationship between the axioms and conjecture in logical data. It is described in
Section 2. The SZS no-success ontology provides status values to describe why a success ontology value
has not been established. It is described in Section 3. The SZS dataform ontology provides status values

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
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to describe the nature of logical data. It is described in Section 4. All status values are expressed as
“OneWord” to make system output parsing simple, and also have a three letter mnemonic. In addition
to the ontologies themselves, standards for presenting status values have been specified. These are
described in Section 5.

2 The SZS Success Ontology

The SZS success ontology was inspired by work done to establish communication protocols for systems
on the MathWeb Software Bus [2, 25]. The ontology assumes that the logical data is a 2-tuple of the
form 〈Ax,C〉, where Ax is a set (conjunction) of axioms and C is a conjecture formula. This is a common
standard usage of ATP systems. If the input is not of the form 〈Ax,C〉, it is treated as a conjecture
formula (even if it is a “set of axioms” from the user view point, e.g., a set of formulae all with the
TPTP role axiom), and the 2-tuple is 〈T RUE,C〉. The success ontology values are based on the possible
relationships between the sets of models of Ax and C. The ontology values can also be interpreted in
terms of the formula F ≡ Ax⇒C. For example, the status Theorem means that the set of models of Ax
is a (not necessarily strict) subset of the set of models of C, i.e., every model of Ax is a model of C. In
this case F is valid.

Figure 1 shows the success ontology (many of the “OneWord” status values are abbreviated in the
figure - see the list below for the official full “OneWord”s). The lines in the ontology can be followed
up the hierarchy as isa links, e.g., an ETH isa EQV isa (SAT and a THM). Figure 2 shows the relation-
ships between the model sets for some of the success ontology values. The outer grey ring contains all
interpretations, the long dashed black ring contains the models of Ax, and the short dashed black ring
contains the models of C.
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Figure 1: SZS Success Ontology

The meanings of the success ontology values are as follows. Associated with each status value are
some possible dataforms that might be provided to justify the ontology value for given logical data - see

39



The SZS Ontologies for Automated Reasoning Software Sutcliffe

WeakerThm

WTH

WeakerTautConc

WTC

SatConc

ContraAx


SCA

EquivThm

ETH

Tautology

TAU

TautConc

ContraAx


TCA

UnsConc

ContraAx


UCA

NoConsequence

NOC

Satisfiable

SAT

Unsatisfiable

UNS

CounterSat

CSA

WeakerUnsConc

WUC

Interpretations
Models of Ax
Models of C

Figure 2: SZS Success Ontology Models

Section 4.

• Success (SUC): The logical data has been processed successfully.
• UnsatisfiabilityPreserving (UNP): If there does not exist a model of Ax then there does not exist a

model of C, i.e., if Ax is unsatisfiable then C is unsatisfiable.
• SatisfiabilityPreserving (SAP): If there exists a model of Ax then there exists a model of C, i.e., if

Ax is satisfiable then C is satisfiable. F is satisfiable.
• EquiSatisfiable (ESA): There exists a model of Ax iff there exists a model of C, i.e., Ax is (un)satisfiable

iff C is (un)satisfiable.
• Satisfiable (SAT): Some interpretations are models of Ax, and some models of Ax are models of

C. F is satisfiable, and ¬F is not valid. Possible dataforms are Models of Ax∧C.
• FinitelySatisfiable (FSA): Some finite interpretations are finite models of Ax, and some finite mod-

els of Ax are finite models of C. F is satisfiable, and ¬F is not valid. Possible dataforms are
FiniteModels of Ax∧C.
• Theorem (THM): All models of Ax are models of C. F is valid, and C is a theorem of Ax. Possible

dataforms are Proofs of C from Ax.
• Equivalent (EQV): Some interpretations are models of Ax, all models of Ax are models of C, and

all models of C are models of Ax. F is valid, C is a theorem of Ax, and Ax is a theorem of C.
Possible dataforms are Proofs of C from Ax and of Ax from C.
• TautologousConclusion (TAC): Some interpretations are models of Ax, and all interpretations are

models of C. F is valid, and C is a tautology. Possible dataforms are Proofs of C.
• WeakerConclusion (WEC): Some interpretations are models of Ax, all models of Ax are models of

C, and some models of C are not models of Ax. See Theorem and Satisfiable.
• EquivalentTheorem (ETH): Some, but not all, interpretations are models of Ax, all models of Ax

are models of C, and all models of C are models of Ax. See Equivalent.
• Tautology (TAU): All interpretations are models of Ax, and all interpretations are models of C. F

is valid, ¬F is unsatisfiable, and C is a tautology. Possible dataforms are Proofs of Ax and of C.
• WeakerTautologousConclusion (WTC): Some, but not all, interpretations are models of Ax, and

all interpretations are models of C. F is valid, and C is a tautology. See TautologousConclusion
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and WeakerConclusion.
• WeakerTheorem (WTH): Some interpretations are models of Ax, all models of Ax are models of

C, some models of C are not models of Ax, and some interpretations are not models of C. See
Theorem and Satisfiable.
• ContradictoryAxioms (CAX): No interpretations are models of Ax. F is valid, and anything is a

theorem of Ax. Possible dataforms are Refutations of Ax.
• SatisfiableConclusionContradictoryAxioms (SCA): No interpretations are models of Ax, and some

interpretations are models of C. See ContradictoryAxioms.
• TautologousConclusionContradictoryAxioms (TCA): No interpretations are models of Ax, and all

interpretations are models of C. See TautologousConclusion and ContradictoryAxioms.
• CounterUnsatisfiabilityPreserving (CUP): If there does not exist a model of Ax then there does not

exist a model of ¬C, i.e., if Ax is unsatisfiable then ¬C is unsatisfiable.
• CounterSatisfiabilityPreserving (CSP): If there exists a model of Ax then there exists a model of
¬C, i.e., if Ax is satisfiable then ¬C is satisfiable.
• EquiCounterSatisfiable (ECS): There exists a model of Ax iff there exists a model of ¬C, i.e., Ax

is (un)satisfiable iff ¬C is (un)satisfiable.
• CounterSatisfiable (CSA): Some interpretations are models of Ax, and some models of Ax are

models of ¬C. F is not valid, ¬F is satisfiable, and C is not a theorem of Ax. Possible dataforms
are Models of Ax∧¬C.
• CounterTheorem (CTH): All models of Ax are models of ¬C. F is not valid, and ¬C is a theorem

of Ax. Possible dataforms are Proofs of ¬C from Ax.
• CounterEquivalent (CEQ): Some interpretations are models of Ax, all models of Ax are models

of ¬C, and all models of ¬C are models of Ax. F is not valid, and ¬C is a theorem of Ax. All
interpretations are models of Ax xor of C. Possible dataforms are Proofs of ¬C from Ax and of Ax
from ¬C.
• UnsatisfiableConclusion (UNC): Some interpretations are models of Ax, and all interpretations are

models of ¬C (i.e., no interpretations are models of C). F is not valid, and ¬C is a tautology.
Possible dataforms are Proofs of ¬C.
• WeakerCounterConclusion (WCC): Some interpretations are models of Ax, and all models of Ax

are models of ¬C, and some models of ¬C are not models of Ax. See CounterTheorem and
CounterSatisfiable.
• EquivalentCounterTheorem (ECT): Some, but not all, interpretations are models of Ax, all models

of Ax are models of ¬C, and all models of ¬C are models of Ax. See CounterEquivalent.
• FinitelyUnsatisfiable (FUN): All finite interpretations are finite models of Ax, and all finite inter-

pretations are finite models of ¬C (i.e., no finite interpretations are finite models of C).
• Unsatisfiable (UNS): All interpretations are models of Ax, and all interpretations are models of ¬C.

(i.e., no interpretations are models of C). F is unsatisfiable, ¬F is valid, and ¬C is a tautology.
Possible dataforms are Proofs of Ax and of C, and Refutations of F .
• WeakerUnsatisfiableConclusion (WUC): Some, but not all, interpretations are models of Ax, and

all interpretations are models of ¬C. See Unsatisfiable and WeakerCounterConclusion.
• WeakerCounterTheorem (WCT): Some interpretations are models of Ax, all models of Ax are

models of ¬C, some models of ¬C are not models of Ax, and some interpretations are not models
of ¬C. See CounterSatisfiable.
• SatisfiableCounterConclusionContradictoryAxioms (SCC): No interpretations are models of Ax,

and some interpretations are models of ¬C. See ContradictoryAxioms.
• UnsatisfiableConclusionContradictoryAxioms (UCA): No interpretations are models of Ax, and all
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interpretations are models of ¬C (i.e., no interpretations are models of C). See UnsatisfiableCon-
clusion and ContradictoryAxioms.
• NoConsequence (NOC): Some interpretations are models of Ax, some models of Ax are models of

C, and some models of Ax are models of ¬C. F is not valid, F is satisfiable, ¬F is not valid, ¬F
is satisfiable, and C is not a theorem of Ax. Possible dataforms are pairs of models, one Model of
Ax∧C and one Model of Ax∧¬C.

The success ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software, by ATP systems in particular. A suitable subset for practical uses of ATP
systems is as follows:

• FOF problems with a conjecture - report Theorem or CounterSatisfiable.
• FOF problems without a conjecture - report Satisfiable or Unsatisfiable.
• CNF problems - report Satisfiable or Unsatisfiable.

2.1 Validation of the Success Ontology

Two steps have been taken towards formal validation of the success ontology. The first step was the
enumeration of the possible relationships between the models of Ax and C (some of which are illustrated
in Figure 2). This provided a basis for the ontology values, and a basis for the isa links. The second
step1 was to axiomatize the ontology and prove relevant properties. (The axiomatization implemented
covers the “positive” part of the ontology regarding Ax and C, and just two commonly used values from
the “negative” part regarding Ax and¬C. It is expected that the results obtained will extend without
difficulty to the full ontology.) The axiomatization encodes the relationship between the models of
Ax and C for each ontology value, and, from that, relationships between the ontology values can be
proven. Additionally, a finite model of the axioms was found, demonstrating the consistency of the
axiomatization and hence the ontology.

The axiomatization is in first-order logic. As example, the axioms that describe the ESA, THM, and
ETH values are given in Figure 3. Four relationships between pairs of ontology values were defined and
axiomatized:

• α isa β , meaning that if 〈Ax,C〉 has the status α then it also has the status β . For example, WTH
isa THM.
• α nota β , meaning that if 〈Ax,C〉 has the status α then it does not necessarily have the status β .

For example, THM nota SAT (because SAT does not hold for the case of contradictory Ax).
• α nevera β , meaning that if 〈Ax,C〉 has the status α then it cannot have the status β . For example,

SAT nevera CAX.
• α xora β , meaning that every 〈Ax,C〉 has the status α xor β . For example, THM xora CSA.

Additionally, axioms that deal with properties of formulae and models were provided. The relation-
ships and properties axioms are given in Figure 3.

The axiomatization was shown to be consistent by generating a finite model using Paradox [5]. Some
general properties of the relationships were proved using an ATP system (see below for a discussion of
the ATP system used), e.g., that isa is a transitive relation, and that if α isa β and α nota γ then β nota
γ . Next the relationships between all pairs of ontology values were investigated, using the ATP system
to prove the relationships from the axioms. The isa relationship was tested first, as if a pair of ontology
values has the isa relationship they cannot have any of the other three relationships. For those pairs that
were not proved to have the isa relationship, the nevera relationship was tested next. For those pairs that

1Thanks to the reviewer of this paper whose comments instigated this step.
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fof(esa,axiom,( fof(thm,axiom,( fof(eth,axiom,(

! [Ax,C] : ! [Ax,C] : ! [Ax,C] :

( ( ? [I1] : model(I1,Ax) ( ! [I1] : ( ( ? [I1] : model(I1,Ax)

<=> ? [I2] : model(I2,C) ) ( model(I1,Ax) & ? [I2] : ~ model(I2,Ax)

<=> status(Ax,C,esa) ) )). => model(I1,C) ) & ! [I1] :

<=> status(Ax,C,thm) ) )). ( model(I1,Ax)

<=> model(I1,C) ) )

<=> status(Ax,C,eth) ) )).

fof(isa,axiom,( fof(nota,axiom,( fof(nevera,axiom,(

! [S1,S2] : ! [S1,S2] : ! [S1,S2] :

( ! [Ax,C] : ( ? [Ax,C] : ( ! [Ax,C] :

( status(Ax,C,S1) ( status(Ax,C,S1) ( status(Ax,C,S1)

=> status(Ax,C,S2) ) & ~ status(Ax,C,S2) ) => ~ status(Ax,C,S2) )

<=> isa(S1,S2) ) )). <=> nota(S1,S2) ) )). <=> nevera(S1,S2) ) )).

fof(xora,axiom,( fof(completeness,axiom,( fof(not,axiom,(

! [S1,S2] : ! [I,F] : ! [I,F] :

( ! [Ax,C] : ( model(I,F) ( model(I,F)

( status(Ax,C,S1) <~> model(I,not(F)) ) )). <=> ~ model(I,not(F)) ) )).

<~> status(Ax,C,S2) )

<=> xora(S1,S2) ) )).

fof(tautology,axiom,( fof(contradiction,axiom,( fof(sat_non_taut_pair,axiom,(

? [F] : ! [I] : model(I,F) )). ? [F] : ! [I] : ~ model(I,F) )). ? [Ax,C] :

( ? [I1] :

fof(satisfiable,axiom,( fof(non_thm_spt,axiom,( ( model(I1,Ax)

? [F] : ? [I1,Ax,C] : & model(I1,C) )

( ? [I1] : model(I1,F) ( model(I1,Ax) & ? [I2] :

& ? [I2] : ~ model(I2,F) ) )). & ~ model(I1,C) ( ~ model(I2,Ax)

& ? [I2] : model(I2,C) ) )). | ~ model(I2,C) ) ) )).

Figure 3: SZS Success Ontology Axioms

were proved to have the nevera relationship the xora relationship was tested, and for the other pairs the
nota relationship was tested. Proving a nota relationship requires establishing the existence of formulae
and models that deny the relationship. In the axiomatization five examples are provided, the tautology,
satisfiable, contradiction, non thm spt and sat non taut pair axioms above.

The results of the testing are shown in Table 1, where the vertical axis value has the shown relation-
ship to the horizontal axis value. The isa relationship is denoted by⇒, nota by ¬, nevera by×, and xora
by ⊕. Sixty-four pairs were proved to have the isa relationship, 85 to have the nota relationship, 151 to
have the nevera (and not the xora) relationship, 4 to have the xora relationship, and for the remaining two
pairs no relationship could be proved. The latter are the cases that WEC nota WTC and WEC nota TAC,
which require exhibition of an 〈Ax,C〉 pair that has the WEC property but in which C is not a tautology.
This could be done explicitly, along the lines of the sat non taut pair axiom above, but that seemed
like cheating. Some of the nota relationships may also be nevera, but could not be proved so.

As mentioned above, automated theorem proving was used to prove the relationships between the
ontology values. At first, proofs were attempted using monolithic ATP systems such as EP, SPASS, and
Vampire. The success rate was low, because the axiomatization forms a large theory - see [1]. Therefore
the SRASS system [18] was used, and it was highly successful in identifying the necessary axioms for
proving each conjecture, and subsequently obtaining either a proof using EP or an assurance of a proof
using iProver [9]. In addition to SRASS, the MANSEX [22] and IDV [23] tools were used during the
initial development of the axiomatization, to find the most obvious relationships and to analyze proofs.
All automated reasoning and proof processing was done on a computer with a Intel Xeon 2.80GHz CPU
and 3GB memory, running the Linux 2.6 operating system, and with a 60s CPU time limit per proof
attempt (on the entire SRASS process).
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UNP SAP ESA SAT THM EQV TAC WEC ETH TAU WTC WTH CAX SCA TCA CSA UNS NOC

UNP • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ⊕ × ¬ ¬ ¬
SAP ¬ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × ¬
ESA ⇒ ⇒ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × × ¬ × ¬
SAT ⇒ ⇒ ⇒ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × × × ¬ × ¬
THM ¬ ⇒ ¬ ¬ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ⊕ × ×
EQV ⇒ ⇒ ⇒ ⇒ ⇒ • ¬ × ¬ ¬ × × × × × × × ×
TAC ⇒ ⇒ ⇒ ⇒ ⇒ ¬ • ¬ × ¬ ¬ × × × × × × ×
WEC ⇒ ⇒ ⇒ ⇒ ⇒ × ¬ • × × ¬ ¬ × × × × × ×
ETH ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ × × • × × × × × × × × ×
TAU ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ × × • × × × × × × × ×
WTC ⇒ ⇒ ⇒ ⇒ ⇒ × ⇒ ⇒ × × • × × × × × × ×
WTH ⇒ ⇒ ⇒ ⇒ ⇒ × × ⇒ × × × • × × × × × ×
CAX ¬ ⇒ ¬ × ⇒ × × × × × × × • ¬ ¬ × × ×
SCA ⊕ ⇒ × × ⇒ × × × × × × × ⇒ • ¬ × × ×
TCA × ⇒ × × ⇒ ¬ × × × × × × ⇒ ⇒ • × × ×
CSA ⇒ ¬ ¬ ¬ ⊕ × × × × × × × × × × • ¬ ¬
UNS ⇒ × × × × × × × × × × × × × × ⇒ • ×
NOC ⇒ ⇒ ⇒ ⇒ × × × × × × × × × × × ⇒ × •

Table 1: Success Ontology Relationships

The formal analysis has had beneficial effects. Two new ontology values were added, three errors in
the definitions of the ontology values were exposed and corrected, four incorrect isa links in the ontology
were found and removed, and several unnoticed isa relationships were revealed and added. The isa links
in Figure 1 correspond to those in Table 1.

3 The SZS No-Success Ontology

While it is always hoped that automated reasoning software will successfully process the logical data, and
hence establish a success ontology value, in reality this often does not happen, for a variety of reasons. In
order to understand and make productive use of a lack of success, e.g., [11, 8], it is necessary to precisely
specify the reason for and nature of the lack of success. The SZS no-success ontology provides suitable
status values for describing the reasons. Note that no-success is not the same as failure: failure means
that the software has completed its attempt to process the logical data and could not establish a success
ontology value. In contrast, no-success might be because the software is still running, or that it has not
yet even started processing the logical data. Figure 4 shows the no-success ontology.

The meanings of the no-success ontology values are as follows:

• NoSuccess (NOS): The logical data has not been processed successfully (yet).
• Open (OPN): A success value has never been established.
• Unknown (UNK): Success value unknown, and no assumption has been made.
• Assumed (ASS(U ,S)): The success ontology value S has been assumed because the actual value

is unknown for the no-success ontology reason U . U is taken from the subontology starting at
Unknown in the no-success ontology.
• Stopped (STP): Software attempted to process the data, and stopped without a success status.
• Error (ERR): Software stopped due to an error.
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NoSuccess
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OSError
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TypeError
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Figure 4: SZS No-Success Ontology

• OSError (OSE): Software stopped due to an operating system error.
• InputError (INE): Software stopped due to an input error.
• SyntaxError (SYE): Software stopped due to an input syntax error.
• SemanticError (SEE): Software stopped due to an input semantic error.
• TypeError (TYE): Software stopped due to an input type error (for typed logical data, e.g., in

THF).
• Forced (FOR): Software was forced to stop by an external force.
• User (USR): Software was forced to stop by the user.
• ResourceOut (RSO): Software stopped because some resource ran out.
• Timeout (TMO): Software stopped because the CPU time limit ran out.
• MemoryOut (MMO): Software stopped because the memory limit ran out.
• GaveUp (GUP): Software gave up of its own accord.
• Incomplete (INC): Software gave up because it’s incomplete.
• Inappropriate (IAP): Software gave up because it cannot process this type of data.
• InProgress (INP): Software is still running.
• NotTried (NTT): Software has not tried to process the data.
• NotTriedYet (NTY): Software has not tried to process the data yet, but might in the future.

The no-success ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software. A suitable subset for practical uses is as follows:

• The software stopped due to CPU limit - report Timeout.
• The software gave up due to incompleteness - report GaveUp.
• The software stopped due to an error - report Error.
• Any other cases - report Unknown.
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4 The SZS Dataform Ontology

The success status values describe what is known or has been established about the relationship between
the axioms and conjecture in logical data, but do not describe the form of logical data. The dataform
ontology provides suitable values for describing the form of logical data. The dataform ontology values
are commonly used to describe data provided to justify a success ontology value, e.g., if an ATP system
reports the success ontology value Theorem it might output a proof to justify that. Figure 5 shows the
dataform ontology.

LogicalData

LDa

Solution

Sol

Assurance

Ass

Interpretation

Int

None

Non

FiniteModel

FMo

InfiniteModel

IMo

Model

Mod

Proof

Prf

DomainMap

Dom

Sat'nModel

SMo

HerbrandModel

HMo

CNFRefutation

CRf

ListOfFormulae

Lof

Refutation

Ref

Derivation

Der

ListOfCNF

Lcn

ListOfTHF

Lth

ListOfFOF

Lfo

NotSoln

NSo

IncompletePrf

IPr

IncompleteRef

IRf

IncompleteCNFRef

ICf

Figure 5: SZS Dataform Ontology

The meanings of the dataform ontology values are as follows:

• LogicalData (LDa): Logical data.
• Solution (Sln): A solution.
• Proof (Prf): A proof.
• Derivation (Der): A derivation (inference steps ending in the theorem, in the Hilbert style).
• Refutation (Ref): A refutation (starting with Ax∪¬C and ending in FALSE).
• CNFRefutation (CRf): A refutation in clause normal form, including, for FOF Ax or C, the trans-

lation from FOF to CNF (without the FOF to CNF translation it is an IncompleteRefutation).
• Interpretation (Int): An interpretation.
• Model (Mod): A model.
• DomainMap (Dom): A model expressed as a domain, a mapping for functions, and a relation for

predicates.
• FiniteModel (FMo): A domain map model with a finite domain.
• InfiniteModel (IMo): A domain map model with an infinite domain.
• HerbrandModel (HMo): A model expressed as a subset of the Herbrand base.
• SaturationModel (SMo): A model expressed as a saturating set of formulae.
• ListofFormulae (Lof): A list of formulae.
• ListofTHF (Lth): A list of THF formulae.
• ListofFOF (Lfo): A list of FOF formulae.
• ListofCNF (Lcn): A list of CNF formulae.
• IncompleteProof (IPr): A proof with part missing.
• IncompleteRefutation (IRf): A refutation with parts missing.
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• IncompleteCNFRefutation (ICf): A CNF refutation with parts missing.
• Assurance (Ass): Only an assurance of the success ontology value.
• None (Non): Nothing.

The dataform ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software, by ATP systems in particular. A suitable subset for practical uses of ATP
systems is as follows:

• A generic proof - report Proof.
• A refutation - report Refutation.
• A CNF refutation - report CNFRefutation.
• A generic model - report Model.
• A finite model - report FiniteModel.
• A Herbrand model - report HerbrandModel.
• A saturation model - report SaturationModel.

5 The SZS Presentation Standards

The SZS ontologies provide status values that precisely describe what is known or has been established
about logical data. In order to make the use of the values easy in more complex reasoning systems, it
is necessary to specify precisely how the values should be presented. This makes it easy for harness
software to prepare input data and examine output data that contains ontology values, e.g., in practice, to
grep the output from automated reasoning software for lines that provide status values.

Success and no-success ontology values should be presented in lines of the form
% SZS status ontology value for logical data identifier

(The leading ’%’ makes the line into a TPTP language comment.) For example
% SZS status Unsatisfiable for SYN075+1

or
% SZS status GaveUp for SYN075+1

A success or no-success ontology value should be presented as early as possible, at least before any
data output to justify the value. The justifying data should be delimited by lines of the form

% SZS output start dataform ontology value for logical data identifier
and

% SZS output end dataform ontology value for logical data identifier
For example

% SZS output start CNFRefutation for SYN075-1
output data

% SZS output end CNFRefutation for SYN075-1

All “SZS” lines can optionally have software specific information appended, separated by a :, i.e.,
% SZS status ontology value for logical data identifier : software specific information
% SZS output start dataform ontology value for logical data identifier : software specific info
% SZS output end dataform ontology value for logical data identifier : software specific info

For example
% SZS status GaveUp for SYN075+1 : Could not complete CNF conversion

or
% SZS output end CNFRefutation for SYN075-1 : Completed in CNF conversion
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6 Conclusion

This paper has presented the SZS ontologies of status values that are suitable for expressing precisely
what is known or has been established about logical data. The ontologies can be used for existing logical
data, e.g., they are used for the status of problems in the TPTP problem library [21] and solutions in the
TSTP solution library [16], and can be used by automated reasoning software to describe their input and
output. Already several ATP systems, e.g., Darwin [3], E, Metis [7], Paradox [5], use the SZS ontologies
and the presentation standards, and this contributes to simplifying their embedding into more complex
reasoning systems.

In addition to its use for reporting the overall status of a 〈Ax,C〉 2-tuple, the SZS success ontology is
used to report the status of individual inference steps in TPTP format derivations [19]. This is done in
the “useful information” field of an inference record of an inferred formula. For example, in

cnf(58,plain,
( ~ hates(agatha,esk2_1(butler)) ),
inference(spm,[status(thm)],[51,48])).

the status is Theorem (recorded as a lowercase acronym value thm), which indicates that the formulae is
a theorem of it’s two parent formulae 51 and 48. The Theorem status is most common in derivations, but
the SAP and ESA status values are also used quite often, e.g., for the formulae inferred by Skolemization
and splitting steps. These status values can be used for semantic verification of the derivations, as is done
by the GDV derivation verifier [17].

While the SZS ontologies are in use and have matured to some extent, it is not claimed that they are
comprehensive and perfect. Developers and users of automated reasoning software are invited to provide
feedback that might lead to improvements and increased usage. Already some users are working on
success ontology values for results from computer algebra and other computational reasoning systems.
In related work, SZS standards for returning answers from question-and-answer systems have been pro-
posed.2 It is hoped that over time, with increased usage, the ontologies will become battle hardened, and
will be a core standard for automated reasoning.
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Abstract

We present a knowledge exchange format that is designed to support the exchange of modularly
structured information in mathematical and logical systems. This format allows to encode math-
ematical knowledge in a logic-neutral representation format that can represent the meta-theoretic
foundations of the systems together with the knowledge itself and to interlink the foundations at the
meta-logical level. This “logics-as-theories” approach, makes system behaviors as well as their rep-
resented knowledge interoperable and thus comparable. The advanced modularization features of
our system allow communication between systems without losing structure.

We equip the proposed format with a web-scalable XML/URI-based concrete syntax so that it
can be used as a universal interchange and archiving format for existing systems.

1 Introduction

Mathematical knowledge is at the core of science, engineering, and economics, and we are seeing a
trend towards employing computational systems like semi-automated theorem provers, model checkers,
computer algebra systems, constraint solvers, or concept classifiers to deal with it. It is a characteristic
feature of these systems that they either have mathematical knowledge implicitly encoded in their critical
algorithms or (increasingly) manipulate explicit representations of the relevant mathematical knowledge
often in the form of logical formulae. Unfortunately, these systems have differing domains of applica-
tions, foundational assumptions, and input languages, which makes them non-interoperable and difficult
to compare and evaluate in practice. Moreover, the quantity of mathematical knowledge is growing faster
than our ability to formalize and organize it, aggravating the problem that mathematical software systems
cannot share knowledge representations.

The work reported in this paper focuses on developing an exchange format between math-knowledge
based systems. We concentrate on a foundationally unconstrained framework for knowledge representa-
tion that allows to represent the meta-theoretic foundations of the mathematical knowledge in the same
format and to interlink the foundations at the meta-logical level. In particular, the logical foundations of
domain representations for the mathematical knowledge can be represented as modules themselves and
can be interlinked via meta-morphisms. This “logics-as-theories” approach, makes systems behavior
as well as their represented knowledge interoperable and thus comparable at multiple levels. Note that
the explicit representation of epistemic foundations also benefits systems whose mathematical knowl-
edge is only implicitly embedded into the algorithms. Here, the explicit representation can serve as a
documentation of the system as well as a basis for verification or testing attempts.

