
Association Rule-Based Markov Decision Processes

Ma.de Guadalupe García-Hernández1, José Ruiz-Pinales1, Alberto Reyes-Ballesteros2,
Eva Onaindía3, J. Gabriel Aviña-Cervantes1, Sergio Ledesma1, Donato Hernández1

1 Universidad de Guanajuato, Comunidad de Palo Blanco s/n, Salamanca, Guanajuato,

México {garciag,pinales,avina,selo,donato}@salamanca.ugto.mx
2 Instituto de Investigaciones Eléctricas, Reforma 113, 62490, Temixco,

Morelos, México, areyes@iie.org.mx
3 Universidad Politécnica de Valencia, DSIC, Camino de Vera s/n, 46022,

Valencia, España, onaindia@dsic.upv.es

Abstract. In this paper we present a novel approach for the fast solution of
Markov decision processes based on the concept of association rules. These
processes have successfully solved many probabilistic problems such as:
process control, decision analysis and economy. But for problems with
continuous or high dimensionality domains, high computational complexity
arises, because the search space grows exponentially with the number of
variables. In order to reduce the complexity in these processes, we propose a
new approach to represent, learn and apply the actions that really operate on the
current state as a small set of association rules and a new value iteration
algorithm based on association rules. Experimental results on a robot path
planning task indicate that the solution time and therefore the complexity of the
proposed approach are considerably reduced, because they increase linearly
when the number of the states increases.

Keywords: Markov decision processes, association rules.

1 Introduction and Motivation

In artificial intelligence, planning under uncertainty can find more realistic policies
through decision-theoretic planning [7], considering that actions can have different
effects in the world, pondering the weight of alternative plans for achieving the
problem goals, and considering their costs and rewards. In a process control problem,
many variables change dynamically because of the operation of devices (valves,
equipment’s switches, etc.) or the occurrence of exogenous events (uncontrollable
events). If the control system does not consider the possibility of fault, then it will
surely not make intelligent actions in the event of a fault occurrence. This problem is
very complex and uncertainty plays an important role during the search for solutions.
In this way, decision-theoretic planning allows the evaluation of the strengths and
weaknesses of alternative plans. Since the addition of new capabilities to a planner,
heuristic search has shown limitations for the case of non integer data and additive
graphs in the solution of real world problems [6], so that it has been chosen to solve
them by using Bayesian representation and inference [9] and Markov decision

processes (MDPs) [16]. The latter have successfully solved decision problems, e.g.
process control, decision analysis and economy. However, the computational
complexity of MDPs is a significant one for the case of continuous or high
dimensionality domains, resulting in an intractable solution time for very large
problems [19]. There have been many efforts for developing different representation
forms and computational methods for decreasing the search space. Boutilier et al. [8]
grouped similar states, but they did not achieve automation because they made some
steps by hand. In this way, Reyes et al. have proposed a simulator for planning of
robotic movements (SPRM) [18]; they partitioned the search space based on a reward
function, but the scalability was a great problem. Hauskrecht et al. [11] tested the
hierarchy with macro-actions, but appropriate coupling was not accomplished and
additional complexity was obtained because of the presence of macro-actions.

In order to reduce complexity, we propose a novel approach for the solution of MDPs
in which relational actions are represented, learned and applied as a set of association
rules (they imply certain relationships between objects in a database). We present
experimental results indicating the high viability of the new approach. In Section 2
the MDPs are presented shortly and the problem faced by MDP solution methods is
explained. In Section 3 the approach based on relational actions is described too. In
Section 4 our approach based on the representation, learning and application of
relational actions through the use of association rules on MDPs is discussed. In
Section 5 our experimental results are presented. In Section 6 we present the
conclusions.

2 Markov Decision Processes

MDPs are techniques for planning under uncertainty, named in honor of Andrei A.
Markov. They were introduced originally by Bellman [2] and they have been studied
extensively [16]. MDPs are a mathematical formalism for modeling a sequential
decision problem, whose main goal is to find a reactive strategy or action policy, by
maximizing an expected reward [16]. Markov’s work supposes that an autonomous
agent always knows the state where it is placed before executing any action, and the
transition probability from a state depends only on the current state, not on its whole
history. Bellman’s equation is the base for the resolution of MDPs, and one of its
characteristics is the careful balance between reward and risk. For each possible state
one equation is formulated, the unknown quantity is the utility of the reached state.
Therefore, it results in a non linear system of equations that is solved by means of the
value iteration algorithm [4, 16], an efficient dynamic-programming algorithm, where
the optimal utility is found by successive approximations of the form:

'

() () max (, , ') (')
a

s

U s R s T s a s U sγ= + ∑ (1)

where ()U s is the expected utility of the current state s , ()'U s is the expected

utility of the reached state 's , ()R s is the immediate reward of the current state s ,

)(', ,T s a s is the transition model that gives the probability of reaching state 's when

action a in state s is applied, and finally γ is the discount factor (0 1γ< <). The
state transition model can be represented by a dynamic Bayesian network [10].
Otherwise, when the future reward is insignificant, then 0γ = . In contrast, when the
current reward is identical to the expected discounted reward then 1γ = . Therefore,
equation (1) gives the utility of an agent in a specific state, and that utility is the
immediate reward of this state plus the discounted utility from the reached state; this
state results from applying an action over the previous one. The main idea consists in
calculating the expected utility of each state and to use these utilities for the selection
of the optimal action at each state. But in complex problems (with continuous
domains or with high dimensionality), the main challenge during the resolution of