Of course communication by translation to the lowest common denominator logic — the current state
of the art — is always possible. But such translations lose the very structural properties of the knowledge
representation that drive computation and led to the choice of logical system in the first place. Therefore
our format incorporates a module system geared to support flexible reuse of knowledge items via theory
morphisms. This module system is the central part of the proposed format — emphasizing interoper-
ability between theorem proving systems, and the exchange and reusability of mathematical facts across
different systems. In contrast to the formula level, which needs to be ontologically unconstrained, the
module system level must have a clear semantics (relative to the semantics of the formula level) and

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 50-66
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be expressive enough to encode current structuring practice so that systems can communicate without
losing representational structure.

On a practical level, an exchange format should support interoperability by being easy to parse and
standards-compatible. Today, where XML-parsers are available for almost all programming language
and higher-level protocols for distributed computation are XML-based, an exchange format should be
XML-based and in particular an extension of the MATHML [ABC+03] and OPENMATH [BCC+04]
standards. Moreover, an exchange format must be web-scalable in the sense that it supports the distri-
bution of resources (theories, conjectures, proofs, etc.) over the Internet, so that they can be managed
collaboratively. In the current web architecture this means that all (relevant) resources must be address-
able by a URI-based naming scheme [BLFM05]. Note that in the presence of complex modularity and
reusability infrastructure this may mean that resources have to be addressable, even though they are only
virtually induced by the inheritance structure.

2 Syntax

2.1 A Four-Level Model of Mathematical Knowledge

monoid
comp, unit

cgroup
mon, inv

ring
add
mult

integers
0,+,−

v2{
mon/comp 7→+
mon/unit 7→ 0

}
or mon 7→ v1

inv 7→ −
cgroup?mon

ring?add

ring?mult
v1
comp 7→+
unit 7→ 0

v2

import
view

Figure 1: Example

Example 1. We begin the exposition of our language with a simple motivating example that already
shows some of the crucial features of MMT and that we will use as a running example: Fig. 1 gives a
theory graph for a portion of the algebraic hierarchy. The bottom node represents the theory of monoids,
which declares operations for composition and unit. (We omit the axioms and the types here.) The theory
cgroup for commutative groups arises by importing from monoid and adding an operation inv for the
inverse element. This theory does not have to declare the operations for composition and unit again
because they are imported from the theory of monoids. The import is named mon, and it can be referenced
by the qualified name cgroup?mon; it induces a theory morphism from monoids to commutative groups.

Then the theory of rings can be formed by importing from monoid (via an import named mult
that provides the multiplicative structure) and from cgroup (via an import named add that provides
the additive structure). Because all imports are named, different import paths can be distinguished: By
concatenating import and symbol names, the theory ring can access the symbols add/mon/comp (i.e.,
addition), add/mon/unit (i.e, zero), add/inv (i.e., additive inverse), mult/comp (i.e., multiplication),
and mult/unit (i.e., one).

The node on the right side of the graph represents a theory for the integers declaring the operations 0,
+, and −. The fact that the integers are a monoid is represented by the view v1. It is a theory morphism
that is explicitly given by its interpretations of comp as + and of unit as 0. (If we did not omit axioms,
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this view would also have to interpret all the axioms of monoid as — using Curry-Howard representation
— proof terms.)

The view v2 is particularly interesting because there are two ways to represent the fact that the
integers are a commutative group. Firstly, all operations of cgroup can be interpreted as terms over
integers: This means to interpret inv as − and the two imported operations mon/comp and mon/unit
as + and 0, respectively. Secondly, v2 can be constructed along the modular structure of cgroup and
use the existing view v1 to interpret all operations imported by mon. In MMT, this can be expressed
elegantly by the interpretation mon 7→ v1, which interprets a named import with a theory morphism. The
intuition behind such an interpretation is that it makes the right triangle commute: v2 is defined such
that v2 ◦ cgroup?mon = v1. Clearly, both ways lead to the same theory morphism; the second one is
conceptually more complex but eliminates redundancy. (This redundancy is especially harmful when
axioms are considered, which must be interpreted as proofs.)

Ontology and Grammar We characterize mathematical theories on four levels: the document, mod-
ule, symbol, and object level. On each level, there are several kinds of expressions. In Fig. 2, the
relations between the MMT-concepts of the first three levels are defined in an ontology. The MMT

knowledge items are grouped into six primitive concepts. Documents (Doc, e.g., the whole graph in
Fig. 1) comprise the document level. Theories (T hy, e.g., monoid and integers) and views (Viw, e.g.,
v1 and v2) comprise the module level. And finally constants (Con, e.g., comp and inv) and struc-
tures (Str, e.g., mon and add) as well as assignments to them (ConAss, e.g., inv 7→ −, and StrAss, e.g.,
mon 7→ v2) comprise the symbol level.

In addition, we define four unions of concepts: First modules (Mod) unite theories and views, sym-
bols (Sym) unite constants and structures, and assignments (Ass) unite the assignments to constants and
structures. The most interesting union is that of links (Lnk): They unite the module level concept of
views and the symbol level concept of structures. Structures being both symbols and links makes our
approach balanced between the two different ways to understand them.

Con Str

Sym

ConAss StrAss

Ass

T hy Lnk Viw

Mod

Docsubconcept of
declared in

Figure 2: The MMT Ontology

These higher three levels are called the structural lev-
els because they represent the structure of mathematical
knowledge: Documents are sets of modules, theories are
sets of symbols, and links are sets of assignments. The
actual mathematical objects are represented at the fourth
level: They occur as arguments of symbols and assign-
ments. MMT provides a formalization of the structural
levels while being parametric in the specific choice of
objects used on the fourth level.

The declarations of the four levels along with the
meta-variables we will use to reference them are given
in Fig. 3 and 4. The MMT knowledge items of the struc-
tural levels are declared with unqualified names (under-
lined Latin letter) in a certain scope and referenced by qualified names (Latin letter). Greek letters are
used as meta-variables for composed expressions. Following practice in programming languages, we
will use as an unnamed meta-variable for irrelevant values.

The grammar for MMT is given in Fig. 5 where ∗, +, |, and [−] denote repetition, non-empty rep-
etition, alternative, and optional parts, respectively. The rules for the non-terminals URI and pchar are
defined in RFC 3986. Thus, g produces a URI without a query or a fragment. (The query and fragment
components of a URI are those starting with the special characters ? and #, respectively.) pchar, essen-
tially, produces any Unicode character, possibly using percent-encoding for reserved characters. (Thus,
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Level Declared concept
Document document g
Module theory T,S,R,M

view v
structure or view m

Symbol symbol s
constant c
structure h, i, j
assignment to a constant
assignment to a structure

Object variable x

Figure 3: Meta-Variables for References to MMT Declarations

Variable Type
Λ library (list of document declarations)
γ document body (list of module declarations)
ϑ theory body (list of symbol declarations)
σ view/structure body (list of assignments to symbols)
ω term
µ morphism

Figure 4: Meta-Variables for MMT Expressions

percent-encoding is necessary for the characters ?/#[]% and all characters generally illegal in URIs.) In
this section, we will describe the syntax of MMT and the intuition behind it in a bottom-up manner, i.e.,
from the object to the document level. Alternatively, the following subsections can be read in top-down
order.

2.1.1 The Object Level

We distinguish two kinds of objects: terms and morphisms. Atomic terms are references to declared
constants, and general terms are built up from the constants via operations such as application and binding
as detailed below. Atomic morphisms are references to structures and views, and general morphisms are
built up using structures, views, identity, and composition as detailed below.

The MMT objects are typed. For terms, we do not distinguish terms and types syntactically: Rather,
typing is a binary relation on terms that is not further specified by MMT. Instead, it is left to be determined
by the foundation, and MMT is parametric in the specific choice of typing relation. In particular, terms
may be untyped or may have multiple types. For morphisms, the domain theory doubles as the type.
Thus, every morphism has a unique type.

Well-formedness of objects is checked relative to a home theory. For a term ω , the home theory
must declare or import all symbols that occur in ω . For a morphism, the home theory is the codomain.
Objects with home theory T are also called objects over T . These relations are listed in Fig. 6.

Terms MMT-terms are a generalization of a fragment of OPENMATH objects ([BCC+04]). They can
be
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Library Λ ::= Doc∗

Document Doc ::= g := {γ}
Document body γ ::= Mod∗

Module Mod ::= T hy | Viw

Theory T hy ::= T
[T ]
:= {ϑ}

View Viw ::= v : T → T
[µ]
:= {σ} | v : T → T := µ

Theory body ϑ ::= Sym∗

Symbol Sym ::= Con | Str
Link body σ ::= Ass∗

Assignment Ass ::= ConAss | StrAss
Constant Con ::= c : ω := ω | c : ω | c := ω | c

Structure Str ::= i : T
[µ]
:= {σ} | i : T := µ

Ass. to constant ConAss ::= c 7→ ω

Ass. to structure StrAss ::= i 7→ µ

Term ω ::= > | c | x | ωµ | @(ω,ω+)
| β (ω,ϒ,ω) | α(ω,ω 7→ ω)

Variable context ϒ ::= · | ϒ,ω if str(ω) of the form x
Morphism µ ::= idT | i | v | µ •µ

Document reference g ::= URI, no query, no fragment
Module reference T,v ::= g?T | g?v
Symbol reference c, i ::= T ?c | T ?i
Assignment reference a ::= v?c | v?i
Local name T ,v,c, i ::= C+[/C+]∗

Variable name x ::= C+

Character C ::= pchar
URI, pchar see RFC 3986 [BLFM05]

Figure 5: The Grammar for Raw MMT Expressions

Atomic object Composed object Type Checked relative to
Terms constant term term home theory
Morphisms structure/view morphism domain codomain

Figure 6: The Object Level

• constants c declared or imported by the home theory,

• variables x declared by a binder,

• applications @(ω,ω1, . . . ,ωn) of ω to arguments ωi,

• bindings β (ω1,ϒ,ω2) by a binder ω1 of a list of variables ϒ with scope ω2,

• attributions α(ω1,ω2 7→ ω3) to a term ω1 with key ω2 and value ω3,

• morphism applications ωµ of µ to ω ,
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• special term >.

A term over T , may use the constant T ?c to refer to a previously declared symbol c. And if i is a
previously declared structure instantiating S, and c is a constant declared in S, then T may use T ?i/c to
refer to the imported constant. By concatenating structure names, any indirectly imported constant has a
unique qualified name.

The attributions of OPENMATH mean that every term can carry a list of key-value pairs that are
themselves OPENMATH objects. In particular, attributions are used to attach types to bound variables.
In OPENMATH, the keys must be symbols, which we relax to obtain a more uniform syntax. Because
OPENMATH specifies that nested attributions are equivalent to a single attribution, we can introduce
attributions of multiple key-value pairs as abbreviations:

α(ω,ω1 7→ ω
′
1, . . . ,ωn 7→ ω

′
n) := α(. . .(α(ω,ω1 7→ ω

′
1), . . .),ωn 7→ ω

′
n)

We use the auxiliary function str(·) to strip toplevel attributions from terms, i.e.,

str(α(ω, )) = str(ω) str(ω) = ω otherwise.

This is used in the grammar to make sure that only attributed variables and not arbitrary terms may occurs
in the context bound in a binding.

The special term > is used for terms that are inaccessible because they refer to constants that have
been hidden by a structure or view. > is also used to subsume hidings under assignments (see below).
Example 2 (Continued). The running example only contains the atomic terms given by symbols. Com-
posed terms arise when types and axioms are covered. For example, the type of the inverse in a commu-
tative group is @(→, ι , ι). Here→ represents the function type constructor and ι the carrier set. These
two constants are not declared in the example. Instead, we will add them later by giving cgroup a meta-
theory, in which these symbols are declared. A more complicated term is the axiom for left-neutrality of
the unit:

ωe := β (∀,α(x,oftype 7→ ι),@(=,@(e?monoid?comp,e?monoid?unit,x),x)).

Here ∀ and = are further constants that must be declared in the so far omitted meta-theory. The same
applies to oftype, which is used to attribute the type ι to the bound variable x. We assume that the
example is located in a document with URI e. Thus, for example, e?monoid?comp is used to refer to the
constant comp in the theory monoid.

Morphisms Morphisms are built up by compositions µ1 •µ2 of structures i, views m, and the identity
idT of T . Here µ1 is applied before µ2, i.e., • is composition in diagram order. Morphisms are not used in
OPENMATH, which only has an informal notion of theories, namely the content dictionaries, and thus no
need to talk about theory morphisms. A morphism application ωµ takes a term ω over S and a morphism
µ from S to T , and returns a term over T . Similarly, a morphism over S, e.g., a morphism µ ′ from R
to S becomes a morphism over T by taking the composition µ ′ •µ . The normalization given below will
permit to eliminate all morphism applications.
Example 3 (Continued). In the running example, an example morphism is

µe := e?cgroup?mon• e?v2.

It has domain e?monoid and codomain e?integers. The intended semantics of the term ωe
µe is that it

yields the result of applying µe to ωe, i.e.,

β (∀,α(x,oftype 7→ ι),@(=,@(+,0,x),x)).

Here, we assume µe has no effect on those constants that are inherited from the meta-theory. We will
make that more precise below.
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2.1.2 The Symbol Level

We distinguish symbol declarations and assignments to symbols. Declarations are the constituents of
theories: They introduce named objects, i.e., the constants and structures. Similarly, assignments are
the constituents of links: A link from S to T can be defined by a sequence of assignments that instantiate
constants or structures declared in S with terms or morphisms, respectively, over T . This yields four
kinds of knowledge items which are listed in Fig. 7. Both constant and structure declarations are further
subdivided as explained below.

Declaration Assignment
Terms of a constant Con to a constant c 7→ ω

Morphisms of a structure Str to a structure i 7→ µ

Figure 7: The Statement Level

Declarations There are two kinds of symbols:

• Constant declarations c : τ := δ declare a constant c of type τ with definition δ . Both the type
and the definition are optional yielding four kinds of constant declarations. If both are given, then
δ must have type τ . In order to unify these four kinds, we will sometimes write ⊥ for an omitted
type or definition.

• Structure declarations i : S
[µ]
:= {σ} declare a structure i from the theory S defined by assignments

σ . Such structures can have an optional meta-morphism µ (see below). Alternatively, structures
may be introduced using an existing morphism: i : S := µ , which simply means that i serves as an
abbreviation for µ; we call these structures defined structures. While the domain of a structure
is always given explicitly (in the style of a type), the codomain is always the theory in which the
structure is declared. Consequently, if i : S := µ is declared in T , µ must be a morphism from S
to T .

In well-formed theory bodies, the declared or imported names must be unique.

Assignments Parallel to the declarations, there are two kinds of assignments that can be used to define
a link m:

• Assignments to constants of the form c 7→ω express that m maps the constant c of S to the term ω

over T . Assignments of the form c 7→ > express that the constant c is hidden, i.e., m is undefined
for c.

• Assignments to structures of the form i 7→ µ for a structure i declared in S and a morphism µ

over (i.e., into) T express that m maps the structure i of S to µ . This results in the commuting
triangle S?i•m = µ .

Both kinds of assignments must type-check. For a link m with domain S and codomain T defined
by among others an assignment c 7→ ω , the term ω must type-check against τm where τ is the type of c
declared in S. This ensures that typing is preserved along links. For an assignment i 7→ µ where i is a
structure over S of type R, type-checking means that µ must be a morphism from R to T .
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Virtual Symbols Intuitively, the semantics of a structure i with domain S declared in T is that all
symbols of S are imported into T . For example, if S contains a symbol s, then i/s is available as a symbol
in T . In other words, the slash is used as the operator that dereferences structures. Another way to say it
is that structures create virtual or induced symbols. This is significant because these virtual symbols and
their properties must be inferred, and this is non-trivial because it is subject to the translations given by
the structure. While these induced symbols are easily known to systems built for a particular formalism,
they present great difficulties for generic knowledge management services.

Similarly, every assignment to a structure induces virtual assignments to constants. Continuing the
above example, if a link with domain T contains an assignment to i, this induces assignments to the
imported symbols i/s. Furthermore, assignments may be deep in the following sense: If c is a constant
of S, a link with domain T may also contain assignments to the virtual constant i/c. Of course, this
could lead to clashes if a link contains assignments for both i and i/c; links with such clashes are not
well-formed.

Example 4 (Continued). The symbol declarations in the theory cgroup are written formally like this:

inv : @(→, ι , ι) and mon : e?monoid := {}.

The latter induces the virtual symbols e?cgroup?mon/comp and e?cgroup?mon/unit.
Using an assignment to a structure, the assignments of the view v2 look like this:

inv 7→ e?integers?− and mon 7→ e?v1.

The latter induces virtual assignments for the symbols e?cgroup?mon/comp and e?cgroup?mon/unit.
For example, e?cgroup?mon/comp is mapped to e?monoid?compe?v1.

The alternative formulation of the view v2 arises if two deep assignments to the virtual constants are
used instead of the assignment to the structure mon:

mon/comp 7→ e?integers?+ and mon/unit 7→ e?integers?0

2.1.3 The Module Level

The module level consists of two kinds of declarations: theory and view declarations.

• Theory declarations T
[M]
:= {ϑ} declare a theory T defined by a list of symbol declarations ϑ ,

which we call the body of T . Theories have an optional meta-theory M.

• View declarations v : S→ T
[µ]
:= {σ} declare a link v from S to T defined by a list of assignments

σ . If S has a meta-theory M, a meta-morphism µ from M to T must be provided. Just like
structures, views may also be defined by an existing morphism: v : S→ T := µ .

Meta-Theories Above, we have already mentioned that theories may have meta-theories and that links
may have meta-morphisms. Meta-theories provide a second dimension in the graph induced by theories
and links. If M is the meta-theory of T , then there is a special structure instantiating M in T , which
we denote by T ?... M provides the syntactic material that T can use to define the semantics of its
symbols: T can refer to a symbol s of M by T ?../s. While meta-theories could in principle be replaced
with structures altogether, it is advantageous to make them explicit because the conceptual distinction
pervades mathematical discourse. For example, systems can use the meta-theory to determine whether
they understand a specific theory they are provided as input.
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Because theories S with meta-theory M implicitly import all symbols of M, a link from S to T must
provide assignments for these symbols as well. This is the role of the meta-morphism: Every link from
S to T must provide a meta-morphism, which must be a morphism from M to T . Defined structures or
views with definition µ do not need a meta-morphism because a meta-morphism is already implied by
the meta-morphisms of the links occurring in µ .

Example 5 (Continued). An MMT theory for the logical framework LF could be declared like this

lf := {type, funtype, . . .}

where we only list the constants that are relevant for our running example. If this theory is located in a
document with URI m, we can declare a theory for first-order logic in a document with URI f like this:

fol
m?lf
:= {i : ??../type, o : ??../type, equal : @(??../funtype,??i,??i,??o), . . .}

Here we already use relative names (see Sect. 2.3.2) in order to keep the notation readable: Every name
of the form ??s is relative to the enclosing theory: For example, ??i resolves to f ?fol?i. Furthermore,
we use the special structure name .. to refer to those constants inherited from the meta-theory. Again we
restrict ourselves to a few constant declarations: types i and o for terms and formulas and the equality
operation that takes two terms and returns a formula.

Then the theories monoid, cgroup, and ring can be declared using f ?fol as their meta-theory. For
example, the declaration of the theory cgroup finally looks like this:

cgroup
f ?fol
:=

{
inv : @(??../../funtype,??i,??i), inv : e?monoid

e?cgroup?..
:= {}

}
Here ../../funtype refers to the function type constant declared in the meta-theory of the meta-theory.
And the structure mon must have a meta-morphism with domain f ?fol and codomain e?cgroup. This
is trivial because the meta-theory of e?cgroup is also f ?fol: The meta-morphism is simply the implicit
structure e?cgroup?.. via which e?cgroup inherits from f ?fol.

A more complicated meta-morphism must be given in the view v1 if we assume that the meta-theory
of integers is some other theory, i.e., a representation of set theory.

Structures and Views Both structures and views from S to T are defined by a list of assignments σ

that assigns T -objects to the symbols declared in S. And both induce theory morphisms from S to T that
permit to map all objects over S to objects over T . The major difference between structures and views
is that a view only relates two fixed theories without changing either one. On the other hand, structures
from S to T occur within T because they change the theory T . Structures have definitional flavor, i.e.,
the symbols of S are imported into T . In particular, if σ contains no assignment for a constant c, this is
equivalent to copying (and translating) the declaration of c from S to T . If σ does provide an assignment
c 7→ ω , the declaration is also copied, but in addition the imported constant receives ω as its definiens.

Views, on the other hand, have theorem flavor: σ must provide assignments for the symbols of S. If
a constant c : τ represents an axiom stating τ , giving an assignment c 7→ π means that π is a proof of the
translation of τ .

Therefore, the assignments defining a structure may be (and typically are) partial whereas a view
should be total. This leads to a crucial technical difficulty in the treatment of structures: Contrary to
views from S to T , the assignments by themselves in a structure from S to T do not induce a theory
morphism from S to T — only by declaring the structure do the virtual symbols become available in T
that serve as the images of (some of) the symbols of S. This is unsatisfactory because it makes it harder
to unify the concepts of structures and views.
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Therefore, we admit partial views as well. As it turns out, this is not only possible, but indeed de-
sirable. A typical scenario when working with views is that some of the specific assignments making up
the view constitute proof obligations and must be found by costly procedures. Therefore, it is reasonable
to represent partial views, namely views where some proof obligations have already been discharged
whereas others remain open. Thus, we use hiding to obtain a semantics for partial views: All constants
for which a view does not provide an assignment are implicitly hidden, i.e., > is assigned to them.

If a link m from S to T is applied to an S-constant that is hidden, there are two cases: If the hidden
symbol has a definition in S, it is replaced by this definition before applying the link. If it does not have
a definition, it is mapped to >. Hiding is strict: If a subterm is mapped to >, then so is the whole term.
In that case, we speak of hidden terms.

2.1.4 The Document Level

Document declarations are of the form g := {γ} where γ is a document body and g is a URI identifying
the document. The meaning of a document declaration is that γ is accessible via the name g. Since g is
a URI, it is not necessarily only the name, but can also be the primary location of γ . By forming lists
of documents, we obtain libraries, which represent mathematical knowledge bases. Special cases of
libraries are single self-contained documents and the internet seen as a library of MMT documents.

Documents provide the border between formal and informal treatment: How documents are stored,
copied, cached, mirrored, transferred, and combined is subject to knowledge management services that
may or may not take the mathematical semantics of the document bodies in the processed documents
into account. For example, libraries may be implemented as web servers, file systems, databases, or any
combination of these. The only important thing is that they provide the query interface described below.

Theory graphs are the central notion of MMT. The theory graph is a directed acyclic multigraph.
The nodes are all theories of all documents in the library. And similarly, the edges are the structures and
views of all documents. Then theory morphisms can be recovered as the paths in the theory graph.

2.2 Querying a Library

MMT is designed to scale to a mathematical web. This means that we define access functions to MMT

libraries that have the form of HTTP requests to a RESTful web server [Fie00]. Specifically, there
is a lookup function that takes a library Λ and a URI U as arguments and returns an MMT fragment
Λ(U). This specifies the behavior of a web server hosting an MMT library in response to GET requests.
Furthermore, all possible changes to an MMT library can be formulated as POST, PUT, and DELETE
requests that add, change, and delete knowledge items, respectively.

It is non-trivial to add such a RESTful interface to formal systems a posteriori. It requires the rigorous
use of URIs as identifiers for all knowledge items that can be the object of a change. And it requires
to degrade gracefully if the documents in a library are not in the same main memory or on the same
machine. In large applications, it is even desirable to load only the relevant parts of a document into the
main memory and request further fragments on demand from a low-level database service. In MMT, web-
scalability is built into the core: All operations on a library Λ including the definition of the semantics
only depend on the lookup function Λ(−) and not on Λ itself. In particular, two libraries that respond
in the same way to lookup requests are indistinguishable by design. Therefore, MMT scales well to
web-based scenarios.

Here we will only give a brief overview over the lookup function Λ(−). It is a partial function
from URIs to MMT fragments. For example, assume Λ to contain a theory S containing the symbol
declarations c : τ, c′ : τ ′, and h : R := {}; furthermore, assume a theory T = g?T declaring a structure
i : S := {c 7→ δ , h 7→ µ}.
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Then the lookups of S?c and S?h yield c : τ and h : R := {}, respectively. These are lookups of
explicit symbol declarations — an important feature of MMT is that all induced, symbols can be looked
up in the same way. For example, Λ(T ?i/c) yields i/c : τT ?i := δ . Here i/c is the unique name of the
constant c induced by the structure i; τT ?i is the translation of the type of S?c along the structure T ?i; and
the assignment c 7→ δ causes δ to occur as the definiens of the constant i/c. Similarly, the lookup of the
induced structure T ?i/h yields i/h : R := µ . Here the assignment i 7→ µ causes i/h to be defined by a
morphism.

To query and edit documents, assignments are also accessible by URIs even though they are not
referenced by any rule of the syntax. An assignment c 7→ ω in a view v is referenced by the URI v?c
and similarly for assignments to structures. To access assignments in structures, we distinguish the URIs
g?T ?i/c and g?T/i?c: The former identifies the constant c that is induced by i as defined above; the
latter identifies the assignment c 7→ δ to the symbol c in the structure T ?i. In particular, the lookup of the
former always is always defined, while the lookup of the latter is undefined if no assignment is present.

Just like symbols induced by structures have URIs, so have assignments induced by assignments to
structures. For example, if additionally R declares a constant d : ρ := ⊥, then the lookup of g?T/i?h/d
yields h/d 7→ (R?d)µ . This means that the assignment h 7→ µ in T ?i induces an assignment to h/d. The
lookup of assignments to induced structures is defined accordingly.

The above lookup functions are actually modified to accommodate for hiding. If the lookup of a
constant would yield c : τ := δ according to the above definition, but δ is (or simplifies to) >, then the
lookup is actually undefined.

Example 6 (Continued). If Λ is a library containing the three documents with URIs m, f , and e from the
running example, we obtain the following lookup results:

• Λ(e?monoid) = ( f ?fol, ϑ) where ϑ contains the declarations for comp and unit,

• Λ(e?cgroup/mon) = (e?monoid, e?cgroup, e?cgroup?.., ·),
i.e., e?cgroup/mon is a morphism from e?monoid to e?cgroupwith meta-morphism e?cgroup?..,
and without any assignments,

• Λe?monoid(unit) = (e?monoid?../i, ⊥),
i.e., the theory monoid has a constant unit with type e?monoid?../i and no definition,

• Λe?cgroup(mon/unit) = (e?monoid?../ie?cgroup?mon, ⊥),
i.e., the type of the virtual constant mon/unit arises by translating the type from the source theory
along the importing structure,

• Λe?cgroup/mon(unit) =⊥,
i.e., the lookup is undefined because the structure e?cgroup/mon does not have an assignment for
unit,

• the lookup Λe?v2(mon/unit) yields e?integers?0 if the variant with the deep assignment mon/unit 7→
e?integers?0 is used to define v2, and e?monoid?unite?v1 if the variant with the structure as-
signment mon 7→ e?v1 is used.

2.3 Concrete Syntax

2.3.1 XML-Encoding

The XML grammar mostly follows the abstract grammar. Documents are omdoc elements with a the-
ory graph, i.e., theory and view elements as children. The children of theories are constant and
structure. And the children of views and structures are maps (assignment to a constant or structure).
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Both terms and morphisms are represented by OPENMATH elements. And all names of theories
are URIs. The grammar does not account for the well-formedness of objects and names. In particular,
well-formedness is not checked at this level.

Formally, we define an encoding function E(−) that maps MMT-expressions to sequences of XML
elements. The precise definition of E(−) is given in Fig. 9 and 10 where we assume that the following
namespace bindings are in effect:

xmlns=”http: // www.omdoc.org/ns/omdoc”
xmlns:om=”http: // www.openmath.org/OpenMath”

And we assume the following content dictionary with cdbase http://cds.omdoc.org/omdoc/mmt.
omdoc, which is itself given as an OMDOC theory:

<omdoc>
<theory name=”mmt”>

<constant name=”hidden”/>
<constant name=”identity”/>
<constant name=”composition”/>

</theory>
</omdoc>

We abbreviate the OMS elements referring to these symbols by OMDoc(identity) etc.
The encoding of the structural levels is straightforward. The encoding of objects is a generaliza-

tion of the XML encoding of OPENMATH objects. We use the OMS element of OPENMATH to refer to
symbols, theories, views, and structures. The symbol with name OMDoc(hidden) is used to encode
the special term >. To encode morphisms, OMDoc(identity) and OMDoc(composition) are used.
OMDoc(identity) takes a theory as an argument and returns a morphism. OMDoc(composition)
takes a list of structures and views as arguments and returns their (left-associative) diagram order com-
position. Morphism application is encoded by reusing the OMA element from OPENMATH.

OMS-triple E(g?m?s) base=”g” module=”m” name=”s”

E(g?m) base=”g” module=”m”

URI E(g?m?s) g?m?s
E(g?m) g?m

Figure 8: XML Encoding of Names

The encoding of names is giving sepa-
rately in Fig. 8 on the right. There are two
different ways to encode names. In OMS el-
ements, triples (g,m,s) of document, mod-
ule, and symbol name are used, albeit with
more fitting attribute names. These triples
correspond to the (cdbase,cd,name) triples
of the OPENMATH standard ([BCC+04]).
We also use them to refer to module level names by omitting the name attribute. When names occur in
attribute values, their URIs are used.

2.3.2 Relative Names

In practice it is very inconvenient to always give qualified names. Therefore, we define relative references
as a relaxation of the syntax that is elaborated into the official syntax.

A relative reference consists of three optional components: a document reference g, a module ref-
erence m and a symbol reference s. We write relative references as triples (g,m,s) where we write ⊥ if a
component is omitted. g must be a URI reference as defined in RFC 3986 ([BLFM05]) but without query
or fragment. m and s must be unqualified names, i.e., slash-separated non-empty sequences of names.
Furthermore, m ans s may optionally start with a slash, which is used to distinguish absolute module and
symbol references from relative ones.

An absolute reference, which serves as the base of the resolution, is an MMT-name G, G?M, or
G?M?S. Then the resolution of relative references is a partial function that takes a relative reference
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Library E(Doc1, . . . ,Docn) E(Doc1) . . . E(Docn)
Document E(g := {Mod1, . . . ,Modn}) <omdoc>E(Mod1) . . .E(Modn)</omdoc>

Theory E(T
[M]
:= {Sym1, . . . ,Symn})

<theory name=”T ” [metatheory=”E(M)”]>
E(Sym1) . . .E(Symn)

</theory>

View E(v : S→ T
[µ]
:= {σ})

<view name=”v” from=”E(S)” to=”E(T )”>
[<metamorphism>E(µ)</metamorphism>]
E(σ)

</view>

E(i : S→ T := µ)

<view name=”i” from=”E(S)” to=”E(T )”>
<definition>

<OMOBJ>E(µ)</OMOBJ>
</definition>

</view>

Figure 9: XML Encoding of Document and Module Level

R = (g,m,s) and an absolute reference B as input and returns an MMT-name resolve(B,R) as output. It
is defined as follows:

• If g 6=⊥, then possible starting slashes of m and s are ignored and

– if R = (g,m,s): resolve(B,R) = (G+g)?m?s,

– if R = (g,m,⊥): resolve(B,R) = (G+g)?m,

– if R = (g,⊥,⊥): resolve(B,R) = G+g,

where G+g denotes the resolution of the URI reference g relative to the URI G as defined in RFC
3986 ([BLFM05]).

• If g =⊥ and m 6=⊥, then a possible starting slash of s is ignored and

– if R = (⊥,m,s): resolve(B,R) = G?M +m?s,

– if R = (⊥,m,⊥): resolve(B,R) = G?M +m,

where M + m resolves m relative to M: If M is not defined or if m starts with a slash, M + m is m
with a possible starting slash removed; otherwise, it is M/m.

• If g = m =⊥ and M is defined, then resolve(B,R) = G?M?S+ s, where S+ s is defined like M +m
above.

• resolve(B,R) is undefined otherwise.

Relative references can also be encoded as URIs: The triple (g,m,s) is encoded as g?m?s. If com-
ponents are omitted, they are encoded as the empty string. Trailing (but not leading) ? characters can be
dropped. For example,

• (g,m,⊥) is encoded as g?m,

• (⊥,/m,s) is encoded as ?/m?s,

• (⊥,⊥,s) is encoded as ??s,

This encoding can be parsed back uniquely by splitting a URI into up to three components around the
separator ?.
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Constant E(c : [τ] := [δ ])

<constant name=”c”>
[<type>

<OMOBJ>E(τ)</OMOBJ>
</type>]
[<definition>

<OMOBJ>E(δ )</OMOBJ>
</definition>]

</constant>

Structure E(i : S
[µ]
:= {σ})

<structure name=”i” from=”E(S)”>
[<metamorphism>E(µ)</metamorphism>]
E(σ)

</structure>

E(i : S := µ)

<structure name=”i” from=”E(S)”>
<definition>

<OMOBJ>E(µ)</OMOBJ>
</definition>

</structure>
Assignments E(Ass1, . . . ,Assn) E(Ass1) . . .E(Assn)

E(c 7→ ω)
<conass name=”E(c)”>

<OMOBJ>E(ω)</OMOBJ>
</conass>

E(i 7→ µ)
<strass name=”E(i)”>

<OMOBJ>E(µ)</OMOBJ>
</ strass>

Term E(c) <om:OMS E(c)/>

E(x) <om:OMV name=”x”/>

E(>) OMDoc(hidden)

E(ωµ) <om:OMA>E(µ) E(ω)</om:OMA>

E(@(ω1, . . . ,ωn)) <om:OMA>E(ω1) . . . E(ωn)</om:OMA>

E(β (ω1,x1, . . . ,xn,ω2))

<om:OMBIND>
E(ω1)
<om:OMBVAR>

E(x1) . . . E(xn)
</om:OMBVAR>
E(ω2)

</om:OMBIND>

E(α(ω1,ω2 7→ ω3))
<om:OMATTR>

<om:OMATP>E(ω2) E(ω3)</om:OMATP>
E(ω1)

</om:OMATTR>

Morphism E(idT )
<om:OMA>

OMDoc(identity)
<om:OMS E(T )/>

</om:OMA>

E(µ1 • . . .•µn)
<om:OMA>

OMDoc(composition)
E(µ1) . . .E(µn)

</om:OMA>

E(i) <om:OMS E(i)/>

E(v) <om:OMS E(v)/>

Figure 10: XML Encoding of Symbol and Object Level
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3 Advanced Concepts

In this section, we give an overview over the most important advanced concepts related to MMT. Full
definitions are given in [Rab08].

Well-formed Expressions The well-formedness of expressions is defined by an inference system about
MMT fragments. This system guarantees in particular the uniqueness of all names. The most difficult of
the well-formedness definition is to deal with assignments to structures: In general, an assignment i 7→ µ

to a structure with domain S may cause inconsistencies if a constant S?c has a definition in S that differs
from (S?c)µ . The definition of well-formedness makes sure that such inconsistencies are prevented. And
it does so in a way that can be checked efficiently because the modular structure is exploited throughout
the well-formedness checking.

MMT does not provide a definition of well-typed terms or of logical consequence. Rather, the MMT

inference system is parametric in the judgments for equality and typing of terms. The definitions of these
judgments must be provided externally. In our MMT implementation, these judgments are defined by
plugins where the meta-theory of the home theory of a term ω determines which plugin is used to check
the well-typedness of ω .

Semantics The representation of theory graphs is geared towards expressing mathematical knowledge
with the least redundancy by using inheritance between theories. This style of writing mathematics has
been cultivated by the Bourbaki group ([Bou74]) and lends itself well to a systematic development of
theories. However, it is often necessary to eliminate the modular structure, for example when interfacing
with a system that cannot understand it or to elaborate modular theories into a non-modular trusted core.

Therefore, we define a so-called flattening operation that eliminates all structures, meta-theories, and
morphisms, and reduces theories to collections of constants, possibly with types and definitions, which
conforms to the non-modular logical view of theories. For a given MMT-library Λ, we can view the
flattening of Λ as its semantics, since flattening eliminates all specific MMT-representation infrastruc-
ture. Essentially, the flattening replaces all structures with the induced symbols and all assignments to
structures with the induced assignments as described in Sect. 2.2. The crucial invariant of the flattening
is that if a library is well-formed, then so is its flattening; and furthermore, a library and its flattening are
indistinguishable by the lookup function Λ(−). This guarantees that flattening can be performed trans-
parently. In particular, the above-mentioned external definitions of typing and equality are only needed
for the non-modular case.

Applications There are two main use cases for MMT: the use of MMT as a simple interface language
between (i) two logical systems as well as between (ii) a logical system and a knowledge management
service.

The first use case uses MMT as an interlingua for system interoperability. This works well because
the choice of primitives in MMT is the result of a careful trade-off between simplicity and expressivity.
Thus, MMT provides a simple abstraction over the most important language constructs that are com-
mon to systems maintaining logical libraries, while deliberately avoiding other features that would have
increased the burden on systems reading MMT. Here the logics-as-theories approach provides an ex-
tremely helpful way to document the semantics of the logic-specific concepts and their counterparts in
other logics; furthermore, systems can use the meta-theory relation to detect which theories they can
interpret and how to interpret them.
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By knowledge management services, we mean services that can be applied to logical knowledge
but are not primarily logical in nature. Such services include user interaction, concurrent versioning,
management of change, and search. Implementing such services often requires intricate details about
the underlying system, thus severely limiting the set of potential developers. But in fact these services
can often be developed independently of the logical systems and with relatively little logical expertise.
Here MMT comes in as an interface language providing knowledge management services with exactly
the information they need while hiding all logic- and system-specific details. Therefore, for example, the
concrete syntax of MMT fully marks up the term structure, while the well-formedness definition of MMT

does not take type-checking into account.

4 Conclusion

We have presented an exchange format for mathematical knowledge that supports system interoperability
by providing an infrastructure for efficiently re-using representations of mathematical knowledge and for
formalizing foundational assumptions and structures of the underlying logical systems themselves in a
joint web-scalable representation infrastructure.

We consider it a major achievement of the work reported here that the MMT format integrates the-
oretical aspects like the syntax/semantics interface of the module systems or meta-logical aspects with
practical considerations like achieving web-scalability via a URI-based referencing scheme that is well-
integrated with the module system.

The proposed MMT format takes great care to find a minimal set of primitives to keep the representa-
tional core of the language small and therefore manageable but expressive enough to cover the semantic
essentials of current (semi)-automated theorem provers, model checkers, computer algebra systems, con-
straint solvers, concept classifiers and mathematical knowledge management systems.

We are currently evaluating the MMT format and in particular are developing translators from the
Isabelle [Pau94] and CASL [CoF04] formats into MMT. Both representation formats have strong module
systems and well-specified underlying semantics, which make them prime evaluation targets. We are also
integrating the MMT infrastructure into the upcoming version 2 of the OMDOC format [Koh06].
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Connecting Gröbner bases programs with Coq to do proofs in
algebra, geometry and arithmetics

Loı̈c Pottier
INRIA Sophia Antipolis

Abstract

We describe how we connected three programs that compute Gröbner bases [1] to Coq [11], to
do automated proofs on algebraic, geometrical and arithmetical expressions. The result is a set of
Coq tactics and a certificate mechanism 1. The programs are: F4 [5], GB [4], and gbcoq [10]. F4
and GB are the fastest (up to our knowledge) available programs that compute Gröbner bases. Gbcoq
is slow in general but is proved to be correct (in Coq), and we adapted it to our specific problem
to be efficient. The automated proofs concern equalities and non-equalities on polynomials with
coefficients and indeterminates in R or Z, and are done by reducing to Gröbner computation, via
Hilbert’s Nullstellensatz. We adapted also the results of [7], to allow to prove some theorems about
modular arithmetics. The connection between Coq and the programs that compute Gröbner bases is
done using the ”external” tactic of Coq that allows to call arbitrary programs accepting xml inputs
and outputs. We also produce certificates in order to make the proof scripts independant from the
external programs.

1 Introduction

Proof assistants contain now more and more automatic procedures that generate proofs in specific do-
mains. In the Coq system, several tactics exist, for example the omega tactic which proves inequalities
between linear expressions with integer variables, the fourier tactic which does the same thing with
real numbers, the ring and field tactic, which proves equalities between expressions in a ring or a
field, the sos tactic which proves some inequalities on real polynomials. We describe here a new tactic,
called gb, which proves (non-)equalities in rings using other (non-)equalities as hypotheses. For example
∀xy : R,x2 + xy = 0, y2 + xy = 0⇒ x+ y = 0, or ∀x : R,x2 6= 1⇒ x 6= 1.

This tactic uses external efficient programs that compute Gröbner bases, and their result to produce
a proof and a certificate.

We wrote such a tactic several years ago [9], but using only the gbcoq program, which were rather
slow. So the tactic remained experimental and was not included in the Coq system. There are also similar
tactics in other proof systems: in hol-light, John Harrison wrote a program that computes Gröbner bases
to prove polynomial equalities, specially in arithmetics [7]. This program was adapted in Isabelle by
Amine Chaieb and Makarius Wenzel for the same task [2]. We show on examples that our tactic is faster.

This paper is organized as follow. In section 2 we explain the mathematical method we use to reduce
the problem to Gröbner bases computations. In section 3 we detail the tactic and the way it builds a
proof in Coq. In section 4 we show how we connected Coq to the specialized programs that computes
Gröbner bases. Section 5 details the complete tactics that proves also non-equalities, and section 6 shows
how to produce certificates and then save time in the proof script. In section 7 we give some examples
of utilisations of the tactic in algebra, geometry and arithmetics, with comparisons with hol-light[6] .
Section 8 contains the conclusion and perpectives of this work.

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 67-76
1downloadable at http://www-sop.inria.fr/marelle/Loic.Pottier/gb-keappa.tgz
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2 Hilbert Nullstellensatz

Hilbert Nullstellensatz shows how to reduce proofs of equalities on polynomials to algebraic computa-
tions (see for example [3] for the notions introduced in this section).

It is easy to see that if a polynomial P in K[X1, . . . ,Xn] verifies Pr = ∑
s
i=1 QiPi, with r a positive

integer, Qi and Pi also in K[X1, . . . ,Xn], then P is zero whenever polynomials P1, ...,Ps are zero.
Then we can reduce the proof of P1 = 0, . . . ,Ps = 0⇒ P = 0 to find Q1, . . . ,Qs and r such that

Pr = ∑i QiPi.
The converse is also true when K is algebraically closed: this is the Hilbert Nullstellensatz. In this

case, the method is complete.
Finding Pr = ∑i QiPi can be done using Gröbner bases, as we will explain now.
Recall that an ideal I of a ring is an additive sub-group of the ring such that ax ∈ I whenever

a ∈ I . The ideal generated by a family of polynomials is the set of all linear combinations of these
polynomials (with polynomial coefficients).

A Gröbner basis of an ideal is a set of polynomials of the ideal such that their head monomials
(relative to a choosen order on monomials, e.g. lexicographic order, or degree order) generates the ideal
of head monomials of all polynomials in the ideal. The main property of a Gröbner basis is that it
provides a test for the membership to the ideal: a polynomial is in the ideal iff its euclidian division
by the polynomials of the basis gives a zero remainder. The division process is a generalisation of the
division of polynomials in one variable: to divide a polynomial P by a polynomial aXα −Q we write
P = aXαS + T where T contains no monomial that is multiple of Xα . Then change P with QS + T and
repeat divison. The last non zero T is the remainder of the division. To divide a polynomial by a family
of polynomials, we repeat this process with each polynomial of the family. In general, the remainder
depends on the order we use the polynomials of the family. But with a Gröbner basis, this remainder is
unique (this is a characteristic property of Gröbner basis).

2.1 Method 1: how to find Q1, . . . ,Qs such that 1 = ∑i QiPi

Compute a Gröbner base of the polynomials {tPi− ei, eie j, eit}i, j (where t,e1, . . . ,es are new variables)
with an order such that t > Xi > ei.

Suppose that, in this basis, there is a polynomial of the form t−∑i Qiei. This polynomial is then in
the ideal generated by {tPi− ei, eie j, eit}i, j, so is a linear combination of these polynomials:

t−∑i Qiei = ∑i hi(tPi− ei) + ∑i j gi jeie j + ∑i kieit
ei are formal variables, so we can substitute formally ei with tPi, and we obtain t(1−∑i QiPi) =

0 + t2( ∑i j gi jPiPj + ∑i kiPi).
Then the coefficient of t in this equation must be zero: 1−∑i QiPi = 0, and we are done.
Note that the polynomials {eit, eie j} are not necessary, but their presence much speed up the com-

putation of the Gröbner basis2.

2.2 Method 2: how to find Q1, . . . ,Qs and r such that Pr = ∑i QiPi

Use the standard trick: search to write 1 = ∑i hiPi + h(1− zP) (∗), where z is a new variable. This can
be done with the previous method. Suppose we succeed. Let r be the max degree in z of polynomials hi.

Substitute formally z with 1/P, and multiply the equation (*) by Pr. Then we obtain Pr = ∑i QiPi, as
required, where Qi = Prhi[z← 1/P]

2thanks to Bernard Mourrain for this trick
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2.3 Completness

It is easy to see that methods 1 and 2 are complete in the sense that if Pr = ∑i QiPi holds, there will find
such an equation:

• method 1: suppose 1−∑i QiPi = 0. Then t = ∑i QitPi, and t −∑i Qiei = ∑i Qi(tPi− ei). Hence
t−∑i Qiei belongs to the ideal of which we have computed a Gröbner basis. Because of the order
we have choosen on variables, this implies that there is a polynomial t −∑i hiei in the Gröbner
basis.

• method 2: suppose Pr = ∑i QiPi. We have 1− zrPr = (1+ zP+ . . .+ zr−1Pr−1)(1− zP). Replacing
Pr with ∑i QiPi we obtain 1 = zr(∑i QiPi)+(1+ zP+ . . .+ zr−1Pr−1)(1− zP).

2.4 Example

Take p = x+ y, p1 = x2 + xy, p2 = y2 + xy. With the previous method, the Gröbner basis is:

t− zye0− zxe0− z2e1− z2e2− e0
y2e0− x2e0 + zye1− zxe2− e1 + e2
yxe0 + x2e0 + zye2 + zxe2− e2
e2

0
xe1− ye2
e0e1,e2

1,e0e2,e1e2,e2
2

we obtain r = 2, Q1 = 1, Q2 = 1, and then (x + y)2 = 1× (x2 + xy)+ 1× (y2 + xy). Which proves
that x2 + xy = 0, y2 + xy = 0⇒ x+ y = 0.

3 Proof in Coq

Coq [11] is a proof assistant based on type theory, where we can interactively build proofs of goals,
which are logical assertions of the form ∀H1 : T1, . . . ,∀Hn : Tn,C(H1, . . . ,Hn). Using tactics, we can
simplify the goal, while the system builds the corresponding piece of proof.

Typically we will treate goals of the form:

x : Z
y : Z
H : x ^ 2 + x * y = 0
H0 : y ^ 2 + x * y = 0
============================
x + y = 0

Here hypotheses are variables belonging in a ring or a field, and equalities between polynomials.
We explain now how to compute and use the Nullstellensatz equation to build a proof of this goal

in Coq. The steps are: syntaxification, Gröbner basis computation, and building the proof from the
Nullstellensatz equation.

3.1 Syntaxification

We begin by building polynomials from the three equations in this goal. This is done in the tactic
language of Coq (LTAC, which is a meta-language for computing tactics and executing them) by first
computing the list of variables:
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lv = (cons y (cons x nil))

and the list of polynomials:

lp = (cons (Add (Pow (Var 2) 2) (Mul (Var 2) (Var 1)))
(cons (Add (Pow (Var 1) 2) (Mul (Var 2) (Var 1)))
(cons (Sub (Add (Var 2) (Var 1)) (Const 0 1))
nil)))

Variables are represented by their rank in the list of variables. Polynomials are elements of an in-
ductive type, and we can recover the equations by interpreting them in Z with the list of variables. For
example,

(interpret (Add (Pow (Var 2) 2) (Mul (Var 2) (Var 1)))
lv)

evaluates in x^2 + x * y.
We used parts of the code of the sos[8] tactic, written by Laurent Théry.

3.2 Calling Gröbner basis computation

We call the external program gb (see section 4) with the list of polynomials; here we choose the program
F4 to compute Gröbner basis:

external "./gb" "jcf2" lp

The result is the term:

(cons
(Pow
(Add

(Add Zero
(Mul

(Add (Add Zero (Mul (Const 0 1) (Const 1 1)))
(Mul (Const 1 1) (Pow (Var 1) 1))) (Const 1 1)))

(Mul (Const 1 1) (Pow (Var 2) 1)))
2)

(cons (Const 1 1) (cons(Const 1 1) (cons (Const 1 1) nil))))

which has the structure

(cons (Pow p d) (cons c lq))

such that the Nullstellensatz equation holds:

cpd = ∑
qi∈lq

qi pi

Here, we have lq = q1,q2, q1 = q2 = 1
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3.3 Building the proof from the Nullstellensatz equation

After interpreting the polynomials q1 and q2 in Z using the original list of variables, we get and prove
easily the goal

1 * (x + y)^2 = 1 * (x ^ 2 + x * y) + 1 * (y ^ 2 + x * y)
by the ring tactic.
To prove the original goal, it is now sufficient to rewrite x^2 + x * y and y^2 + x * y by 0,

getting 1 * (x + y)^2 = 0, and, using a simple lemma, we get x + y = 0 and we are done.

4 Connecting F4, GB, and gbcoq to Coq

Coq allows to call arbitrary external programs via a function called ”external”. It sends Coq terms in
xml format (i.e. as tree) to the standard output of the external program, and gets its standard output (also
in xml format) as a resulting Coq term. We use this function to compute a Gröbner basis of a list of
polynomials, via a single interface to three specialized programs: F4, GB, and gbcoq. This interface,
called ”gb” is written in ocaml. It translates the list of polynomials given as standard input in xml format
in the format of the choosen program (F4, GB or gbcoq), call it with the good arguments, get its result
(a Gröbner basis, if no error occured), selects its useful information, translates it in xml and sends it as
result to standard output. More precisely:

• F4 is a C library, and has only an interface for Maple. We wrote a simple parser of polynomials to
use it on command line, helped by J.C. Faugère.

• GB is also written in C and has a command line interface, or accept inputs in a file; with a Maple-
like syntax for polynomials.

• Gbcoq is written in ocaml, so is integrated to gb. This program uses an Buchberger-like algorithm
which has been extracted from Coq. So it is proven to be correct. We added recently an optimisa-
tion which reduces drastically the time to compute Nullstellensatz equations: each time we add a
new polynomial during the completion via the reduction of critical pairs, we divide the polynomial
that we want to test if it is in the ideal, by the current family of polynomials. If this gives zero,
then we stop:, and return the Nullstellensatz coefficients, deduced from the divisions we made.
More we also try its powers (up to a parametrized limit). Then, when we have computed the whole
Gröbner basis, we can compute the Nullstellensatz coefficients, without having to verify that the
remaining critical pairs reduce to zero. More, this is often the case that the polynomial reduces to
zero with a partial Gröbner basis! The time is sometimes divided by 1000 with such a technique,
and always much reduced. Note that such an improvement cannot be made in a blackbox program
such as the programs of JC Faugère, which are free but not opensource.

5 The gbR and gbZ tactics in Coq

We wrote two tactics: gbR for real numbers, gbZ for integers. The set of integer is not a field, but
we can simulate computations in the field of rational numbers using only integers. In this case, the
Nullstellensatz equation become cpd = ∑i qi pi, where c is an integer, and the qi have integer coefficients.

We can allow negations of equations in the conclusion. For example xy = 1⇒ x 6= 0. The trick is to
replace x 6= 0 with x = 0⇒ 1 = 0, which is equivalent to add a new equation in hypotheses, and replace
the equation to prove with 1 = 0.

In the case of real numbers, we can allow also negations of equations in hypotheses. For example
x2 6= 1⇒ x 6= 1. This can be done by introducing new variables, remarking that p 6= 0⇔ ∃t, p ∗ t = 1.
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In the example, this gives t(x2−1) = 1⇒ x 6= 1. The negation in conclusion can be removed and leads
to t(x2−1) = 1, x−1 = 0⇒ 1 = 0, which is proven using the Nullstellensatz equation 1 = 1× (t(x2−
1)−1)+(t + tx)× (x−1)

Finally, the tactics use first the program F4. If it fails (for memory limits), then the tactics try GB.
If it fails too, then the tactics uses gbcoq. We have also specialised tactics, allowing the user to choose
which program to use, between F4, GB, and gbcoq. Indeed, experiments show that no one is better than
others.

6 Certificates

Once the Nullstellensatz equation is computed, we can change the proof script, replacing the tactic gb
with a similar tactic, called ”check gb” which will not call external programs, but instead it will take as
arguments all the components of the Nullstellensatz equation. So, next time we will execute the proof
script, for compilation for example, it will not need external Gröbner computation3. Let us give an
example. Suppose we want to prove:

Goal forall x y z:R, x^2+x*y=0 -> y^2+x*y=0 -> x+y=0.

we execute the tactic gbR, which proves the goal, and prints these lines in the standard output of Coq:

(* with JC.Faugere algorithm F4 *)
gbR_begin; check_gbR
(x + y - 0)
(List.cons (x * (x * 1) + x * y) (List.cons (y * (y * 1) + x * y) List.nil))
(List.cons y (List.cons x List.nil))

(lceq
(Pow

(Add
(Add Zero

(Mul
(Add (Add Zero (Mul (Const 0 1) (Const 1 1)))

(Mul (Const 1 1) (Pow (Var 1) 1))) (Const 1 1)))
(Mul (Const 1 1) (Pow (Var 2) 1))) 2)

(lceq (Const 1 1) (lceq (Const 1 1) (lceq (Const 1 1) lnil))))
.

Then, we can replace the line calling gbR with these tactics lines, which contains no more than the
components of the needed Nullstellensatz equation (x+y)2 = 1×(x2 +xy)+1×(y2 +xy), and then need
much less time to evaluate, because it doesn’t need Gröbner basis computation.

7 Examples

In this section we give several examples of use of the tactics gbR and gbR.

3thanks to Julien Narboux for this suggestion
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7.1 Algebra

The following examples uses the symetric expressions of coefficients with roots of a polynomial.
First in degree 3: if x,y,z are the three complex roots of X3 + a ∗X2 + b ∗X + c then we have a =

−(x + y + z), b = x ∗ y + y ∗ z + z ∗ x, and c = −x ∗ y ∗ z. And then we can prove that x + y + z = 0⇒
x∗ y+ y∗ z+ z∗ x = 0⇒ x∗ y∗ z = 0⇒ x = 0, because then the polynomial becomes X3, and has only 0
as a root.

Require gbZ.

Goal forall x y z:Z,
x+y+z=0 -> x*y+y*z+z*x=0 -> x*y*z=0 -> x=0.

gbZ.
Qed.

More complicated, the same thing in degrees 4 and 5:

Goal forall x y z u:Z,
x+y+z+u=0 ->
x*y+y*z+z*u+u*x+x*z+u*y=0 ->
x*y*z+y*z*u+z*u*x+u*x*y=0 ->
x*y*z*u=0 -> x=0.

gbZ.
Qed.

Goal forall x y z u v:Z,
x+y+z+u+v=0 ->
x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0->
x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0->
x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 ->
x*y*z*u*v=0 -> x^5=0.

gbZ.
Qed.

Last example takes less than 1s with F4 and GB, and gbcoq. With hol-light, it takes 1s.

7.2 Geometry

Desargues theorem is too complicated to be proved with Gröbner bases. But Pappus theorem can. We
formalize in Coq the set of points in the real plane:

Open Scope R_scope.
Record point:Type:={
X:R;
Y:R}.

Then we give two definitions of colinearity of three points (the theorem is false if we use only the
second definition, because of degenerated configurations):
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Definition colinear(C A B:point):=
exists a:R,
(X C)=a*(X A)+(1-a)*(X B) /\ (Y C)=a*(Y A)+(1-a)*(Y B).

Definition colinear2(A B C:point):=
(X A)*(Y B)+(X B)*(Y C)+(X C)*(Y A)
=(Y B)*(X C)+(Y C)*(X A)+(Y A)*(X B).

Then we state and prove the Pappus theorem, in a specialized (but without lost of generality) config-
uration:

Lemma pappus: forall A B C A’ B’ C’ D E F:point,
(X A’)=0 -> (X B’)=0-> (X C’)=0 ->
(Y A)=0 -> (Y B)=0 -> (Y C) = 0 ->
colinear D A B’ -> colinear D A’ B ->
colinear E A C’ -> colinear E A’ C ->
colinear F B C’ -> colinear F B’ C ->
colinear2 D E F.

...
gbR_choice 2.
Qed.

In this example, F4 fails, GB takes 9s, and gbcoq takes 3s. We also tried hol-light with this example,
which takes 77s:

./hol

prioritize_int();;

let t1 = Unix.time();;

int_ideal_cofactors
[‘XD -( x4 * XA )‘;
‘YD -((&1 - x4) * YB1)‘;
‘XD -( (&1 - x3) * XB)‘;
‘YD - (x3 * YA1)‘;
‘ XE - x2 * XA‘;
‘YE - (&1 - x2) * YC1‘;
‘ XE - (&1 - x1) * XC‘;
‘ YE - x1 * YA1‘;
‘ XF - x0 * XB‘;
‘ YF - (&1 - x0) * YC1‘;
‘ XF - (&1 - x) * XC‘;
‘ YF - x * YB1‘]
‘ XD * YE + XE * YF + XF * YD -(YE * XF + YF * XD + YD * XE)‘;;
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Unix.time()-.t1;;

The general case of Pappus theorem is too complicated to compute.

7.3 Arithmetics

Following the idea of [7], we can prove statements about coprimality, gcd and divisions. We have to do
some work for that, because the tactic gbZ is not sufficient. But the problem is again an ideal membership
one, then solvable by Gröbner basis computation. We have written a tactic doing that, called gbarith.
Here are examples of its use in Coq:

Definition divides(a b:Z):= exists c:Z, b=c*a.
Definition modulo(a b p:Z):= exists k:Z, a - b = k*p.
Definition ideal(x a b:Z):= exists u:Z, exists v:Z, x = u*a+v*b.
Definition gcd(g a b:Z):= divides g a /\ divides g b /\ ideal g a b.
Definition coprime(a b:Z):= exists u:Z, exists v:Z, 1 = u*a+v*b.

Goal forall a b c:Z, divides a (b*c) -> coprime a b -> divides a c.
gbarith.
Qed.

Goal forall m n r:Z, divides m r -> divides n r -> coprime m n -> divides (m*n) r.
gbarith.
Qed.

Goal forall x y a n:Z, modulo (x^2) a n -> modulo (y^2) a n -> divides n ((x+y)*(x-y)).
gbarith.
Qed.

7.4 Computation times, comparison with hol-light

Previous examples, and more we made, show that no one among F4, GB, gbcoq and is better than others.
hol-light is sometimes better than F4 and GB, but gbcoq is much better than hol-light. The reason is
simple: we often stop computations before obtaining a Gröbner basis.

8 Conclusion

The ”external” tactic of Coq is a very good tool to use efficient programs to produce proofs in specific
domains. We have shown how to use efficient Gröbner bases computations in this context. The use
of certificates should be developped to reduce time of re-verification of proofs. The certificate can be
written explicitely in the proof script, as we have shown here, but it could be stored in a cache. We have
shown the interest of using external programs, but also their limits, as soon as it is impossible or difficult
to adapt them to specific use of proof systems. We plan to investigate other decisions procedures, for
example polynomial system solving, to produce new tactics in the same spirit.

Acknowledgements: we thank anonymous referees for their suggestions on the redaction of this
paper and bibliographical completions.
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Abstract

Cut-elimination is the most prominent form of proof transformation in logic. The elimination
of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathe-
matical proofs. Cut-elimination can be applied to mine real mathematical proofs, i.e. for extracting
explicit and algorithmic information. The system CERES (cut-elimination by resolution) is based on
automated deduction and was successfully applied to the analysis of nontrivial mathematical proofs.
In this paper we focus on the input-output environment of CERES, and show how users can interact
with the system and extract new mathematical knowledge.

1 Introduction

Cut-elimination introduced by Gentzen [6] is the most prominent form of proof transformation in logic
and plays an important role in automating the analysis of mathematical proofs. The removal of cuts
corresponds to the elimination of intermediate statements (lemmas) from proofs resulting in a proof
which is analytic in the sense, that all statements in the proof are subformulas of the result. Therefore,
the proof of a combinatorial statement is converted into a purely combinatorial proof.

In a formal sense Girard’s famous analysis of van der Waerden’s theorem [7] consists in the appli-
cation of cut-elimination to the proof of Fürstenberg and Weiss (which uses topological arguments) with
the “perspective” of obtaining van der Waerden’s elementary proof. Indeed, an application of a complex
proof transformation like cut-elimination by humans requires a goal oriented strategy.

CERES [4, 5] is a cut-elimination method that is based on resolution. The method roughly works
as follows: The structure of an LK-proof containing cuts is mapped to an unsatisfiable set of clauses
C (the characteristic clause set). A resolution refutation of C , which is obtained using a first-order
theorem prover, serves as a skeleton for the new proof which contains only atomic cuts (AC normal
form). In a final step also these atomic cuts can be eliminated, provided the (atomic) axioms are valid
sequents; but this step is of minor mathematical interest and of low complexity. In the system CERES1

this method of cut-elimination has been implemented. The extension of CERES from LK to LKDe,
a calculus containing definition introductions and equality rules (see [10] and [1]), moved the system
closer to real mathematical proofs. The system CERES has been applied successfully to a well known
mathematical proof, namely to Fürstenberg’s proof of the infinity of primes [2]; it was shown that the
elimination of topological arguments from the proof resulted in Euclid’s famous proof. Though CERES
did not (yet) produce substantial mathematical proofs previously unknown, the analysis of Fürstenberg’s
proof demonstrates the potential of the method to handle nontrivial mathematics.

The main task of the CERES-method is proof transformation, not just proof verification. For the
latter one there are powerful higher-order systems like Isabelle2 (see [12]) and Coq3 (see [11]); these

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 77-91
∗Supported by the Austrian Science Fund (project P19875)

1available at http://www.logic.at/ceres/
2available at http://www.cl.cam.ac.uk/research/hvg/Isabelle/
3available at http://coq.inria.fr/
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systems have been used successfully to verify complicated and famous mathematical proofs like this of
the four color theorem (see http://research.microsoft.com/~gonthier/). The core algorithm of
CERES, however, works on LK-proofs and performs cut-elimination. For this reason we have developed
the higher proof language HLK which is close to the sequent calculus LK, making translations to LK easy
and efficient.

In this paper we present the input-output environment of CERES and illustrate the interaction of
users with the system. In the first step proofs are formalized in HLK. The formalized proof is then
compiled to LKDe and analyzed by the CERES-algorithm, and finally the resulting atomic cut normal
form can be viewed by Prooftool. Moreover, from the normal form a Herbrand sequent can be extracted
which contains mathematical information in a more condensed form. We illustrate all phases of proof
specification and analysis by an example, the tape proof of Christian Urban (see also [1]).

2 System overview

Figure 1 sketches how HLK, CERES and ProofTool can be used by a mathematician to analyze existing
mathematical proofs and obtain new ones. According to the labels in the edges of Figure 1, the following

Figure 1: Working with HLK, CERES and ProofTool.

steps are executed within the system and in interaction with the user:

1. The user (intended to be a mathematician with a background in logic) selects an interesting infor-
mal mathematical proof to be transformed and analyzed. Informal mathematical proofs are proofs
in natural language, as they usually occur in mathematics.

2. The user writes the selected proof in HandyLK , a higher proof language, intermediary between
natural mathematical language and formal calculi.

3. The HandyLK proof is input to the compiler HLK.

4. HLK generates a formal proof in sequent calculus LKDe.
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5. The formal proof is input to CERES, which is responsible for all sorts of proof transformations,
including cut-elimination.

6. CERES extracts from the formal proof a characteristic clause set, which contains clauses formed
from ancestors of cut-formulas in the formal proof.

7. The characteristic clause set is then input to a resolution theorem prover, e.g. Otter4 or Prover95.

8. The resolution theorem prover outputs a refutation of the characteristic clause set.

9. CERES receives the refutation, which will be used as a skeleton for the transformed proof in atomic-
cut normal form (ACNF).

10. CERES outputs the grounded refutation in a tree format and the characteristic clause set. Moreover
it extracts projections from the formal proof and plugs them into the refutation in order to generate
the ACNF. The projections and the ACNF are also output. A Herbrand sequent is obtained from
the instantiation information of the quantifiers of the end-sequent (resulting in an (equationally)
valid sequent) and output as well. The Herbrand sequent typically summarizes the creative content
of the ACNF. For details, see [8].

11. All outputs and inputs of CERES can be opened with ProofTool.

12. ProofTool, a graphical user interface, renders all proofs, refutations, projections, sequents and
clause sets so that they can be visualized by the user.

13. The information displayed via ProofTool is analyzed by the user.

14. Based on his analysis, the user can formulate new mathematical ideas, e.g. a new informal direct
proof corresponding to the ACNF.

3 Proof analysis with CERES

Our calculus LKDe is based on standard LK with permutation, contraction and weakening, atomic
axioms and multiplicative rules. For example, the following rules deal with the ∧-connective:

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A∧B

∧ : r
A,Γ ` ∆

A∧B,Γ ` ∆
∧ : l1

A,Γ ` ∆

B∧A,Γ ` ∆
∧ : l2

In addition, to bring the calculus closer to mathematical practice, definition introduction and equality
handling rules are used:

Let A be a first-order formula with the free variables x1, . . . ,xk (denoted by A(x1, . . . ,xk)) and P be a
new k-ary predicate symbol (corresponding to the formula A). Then the definition introduction rules are:

A(t1, . . . , tk),Γ ` ∆

P(t1, . . . , tk),Γ ` ∆
defP : l

Γ ` ∆,A(t1, . . . , tk)
Γ ` ∆,P(t1, . . . , tk)

defP : r

for arbitrary sequences of terms t1, . . . , tk. Definition introduction is a simple and very powerful tool
in mathematical practice. Note that the introduction of important concepts and notations like groups,
integrals etc. can be formally described by introduction of new symbols. There are also definition intro-
duction rules for new function symbols which are of similar type.

4available at http://www-unix.mcs.anl.gov/AR/otter/
5available at http://www.cs.unm.edu/~mccune/prover9/
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The equality rules (also called paramodulation rules) are:

Γ1 ` ∆1,s = t A[s]Λ,Γ2 ` ∆2

A[t]Λ,Γ1,Γ2 ` ∆1,∆2
= : l1

Γ1 ` ∆1, t = s A[s]Λ,Γ2 ` ∆2

A[t]Λ,Γ1,Γ2 ` ∆1,∆2
= : l2

for inference on the left and

Γ1 ` ∆1,s = t Γ2 ` ∆2,A[s]Λ
Γ1,Γ2 ` ∆1,∆2,A[t]Λ

= : r1
Γ1 ` ∆1, t = s Γ2 ` ∆2,A[s]Λ

Γ1,Γ2 ` ∆1,∆2,A[t]Λ
= : r2

on the right, where Λ denotes a set of positions of subterms where replacement of s by t has to be
performed. We call s = t the active equation of the rules.

We will now introduce the CERES system by presenting the analysis of a proof from [13]; it was
formalized in LKDe and analyzed by CERES in [1]. The end-sequent formalizes the statement: on a
tape with infinitely many cells which are all labelled by 0 or by 1 there are two cells labelled by the same
number. f (x) = 0 expresses that the cell nr. x is labelled by 0. Indexing of cells is done by number terms
defined over 0,1 and +. The proof ϕ below uses two lemmas: (1) there are infinitely many cells labelled
by 0 and (2) there are infinitely many cells labelled by 1. These lemmas are eliminated by CERES and a
more direct argument is obtained in the resulting proof ϕ ′.

3.1 Specifying proofs in HandyLK

In this section, we introduce the higher proof language HandyLK by presenting its most important fea-
tures and syntax by means of our example proof. HandyLK is based on the idea that many aspects of
writing LKDe proofs can be automatized. It supports a many-sorted first-order language.

Before starting to write proofs, it is first necessary to define the language and the function and pred-
icate definitions one intends to use. In our example, we deal with a language with one sort (natural
numbers) and the constants mentioned above. In HandyLK , we write:

define type nat;
define constant 0, 1 of type nat;
define infix function + of type nat,nat to nat with weight 100;
define function f of type nat to nat;

In the definition of infix functions like +, we may set a weight that allows terms to be written in the usual
mathematical way, where superfluous brackets may be dropped. In addition to the constants, we define
some variables that will be used in the proof. Here, the function f is the labelling function assigning
labels to tape cells.

define variable k, l, n, p, q, x, n_0, n_1 of type nat;

We also define the axioms we will use. Note that :- represents ` in HandyLK .

define axiom :- k + l = l + k;
define axiom :- k + (l + n) = (k + l) + n;
define axiom k = k + (1 + l) :- ;
define axiom :- k = k;

Finally, we introduce some predicate definitions.

define predicate A by all x ( f(x) = 0 or f(x) = 1 );
define predicate I by all n ex k f( n + k ) = x;
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Note that in the definition of I, x is a free variable. The free variables determine the arity of the defined
predicate, and can be instantiated by parameters. If P is a defined predicate, F is its defining formula
and x̄ are the free variables of F , then the predicate definition is interpreted as ∀x̄(P(x̄) ⇐⇒ F). In our
example, the predicate A is the assumption: All cells are labelled either 0 or 1. The predicate I(x) states
that there are infinitely many cells labelled x.

We now turn to formalizing our example proof ϕ . In LKDe, ϕ is

(τ)
A ` I(0), I(1)

(ε(0))
I(0) ` ∃p∃q(p 6= q∧ f (p) = f (q))

A ` ∃p∃q(p 6= q∧ f (p) = f (q)), I(1)
cut (ε(1))

I(1) ` ∃p∃q(p 6= q∧ f (p) = f (q))
A ` ∃p∃q(p 6= q∧ f (p) = f (q))

cut

Here τ is a proof of the fact that either infinitely many cells are labelled 0, or infinitely many cells are
labelled 1. The two applications of cut encode the application of two lemmas ε(n) for n∈ {0,1}: if there
are infinitely many cells labelled n, then there are two cells labelled by the same number.

In HandyLK , we start the specification of the proof by giving an identifier, here we choose the name
the-proof:

define proof the-proof

Next, the end-sequent is fixed:

proves A :- ex p ex q ( not p = q and f(p) = f(q) );

Now, we begin by specifying the inferences from the bottom up. In HandyLK , only the active formulas
of a rule have to be specified, and no structural rules (except cut) have to be written down explicitly. The
HLK compiler keeps track of the formulas used in the proof, and automatically inserts the structural rules
necessary to be able to apply the rules specified by the user. The first inference in ϕ is a cut, which is a
binary rule. Due to the linear nature of the HandyLK language, one of the subproofs above the binary
rule has to be referenced. The following proof reference clauses are available:

by proof 〈proof 〉
auto propositional 〈sequent〉
explicit axiom 〈sequent〉

The first clause gives the name of the subproof with which to continue, the second clause states that
the subproof ends in a propositional tautology whose proof should be computed automatically, and the
last clause asserts that the subproof consists solely of an axiom. In our example we reference the proof
ε(1).

with cut I(1)
right by proof \epsilon(1);

This specifies an application of cut with cut formula I(1), where the right subproof will be ε(1). In
LKDe, this will be a rule application

Γ ` ∆, I(1)
(ε(1))

I(1),Π ` Λ

Γ,Π ` ∆,Λ
cut

where Γ,Π,∆,Λ will be populated by the appropriate formulas automatically by the HLK compiler.
We continue the HandyLK specification of this proof part with the left subproof of the first applica-

tion of cut by encoding the second application: here, we reference both the left subproof τ and the right
subproof ε(0).
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with cut I(0)
left by proof \tau
right by proof \epsilon(0);

;

This completes the HandyLK specification of ϕ — but to be able to actually compile the proof into an
LKDe-proof, the subproofs τ , ε(0) and ε(1) have to be encoded in HandyLK . We continue by showing
the HandyLK rule applications in τ , which are definition introduction and quantifier rules. The proof τ

starts by expanding the two occurrences of the defined predicate I:

A ` ∀n∃k f (n+ k) = 0,∀n∃k f (n+ k) = 1
A ` I(0),∀n∃k f (n+ k) = 1

defI : r

A ` I(0), I(1)
defI : r

In HandyLK , it suffices to specify the predicate to be expanded and give the auxiliary formulas of the
rules, the correct main formula is then found by HLK through matching:

with undef I
:- all n ex k f( n + k ) = 0, all n ex k f( n + k ) = 1;

Next, the two strong quantifiers are eliminated by ∀ : r rules, introducing the eigenvariables n0 and n1:

A ` ∃k f (n0 + k) = 0,∃k f (n1 + k) = 1
A ` ∃k f (n0 + k) = 0,∀n∃k f (n+ k) = 1

∀ : r

A ` ∀n∃k f (n+ k) = 0,∀n∃k f (n+ k) = 1
∀ : r

The corresponding HandyLK code is

with all right
:- ex k f( n_0 + k ) = 0, ex k f( n_1 + k ) = 1;

Again, it suffices to specify the auxiliary formulas, the correct main formulas are found by matching. The
same holds for the weak quantifier rules. In our example, we instantiate them by n1 and n0, respectively:

A ` f (n0 +n1) = 0, f (n1 +n0) = 1
A ` ∃k f (n0 + k) = 0, f (n1 +n0) = 1

∃ : r

A ` ∃k f (n0 + k) = 0,∃k f (n1 + k) = 1
∃ : r

with ex right
:- f( n_0 + n_1 ) = 0, f( n_1 + n_0 ) = 1;

Of course, HLK checks whether the quantifier rule applications are legal. Our proof τ is nearly done —
it remains to decompose our assumption A and to use the commutativity of +. We only show the latter,
which is encoded with an application of paramodulation:

` n0 +n1 = n1 +n0 f (n1 +n0) = 1 ` f (n1 +n0) = 1
f (n0 +n1) = 1 ` f (n1 +n0) = 1

= : l2

Such a paramodulation application is common when formalizing proofs from mathematics: an equality
axiom from the background theory is used as the active equation. For this reason, it receives special
treatment in HandyLK : the active equation is simply specified in a by clause.

with paramod by n_0 + n_1 = n_1 + n_0
right f( n_1 + n_0 ) = 1 :- ;
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This rule application can also be encoded in the general syntax for binary rules, using a proof reference:

with paramod
f( n_1 + n_0 ) = 1 :-
left explicit axiom :- n_0 + n_1 = n_1 + n_0 ;

Recall that the definition of ϕ in HandyLK contained references to proofs ε(0) and ε(1), which show
that under the assumption that there are infinitely many cells labelled 0 and 1, respectively, it follows that
two cells are labelled by the same number. Clearly, these proofs have a similar structure — this fact can
be exploited in HandyLK by writing a meta proof that can be instantiated with some specific terms:

define proof \epsilon
with meta term i of type nat;

proves
I(i) :- ex p ex q ( not p = q and f(p) = f(q) );

We omit the details of the specification of the meta proof ε(i). Additionally, HandyLK supports the
definition of proofs in a recursive way, which is a convenient way to encode sequences of proofs. This
feature was used to encode a sequence of proofs for the formula scheme from [3].

3.2 XML format for proofs

The programs in the CERES system do not work directly with proofs written in HandyLK — these proofs
are compiled into a flexible XML format using the HLK compiler. XML is a well known data representa-
tion language which allows the use of arbitrary and well known utilities for editing, transformation and
presentation and standardized programming libraries. We are interested in tree-style proofs, formulas
and terms. Data is structured in trees in XML, therefore the encoding and decoding of these objects is
very straightforward.

The format is flexible in the sense that it only assumes that proofs are trees or directed acyclic graphs
of rule applications that are labelled by sequents. In our practice, it has been used successfully to encode
LKDe and resolution proofs. The following abbreviated XML code represents the proof ϕ:

<proof symbol="the-proof" calculus="LK">
<rule symbol="c:r" type="contrr" param="2">
<sequent>...</sequent>
<rule symbol="cut" type="cut">
<sequent>...</sequent>
<rule symbol="\pi:r" type="permr" param="(1 2)">
<sequent>...</sequent>
<rule symbol="cut" type="cut">
<sequent>...</sequent>
<prooflink symbol="\tau"/>
<prooflink symbol="\epsilon(0)"/>
</rule>
</rule>
<prooflink symbol="\epsilon(1)"/>
</rule>

</rule>
</proof>
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The symbol attributes are used for the visual presentation of the proof trees: they allow the user to
identify proofs and rules. The param attributes contain additional rule information, in the example they
specify which formulas are to be contracted (by the contraction rule c:r) and how the formulas are to be
permuted (by the permutation rule \pi:r). The prooflink tags reference other proofs by their name
and allow the representation of proofs as DAGs.

In the above example, the formulas contained in the sequents have been left out. To give an example
of how a formula is encoded in the XML format, consider the following XML code corresponding to the
formula R(c, f (c))∧P(c):

<conjunctiveformula type="and">
<constantatomformula symbol="R">
<constant symbol="c"/>
<function symbol="f">
<constant symbol="c"/>
</function>

</constantatomformula>
<constantatomformula symbol="P">
<constant symbol="c"/>

</constantatomformula>
</conjunctiveformula>

Data is organized in our XML format in a proofdatabase containing a number of proofs. The proof-
database may also contain

1. a list of defined predicates and their definitions,

2. a list of sequents specifying the axioms of the background theory in which the proofs are written,

3. arbitrary lists of sequents identified by some symbol (e.g. to store a Herbrand sequent).

3.3 The CERES method

To prepare for the following section, we will now introduce the theoretical background for the CERES
method of cut-elimination, which is used by the CERES system to compute a proof in atomic cut normal
form and, in the end, a Herbrand sequent.

The central idea of CERES consists in extracting a so-called characteristic clause set from a proof,
and then using a resolution refutation of this set to obtain a proof with only atomic cuts. We consider the
proofs in LKDe as directed trees with nodes which are labelled by sequents, where the root is labelled
by the end-sequent. According to the inference rules, we distinguish binary and unary nodes. In an
inference

ν1 : S1 ν2 : S2
ν : S

x

where ν is labelled by S, ν1 by S1 and ν2 by S2, we call ν1,ν2 predecessors of ν . Similarly ν ′ is
predecessor of ν in a unary rule if ν ′ labels the premiss and ν the consequent. Then the predecessor
relation is defined as the reflexive and transitive closure of the relation above. Every node is predecessor
of the root, and the axioms have only themselves as predecessors. For a formal definition of the concepts
we refer to [4] and [5]. A similar relation holds between formula occurrences in sequents. Instead of a
formal definition we give an example.

Consider the rule:
∀x.P(x) ` P(a) ∀x.P(x) ` P(b)

∀x.P(x) ` P(a)∧P(b)
∧ : r
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The occurrences of P(a) and P(b) in the premiss are ancestors of the occurrence of P(a)∧ P(b) in
the consequent. P(a) and P(b) are called auxiliary formulas of the inference, and P(a)∧P(b) the main
formula. ∀x.P(x) in the premisses are ancestors of ∀x.P(x) in the consequent. Again the ancestor relation
is defined by reflexive transitive closure.

Let Ω be the set of all occurrences of cut-formulas in sequents of an LKDe-proof ϕ . The cut-formulas
are not ancestors of the formulas in the end-sequent, but they might have ancestors in the axioms (if the
cuts are not generated by weakening only). The construction of the characteristic clause set is based on
the ancestors of the cuts in the axioms. Note that clauses are just defined as atomic sequents. We define
a set of clauses Cν for every node ν in ϕ inductively:

• If ν is an occurrence of an axiom sequent S(ν), and S′ is the subsequent of S(ν) containing only
the ancestors of Ω then Cν = {S′}.

• Let ν ′ be the predecessor of ν in a unary inference then Cν = Cν ′ .

• Let ν1,ν2 be the predecessors of ν in a binary inference. We distinguish two cases

(a) The auxiliary formulas of ν1,ν2 are ancestors of Ω. Then

Cν = Cν1 ∪Cν2 .

(b) The auxiliary formulas of ν1,ν2 are not ancestors of Ω. Then

Cν = Cν1×Cν2 .

where C ×D = {C ◦D |C ∈ C ,D ∈D} and C ◦D is the merge of the clauses C and D.

The characteristic clause set CL(ϕ) of ϕ is defined as Cν0 , where ν0 is the root.

Theorem 1. Let ϕ be a proof in LKDe. Then the clause set CL(ϕ) is equationally unsatisfiable.

Remark. A clause set C is equationally unsatisfiable if C does not have a model where = is interpreted
as equality over a domain.

Proof. This proof first appeared in [1]. Let ν be a node in ϕ and S′(ν) the subsequent of S(ν) which
consists of the ancestors of Ω (i.e. of a cut). It is shown by induction that S′(ν) is LKDe-derivable from
Cν . If ν0 is the root then, clearly, S′(ν0) = ` and the empty sequent ` is LKDe-derivable from the axiom
set Cν0 , which is just CL(ϕ). As all inferences in LKDe are sound over equational interpretations (where
new symbols introduced by definition introduction have to be interpreted according to the defining equiv-
alence), CL(ϕ) is equationally unsatisfiable. Note that, without the rules = : l and = : r, the set CL(ϕ)
is just unsatisfiable. Clearly the rules = : l and = : r are sound only over equational interpretations.

The next steps in CERES are

(1) the computation of the proof projections ϕ[C] w.r.t. clauses C ∈ CL(ϕ),

(2) the refutation of the set CL(ϕ), resulting in an RP-tree γ , i.e. in a deduction tree defined by the
inferences of resolution and paramodulation, and

(3) “inserting” the projections ϕ[C] into the leaves of γ .
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For step (1) we skip in ϕ all inferences where the auxiliary resp. main formulas are ancestors of a
cut. Instead of the end-sequent S we get S◦C for a C ∈ CL(ϕ).

Step (2) consists in ordinary theorem proving by resolution and paramodulation (which is equation-
ally complete). For refuting CL(ϕ) any first-order resolution prover can be used. By the completeness
of the methods we find a refutation tree γ as CL(ϕ) is unsatisfiable by Theorem 1.

Step (3) makes use of the fact that, after computation of the simultaneous most general unifier of
the inferences in γ , the resulting tree γ ′ is actually a derivation in LKDe. Indeed, after computation of
the simultaneous unifier, paramodulation becomes = : l and = : r and resolution becomes cut in LKDe.
Note that the definition rules, like the logical rules, do not appear in γ ′. Now for every leaf ν in γ ′, which
is labelled by a clause C′ (an instance of a clause C ∈ CL(ϕ)) we insert the proof projection ϕ[C′]. The
result is a proof with only atomic cuts.

The proof projection is only sound if the proof ϕ is skolemized, i.e. there are no strong quantifiers
(i.e. quantifiers with eigenvariable conditions) in the end-sequent. If ϕ is not skolemized a priori it can
be transformed into a skolemized proof ϕ ′ in polynomial (at most quadratic) time; for details see [3].

For illustration, consider the following example:
ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ1 =
P(u)? ` P(u) Q(u) ` Q(u)?

P(u)?,P(u)→ Q(u) ` Q(u)? →: l

P(u)→ Q(u) ` (P(u)→ Q(u))? →: r

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))? ∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))? ∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))? ∀ : r

ϕ2 =
P(a) ` P(a)? Q(v)? ` Q(v)
P(a),(P(a)→ Q(v))? ` Q(v) →: l

(P(a)→ Q(v))? ` P(a)→ Q(v)
→: r

(P(a)→ Q(v))? ` (∃y)(P(a)→ Q(y)) ∃ : r

(∃y)(P(a)→ Q(y))? ` (∃y)(P(a)→ Q(y)) ∃ : l

(∀x)(∃y)(P(x)→ Q(y))? ` (∃y)(P(a)→ Q(y)) ∀ : l

We have CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}. The resolution refutation δ of CL(ϕ)

` P(a) P(u) ` Q(u)
` Q(a) R

Q(v) `
` R

does the job of refuting CL(ϕ). By applying the most general unifier σ of δ , we obtain a ground
refutation γ = δσ :

` P(a) P(a) ` Q(a)
` Q(a) R

Q(a) `
` R

This will serve as a skeleton for a proof in ACNF. To complete the construction, we combine the skeleton
with the following projections (grounded by σ ):
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ϕ(C1) =
P(a) ` P(a) Q(a) ` Q(a)
P(a),P(a)→ Q(a) ` Q(a) →: l

P(a),(∀x)(P(x)→ Q(x)) ` Q(a) ∀ : l

P(a),(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),Q(a)
w : r

ϕ(C2) =
P(a) ` P(a)

P(a) ` P(a),Q(v)
w : r

` P(a)→ Q(v),P(a)
→: r

` (∃y)(P(a)→ Q(y)),P(a) ∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),P(a) w : l

ϕ(C3) =
Q(a) ` Q(a)

P(a),Q(a) ` Q(a) w : l

Q(a) ` P(a)→ Q(a)
→: r

Q(a) ` (∃y)(P(a)→ Q(y)) ∃ : r

Q(a),(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)) w : l

The composition of skeleton and projections yields
ϕ(γ) =

ϕ(C2)
B `C,P(a)

ϕ(C1)
P(a),B `C,Q(a)

B,B `C,C,Q(a)
cut ϕ(C3)

Q(a),B `C
B,B,B `C,C,C

cut

B `C contractions

where B = (∀x)(P(x)→ Q(x)), C = (∃y)(P(a)→ Q(y)). Clearly, ϕ(γ) is a proof of the end-sequent of
ϕ in ACNF.

3.4 Cut-elimination, proof visualization and Herbrand sequent extraction with CERES

After compiling the HandyLK source to XML with HLK, it is possible to perform proof analysis using
the CERES tool. In our example, we are interested in extracting a Herbrand sequent from a cut-free proof
of the end-sequent of ϕ . To this end, the CERES method is used, which extracts an unsatisfiable set of
clauses from the proof and refutes it. In theory, any resolution prover can be used to refute this set of
clauses; Table 1 lists the format conversions currently supported by our implementation.

Table 1: Format conversions supported by CERES
From To
XML TPTP
XML Otter input
XML Prover9 input
Otter proof object XML
Prover9 output XML

In our example, we use Otter to find a resolution refutation. Running CERES yields the following
characteristic clause set in Otter input format
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-> =("f"(+(x4, x5)), "0"), =("f"(+(x5, x4)), "1"). % (C1)
=("f"(+(x4, x6)), "0"), =("f"(+(+(+(x4, x6), "1"), x7)), "0") ->. % (C2)
=("f"(+(x4, x6)), "1"), =("f"(+(+(+(x4, x6), "1"), x7)), "1") ->. % (C3)

which corresponds to the set of clauses

CL(π) = { ` f (x4 + x5) = 0, f (x5 + x4) = 1;
f (x4 + x6) = 0, f (((x4 + x6)+1)+ x7) = 0 `;
f (x4 + x6) = 1, f (((x4 + x6)+1)+ x7) = 1 ` }

which is refutable in arithmetic.
The Otter proof object resulting from the successful refutation is then converted into a resolution tree

in XML format. According to the CERES method, this refutation is then transformed into an LKDe
proof ϕ ′ of the end-sequent of ϕ in ACNF. ϕ ′ consists of 1262 rules, and is clearly too large to be
depicted here (a small part of it can be seen in Figure 2(b)). From ϕ ′, a Herbrand sequent is extracted
and stored in XML as a list of sequents (containing only the Herbrand sequent). All proofs and sequents
computed during the analysis can be visualized using ProofTool as seen in Figure 2.

(a) Visualizing the input proof ϕ . (b) A bird’s eye view on the output proof ϕ ′.

Figure 2: ProofTool screenshots

To make the Herbrand sequent extracted in our example easier to read, the terms have been simplified
modulo commutativity and associativity of +, and the following abbreviations are used:

p1 = x+ z+2, p2 = x+ z+4, p3 = z+1, p4 = x+ y+ z+3,
p5 = w+ x+ y+ z+6, p6 = w+ x+ y+ z+8, p7 = w+ x+ y+ z+4,

With this, the Herbrand sequent of the ACNF of the tape proof is

f (p1) = 0∨ f (p1) = 1, f (p2) = 0∨ f (p2) = 1, f (p3) = 0∨ f (p3) = 1,
f (p4) = 0∨ f (p4) = 1, f (p5) = 0∨ f (p5) = 1, f (p6) = 0∨ f (p6) = 1,
f (p7) = 0∨ f (p7) = 1
`
p1 6= p2∧ f (p1) = f (p2), p3 6= p1∧ f (p3) = f (p1),
p3 6= p2∧ f (p3) = f (p2), p1 6= p4∧ f (p1) = f (p4),
p5 6= p6∧ f (p5) = f (p6), p7 6= p5∧ f (p7) = f (p5),
p7 6= p6∧ f (p7) = f (p6), p4 6= p7∧ f (p4) = f (p7).

Clearly, the Herbrand sequent is much smaller than the ACNF from which it is extracted. As it contains
all quantifier instantiation information from the proof, it is much better suited to human interpretation
than the proof itself. The Herbrand sequent we extracted from ϕ ′ can be interpreted as the following
proof:
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Theorem 2. On a tape with infinitely many cells where each cell is labelled 0 or 1, there are two distinct
cells that are labelled the same.

Proof. It is easy to see that the following inequalities hold:

p1 6= p2, p3 6= p1, p3 6= p2, p1 6= p4,
p5 6= p6, p7 6= p5, p7 6= p6, p4 6= p7.

We may therefore delete their occurrences from the right side of the Herbrand sequent and obtain the
simplified sequent

f (p1) = 0∨ f (p1) = 1, f (p2) = 0∨ f (p2) = 1, f (p3) = 0∨ f (p3) = 1,
f (p4) = 0∨ f (p4) = 1, f (p5) = 0∨ f (p5) = 1, f (p6) = 0∨ f (p6) = 1,
f (p7) = 0∨ f (p7) = 1
`
f (p1) = f (p2), f (p3) = f (p1), f (p3) = f (p2), f (p1) = f (p4),
f (p5) = f (p6), f (p7) = f (p5), f (p7) = f (p6), f (p4) = f (p7).

Now, we assume that this sequent is false and obtain a contradiction. If the sequent is false, then all
formulas on the left side are true and all formulas on the right side are false, so we may assume f (pi) =
0∨ f (pi) = 1 for i ∈ {1, . . . ,7}. Let f (p1) = a with a ∈ {0,1} and let ā = 1−a. We have assumed that
the first formula on the right side is false, so f (p2) = ā. From the second formula we obtain f (p3) = ā,
and from the third f (p3) = ¯̄a = a, which yields the desired contradiction.

Note that the proof extracted from the Herbrand sequent uses only 3 cells even though the sequent
itself is not minimal. Still, the proof yields a minimal Herbrand sequent directly:

f (p1) = 0∨ f (p1) = 1, f (p2) = 0∨ f (p2) = 1, f (p3) = 0∨ f (p3) = 1,
`
p1 6= p2∧ f (p1) = f (p2), p3 6= p1∧ f (p3) = f (p1), p3 6= p2∧ f (p3) = f (p2).

Comparing the proof obtained from the Herbrand sequent with the original proof, we have gained an
important piece of information: in the original proof, it is shown that either infinitely many cells are
labelled 0 or 1, while in the cut-free proof, only finitely many cells are used in the proof.

4 Open problems and future work

On the theoretical side we are working on the following two major extensions of the CERES-method:
The first is an extension of CERES to second-order logic, a first step in that direction has been achieved
by extending it to the fragment of second-order proofs defined by containing only quantifier-free com-
prehension in [9]. This extension will allow the formalization of a much broader range of mathematical
proofs and yield a more convenient proof formalization. The second theoretical extension enables the
method to work without skolemization whose main benefit will be the ability to eliminate single cuts or
even parts of a cut which is more realistic in mathematical applications than the simultaneous elimination
of all cuts.

Concerning the practical aspects, it became clear in our experiments with the system that there are
two bottlenecks: 1. the formalization of the input proof and 2. finding a resolution refutation of the
characteristic clause set. Accordingly also these two points are of major concern for our future work.

To ease the formalization of the input proof, we plan to enhance the capabilities of HLK, in particu-
lar those of the auto propositional-mode to cover also reasoning in equational background theories
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specified by term rewriting systems. We expect this feature to greatly reduce the amount of time spent on
proof formalization, as large parts of formalized proofs consist of equational reasoning. In the long term,
however, an interesting option would be to use one of the available proof assistants for the formalization
of proofs as these are highly developed tools. The theoretical obstacle to the use of existing proof assis-
tants lies in the fact that a translation of the formalized proof is necessary, as proof assistants typically
work in set theory or higher-order logic. Moreover, this translation should not be uniform because, de-
pending on the formalized proof and the aims of the proof analysis, one logical translation will be more
useful than another. The main practical obstacle lies in transforming proof objects generated by the proof
assistant (if they are provided at all) into the sequent calculus format as described in Section 3.2. Here, a
lot of work will have to go into importing the standard library of basic number systems, basic operations,
data structures, etc.

The search for a refutation of the characteristic clause set turned out to be a hard problem for current
theorem provers (as described in [2]). To handle this problem, we need automated theorem provers with
high flexibility, allowing an interactive construction of the resolution refutation. For using several provers
in order to combine their respective advantages it would be very beneficial to have a standard output
format for encoding resolution refutations, a goal which is partially realized by the TPTP output format.
Another approach to enhance the power of the provers is to exploit the fact that the characteristic clause
sets of the CERES-method form a very specific subclass of theorem proving problems. In particular, it
seems promising to store in the clause set certain information about the structure of the original proof as
hints on how to find a refutation and to develop resolution refinements for CERES to use this additional
information.

Another important area for future improvement is the human-readable representation of the output
proofs as well as other results of the analysis (e.g. Herbrand sequents); this aspect is also critical for
the method to adapt better to larger proofs. As the terms generated by cut-elimination are frequently
very large it would pay out to implement term simplifiers. A general approach to the simplification of
Herbrand sequents lies in computing a minimal variant of it by most general unification and a (possibly
external) tautology checker. For specific theories, e.g. arithmetic, one can even do better by using term
simplification algorithms based on term rewriting systems. Another useful addition is to include a flexible
handling of definitions in the extraction and display of Herbrand sequents which would make them an
even more powerful tool for understanding the mathematical content of a formal proof. These changes
will further contribute to the creation of an interface for proof analysis which is attractive to logicians
and mathematicians alike.
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Abstract

This paper presents an interactive proof method for the verification of temporal properties of
concurrent systems based on symbolic execution. Symbolic execution is a well known and very
intuitive strategy for the verification of sequential programs. We have carried over this approach
to the interactive verification of arbitrary linear temporal logic properties of (infinite state) parallel
programs. The resulting proof method is very intuitive to apply and can be automated to a large
extent. It smoothly combines first order reasoning with reasoning in temporal logic. The proof
method has been implemented in the interactive verification environment KIV and has been used in
several case studies.

1 Introduction

Compared to sequential programs, both the design and the verification of concurrent systems is more
difficult, mainly because the control flow is more complex. Particularly, for reactive systems, not only
the final result of execution but the sequence of output over time is relevant for system behavior. Finding
errors by means of testing strategies is limited, because, especially for interleaved systems, an expo-
nential amount of possible executions must be considered. The execution is nondeterministic, making
it difficult to reproduce errors. An alternative to testing is the use of formal methods to specify and
verify concurrent systems with mathematical rigor. Automatic methods – especially model checking –
have been applied successfully to discover flaws in the design and implementation of systems. Starting
from systems with finite state spaces of manageable size, research in model checking aims at mastering
ever more complex state spaces and to reduce infinite state systems by abstraction. In general, systems
must be manually abstracted to ensure that formal analysis terminates. An alternative approach to large
or infinite state spaces are interactive proof calculi. They directly address the problem of infinite state
spaces. Here, the challenge is to achieve a high degree of automation. Existing interactive calculi to rea-
son in temporal logic about concurrent systems are generally difficult to apply. The strategy of symbolic
execution, on the other hand, has been successfully applied to the interactive verification of sequential
programs (e.g. Dynamic Logic [9, 11]). Symbolic execution gives intuitive proofs with a high degree of
automation.

Combining Dynamic Logic and temporal logic has already been investigated, e.g. Process Logic [17]
and Concurrent Dynamic Logic [16] and more recently [8, 10]. These works focus on combinations of
logic, while we are interested in an interactive proof method based on symbolic execution. Symbolic
execution of parallel programs has been investigated in [1], however, this approach has been restricted to
the verification of pre/post conditions. Other approaches are often restricted to the verification of certain
types of temporal properties. Our approach presents an interactive proof method to verify arbitrary
temporal properties for parallel programs with the strategy of symbolic execution and thus promises to
be intuitive and highly automatic.

Our logic is based on Interval Temporal Logic (ITL) [15]. The chop operator ! ; " of ITL corresponds
to sequential composition and programs are just a special case of temporal formulas. In addition, we have

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 92- 102
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defined an interleaving operator !
!
" to interleave arbitrary temporal formulas. Our logic explicitly

considers arbitrary environment steps after each system transition, which is similar to Temporal Logic of
Actions (TLA) [13]. This ensures that systems are compositional and proofs can be decomposed. In total,
we have defined a compositional logic which includes a rich programming language with interleaved
parallel processes similar to the one of STeP [7]. Important for interactive proofs, system descriptions
need not be translated to flat transition systems. The calculus directly reasons about programs.

A short overview of our logic is given in Section2. The calculus for symbolic execution is described
in Section 3. The strategy has been implemented in KIV (see Section 4). Section 6 concludes. For more
details on the logic and calculus, especially on induction and double primed variables to decompose
proofs, we refer to [2].

2 Logic

Similar to [15], we have defined a first order interval temporal logic with static variables a, dynamic
variables A, functions f , and predicates p. Let v be a static (i.e. constants - written in small letters) or
dynamic variable. Then, the syntax of (a subset of) our logic is defined

e ::= a | A | A′ | A′′ | f (e1, . . . ,en)
! ::= p(e1, . . . ,en) | ¬ ! | !1 ∧ !2 | ∃ v. !

| step | !1; !2 | !∗

| %A1, . . . ,An& | !1
!< !2

Dynamic variables can be primed and double primed. It is possible to quantify both static and dynamic
variables. The chop operator !1; !2 directly corresponds to the sequential composition of programs.
The star operator !∗ is similar to a loop. We have added an operator %A1, . . . ,An& to define an explicit
frame assumption. Furthermore, operator !1

!< !2 can be used to interleave two “processes”. The basic
operator

!< gives precedence to the left process, i.e., a transition of !1 is executed first.

= environment transition
= system transition

#0 # ′
0 # ′

2 # ′
3

Interval I:

State: # ′
1#1 #2 #3 #4

Figure 1: An interval as sequence of states

In ITL, an interval is considered to be a finite or infinite sequence of states, where a state is a mapping
from variables to their values. In our setting, we introduce additional intermediate states #′i to distinguish
between system and environment transitions. For intuition, compare the following to Figure 1. Let
n ∈ N$. An interval

I = (#0,# ′
0,#1, . . . ,#

′
n−1,#n)

consists of an initial state #0, and a finite or infinite and possibly empty sequence of transitions (#′i ,#i+1)
n−1
i=0 .

In the intermediate states #′
i the values of the variables after a system transition are stored. The follow-

ing states #i+1 reflect the states after an environment transition. In this manner, system and environment
transitions alternate. An empty interval consists only of an initial state #0.
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Given an interval I, variables are evaluated as follows:

[[v]]I := #0(v)

[[A′]]I :=
{

# ′
0(A) if |I| > 0

#0(A) otherwise

[[A′′]]I :=
{

#1(A) if |I| > 0
#0(A) otherwise

Static and unprimed dynamic variables are evaluated in the initial state. Primed variables are evalu-
ated in # ′

0 and double primed variables in #1. In the last state, i.e. if I is empty, the value of a primed or
double primed variable is equal to the unprimed variable. It is assumed that after a system has terminated,
the variables do not change.

The semantics of the standard ITL operators can be carried over one-to-one to our notion of an
interval, and is therefore omitted here. In [15], however, assignments only restrict the assigned variables,
whereas program assignments leave all other dynamic variables unchanged. This is known as a frame
assumption. In our logic, we have defined an explicit frame assumption %A1, . . . ,An& which states that a
system transition leaves all but a selection of dynamic variables unchanged.

I |= %A1, . . . ,An& iff # ′
0(A) = #0(A) for all A )∈ {A1, . . . ,An}

Details on frame assumptions can be found in [2].
The interleaving operator !

!< " interleaves arbitrary formulas ! and " . The two formulas represent
sets of intervals. We have therefore defined the semantics of !

!< " relative to the interleaving [[I1
!< I2]]

of two concrete intervals I1 and I2.

I |= !
!< " iff there exist I1, I2

with I ∈ [[I1
!< I2]] and I1 |= ! and I2 |= "

For nonempty intervals I1 = (#0,# ′
0,#1, . . . ), and I2 = (%0,% ′0,%1, . . . ), interleaving of intervals adheres to

the following recursive equations.

[[I1
!< I2]] =






(#0,# ′
0)⊕ [[(#1, . . . )

!
I2]], if I1 is not blocked

(%0,% ′0)⊕ [[(#1, . . . )
!

(%1, . . . )]], if I1 is blocked, #0 = %0
/0, otherwise

[[I1
"
I2]] = [[I1

!< I2]]∪ [[I2
!< I1]]

Interval I1 is blocked, if # ′
0(blk) )= #0(blk) for a special dynamic variable blk. The system transition

toggles the variable to signal that the process is currently blocked (see await statement below). If I1
is not blocked, then the first transition of I1 is executed and the system continues with interleaving the
remaining interval with I2. (Function ⊕ prefixes all of the intervals of a given set with the two additional
states.) If I1 is blocked, then a transition of I2 is executed instead. However, the blocked transition of I1
is also consumed. A detailed definition of the semantics can be found in [2].

Additional common logical operators can be defined as abbreviations. A list of frequently used
abbreviations is contained in Table 1, where most of the abbreviations are common in ITL. The next
operator comes in two flavors. The strong next ◦ ! requires that there is a next step satisfying ! , the
weak next • ! only states that if there is a next step, it must satisfy ! .

As can be seen in Table 1, the standard constructs for sequential programs can be derived. Executing
an assignment requires exactly one step. The value of e is “assigned” to the primed value of A. Other
variables are unchanged (%A&). Note that for conditionals and loops, the condition " evaluates in a single
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more :≡ step; true ! ! :≡ finite; !
last :≡ ¬more " ! :≡ ¬ ! ¬ !
inf :≡ true; false ◦ ! :≡ step; !

finite :≡ ¬ inf • ! :≡ ¬ ◦¬ !

A := e :≡ A′ = e ∧ %A& ∧ step
skip :≡ %& ∧ step

if " then !1 else !2 ≡ " ∧ (skip; !1) ∨ ¬ " ∧ (skip; !2)
while " do ! :≡ ((" ∧ (skip; !))∗ ∧ " (last→¬ ")); skip
var A in ! :≡ " A′ = A ∧ ∃ A. ! ∧ " A′′ = A′

bskip :≡ blk′ )= blk ∧ %blk& ∧ step
await ! do " :≡ ((¬ ! ∧ bskip)∗ ∧ " (last→ !)); "

await ! :≡ await ! do skip
!

!
" :≡ !

!< " ∨ "
!< !

Table 1: Frequently used temporal abbreviations

step. For local variable definitions, the local variable is quantified (∃ A), in addition, the environment
cannot access the local variable (" A′′ = A′). The global value of the variable is unchanged (" A′ = A).

Parallel programs communicate using shared variables. In order to synchronize execution, the opera-
tor await " do ! can be used. A special dynamic variable blk is used to mark whether a parallel program
is blocked. The await operator behaves like a loop waiting for the condition to be satisfied. While the
operator waits, no variable is changed except for variable blk which is toggled. In other words, a process
guarded with an await operator actively waits for the environment to satisfy its condition. Immediately
after condition " is satisfied, construct ! is executed.

3 Calculus

Our proof method is based on a sequent calculus with calculus rules of the following form:

&1 0 '1 . . . &n 0 'n
& 0 '

Rules are applied bottom-up. Rule name refines a given conclusion & 0 ' with n premises &i 0 'i. We
also rely heavily on rewriting with theorems of the form ! ↔ " . These allow to replace instances of !
with instances of " anywhere in a sequent.

3.1 Normal form

Our proof strategy is symbolic execution of temporal formulas, parallel programs being just a special
case thereof. In Dynamic Logic, the leading assignment of a DL formula 〈v := e;(〉 ! is executed as
follows:

&v0v ,v= ev0v 0 〈(〉 !
& 0 〈v := e〉 〈(〉 !

asg r

& 0 〈v := e;(〉 ! normalize

The sequential composition is normalized and is replaced with a succession of diamond operators. After-
wards, the assignment is “executed” to compute the strongest postcondition &v0v ,v= ev0v (The substitution
&v0v means that variable v is replaced with variable v0 in &). In our setting, we normalize all the temporal
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! ,& 0 ' " ,& 0 '
! ∨ " ,& 0 ' dis l

!a0a ,& 0 '
∃ a. ! ,& 0 ' ex l (a0 /∈ free(!)\{a}∪ free(&,'))

%a,a,aA,A′,A′′ 0
% , last 0 lst (a /∈ free(%))

%a1,a2,AA,A′,A′′ ,!

% ,◦ ! 0 stp (a1,a2 /∈ free(% ,!))

Table 2: Rules for executing an overall step

formulas of a given sequent by rewriting the formulas to a so called normal form which separates the
possible first transitions and the corresponding temporal formulas describing the system in the next state.
Afterwards, an overall step for the whole sequent is executed (see below). More formally, a program (or
temporal formula) is rewritten to a formula of the following type

% ∧ ◦ !

where % is a predicate logic formula that describes a transition as a relation between unprimed, primed
and double primed variables while ! describes what happens in the rest of the interval. A program
may also terminate, i.e., under certain conditions, the current state may be the last. Furthermore, the
next transition can be nondeterministic, i.e., different %i with corresponding !i may exist describing the
possible transitions and corresponding next steps. Finally, there may exist a link between the transition
%i and system !i which cannot be expressed as a relation between unprimed, primed, and double primed
variables in the transition alone. This link is captured in existentially quantified static variables ai which
occur in both %i and !i. The general pattern to separate the first transitions of a given temporal formula is

%0 ∧ last ∨
∨ n

i=1
(∃ ai. %i ∧ ◦ !i) .

We will refer to this general pattern as normal form.

3.2 Executing an overall step

Assume that the antecedent of a sequent has been rewritten to normal form. Further assume – to keep it
simple – that the succedent is empty. (This can be assumed as formulas in the succedent are equivalent
to negated formulas in the antecedent. Furthermore, several formulas in the antecedent can be combined
to a single normal form.)

%0 ∧ last ∨
∨ n

i=1
(∃ ai. %i ∧ ◦ !i) 0

With the two rules dis l and ex l of Table 2, disjunction and quantification can be eliminated. For the
remaining premises,

%0 ∧ last 0 %i ∧ ◦ !i 0

the two rules lst and stp can be applied. If execution terminates, all free dynamic variables A – no matter,
if they are unprimed, primed or double primed – are replaced by fresh static variables a. The result is a
formula in pure predicate logic with static variables only, which can be proven with standard first order
reasoning. Rule stp advances a step in the trace. The values of the dynamic variables A and A′ in the old
state are stored in fresh static variables a1 and a2. Double primed variables are unprimed variables in the
next state. Finally, the leading next operators are discarded. The proof method now continues with the
execution of !i.
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alw: " ! ↔ ! ∧ • " !
ev: ! ! ↔ ! ∨ ◦ ! !

Table 3: Rules for executing temporal logic operators " and !

0 !1 → !2
0 !1; " → !2; "

chp lem

chp dis: (!1 ∨ !2); " ↔ !1; " ∨ !2; "
chp ex: (∃ a. !); " ↔ ∃ a0. !a0a ; "
chp lst: (% ∧ last);" ↔ %A,A

A′,A′′ ∧ "
chp stp: (% ∧ ◦ !);" ↔ % ∧ ◦ (! ; ")

Table 4: Rules for executing sequential composition

3.3 Executing temporal logic

The idea of symbolic execution can be applied to formulas of temporal logic. For example, operator
" ! is similar to a loop in a programming language: formula ! is executed in every step. An appropriate
rewrite rule is alw of Table 3. Formula ! must hold now, and in the next step" ! holds again. To arrive at
a formula in normal form, the first conjunct of the resulting formula ! ∧ • " ! must be further rewritten.
The rewrite rule above corresponds to the recursive definition of " ! . Other temporal operators can be
executed similarly.

3.4 Executing sequential composition

The execution of sequential composition of programs ! ; " is more complicated as we cannot give a
simple equivalence which rewrites a composition to normal form. The problem is that the first formula
! could take an unknown number of steps to execute. Only after ! has terminated, we continue with
executing " .

Rules for the execution of ! ; " are given in Table 4. In order to execute composition, the idea is to
first rewrite formula ! to normal form

(
%0 ∧ last ∨

∨
(∃ ai. %i ∧ ◦ !i)

)
; "

The first sub-formula ! can be rewritten with rule chp lem of Table4. If it is valid that !1 implies !2, then
!1; " also implies !2; " . (This rule is a so-called congruence rule.) After rewriting the first sub-formula
to normal form, we rewrite the composition operator. According to rules chp dis and chp ex, composition
distributes over disjunction and existential quantification. If we apply these rules to the formula above,
we receive a number of cases

(%0 ∧ last);" ∨
∨

∃ ai,0. (%i,0 ∧ ◦ !i,0); "

In the first case, program ! terminates, in the other cases, the program takes a step %i and continues with
program !i. Rules chp lst and chp stp can be used to further rewrite the composition. Dynamic variables
A stutter in the last step, and therefore the primed and double primed variables A′ and A′′ of % are replaced
by the corresponding unprimed variables if the first sub-formula terminates. The two rules give

%0
A,A
A′,A′′ ∧ " ∨

∨
∃ ai,0. %i,0 ∧ ◦ (!i,0; ")
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0 !1 → !2
0 !1

!< " → !2
!< "

ilvl lem

ilvl dis: (!1 ∨ !2)
!< " ↔ !1

!< " ∨ !2
!< "

ilvl ex: (∃ a. !)
!< " ↔ ∃ a0. !a0a

!< "
a0 fresh with respect to (free(!)\{a})∪ free(")

ilvl lst: (% ∧ last)
!< " ↔ %A,A

A′,A′′ ∧ "
ilvl stp: (% ∧ ¬ blocked ∧ ◦ !)

!< "
↔ ∃ a2. (%a2A′′ ∧ ¬ blocked ∧ ◦ ((A= a2 ∧ !)

!
"))

ilvl blk: (% ∧ blocked ∧ ◦ !)
!< "

↔ ∃ a2,1. (∃ a1. %
a1,a2,1
A′,A′′ ) ∧ (A= a2,1 ∧ !)

!<
b "

Table 5: Rules for executing left interleaving

In the first case, ! has terminated and we still need to execute " to arrive with a formula in normal
form. In the other cases, we have successfully separated the formula into the first transition %i,0 and the
corresponding rest of the program !i,0; " .

3.5 Interleaving

As with sequential composition, the interleaving of programs cannot be executed directly, but the sub-
formulas need to be rewritten to normal form first. The basic operator for interleaving is the left inter-
leaving operator !

!< " which gives precedence to the left process. In order to execute
!<, the first

sub-formula must be rewritten to normal form before the operator itself can be rewritten.
For left interleaving, the rules of Table 5 are similar to the rules for sequential composition. Con-

gruence rule ilvl lem makes it possible to rewrite the first sub-formula to normal form. Similar to chop,
left interleaving also distributes over disjunction (ilvl dis) and existential quantifiers (ilvl ex). If the first
formula terminates, execution continues with the second (ilvl lst). This is similar to rule chp lst. Other-
wise, execution depends on the first process being blocked. If it is not blocked, rule ilvl stp executes the
transition and continues with interleaving the remaining ! with " . Note that the double primed variables
of % are replaced by static variables a2 which must be equal to the unprimed variables the next time
a transition of the first process is executed. This is to establish the environment transition of the first
process as a relation which also includes transitions of the second. If the first process is blocked, then
rule ilvl blk executes the blocked transition; the process actively waits while being blocked. However,
the primed variables of % are replaced by static variables a1: the blocked transition of the first process
does not contribute to the transition of the overall interleaving. Instead, a transition of the other process
is executed.

0 !1 → !2
0 "

!<
b !1 → "

!<
b !2

ilvlb lem

ilvlb dis: "
!<
b (!1 ∨ !2) ↔ "

!<
b !1 ∨ "

!<
b !2

ilvlb ex: "
!<
b (∃ a. !) ↔ ∃ a0. "

!<
b !

a0
a

a0 fresh with respect to (free(!)\{a})∪ free(")
ilvlb lst: "

!<
b (% ∧ last) ↔ false

ilvlb stp: "
!<
b (% ∧ ◦ !) ↔ ∃ a2,2. %

a2,2
A′′ ∧ ◦ ("

!
(A= a2,2 ∧ !))

Table 6: Rules for executing blocked left interleaving
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X := 1;(
!
Y := 2;) 0

X = 1,((
!
Y := 2;) ) 0 Y = 2,(X := 1;(

!
) ) 0

X = 1,Y = 2,((
!
) ) 0X = 1,Y = 2,((

!
) ) 0

use as Proof Lemma

Figure 2: Example of proof lemma rule

The situation where the first process is blocked and it remains to execute a transition of the second
process is represented by a derived operator !

!<
b " which is defined

!
!<
b " :≡ (blocked ∧ ◦ !)

!< "

and for which the rules of Table 6 are applicable. Again, the rules are very similar to the rules above.
A congruence rule ilvlb lem ensures that the second sub-formula can be rewritten to normal form. With
rules ilvlb dis and ilvlb ex, the operator distributes over disjunction and existential quantification. If the
second process terminates, ilvlb lst is applicable, otherwise ilvlb stp can be applied.

Similar rules have been defined for all the operators of our logic [2]. In summary, every temporal
formula can be rewritten to normal form, an overall step can be executed, and the process of symbolic
execution can be repeated.

3.6 Induction and Proof Lemmas

To prove programs with loops, an inductive argument is necessary. Just as for sequential progams, we
use well-founded and structural induction over datatypes. A specific rule for temporal induction over the
interval is unnecessary: if a liveness property ! ! is known, the equivalence

! ! ↔ ∃N. N ′′ = N−1 until (N = 0 ∧ !)

can be used to induce over the number of steps N it takes to reach the first state satisfying ! . To prove a
safety property such a liveness property can be derived by using the equivalence " ! ↔¬ ! ¬ ! . The
proof is then by contradiction, assuming there is a number N of steps, after which ! is violated.

Execution of interleaved programs often leads to the same sequent occurring in different branches of
the proof tree. Normally, the user would specify a lemma which can be applied to all these sequents. To
simplify this, we allow that a premise of the proof tree can automatically used as lemma to close another
goal. An example is shown in Figure 2. This generalisation of proof trees to (acyclic) proof graphs
allows the dynamic construction of verification diagrams [18].

4 Implementation

The interactive proof method has been implemented in KIV [4], an interactive theorem prover which
is available at [12]. KIV supports algebraic specifications, predicate logic, dynamic logic, and higher
order logic. Especially, reasoning in predicate logic and dynamic logic is very elaborate. Support for
concurrent systems and temporal logic has been added. Considerable effort has been spent to ensure
that the calculus rules are automatically applied to a large extent. Almost all of the rules are invertible
ensuring that, if the conclusion is provable, the resulting premises remain valid. The overall strategy is
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Figure 3: Verification in KIV

• to symbolically execute a given proof obligation,

• to simplify the PL formulas describing the current state,

• to combine premises with the same sequent, and

• to use induction, if a system loop has been executed.

5 Verification in KIV

Figure 3 contains a screen-shot to illustrate how to construct proofs in KIV. In the lower right, the proof
graph is displayed. The main area in the large window contains the sequent under verification with the
partially executed parallel program and the first order formulas describing the current state. A list of
applicable proof rules is displayed to the left. Heuristics are used to automatically apply these rules.
Two set of heuristics TL Heuristics and TL Heuristics + Exec implement the overall strategy of
Section 4.

6 Conclusion

We have successfully carried over the strategy of symbolic execution to verify arbitrary temporal prop-
erties for concurrent systems. The proof method is based on symbolic execution, sequencing, and induc-
tion. How to symbolically execute arbitrary temporal formulas – parallel programs being just a special
case thereof – has been explained in this paper.
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Our proof method is easily extendable to other temporal operators. For every operator, a set of rules
must be provided to rewrite the operator to normal form. With rules similar to the ones of Tables4
and 5, we support in KIV operators for Dijkstra’s choice, synchronous parallel execution, and interrupts.
Furthermore, we have integrated STATEMATE state charts [3] as well as UML state charts [5] as alter-
native formalisms to define concurrent systems. For all of our extensions, the strategy of sequencing and
induction has remained unchanged and arbitrary temporal formulas can be verified.

Using double primed variables, we have defined a compositional semantics for every operator in-
cluding interleaving of formulas. This allowed us to find a suitable assumption-guarantee theorem to
apply compositonal reasoning [6]. This technique is very important to verify large case studies.

The implementation in KIV has shown that symbolic execution can be automated to a large extent.
We have applied the strategy to small and medium size case studies. Currently, the strategy is applied in a
European project called Protocure to verify medical guidelines which can be seen as yet another form of
concurrent system [14]. Overall, we believe that the strategy has the potential to make interactive proofs
in (linear) temporal logic in general more intuitive and automatic.
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Abstract

The extension of conflict-based learning from Propositional Satisfiability (SAT) solvers
to Pseudo-Boolean (PB) solvers comprises several different learning schemes. However, it
is not commonly agreed among the research community which learning scheme should be
used in PB solvers. Hence, this paper presents a contribution by providing an exhaustive
comparative study between several different learning schemes in a common platform. Re-
sults for a large set of benchmarks are presented for the different learning schemes, which
were implemented on bsolo, a state of the art PB solver.

1 Introduction

Pseudo-Boolean (PB) solvers have been the subject of recent research [4, 7, 10, 17], namely in
applying techniques already successful in propositional satisfiability (SAT) solvers. In these al-
gorithms, one of the most important techniques is the generation of no-goods during search [1,
4, 17]. This is typically done when a conflict arises, i.e, a given problem constraint is unsatisfi-
able. In that situation, a conflict analysis procedure is carried out and a no-good constraint is
added to the constraint set so that the same conflicting assignment does not occur again.

In PB solvers, several conflict-based learning procedures have been proposed. However,
there is no a consensus on which method is best for most set of instances [3]. In this paper,
we start by defining the pseudo-Boolean solving problem and some operations that can be
performed on PB constraints. Next, PB algorithms and conflict analysis procedures are briefly
surveyed. Some implementation issues are described in section 5. Experimental results are
presented for several learning procedures implemented on a state of the art pseudo-Boolean
solver. Finally, conclusions are presented in section 7.

2 Preliminaries

In a propositional formula, a literal l j denotes either a variable x j or its complement x̄ j. If a
literal l j = x j and x j is assigned value 1 or l j = x̄ j and x j is assigned value 0, then the literal is
said to be true. Otherwise, the literal is said to be false. A pseudo-Boolean (PB) constraint is
defined as a linear inequality over a set of literals of the following normal form:

n

∑
j=1

a j · l j ≥ b (1)

such that for each j ∈ {1, · · · ,n}, a j ∈ Z+ and l j is a literal and b ∈ Z+. It is well-known that
any PB constraint (with negative coefficients, equalities or other inequalities) can be converted
into the normal form in linear time [2]. In the remaining of the paper, it is assumed that all PB
constraints are in normal form.

In a given constraint, if all a j coefficients have the same value k, then it is called a cardinality
constraint, since it requires that dbi/ke literals be true in order for the constraint to be satisfied. A

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 103-112
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PB constraint where any literal set to true is enough to satisfy the constraint, can be interpreted
as a propositional clause. This occurs when the value of all a j coefficients are greater than or
equal to b.

An instance of the Pseudo-Boolean Satisfiability (PB-SAT) problem can be defined as find-
ing an assignment to the problem variables such that all PB constraints are satisfied.

2.1 Boolean Constraint Propagation

Boolean Constraint Propagation (BCP) [6] in PB algorithms is a generalization of the application
of the unit clause rule [6] used in propositional satisfiability (SAT) algorithms. A constraint ω is
said to be unit if given the current partial assignment, ω is not currently satisfied and there is
at least one literal l j that if assigned value 0, ω cannot be satisfied. Hence, l j must be assigned
value 1. Let au

max denote the largest coefficient of the unassigned literals in ω . Moreover, let the
slack s of constraint ω to be defined as follows:

s = ( ∑
l j 6=0

a j)−b (2)

If au
max > s then ω is a unit constraint and literal lu

max must be assigned value 1. Notice that given
the same partial assignment, more than one literal can be implied by the same PB constraint.

During the search, let x j = vx@k denote the assignment of vx to variable x j at decision level
k. In the following sections we often need to associate dependencies (or an explanation) with
each implied variable assignment. Dependencies represent sufficient conditions for variable
assignments to be implied. For example, let x j = vx be a truth assignment implied by applying
the unit clause rule to ω . Then the explanation for this assignment is the set of assignments
associated with the false literals of ω .

2.2 Constraint Operations

It is well-known that the fundamental operation used to infer new constraints using proposi-
tional clauses is resolution [14]. For PB constraints, instead of resolution, the technique of cutting
planes [5, 9] can be used. This operation allows the linear combination of a set of constraints, in
order to generate a new constraint that is a logical consequence of the original constraints. For
any two pseudo-Boolean constraints and coefficients c and c′ we can combine them as follows:

c(∑ j a jx j ≥ b)
c′(∑ j a′jx j ≥ b′)

c∑ j a jx j + c′∑ j a′jx j ≥ cb+ c′b′
(3)

If c or c′ is non-integer, a new constraint with non-integer coefficients may result after ap-
plying the cutting plane operation. In order to obtain a new constraint with integer coefficients,
the rounding operation can be applied as follows:

∑ j a jx j ≥ b

∑ jda jex j ≥ dbe
(4)

It should be noted that the rounding operation might weaken the constraint such that the num-
ber of models of the resulting constraint is larger. For example, suppose we have the constraint
ω : 2x1 + x2 + x3 ≥ 3. Applying a coefficient c = 0.5 to ω we get a new constraint ω ′:

ω
′ : x1 +0.5x2 +0.5x3 ≥ 1.5 (5)
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Applying the rounding operation to ω ′ results in a new constraint ω ′r : x1 + x2 + x3 ≥ 2. Clearly,
all models of ω ′ are also models of ω ′r, but not all models of ω ′r are models of ω ′.

Another operation that can be used on PB constraints is reduction [2]. This operation allows
the removal of literals by subtracting the value of the coefficient from the right hand side.

Consider the constraint ω : x1 +3x2 +3x̄3 +2x̄4 + x5 ≥ 7. If reduction is applied to ω in order
to remove x1 and x̄3, we would get ω ′ : 3x2 + 2x̄4 + x5 ≥ 3. Note that if ω is a problem instance
constraint, it is not possible to replace ω with ω ′. Constraint ω ′ is a logical consequence from
ω , but the converse is not true.

Algorithms to generate cardinality constraints from general pseudo-Boolean constraints can
be found in [2, 4]. These algorithms find the minimum number of literals that must be set to
1 in order to satisfy the constraint. This is achieved by accumulating the literal coefficients of
the constraint, in decreasing order, starting with the highest a j. Let m(ω) denote the minimum
number of literals to be set to true in order to satisfy constraint ω . Then, cardinality reduction
can be defined as follows:

ω : ∑ j a jl j ≥ b

∑ j l j ≥ m(ω)
(6)

One should note that the resulting constraint is weaker than the original general pseudo-
Boolean constraint. More details for cardinality reduction can be found in [4], which presents
a stronger cardinality reduction.

3 Pseudo-Boolean Algorithms

Generally, pseudo-Boolean satisfiability (PB-SAT) algorithms follow the same structure as pro-
positional satisfiability (SAT) backtrack search algorithms. The search for a satisfying assign-
ment is organized by a decision tree (explored in depth first) where each node specifies an
assignment (also known as decision assignment) to a previously unassigned problem variable.
A decision level is associated with each decision assignment to denote its depth in the decision
tree.

Algorithm 1 shows the basic structure of a PB-SAT algorithm. The decide procedure cor-
responds to the selection of the decision assignment thus extending the current partial assign-
ment. If a complete assignment is reached, then a solution to the problem constraints has been
found. Otherwise, the deduce procedure applies Boolean Constraint Propagation (and possi-
bly other inference methods). If a conflict arises, i.e. a given constraint cannot be satisfied by
extending the current partial assignment, then a conflict analysis [11] procedure is carried out
to determine the level to which the search process can safely backtrack to. Moreover, a no-good
constraint is also added to the set of problem constraints.

The main goal of the conflict analysis procedure is to be able to determine the correct ex-
planation for a conflict situation and backtrack (in many cases non-chronologically) to a deci-
sion level such that the conflict does no longer occur. Moreover, a no-good constraint results
from this process. However, the strategy for no-good generation that results from the conflict
analysis differs between several state of the art PB-SAT solvers. These different strategies are
reviewed and analysed in section 4.

Another approach to PB-SAT is to encode the problem constraints into a propositional sat-
isfiability (SAT) problem [8] and then use a powerful SAT solver on the new formulation. Al-
though this approach is successful for some problem instances [8], in other cases the resulting
SAT formulation is much larger than the original PB formulation so that it provides a huge
overhead to the SAT solver.
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Algorithm 1 Generic Structure of Algorithms for PB-SAT Problem
while TRUE do

if decide() then
while deduce()=CONFLICT do

blevel← analyseConflict()
if blevel ≤ 0 then

return UNSATISFIABLE;
else

backtrack(blevel);
end if

end while
else

return SATISFIABLE;
end if

end while

4 Conflict Analysis

Consider that the assignment of a problem variable x j is inferred by Boolean Constraint Prop-
agation due to a PB constraint ωi. In this case, ωi is referred to as the antecedent constraint [11]
of the assignment to x j. The antecedent assignment of x j, denoted as Aω (x j), is defined as the
set of assignments to problem variables corresponding to false literals in ωi. Similarly, when
ωi becomes unsatisfied, the antecedent assignment of its corresponding conflict, Aω (k), will be
the set of all assignments corresponding to false literals in ω .

The implication relationships of variable assignments during the PB-SAT solving process
can be expressed as an implication graph [11]. In the implication graph, each vertex corresponds
to a variable assignment or to a conflict vertex. The predecessors of a vertex are the other
vertexes corresponding to the assignments in Aωi (x j). Next, several learning schemes are pre-
sented that result from analyzing the implication graph in a conflict situation.

4.1 Propositional Clause Learning

When a logical conflict arises, the implication sequence leading to the conflict is analysed to
determine the variable assignments that are responsible for the conflict. The conjunction of
these assignments represents a sufficient condition for the conflict to arise and, as such, its
negation must be consistent with the PB formula [11]. This new constraint (known as the
conflict constraint), is then added to the PB formula in order to avoid the repetition of the same
conflict situation and thus pruning the search space.

When an assignment to a problem variable x j is implied by a PB constraint ωi, one can see
it as the conjunction of Aωi (x j) implying the assignment to x j. Moreover, when a constraint
implies a given assignment, the coefficient reduction rule can be used to eliminate all positive
and unassigned literals except for the implied literal. Hence, the conflict analysis used in SAT
solvers by applying a sequence of resolution steps in a backward traversal of the implication
graph can be directly applied to PB formulas [11]. Additionally, techniques such as the detec-
tion of Unique Implication Points (UIPs) [11, 18] can also be directly used in PB-SAT conflict
analysis. As a result, a new propositional clause is generated and added to the original formula.

In the last pseudo-Boolean solver evaluation, some PB solvers used this approach, namely
bsolo [10] and PBS4 (an updated version of the original PBS solver [1]). This strategy is simple
to implement in PB solvers, since it is a straightforward generalization of the one used in SAT
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solvers. Moreover, considering the use of lazy data structures [12] for clause manipulation,
the overhead of adding a large number of clauses during the search is smaller than with other
types of constraints.

4.2 Pseudo-Boolean Constraint Learning

The use of PB constraint learning is motivated by the fact that PB constraints are more expres-
sive. It is known that a single PB constraint can represent a large number of propositional
clauses. Therefore, the potential pruning power of PB conflict constraints is much larger than
that of propositional clauses.

The operation on PB constraints which corresponds to clause resolution is the cutting plane
operation (section 2.2). As such, to learn a general PB constraint, the conflict analysis algorithm
must perform a sequence of cutting plane steps instead of a sequence of resolution steps. In
each cutting plane step one implied variable is eliminated. As with the clause learning conflict
analysis, a backward traversal of the implication graph is performed and the implied variables
are considered in reverse order. The procedure stops when the conflict constraint is unit at a
previous decision level (1UIP cut) [18].

After the conflict analysis, the algorithm uses the learned constraint to determine to which
level it must backtrack as well as implying a new assignment after backtracking. Therefore, the
learned constraint must be unsatisfied under the current assignment. Moreover, it must also be
an assertive constraint (must become unit after backtracking).

Consider the application of a cutting plane step to two arbitrary constraints ω1 with slack
s1 and ω2 with slack s2. Moreover, consider that α and β are used as the multiplying factors.
In this situation, the slack of the resulting constraint, here denoted by sr, is given by linearly
combining the slacks of ω1 and ω2: sr = (α · s1)+(β · s2). As such, before the application of each
cutting plane step, the learning algorithm verifies if the resulting constraint is still unsatisfied
under the current assignment. If it is not, the implied constraint must be reduced to lower its
slack [4, 17]. This process is guaranteed to work since the repeated reduction of constraints will
eventually lead to a simple clause with slack 0.

Algorithm 2 presents the pseudo-code for computing the conflict-induced PB constraint
ω(k). This algorithm performs a sequence of cutting plane steps, starting from the unsatisfied
constraint ω(c). Notice that this algorithm can also implement a clause learning scheme. In this
case, functions reduce1 and reduce2 remove all non-negative literals in ω(k) and ωi, respec-
tively, except for the implied literal. Next, these procedures can trivially reduce the obtained
constraint to a clause. In order to implement a general PB learning scheme, function reduce2
must eliminate only enough non-negative literals in ωi to guarantee that after the cutting plane
step, the resulting constraint remains unsatisfied at the current decision level.

4.3 Other Learning Schemes

Learning general PB constraints slows down the deduction procedure because the watched
literal strategy is not as efficient with general PB constraints as it is with clauses or cardinality
constraints [4, 16]. Note that in a clause, as well as in a cardinality constraint, it is only necessary
to watch a fixed number of literals, whereas in a general PB constraint the number of watched
literals varies during the execution of the algorithm.

The approach for cardinality constraint learning used in Galena [4] is based on the ap-
proach described for the general pseudo-Boolean learning scheme. The difference is that a
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Algorithm 2 Generic Pseudo-Boolean Learning Algorithm
// W corresponds to the set of constraints in the PB formula and ω(c) to the conflicting constraint
V ←{xi | x j corresponds to a false literal in ω(c) at current decision level};
ω(k)← reduce1(w(c))
while TRUE do

x j← removeNext(V );
ωi← implyingConstraint(x j);
if (wi 6= NULL ∧|V |> 1) then

ω ′i ← reduce2(ωi, ω(k));
ω(k)← cutResolve(ω(k), ω ′i , x j);
V ← V \{x j}∪{xk | xk corresponds to a false literal in ω ′i at current decision level}

else
ω(k)← reduce3(ω(k));
Add ω(k) to W ;
btLevel← assertingLevel(ω(k));
if btLevel < 0 then

return CONFLICT;
else

backtrack(btLevel);
return NO CONFLICT;

end if
end if

end while

post-reduction procedure is carried out so that the learned constraint is reduced into a weaker
cardinality constraint. In Algorithm 2 this would be done in function reduce3.

Finally, a hybrid learning scheme was already proposed and used in Pueblo [17]. The
authors noted that any solver which performs PB learning can be modified to additionally per-
form clause learning with no significant extra overhead. Moreover, despite the greater pruning
power of PB learning, clause learning has its own advantages: it always produces an assertive
constraint and it does not compromise as heavily the propagation procedure as general PB
learning. As such, in their solver Pueblo, they implement a hybrid learning method [17].

5 Implementation Issues

In implementing a pseudo-Boolean solver, several technical issues must be addressed. In this
section the focus is on generating the implication graph and on the use of cutting planes for PB
constraint learning.

5.1 Generating the Implication Graph

It is widely known that lazy data structures [12, 17] for constraint manipulation are essential
for the solver’s performance. Nevertheless, the order of propagation of variable assignments in
BCP has not been thoroughly studied. In the version of bsolo submitted to the last PB solver
evaluation (PB’07) [15], the order of propagation in the implication graph was depth-first. In
this paper it is shown that by changing it to a breadth-first propagation, bsolo was able to
solve a larger number of instances (see section 6).

When generating the implication graph in a breadth-first way, one can guarantee that there
is no other possible implication graph such that the length of the longest path between the
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decision assignment vertex and the conflict vertex is lower than the one considered. Therefore,
the learned constraint is probably determined using a smaller number of constraints. Moreover,
considering that in PB formulations the same constraint can imply more than one variable
assignment, the motivation for a breadth-first propagation is larger than in SAT formulations.

5.2 Dealing with Large Coefficients

When performing general PB Learning or any learning scheme that requires performing a se-
quence of cutting plane steps each time a conflict occurs, the coefficients of the learned con-
straints may grow very fast. Note that in each cutting plane step two PB constraints are linearly
combined. Given two constraints: ∑ j a j · l j ≥ b and ∑ j c j · l j ≥ d, the size of the largest coefficient
of the resulting constraint may be max{b · d,max j{a j} ·max j{c j}} in the worst case. Therefore,
it is easy to see that during a sequence of cutting plane steps the size of the coefficients of the
accumulator constraint may, in the worst case, grow exponentially in the number of cutting
plane steps (which is of the same order of the number of literals assigned at the current level).

One problem that may occur in the cutting plane operation is integer overflow. To avoid
this problem, a maximum coefficient size was established (we used 106). Therefore, every time
the solver performs a cutting plane step, all coefficients of the resulting constraint are checked
if one of them is bigger than the established limit. If it is, the solver repeatedly divides the con-
straint by 2 (followed by rounding) until its largest coefficient is lower than a second maximum
coefficient size (we used 105).

During the conflict analysis the accumulator constraint must always have negative slack.
However the division rule does not preserve the slack of the resulting constraint, since it does
not guarantee that the slack of the resulting constraint is equal to the slack of the original one,
which can be verified in the next example where the constraint is divided by 2, followed by
rounding:

3x1(0@1)+3x2(0@1)+3x3(1@1)+ x4(1@1)≥ 5 slack =−1
2x1(0@1)+2x2(0@1)+2x3(1@1)+ x4(1@1)≥ 3 slack = 0

As such, before dividing by 2 a coefficient associated with a slack contributing literal, the solver
must check if it is odd. In this case it must perform a coefficient reduction step before the
division (note that the coefficient reduction rule when applied to slack contributing literals
preserves the slack).

3x1(0@1)+3x2(0@1)+3x3(1@1)+ x4(1@1)≥ 5 slack =−1
3x1(0@1)+3x2(0@1)+2x3(1@1)≥ 3 slack =−1
2x1(0@1)+2x2(0@1)+ x3(1@1)≥ 2 slack =−1

5.3 An Initial Classification Step

After implementing different learning schemes, it was observed that each of the versions proved
to be more effective than the others for some group of instances. One can easily conclude that
different learning schemes behave better (or worse) depending on some characteristics of the
instances given as input. For instance, a cardinality constraint learning scheme is more ap-
propriate to deal with an instance with a large number of cardinality constraints than a clause
learning scheme.

Our goal was then to try to define an initial classification step that could choose the best
fitting learning scheme to solve a given problem instance. Therefore, in a very preliminary
work, algorithm C4.5 [13] was used to generate a decision tree that given a problem instance,
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determines which learning scheme is more appropriate to it. The classification of each instance
was done according to structural attributes of the formula, namely number of variables, literals,
types of constraints, among others.

6 Experimental Results

This section presents the experimental results of applying different learning schemes to the
small integer non-optimization benchmarks from the PB’07 evaluation [15]. All the learning
schemes were implemented on top of bsolo, a state of the art PB solver. Experimental results
were obtained on a Intel Xeon 5160 server (3.0Ghz, 4GB memory) running Red Hat Enterprise
Linux WS 4. The CPU time limit for each instance was set to 1800 seconds.

In Table 1, results for several learning schemes are presented. Each line of the table repre-
sents a set of instances depending on their origin or encoded problem. Each column represents
a version of bsolo for a different learning scheme. Finally, each cell denotes the number of
benchmark instances that were found to be satisfiable/unsatisfiable/unknown.

The basis for our work was the bsolo version submitted to PB’07 solver evaluation. This
version implements a clause learning scheme and is identified with CL1. Version CL2 corre-
sponds to the previous version, but with a breadth-first approach for generating the implication
graph. Next, results for the general PB learning scheme PB and cardinality learning scheme
CARD are presented. One should note that both the PB and CARD learning schemes are hybrid
(as in Pueblo) and always learn an assertive clause. Preliminary results on pure PB and cardi-
nality learning schemes were not as effective as an hybrid learning scheme. In version COMB,
an initial classification step was used in order to select the best fitting learning scheme for each
instance (see section 5.3). The training set for the COMB version was composed of 100 instances
(out of the total of 371 instances).

It can be observed from Table 1 that the original solver was greatly improved just by chang-
ing the propagation order. Version CL2 was able to solve more 17 instances, most of them in
the tsp benchmark set. Both the PB and CARD learning schemes improve on the original ver-
sion of the solver. However, in the PB version, the overhead associated with maintaining the
additional no-good PB constraints is a drawback, in particular on the FPGA and pigeon hole
instances. Overall, the CARD learning scheme performs much better, proving to be a nice com-
promise between pruning power of the generated constraints, and the underlying overhead of
constraint manipulation. Finally, the COMB version shows that a combination of all these learn-
ing schemes allows an even better performance. Finally, one should note that improvements
are essentially on unsatisfiable instances. The gain on satisfiable instances is smaller.

In Table 2, the results of the best known solvers can be checked and compared with bsolo.
Pueblo is able to solve 6 more instances than the current version of bsolo. By using a hybrid
learning scheme, Pueblo seems to have found a nice balance between the additional overhead
of new no-good constraints (mostly clauses) and the pruning power of new no-good PB con-
straints. Nevertheless, the work presented in this paper shows that bsolo can be competitive
in a large set of problem instances.

In the Pseudo-Boolean Optimization (PBO) problem, the objective is to find an assignment
such that all constraints are satisfied and a linear cost function is optimized. PB solvers can
be easily modified [2] in order to also tackle this problem. Table 3 presents the results of the
new version of bsolo in comparison with other solvers. Each cell contains the following in-
formation: the number of instances for which the optimum value was found, the number of
satisfiable but non-optimal solutions, the number of unsatisfiable instances and the number of
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Table 1: Results for all different learning schemes on non-optimization benchmarks
Benchmark CL1 CL2 CARD PB COMB

armies 5/0/7 4/0/8 6/0/6 5/0/7 7/0/5
dbst 15/0/0 15/0/0 15/0/0 15/0/0 15/0/0
FPGA 36/2/19 36/2/19 36/21/0 35/1/21 36/21/0
pigeon 0/2/18 0/2/18 0/19/1 0/1/19 0/19/1
prog. party 4/0/2 3/0/3 4/0/2 4/0/2 3/0/3
robin 3/0/3 4/0/2 2/0/4 4/0/2 4/0/2
tsp 40/33/27 40/50/10 40/44/16 40/43/17 40/49/11
uclid 1/39/10 1/40/9 1/43/6 1/43/6 1/41/8
vdw 1/0/4 1/0/4 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0 32/68/0 32/68/0
Total 137/144/90 136/162/73 137/195/39 137/156/78 139/198/34

Table 2: Comparison with other solvers on non-optimization benchmarks
Benchmark bsolo Pueblo minisat+ PBS4
armies 7/0/5 6/0/6 8/0/4 9/0/3
dbst 15/0/0 15/0/0 7/0/8 15/0/0
FPGA 36/21/0 36/21/0 33/3/21 26/21/10
pigeon 0/19/1 0/13/7 0/2/18 0/20/0
prog. party 3/0/3 6/0/0 5/0/1 3/0/3
robin 4/0/2 3/0/3 4/0/2 3/0/3
tsp 40/49/11 40/60/0 39/46/15 40/52/8
uclid 1/41/8 1/42/7 1/46/3 1/44/5
vdw 1/0/4 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0 32/68/0
Total 139/198/34 140/203/28 130/165/76 130/205/36

unknown instances. Clearly, bsolo is able to prove optimality for a larger number of instances
than other solvers. Additionally, due to the new learning schemes, bsolo is also able to find a
larger number of non-optimal solutions.

7 Conclusions

Considering the disparity of results concerning the application of learning schemes in several
state of the art PB solvers, the main goal of this work is to provide a contribution by imple-
menting them in the same platform. Our results confirm that hybrid learning schemes perform
better on a large set of instances. Moreover, our results show that cardinality constraint learning
is more effective and robust learning scheme than others. It obtained much better results than
the original clause learning scheme and also on our implementation of the PB hybrid learning
scheme included in Pueblo. In our opinion, cardinality constraints are easier to propagate
than PB constraints and are also more expressive than clauses. Therefore, this learning scheme
seems a reasonable compromise between PB learning and pure clause learning.
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Abstract

The ability to find non-trivial consequences of an axiom set is useful in many applications of
AI such as theorem proving, query answering and nonmonotonic reasoning. SOL (Skip Ordered
Linear) calculus is one of the most significant calculi for consequence finding, which is complete for
finding the non-subsumed consequences of a clausal theory. In this paper, we propose new complete
pruning methods and a practical search strategy for SOL tableaux. These methods are indispensable
for practical use in many application areas. The experimental results show that these techniques
improve the performance of consequence finding process greatly.

1 Introduction

The task of consequence finding [8] is to discover hidden theorems of a given axiom set. These theorems
to be found are not given in an explicit way, but are only characterized by some desired properties. Thus,
consequence finding is clearly distinguished from proof finding or theorem proving. One of the most
significant calculi for consequence finding is the SOL (Skip Ordered Linear) calculus[1], which is com-
plete for finding the non-subsumed consequences of a clausal theory. There are many application areas
of SOL calculus such as nonmonotonic reasoning, abduction [1, 2], induction [3], default reasoning [4]
and query answering [7, 6]. The original SOL-resolution calculus can be viewed as extending Love-
land’s model-elimination calculus [11] with a so-called Skip operation. Iwanuma et al. [5] subsequently
reformulated SOL-resolution within the framework of connection tableaux [9, 10] and proposed several
pruning methods [5, 6].

In this paper, we propose two kinds of new complete pruning methods for SOL tableau calculus,
local failure caching for length condition and skip-minimality. The former is an extension of local failure
caching [9, 10, 5] which is an excellent pruning technique for connection tableau calculus. The extension
ensures the completeness of the calculus in case we are only interested in consequences up to a given
maximal length. A user usually prefers short and simple consequences rather than long and complicated
ones. Moreover, limiting the length of consequences has the effect of reducing the search space vastly.
In such a situation, our proposed method accelerates the performance of the consequence finding process
significantly. The latter method, Skip-minimality, restrains the use of the Skip operation and prunes many
redundant SOL derivations. In addition, we describe a new practical search strategy, called consequence
iterative lengthening (CIL), which has the effect of finding short and simple consequences preferentially
in a limited time. We demonstrate the effectiveness of these methods by the experimental evaluation.

The remainder of this paper is organized as follows: Section 2 reviews the SOL tableau calculus.
Section 3 and 4 introduces new pruning methods and a search strategy for consequence finding, respec-
tively. Section 5 shows the experimental evaluation. Section 6 concludes with a summary and discussion
of future work.

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
Proceedings of the Combined KEAPPA - IWIL Workshops, pp. 113- 122
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2 SOL Tableaux for Consequence Finding

This section reviews the SOL tableau calculus [5]. This paper assumes a first-order language (without
equality). We write ⊆ms to denote the inclusion relation over multisets which is defined as usual. When
C and D are clauses, C subsumes D if there is a substitution ! such that C! ⊆ms D. We say C properly
subsumes D if C subsumes D but D does not subsume C. For a set " of clauses, µ" denotes the set of
clauses in " not properly subsumed by any clause in ".

Definition 1. A production field P is a pair 〈L,Cond 〉, where L is a set of literals closed under instanti-
ation, and Cond is a certain condition to be satisfied. If Cond is not specified, P is just denoted as 〈L〉.
A clause C belongs to P = 〈L,Cond 〉 if every literal in C belongs to L and C satisfies Cond. For a set of
clauses ", the set of logical consequences of " belonging to P is denoted as ThP("). A production field
P is stable if, for any two clauses C and D such that C subsumes D, the clause D belongs to P only if
C belongs to P .

Example 1. LetL =L +∪L − be the set of all literals in the first-order language, whereL+ and L −

are the positive and negative literals in the language, respectively. The following are examples of stable
production fields.

(a) P1 = 〈L 〉: ThP1(") is the set of logical consequences of ".

(b) P2 = 〈L −, length is less than k 〉: ThP2(") is the set of negative clauses implied by " consisting of
less than k literals.

In contrast, P3 = 〈L, length is greater than k 〉 is not a stable production field. For example, if k = 2
and L= {p(a),q(b),¬r(c)}, then C = p(a)∨q(b) subsumes D= p(a)∨q(b)∨¬r(c), and D belongs to
P3 while C does not.

Note that the empty clause ! is the unique clause in µThP(") iff " is unsatisfiable. This means that
proof finding is a special case of consequence finding. Stable production fields are practically important
[1]. In the condition Cond, we can specify the maximum length of each clause, the maximum term depth
of any literal in a clause, and so on.

Definition 2. A clausal tableau T is a labeled ordered tree, where every non-root node of T is labeled
with a literal. We identify a node with its label (i.e., a literal) if no confusion arises. If the immediate
successors of a node are literals L1, . . . ,Ln, then L1 ∨ ·· ·∨ Ln is called a tableau clause. The tableau
clause below the root is called the start clause. T is a clausal tableau for a set " of clauses if every
tableau clause C in T is an instance of a clause D in ". In this case, D is called an origin clause of C.
A connection tableau is a clausal tableau such that, for every non-leaf node L except the root, there is
an immediate successor labeled with L. A marked tableau T is a clausal tableau such that some leaves
are marked with labels closed or skipped. The unmarked leaves are called subgoals. A node N in T
is said to be solved if either N itself is a marked leaf node or all leaf nodes of branches through N of T
are marked. T is solved if all leaves are marked. skip(T ) denotes the set of literals of nodes marked with
skipped.

Notice that skip(T ) is a set, not a multiset. skip(T ) is also identified with a clause. We will abbreviate
a marked connection tableau as a tableau.

Definition 3. A tableau T is regular if no two nodes on any branch in T are labeled with the same literal.
T is tautology-free if no tableau clause in T is tautology. T is complement-free if no two non-leaf nodes
on any branch in T are labeled with complementary literals. A tableau T is skip-regular if there is no
node L in T such that L ∈ skip(T ). T is TCS-free (Tableau Clause Subsumption free) for a clause set "
if no tableau clause C in T is subsumed by any clause in " other than the origin clauses.
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Notice that the skip-regularity applies to all over a tableau, so it is effective not only for subgoals but
also for non-leaf and solved nodes.

Definition 4 (Selection Function [5]). A selection function # is a mapping assigning a subgoal to every
tableau that is not solved. # is said to be depth-first if # selects from any tableau T a subgoal with a
maximum depth. # is stable under substitution if, for any tableau T and any substitution $ , #(T ) =
#(T$) holds.

Selection functions are assumed to be stable under substitution in this paper.

Definition 5 (SOL Tableau Calculus [5]). Let " be a set of clauses, C a clause, P a production field
and # a selection functions. An SOL-deduction deriving a clause S from "+C and P via # consists of
a sequence of tableaux T0,T1, . . . ,Tn satisfying that:

(i) T0 consists of the start clause C only. All leaf nodes of T0 are unmarked.

(ii) Tn is a solved tableau, and skip(Tn) = S.

(iii) For each Ti (i= 0, . . . ,n), Ti is regular, tautology-free, complement-free, skip-regular, and TCS-free
for "∪{C}.

(iv) For each Ti (i= 0, . . . ,n), the clause skip(Ti) belongs to P .

(v) Ti+1 is constructed from Ti as follows. Select a subgoal K by # , then apply one of the following
rules to Ti to obtain Ti+1:

(a) Skip: If skip(Ti)∪{K} belongs to P , then mark K with label skipped.
(b) Skip-factoring: If skip(Ti) contains a literal L, and K and L are unifiable with mgu ! , then

mark K with skipped, and apply ! to Ti.
(c) Extension: Select a clause B from "∪ {C} and obtain a variant B′ = L1 ∨ ·· ·∨ Lm by

renaming. If there is a literal Lj such that K and Lj are unifiable with mgu ! , then attach new
nodes L1, . . . ,Lm to K as the immediate successors. Next, mark Lj with closed and apply !
to the extended tableau.

(d) Reduction: If K has an ancestor node L, and K and L are unifiable with mgu ! , then mark
K with closed, and apply ! to Ti.

Theorem 1 (Soundness and Completeness of SOL [5]). (1) If there is an SOL-deduction of a clause S
from "+C and P via # , then S belongs to ThP("∪{C}).

(2) If a clause F does not belong to ThP(") but belongs to ThP("∪ {C}), then there is an SOL-
deduction of a clause S from "+C and P via #such that S subsumes F.

Example 2. We define a start clause C, a set " of clauses and a production field P as follows. Let # be
a selection function.

C = p(X)∨ s(X),
"= {q(X)∨¬p(X), ¬s(Y ), ¬p(Z)∨¬q(Z)∨ r(Z)},

P = 〈L +, length is less than 2〉.

Figure 1 shows three solved tableaux that are derived by SOL-deductions from "+C and P via # .
In the tableau Ta, the node p(X) is skipped since the positive literal p(X) belongs to P , and s(X)
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Figure 1: Solved tableaux of Example 2

is extended by using the unit clause ¬s(Y ). Note that s(X) cannot be skipped since the production
field P limits the maximum length of consequences to one. The derived consequence is skip(Ta) =
{p(X)}. Tb shows the other derived tableau whose node p(X) is extended by q(X)∨¬p(X), and the
node q(X) is skipped. The consequence of Tb is skip(Tb) = {q(X)}. In Tc, the nodes p(X) and q(X) are
extended by q(X)∨¬p(X) and ¬p(Z)∨¬q(Z)∨ r(Z) respectively. The bottom node ¬p(X) is closed by
reduction with the ancestor p(X), and r(X) is skipped. The consequence is skip(Tc) = {r(X)}. There
are some redundant solved tableaux other than Ta, Tb and Tc. The consequences of those are subsumed
by p(X), q(X) or r(X)1. As the results, we can get three new characteristic clauses in this example:
Newcarc(",C,P) = {p(X),q(X),r(X)}.

3 Pruning Methods for SOL Tableau Calculus

3.1 Local Failure Caching for Length Condition

Local failure caching [9, 10] is an excellent pruning method for refutation finding which can avoid solv-
ing repetitiously a subgoal with the same or a more specific substitution. Iwanuma et al. [5] reformulated
the local failure caching for consequence finding. This procedure is complete if a production field does
not imply a maximum length condition. We review the procedure and then show a counter example. We
first define the SOL search tree to explicitly express all possible SOL-deductions.

Definition 6. The SOL search tree from "+C and P via # is a tree T labeled with tableaux as follows.
We identify a node with its label (i.e., a tableau) if no confusion arises. The root of T is a tableau which
consists of the start clause C only. Every non-leaf node T in T has as many successor nodes as there
are successful applications of a single inference step applied to the selected subgoal in T by # , and the
successor nodes of T are the respective resulting tableaux. A segment of T is a subtree that contains the
nodes explored by # from the root to some node.

1The new pruning method skip-minimality proposed in Section 3.2 can prune such redundant tableaux.
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Definition 7 (Solution and Failure Substitution). Given a SOL search tree T and a depth-first selection
function. Let T be a tableau in T and K the selected subgoal in T .

1. If T ′ in T is a descendant tableau of T such that all branches through K in T′ are solved, then the
composition $ = $1 · · ·$k of substitutions applied to the tableau T on the way from T to T′ is called
a solution of K at T via T ′.

2. If T ′ is an initial segment of T containing no proof at T′ or below it, then the solution $ is named a
failure substitution for K at T in T ′.

Definition 8 (Local Failure Caching Procedure for Consequence Finding [5]). Let T ′ be a finite initial
segment of a tableau search tree T .

Step 1: Whenever a subgoal K in a tableau T in T ′ has been solved via a tableau T′, then the computed
solution $ is stored at the node K.

a. If T ′ cannot be completed to a solved tableau in T ′ and the proof procedure backtracks over
T ′, then $ is turned into a failure substitution.

b. If T ′ once has been completed in T ′ at a previous stage and the proof procedure back-
tracks over T ′ for searching alternative consequences, then continue the backtracking, with-
out adding $ to the failure substitutions.

Step 2: In any alternative solution process of the subgoal K below the search node T , if a substitution
% = %1 · · ·%m is computed such that one of the failure substitutions stored at the node K is more
general than % , then the proof procedure immediately backtracks.

Step 3: When the search node T (at which K was selected) is backtracked, then all failure substitutions
at K are deleted.

We show a counter example for the completeness of the above procedure.

Example 3. We define a start clauseC= p(X)∨q(X)∨r(X), a set of clauses "= {¬q(X)∨s(X), ¬s(Y )},
and a production field P = 〈L+, length is less than 3 〉. We consider finding consequences from this
problem. We can apply the Skip operation to p(X) and q(X) in the start clause since they are positive.
But we cannot close r(X), because the maximum length of consequences is limited to two (see T1 in
Figure 2). In this case, the local failure caching procedure stores an empty failure substitution $ = /0 at
the node q(X). Since /0 is the most general substitution, all the other applicable operations to q(X) are
pruned immediately. As the result, we cannot solve this problem and get any consequences. However,
if we do not use the local failure caching, we can obtain the consequence p(X)∨ r(X) from the solved
tableau T2 in Figure 2. Hence, the local failure caching is incomplete if there exists a maximum length
condition.

The cause of incompleteness is that the procedure does not consider skipped nodes. We extend the
definitions of solution and failure substitution, and propose a complete procedure, called local failure
caching for length condition.

Definition 9 (Extended Solution and Failure Substitution). Given a tableau search tree T and a depth-
first selection function. Let T be a tableau in T and K the selected subgoal in T .

1. If T ′ in T is a descendant tableau of T such that all branches through K in T′ are solved, then the
pair 〈$ ,s〉, where $ is the composition $ = $1 · · ·$k of substitutions applied to the tableau T on the
way from T to T ′ and s= skip(T ′), is called an extended solution of K at T via T′.
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Figure 2: A counter example of local failure caching for consequence finding

2. If T ′ is an initial segment of T containing no proof at T′ or below it, then the extended solution
〈$ ,s〉 is named an extended failure substitution for K at T in T ′.

For two extended failure substitutions 〈$ ,s1〉 and 〈% ,s2〉, 〈$ ,s1〉 is more general than 〈% ,s2〉 if ∃!($! =
% ∧ s1! ⊆ s2), that is, $ is more general than % and s1 subsumes s2. If P does not have a maximum
length condition, then we simply ignore the latter condition, that is, 〈$ ,s1〉 is more general than 〈% ,s2〉
if ∃!($! = %).

Definition 10 (Local Failure Caching Procedure for Length Condition). The definition is same as Def-
inition 8 except for replacing terms of “solution” and “failure substitution” with “extended solution”
and “extended failure substitution” respectively.

The completeness of the local failure caching for length condition is given by the following proposi-
tion.

Proposition 1. LetT be a tableau search tree, T a tableau inT , K the selected subgoal in T , and Ta,Tb
descendant tableaux of T . Suppose that 〈$ ,s1〉 is the extended failure substitution for K at T via Ta, and
〈% ,s2〉 is the extended solution of K at T via Tb generated by an alternative process. If Tb has a solved
tableau Tbs as a descendant node in T , then 〈$ ,s1〉 is not more general than 〈% ,s2〉.

Proof. We prove the completeness by a reductio-ad-absurdum. We assume that 〈$ ,s1〉 is more general
than 〈% ,s2〉, that is, ∃!($! = % ∧ s1! ⊆ s2). Let Sa and Sbs be the subtableaux with root K in Ta and
Tbs respectively (see Figure 3). Then, we replace Sbs in Tbs with Sa! , and denote the resulting tableau as
T ′
bs, which is solved and satisfies the maximum length condition. The reason is as follows. Let N be
the set of selected subgoals on the way to Tbs after Tb. We extract the set N f of nodes from N which
are skipped by the Skip-factoring operation. There might exist the skipped nodes in Nf which have the
factoring target in Sbs but not in Sa! . However, the number of such nodes is at most |s2 \ s1! | since
s1! ⊆ s2. Therefore, we can apply the Skip operation instead of the Skip-factoring to such nodes. As the
results, skip(T ′

bs) satisfies the maximum length condition.
This means that if the subtableau Sa was solved with the substitution $! instead of $ , then there

should exist a solved tableau in T below Ta. Hence, if Sa is solved with the more general substitution $ ,
then there must be a solved tableau in T below Ta. But this contradicts the assumption of 〈$ ,s1〉 being
a failure substitution.

We consider solving Example 3 by using local failure caching for length condition. Since we cannot
close r(X) in T1, the extended failure substitution 〈 /0,{p(X),q(X)}〉 is stored to the node q(X). When the
alternative process solves q(X) using two extension operations (see T2 in Figure 2), the extended solution
substitution 〈 /0,{p(X)}〉 is stored to q(X). Now, 〈 /0,{p(X),q(X)}〉 is not more general than 〈 /0,{p(X)}〉
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Figure 3: Completeness of local failure caching for length condition

because {p(X),q(X)} +⊆ {p(X)}. Hence, we can obtain the solved tableau T2 by skipping r(X) and get
the consequence p(X)∨ r(X).

Since the Skip operation never instantiates a tableau, local failure caching is significantly effective
for the SOL tableau calculus. Moreover, using the maximum length condition is important for finding
simple and short consequences in practical time. In such a situation, local failure caching for length
condition is an essential technique for practical use.

3.2 Skip-minimality

The task of consequence finding is to find all minimal consequences with respect to subsumption. This
means that even if we find a solved tableau, we have to continue searching other solved tableaux for
finding all minimal consequences. In proof finding, we can halt the computational process immediately
if one refutation is found. This is an important difference between consequence finding and proof finding.
Of course, if a refutation is found in a consequence finding process, then we can stop the computation
immediately since the refutation is the most general consequence.

Skip-minimality improves the efficiency of such a consequence enumeration process. This method
can prune unsolved tableaux which will generate only non-minimal consequences with respect to sub-
sumption by using the consequences derived from already solved tableaux.

Definition 11 (Skip-Minimality). Let & be a set of clauses. A tableau T is skip-minimal for & if the
clause skip(T ) is not properly subsumed by any clause in &.

Suppose that & is a set of consequences derived by some SOL-deductions in a consequence enumer-
ation process. If a tableau T is not skip-minimal for &, then T and all its descendant tableaux can be
pruned immediately. Skip-minimality is complete since the four kinds of operations in Definition5 never
generalize skip(T ). If we find general and short consequences in early stages, then skip-minimality is
very effective since it prevents generating many redundant tableaux.

4 Search Strategy

Limiting the maximum length of consequences is important. When there is no limit, the branching factor
of a SOL search tree increases and the size of the tree grows exponentially. However, it is difficult to
know the appropriate length condition in advance. One of the solutions is to execute a search process with
incrementing the maximum length limit iteratively, like DFID (depth-first iterative deepening) search
strategy.
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We propose the consequence iterative lengthening (CIL) strategy. Let P be a consequence enumer-
ation process and l a length limit of consequences (initially l = 0). CIL strategy executes the process P
with the length limit l repeatedly, incrementing l for each iteration. If l reaches a given limit or satisfies
the condition s< l, then the iteration stops, where s is the maximum number of used Skip operations in
every tableau.

Since CIL strategy visits the same tableaux in a SOL search tree multiple times, it may seem wasteful.
However, it turns out to be not so costly, because the number of tableaux in the SOL search tree increases
exponentially in proportion to incrementing the length limit of consequences. We show the property of
CIL strategy in Section 5 experimentally.

5 Experimental Results

We have implemented skip-minimality, local failure caching for length condition and CIL strategy in
SOLAR [12] which is a Java implementation of the SOL tableau calculus. Table 1 shows the experi-
mental results for our proposed methods. We used some problems in the TPTP library v2.5.0 [14] as
consequence finding problems, which are satisfiable instances (for example, “BOO008-3.p” is the file
name of the problem). There are 1,092 satisfiable problems in the library and 24 categories contain such
satisfiable instances. We selected 10 categories and chose one satisfiable problem from each category.
We defined a production field in each problem as 〈L , length ≤ x〉, whereL is the set of all literals and
the length condition is given as “len ≤ x” in Table 1. “dep ≤ y” means that we limited the maximum
depth of tableaux to y. “sr”, “sm” and “lfc” denote skip-regularity, skip-minimality and local failure
caching for length condition respectively. “#C.” and “#Steps” are the number of found consequences
and the total number of derived tableaux (that is the number of nodes in a SOL search tree) respectively.
The experiments were done on a Core Duo (1.66GHz) machine with 2GB memory. “t.o.” means that the
problem could not solve within 600 CPU seconds.

Table 1 shows that our proposed pruning methods have a great ability for reducing the search space
and improving the speed. In particular, skip-minimality is very effective for solving GRP123-1.005. If
we do not use skip-minimality to solve the problem, then we cannot solve the problem within 600 CPU
seconds. In MSC009-1 and NLP026-1, local failure caching for length condition shows a high pruning
effect. In BOO008-3 and LCL168-1, skip-minimality is not effective because the current implementation
of clause-subsumption checking in SOLAR is naive. The improvement of the clause-subsumption check
algorithm is one of the important future work. The rightmost row of Table1 indicates that CIL strategy
has almost no overhead. For example, in KRS005-1, CIL executes DFID five times with the maximum
length limit of consequences from 0 to 4. However, the number of inferences and execution time are not
so different than DFID without CIL.

6 Conclusion and Future Work

We have proposed new complete pruning methods and a search strategy for SOL tableau calculus. Local
failure caching for length condition and skip-minimality can avoid producing many redundant tableaux.
CIL is helpful to a user for finding short and simple consequences preferentially in a limited time. The
completeness of local failure caching for length condition supports CIL strategy, and the pruning power
of skip-minimality is promoted by CIL since it generates short consequences in early stages.

Currently, SOLAR does not have a special mechanism for handling equality. In order to solve a
problem with equality efficiently, the development of the complete equality handling mechanism for
consequence finding is one of the important future work.
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Table 1: Experimental results
Problem Params Pruning #C DFID DFID + CIL

Methods #Steps Time [sec] #Steps Time [sec]

BOO008-3.p

none 831 308,437 2.3 355,371 2.4
dep ≤ 3 sr 831 303,424 2.3 350,358 2.5

sm 831 308,437 7.2 355,371 7.4
len ≤ 5 lfc 831 299,195 2.4 342,711 2.5

all 831 295,944 7.3 339,460 7.7

GRP123-1.005.p

none - - t.o. - t.o.
dep ≤ 5 sr - - t.o. - t.o.

sm 65 822,283 4.5 935,057 4.9
len ≤ 1 lfc - - t.o. - t.o.

all 65 784,888 4.8 897,662 5.2

HWV034-1.p

none 4 7,187,849 18.3 7,409,286 18.8
dep ≤ 10 sr 4 4,392,088 11.6 4,571,153 12.1

sm 4 6,686,239 17.6 6,907,676 18.1
len ≤ 3 lfc 4 4,733,454 14.2 4,952,443 15.1

all 4 3,112,295 10.6 3,288,912 11.0

KRS005-1.p

none 131 160,767,095 438.5 165,203,316 441.4
dep ≤ 4 sr 131 44,631,879 136.2 46,621,089 136.4

sm 131 46,303,085 139.3 47,444,019 141.5
len ≤ 4 lfc 131 106,297,270 319.2 110,027,318 333.5

all 131 8,730,512 36.8 9,166,063 37.9

LCL168-1.p

none 2,091 39,103 33.3 40,752 33.4
dep ≤ 5 sr 2,091 38,615 33.5 40,264 33.6

sm 2,091 39,103 35.4 40,752 35.6
len ≤ 1 lfc 2,091 38,629 33.4 40,278 33.8

all 2,091 38,141 35.5 39,790 36.0

MSC009-1.p

none 43 11,160,097 23.4 11,442,019 24.7
dep ≤ 4 sr 43 7,453,146 16.7 7,705,908 17.0

sm 43 8,835,505 20.1 9,117,427 20.4
len ≤ 4 lfc 43 4,786,900 12.0 4,915,009 12.2

all 43 1,992,519 6.4 2,107,194 6.7

NLP026-1.p

none 15 129,692,801 301.8 130,198,526 307.0
dep ≤ 5 sr 15 72,182,022 178.0 72,667,948 176.5

sm 15 129,025,421 309.8 129,531,146 305.0
len ≤ 2 lfc 15 8,218,827 23.7 8,716,795 25.6

all 15 6,391,292 20.8 6,870,050 22.8

PUZ001-3.p

none 26 34,997,018 134.7 39,946,809 145.8
dep ≤ 10 sr 26 14,845,990 59.6 17,823,280 66.4

sm 26 731,711 3.8 1,157,985 5.0
len ≤ 3 lfc 26 33,799,877 143.4 38,495,682 154.7

all 26 458,832 3.2 759,780 4.3

SET777-1.p

none 3 3,906,678 9.3 3,994,168 9.6
dep ≤ 6 sr 3 1,118,100 3.4 1,158,829 3.5

sm 3 3,502,145 8.5 3,583,800 8.7
len ≤ 2 lfc 3 2,251,658 7.1 2,302,211 7.3

all 3 656,933 2.8 680,619 2.9

SYN084-1.p

none 5 1,335,866 7.0 1,622,436 8.0
dep ≤ 3 sr 5 1,210,436 6.9 1,486,172 7.8

sm 5 328,239 2.5 441,974 2.7
len ≤ 4 lfc 5 1,335,866 7.3 1,621,274 8.2

all 5 285,808 2.4 395,557 2.7
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Ray and Inoue [13] have proposed a transformation method for unstable production fields, which
converts these into stable ones. This method greatly helps to define a desired production field and to
prune an unnecessary search space.
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Abstract

Z3 [3] is a state-of-the-art Satisfiability Modulo Theories (SMT) solver freely available from
Microsoft Research. It solves the decision problem for quantifier-free formulas with respect to com-
binations of theories, such as arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is used
in various software analysis and test-case generation projects at Microsoft Research and elsewhere.
The requirements from the user-base range from establishing validity, dually unsatisfiability, of first-
order formulas; to identify invalid, dually satisfiable, formulas. In both cases, there is often a need
for more than just a yes/no answer from the prover. A model can exhibit why an invalid formula
is not provable, and a proof-object can certify the validity of a formula. This paper describes the
proof-producing internals of Z3. We also briefly introduce the model-producing facilities. We em-
phasize two features that can be of general interest: (1) we introduce a notion of implicit quotation
to avoid introducing auxiliary variables, it simplifies the creation of proof objects considerably; (2)
we produce natural deduction style proofs to facilitate modular proof re-construction.

1 Introduction

The title of our paper borrows from Imre Lakatos’s famous book on conjectures, proofs and refutations
in informal mathematics [7], yet our setting is machine checked proofs, that are penultimately given in a
context of formal systems where proofs are derived from axioms. Proofs in our context are derivations
from axioms, or derivations in theories that have solvers, implemented using efficient algorithms that
need only produce derivations implicitly. Part of the challenge is that efficiently and compact checkable
proofs, or certificates, are to be extracted from the solvers. Refutations, also called models, are counter-
examples, that exhibit interpretations for formulas that do not follow from asserted axioms. Models are
also extracted from solvers.
Applications of SMT solvers that consume models benefit tremendously from a prover that produces
more than just a yes/no answer or a set of saturated clauses. A solver should therefore be able to com-
municate a model that can be represented finitely and consumed by the clients. Applications that mainly
require an indication of validity may in some cases furthermore benefit from a certificate in the form of
a proof object. This paper describes the model-producing features of Z3, currently available in the tool.
It also describes the proof-producing features in preparation in the next version of Z3. While this paper
can serve as an overview of the model- and proof-producing facilities in Z3, we point out the following
particularities of our approach:

1. We define a notion of implicit quotation that allows us to encode a Tseitsin’ style clausification
without introducing auxiliary symbols. Other proof-producing SMT systems that we are aware of
[18], [19], [2], [22], introduce auxiliary symbols (such as proxy literals) during clausification and
other transformations. Such symbols can impede optimizations in the theory solvers (we provide
an example in Section 3.3.2 where we can avoid introducing extra Simplex Tableaux rows) and
make proof re-construction more involved.

2. We adapt an open-ended architecture for representing proofs. Proof rules can be introduced by
respective theory modules and combined with others. At the propositional level this is manifested

Rudnicki P, Sutcliffe G., Konev B., Schmidt R., Schulz S. (eds.);
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as we adapt a natural deduction style calculus. This contrasts with existing proof-producing SAT
solvers that generate resolution proofs directly [10, 6, 21]. We are obviously not the first to use
natural deduction in the context of SMT, for example, [9], investigates efficient proof checking of
natural deduction style proofs by implementing inference rules as rewrites.

3. We also do not attempt to specify all inference rules from a smaller set of axioms. Instead we rely
on proof checking to be able to carry out a limited set of inferences, or refine proofs in a separate
pass. This choice obviously reflects a trade-off between the requirements on the solver vs. the
proof checker. Our own experience has been that the coarse granularity has in fact been sufficient
in order to catch implementation bugs. Future work includes investigating whether this approach
is practical in the context of proof checkers based on trusted cores [1].

2 Preliminaries

2.1 Terms and Formulas

Z3 uses basic multi-sorted first-order terms. Formulas are just terms of Boolean sort, and terms are built
by function application, quantification, and bound variables. Sorts range over a finite denumerable set of
disjoint primitive sorts. To summarize

s ∈ Sorts ::= Boolean | Int | Proof | . . .
t ∈ Terms ::= f (t1, . . . , tn) function application

| x bound variable
| ∀x : s . t | ∃x : s . t quantification

There a a few built-in sorts, such as Boolean, Int, Real, BitVec[n] (for each n, an n-bit bit-vector),
and Proof. The Proof sort is used for proof-terms. Terms can be annotated by pragmas. For example,
quantifiers are annotated with patterns that control quantifier instantiation. Function symbols can be both
interpreted and uninterpreted. For example, numerals are encoded using interpreted functions. Function
symbols also have attributes, such as to indicate whether they are associative and/or commutative. Note
that there are no binding operators other than universal and existential quantification. A number of
function symbols are built-in to the base theory. We will introduce the set of proof-constructing terms as
we explain their origination, but here let us summarize the main pre-declared function symbols. We use
the usual infix symbols ∧,∨,→,↔ for Boolean conjunction, disjunction, implication and bi-implication.
For each sort s there is an equality relation ': s× s→ Boolean. The relation ∼: Boolean×Boolean→
Boolean is used in proof terms. A proof of ϕ ∼ ψ establishes that ϕ is equisatisfiable with ψ . In
other words, if we close ϕ and ψ by second-order existential quantification of all Skolem functions and
constants, we obtain equivalent formulas.

2.2 Proof Terms

Proof objects are also represented as terms. So a proof-tree is just a term where each inference rule is
represented by a function symbol. For example, consider the proof-rule for modus ponens:

... p
ψ → ϕ

... q
ψ

modus ponens
ϕ

In the rule, p is a proof-term for ψ → ϕ , and q is a proof for ψ . The resulting proof-term for ϕ is
then mp(p,q,ϕ). We will later elaborate on the function symbols for building basic proof terms that are
available in Z3.
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Every proof term has a consequent, the formula that the proof establishes. It is always the last
argument in our proof terms. To access the consequent we will use the notation con(p). For example,
con(mp(p,q,ϕ)) = ϕ .

3 Proofs

3.1 Overview

Z3 applies multiple stages when attempting to verify a formula. First formulas are simplified using a
repository of simplification rules. The result of simplification is then converted into an internal format
that can be processed by the solver core. We refer to this phase as internalization. The core comprises of
a SAT solver that performs Boolean search and a collection of theory solvers. The solver for equality and
uninterpreted function symbols (congruence closure) features predominantly as a theory solver in Z3 as
it dispatches constraints between the SAT solver and other theories.

Input formula Simplifier (3.2) Internalizer (3.3)

Theory Core (3.4.2,3.4.3)SAT solver (3.4.1)

As the figure illustrates, we will describe the various modules in the following sections, as we intro-
duce the proof terms that are produced as a side effect of the modules.

The figure does not reflect the full extent of Z3. We will not be elaborating on proof objects for
non-ground formulas in this paper. Z3 does produce proof objects for non-ground formulas. The re-
quired machinery introduces judgments stating equi-satisfiability of formulas. Furthermore, Z3 contains
a module that produces and integrates proofs in a superposition calculus [4]. The proof terms are the
usual superposition inferences [12]. That material is beyond the scope of this paper.

3.2 Simplification Rewriting

In a first phase, formulas are simplified using a rewriting simplifier. The simplifier applies standard
simplification rules for the supported theories. For example, terms using the arithmetical operations,
both for integer, real, and bit-vector arithmetic, are normalized into sums of monomials. A single axiom
called rewrite is used to record the simplification steps.

rewrite(t ' s), rewrite(ϕ ↔ ψ) A proof for a local rewriting step that converts t to s or ϕ to ψ . The head
function symbol of t is interpreted. Sample instances of this proof object are: rewrite(x + 0 ' x),
rewrite(x+ x' 2 · x), and rewrite((ϕ ∨false)↔ ϕ).

Notice that we do not axiomatize the legal rewrites. Instead, to check the rewrite steps, we rely on a
proof checker to be able to apply similar inferences for the set of built-in theories: arithmetic, bit-vectors
and arrays.
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3.3 Internalization

Internalization is the process of translating an arbitrary formula ϕ into a normal form that can be con-
sumed by efficient proof-search procedures. We will discuss two internalizations: clausification and con-
version of arithmetical constraints into a format that can be processed using a global Simplex tableau.
Internalization often introduces auxiliary variables that are satisfiability preserving definitional exten-
sions of the original problem. We will introduce a simple, but apparently unrecognized, technique of
implicit quotation to allow us introducing these definitional extensions, but at the same time take advan-
tage of the fact that the auxiliary variables can be viewed directly as terms they are shorthand for. The
technique of implicit quotation makes the proof extraction process fairly direct.

3.3.1 Clausification

Tseitsin’s clausal form conversion algorithm can be formulated as a procedure that works by recursive
descent on a formula and produces a set of equi-satisfiable set of clauses. A simple conversion algorithm
introduces one fresh name for each sub-formula, and defines the name using the shape of the sub-formula.
We here recall the basic idea by converting and-or formulas into CNF.

cnf (ϕ) = let (`,F) = cnf ′(ϕ) in `∧F
cnf ′(`) = (`, true) ` is a literal
cnf ′(¬ϕ) = let (`,F) = cnf ′(ϕ) in (¬`,F)
cnf ′(ϕ ∧ψ) = let (`1,F1) = cnf ′(ϕ), (`2,F2) = cnf ′(ψ) in

(p,F1∧F2∧ (¬`1∨¬`2∨ p)∧ (¬p∨ `1)∧ (¬p∨ `2)) p is fresh
cnf ′(ϕ ∨ψ) = let (`1,F1) = cnf ′(ϕ), (`2,F2) = cnf ′(ψ) in

(p,F1∧F2∧ (`1∨ `2∨¬p)∧ (p∨¬`1)∧ (p∨¬`2)) p is fresh

More sophisticated CNF conversions that do not introduce fresh names for all sub-formulas exist [14].
They control the number of auxiliary literals and clauses introduced during clausification.

Z3 does not introduce auxiliary predicates during internalization of quantifier-free formulas. Instead,
it re-uses the terms that are already used for representing the sub-formulas. Thus, instead of introducing
a fresh variable p, in the CNF conversion of ϕ ∨ψ , we treat the term ϕ ∨ψ as a literal. To clarify that a
sub-formula plays the rôle of a literal below, we quote it. So the literal associated with ϕ ∨ψ is dϕ ∨ψe.
So the CNF conversion of ϕ ∨ψ produces the pair:

(dϕ ∨ψe, F1∧F2∧ (`1∨ `2∨¬dϕ ∨ψe)∧ (dϕ ∨ψe∨¬`1)∧ (dϕ ∨ψe∨¬`2))

It may appear that we need to justify the auxiliary clauses (`1 ∨ `2 ∨¬dϕ ∨ψe), (dϕ ∨ψe∨¬`1), and
(dϕ ∨ψe∨¬`2) by appealing to the equi-satisfiablility, but the justification for these clauses happens in
fact to directly use equivalence. First note that it follows by induction on the clausification algorithm
that `1 is equivalent to ϕ and `2 is equivalent to ψ . Each of the auxiliary clauses introduced during
clausification is therefore justified as propositional tautologies. Only limited propositional reasoning is
required to justify these. The proof terms corresponding to the auxiliary clauses are tagged as definitional
axioms. For example, the axiom dϕ ∨ψe∨¬ϕ is represented by the term def axiom((ϕ ∨ψ)∨¬ϕ).

We introduced quotation here to clarify in which context logical connectives were to be used. Our
implementation in Z3 does not use quotation at all.

3.3.2 Arithmetic

Implicit quotation is also used when introducing auxiliary variables for theories, such as the theory for
linear arithmetic. Let us recall how the Simplex solver in Z3 works. Following [5], a theory solver for
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linear arithmetic, and integer linear arithmetic can be based on a Simplex Tableau of the form:

xi ' ∑
x j∈N

ai jx j xi ∈B, (1)

where B and N denote the set of basic and nonbasic variables, respectively. The sets B and N are
assumed disjoint, and each basic variable occurs in exactly one row. Thus, the values of basic variables
are determined by the values of the non-basic variables. In addition to this tableau, the solver state stores
upper and lower bounds li and ui for every variable xi and a mapping β that assigns a rational value
β (xi) to every variable xi. The bounds on nonbasic variables are always satisfied by β , so the following
invariant is maintained by the tableau operations

∀x j ∈N , l j ≤ β (x j)≤ u j. (2)

A tableau is satisfied if the same inequalities hold for the basic variables:

∀x j ∈B, l j ≤ β (x j)≤ u j. (3)

Bounds constraints for basic variables are not necessarily satisfied by β , so for instance, it may be the
case that li > β (xi) for some basic variable xi, but pivoting steps can be used to fix bounds violations, or
detect an unsatisfiable tableau.

Formally, Simplex-based solvers for linear arithmetic can interface with Boolean combinations of
inequalities by introducing one slack variable and a tableau row for every (maximal) linear arithmetic
sub-term in a formula. For example, it is by now common for SMT solvers to transform problems of the
form:

[(x+ y > 2)∧ (2x− y < 2)]∨ [( f (z+ x)≥ 5)∧ z < 3] (4)

to the following equi-satisfiable formula:

[(s1 > 2)∧ (s2 < 2)]∨ [( f (s3)≥ 5)∧ z < 3] (5)

∧ s1 ' x+ y∧ s2 ' 2x− y∧ s3 ' z+ x

The definitions for the slack variables translate into rows in a Simplex tableau. If we represent s1 by the
quotation dx+ye, and s2 by d2x−ye, and s3 by dz+xe, we observe directly that the additional equalities
are tautologies and therefore have trivial justifications. Furthermore, all Simplex tableau operations,
including pivoting, are equivalence preserving (pivoting replaces equals for equals, and divides rows
by constants), so the justifications for the Simplex rows remains a matter of expanding quotations and
checking equalities using linear arithmetic. The above observation can be used to reconstruct proofs from
unsatisfiable tableaux in a direct manner. In contrast, [2] proposed an encoding of arithmetical constraints
by introducing slack variables for potentially every arithmetical subterm (including potentially a slack
variable for z in z < 3). The slack variables allowed for tracking explanations and extracting proofs from
infeasible tableaux.

We now explain how proofs are extracted from unsatisfiable tableaux without modifying the trans-
lation phase. With a tableau row of the form (1) associate the suprema and infima of implied by the
coefficients, namely, let ar be the coefficients from the row and l j and u j be the lower and upper bounds
that are asserted by the literals x j ≤ u j and l j ≤ x j, then:

sup(ar) := ∑
x j∈N

+

ar ju j + ∑
x j∈N

−
ar jl j (6)

inf(ar) := ∑
x j∈N

+

ar jl j + ∑
x j∈N

−
ar ju j (7)
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where N − = {x j | ar j < 0}, and N + = {x j | ar j > 0}; and as usual, we set sup(ar) = ∞ if either some
x j ∈N +, u j = ∞, or for some x j ∈N −, l j =−∞.

Then an unsatisfiable tableau can be identified by an infeasible row r, where

ur < inf(ar) and xr ≤ ur is asserted, or lr > sup(ar) and lr ≤ xr is asserted. (8)

Corresponding to an infeasible row, we can extract a theory conflict by accumulating the bounds that
were used to derive a contradiction. So for example, in case of ur < inf(xr), the conflict clause is of the
form

¬(xr ≤ ur)∨
∨

x j∈N
+

¬(l j ≤ x j) ∨
∨

x j∈N
−

¬(x j ≤ u j) (9)

It is now simple to prove the conflict clause:

xr ' ∑x j∈N ar jx j lr1 ≤ xr1, xr1 ∈N +

xr ≥ (∑x j∈N ar jx j)−ar1xr1 +ar1lr1 xr2 ≤ ur2, xr2 ∈N −

xr ≥ (∑x j∈N ar jx j)−ar1xr1 +ar1lr1−ar2xr2 +ar2ur2 . . .

· · ·
xr ≥ inf(ar) xr ≤ ur

⊥lemma ¬(xr ≤ ur)∨
∨

x j∈N
+ ¬(l j ≤ x j) ∨

∨
x j∈N

− ¬(x j ≤ u j) (9)

The left-most antecedent is a tautology in the theory of linear arithmetic, the other antecedents are hy-
potheses. The lemma inference rule collects (see Section 3.4) the disjunction of the negated hypotheses
used for deriving ⊥. The intermediary inferences correspond to basic inequality propagation. Our im-
plementation in Z3 only produces the theory lemma directly without listing the equality corresponding
to the infeasible row.

3.4 Modular Proofs

A basic underlying principle for composing and building proofs in Z3 has been to support a modular
architecture that works well with theory solvers that receive literal assignments from other solvers and
produce contradictions or new literal assignments. The theory solvers should be able to produce inde-
pendent and opaque explanations for their decisions.

Conceptually, each solver acts upon a set of hypotheses and produce a consequent. The basic proof-
rules that support such an architecture can be summarized as: hypothesis, that allow introducing an
assumption, lemma, that eliminates hypotheses, and unit resolution that handles basic propagation. We
say that a proof-term is closed when every path that ends with a hypothesis contains an application of
rule lemma. If a term is not closed, it is open. To summarize, these core rules are:

hypothesis(ϕ) Mark ϕ as a hypothesis. The resulting proof term is open.

lemma(p,¬ϕ1∨ . . .∨¬ϕn) The proof term has one antecedent p such that con(p) = false, but p is open
with hypotheses ϕ1, . . . ,ϕn. The resulting proof term is closed.

unit resolution(p0, p1, . . . , pn,ψ1∨ . . .∨ψm) Where con(p0) = ϕ1∨ . . .∨ϕn∨ψ1∨ . . .∨ψm, con(p1) =
¬ϕ1, . . .con(pn) = ¬ϕn.

We will next describe how these rules integrate within a DPLL(T ) architecture.
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3.4.1 Proofs from DPLL(T )

The propositional inference engine in Z3 is based on a DPLL(T ) architecture. We refer to [13] for an
exposition on a basic introduction on DPLL(T ) as a transition system. The main points we will use is
that DPLL(T ) maintains a state of the form M ||F during search, where M is a partial assignment of
the atomic predicates in the formula F . Furthermore, we assume F is in conjunctive normal form. The
search keeps assigning atoms in M based on unit propagation, theory propagation (for example x > 3
implies that x > 0 by the theory of arithmetic), and guesses (also called decisions) until either it reaches
a state where the assignment satisfies all clauses in F , or some clause in F contradicts the assignment in
M.

The DPLL(T ) proof search method lends itself naturally to producing resolution style proofs. Sys-
tems, such as zChaff, and a version of MiniSAT [10, 6, 21], produce proof logs based on logging the
unit propagation steps as well as the conflict resolution steps. The resulting log suffices to produce a
propositional resolution proof. This approach works even though the SAT solver can choose to restart or
garbage collect learned conflict clauses that were produced during search.

The approach taken in Z3 bypasses logging, and instead builds proof objects during conflict resolu-
tion. With each clause we attach a proof. Clauses that were produced as part of the input have proofs
that were produced from the previous steps. A clause that is produced during conflict resolution depends
on some state of the partial model M. In particular, the learned clause is contradictory with some sub-
set of the decision literals in M, either directly because the learned clause contains decision literals, or
because the learned clause contains a literal that was obtained by propagation. Given a conflict clause
C : `1∨`2∨ . . .∨`n, we build a proof term of the form lemma(p, `1∨`2∨ . . .∨`n), where p is constructed
by examining the justifications for ¬`1, . . . ,¬`n. If ¬`i is a decision literal, then the justification for ¬`i

is a term hypothesis(¬`i). If ¬`i was inferred by unit propagation (so there is a fact ¬`i in M, with
justification C∨¬`i), then it is proved using unit-resolution and the justification for the clause C∨¬`i.

We see that this approach does not require logging resolution steps for every unit-propagation, but
delays the analysis of which unit propagation steps are useful until conflict resolution. The approach also
does not produce a resolution proof directly. It produces a natural deduction style proof with hypotheses.

Other propositional rules that are used during proof-reconstruction are:

asserted(ϕ) The formula ϕ is a user-supplied assumption.

goal(ϕ) The formula ϕ is a user-supplied goal. A goal is symmetric to asserted, but allows retaining
the distinction between goals and assumptions in proof objects.

mp(p,q,ϕ) Proof of ϕ by modus ponens. Assume that con(p) = ψ and that con(q) is either ψ → ϕ

or ψ ↔ ϕ . The latter form is used extensively in the simplifier to apply equivalence-preserving
simplification steps.

3.4.2 Congruence Proofs

In Z3, the congruence closure implementation is tightly integrated with the Boolean satisfiability core.
It serves as a main hub for equality propagation. The efficient extraction of minimal justifications for
congruence closure proofs has been studied extensively, [11]. We here summarize the proof objects that
are extracted from the justifications.

The theory of equality can be captured by axioms for reflexivity, symmetry, transitivity, and substi-
tutivity of equality. We encode these axioms as inference rules, and furthermore only specify that these
inference rules apply for any binary relation that is reflexive, symmetric, transitive, and/or reflexive-
monotone. We use the terminology, reflexive-monotone, for relations that are reflexive and monotone in
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a given function symbol f . In particular, the relation∼ (from Section 2.1) is also an equivalence relation,
and reflexive-monotone over conjunction and disjunction. So the rules are:

refl(R(t, t)) A proof for R(t, t), where R is a reflexive relation.

symm(p,R(t,s)) A proof of R(t,s), where R is a symmetric relation, and con(p) = R(s, t).

trans(p,q,R(t,s)) A proof of R(t,s), where R is transitive, and con(p) = R(t,u) and con(q) = R(u,s).

monotonicity(p1, .., pn,R( f (t1, .., tn), f (s1, ..,sn))) A proof of R( f (t1, .., tn), f (s1, ..,sn)), where
con(p1) = R(t1,s1), . . . , con(pn) = R(tn,sn), and R is reflexive and monotone in f . The
antecedent pi can be suppressed if ti = si. That is, reflexivity proofs are suppressed to save space.

Our congruence closure core maintains a congruence table. A congruence table enables propagation
of equalities over function symbols, so that for example if f (s, t) is a term, and s′ is equal to s, then when
creating f (s′, t) it is detected that the potentially new term is in the same congruence class as f (s, t). The
implementation also treats equality as a function, and every equality is also inserted to the congruence
table. This makes detecting implied dis-equalities simple: given two terms s and t, search the congruence
table for an existing entry for s' t. If the table contains such a literal, then check if the literal is assigned
to false. To make this use of the congruence table effective it understands commutative operations, such
as equality. This implicit use of commutativity gets reflected in the generated proof terms, and we include
a special rule for commutative functions. It can be instantiated for equalities.

comm( f (s, t)' f (t,s)), comm( f (s, t)↔ f (t,s)) where f is a commutative function (relation).

3.4.3 Theory lemmas

In the DPLL(T ) architecture, decision procedures for a theory T identify sets of asserted T -inconsistent
literals. Dually, the disjunction of the negated literals are T -tautologies. Consequently, proof terms
created by theories can be summarized using a single form, here called Theory lemmas.

th lemma(p1, . . . , pn,ϕ) Generic proof rule for theory lemmas. The formula con(p1)∧ . . .∧ con(pn)→
ϕ should be a T -tautology.

3.5 Applications

Z3 with proofs is still under development and has not been released yet. An obvious current application
is that proofs offer a simple litmus test on the implementation for soundness bugs. We integrate a simple,
but partial (it does not check T -lemmas) proof-checker in Z3 for this purpose. A much more effective
strategy for debugging bugs in theory solvers has been to dump the T -lemmas as they are produced.
Similar to [20], we can then apply an independent solver (namely, our previous version of Z3) on the
T -lemmas. We found this approach very effective in debugging optimizations that turned out to be
unsound.

We also have a facility for displaying proof-terms, but the proof term visualization very easily be-
comes too large to be of any use.

In future applications, we envision applications of proofs in Z3, such as: Proof-mining [17]; can
proofs be mined for strategies that are helpful for speeding up proofs for a class of problems? Interpola-
tion. Proof visualization. Finally, in the context of Isabelle/HOL, it has been suggested [8] to translate
HOL formulas (which use polymorphism), into first-order untyped formulas. A potentially unsound
translation is then run through first-order provers, but the produced proofs (currently apparently only
Prover9), can be checked for whether they use inferences that contradict the types.
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3.6 The overhead of enabling proofs

We benchmarked proof generation on a few selected, but non-trivial examples from SMT-LIB. The
samples show a memory overhead of between 3x-40x, and corresponding slowdowns of 1.1x to 3x.

Benchmark Without Proofs With Proofs
NEQ016 size7 26.01 secs 9.1 MB 39.84 secs 426 MB
PEQ010 size8 6.65 secs 9.3 MB 7.63 secs 40 MB
fischer6-mutex-14 7.01 secs 14 MB 16.38 secs 142 MB
cache.inv16 15.99 secs 11 MB 24.61 secs 159 MB
xs 20 40 2.2 secs 5.8 MB 2.70 secs 15.5 MB

4 Models

We will very briefly summarize the model generation features in Z3. More material is available on-line
on http://research.microsoft.com/projects/z3/models.html.

Z3 has the ability to produce models as part of its output. Models assign values to the constants in
the input and generate finite or partial function graphs for predicates and function symbols.

A model comprises of a set of partitions, each partition is printed as: *k, where k is a non-negative
number. Each partition is associated with a set of constants from the input, and is associated with a
concrete value. A concrete value can be either a Boolean (true or false), a numeral (with type Int, Real,
or BitVec[n]), an array (represented as a finite map), a tuple (represented by a constructor and sequence
of values for the fields), or an an uninterpreted ur-element. Ur-elements are internally represented as
natural number numerals, but with an uninterpreted type.

By default Z3, produces a full (and compact) interpretation for free functions. There is an option to
force Z3 to not assign interpretations to functions when their values don’t influence the truth assignment
to the formula.

Z3 version 2 integrates a superposition theorem prover [4]. When it is able to finitely saturate the
set of non-ground input clauses, it can also report that the non-ground formula that was provided is
satisfiable, but there are no other mechanisms for extracting additional information from the saturated
set of clauses.

4.1 Applications

Models are by now used in a number of Z3 clients. The main clients that use models are the program
exploration and test-case generation tools Pex and SAGE (we refer to [3] for all pointers). They extract
symbolic path conditions by monitoring program executions and use Z3 to find alternate inputs that
can guide the next execution into a different branch. Models are also used for improved debugging
feedback from Spec# and for iterative counter-example guided refinement in the context of bounded
model checking of model programs.

We also believe that the availability of models can in future applications play a useful role in the
context of model-based quantifier instantiation and integrating external decision procedures with Z3.

5 Conclusions

We presented the proof and model generation facilities in Z3. Models have already shown particular
usefulness in the context of SMT applications. Proofs will be available in Z3 v2, and we hope, in light
of this introduction, that users will be able to find useful applications of the feature.
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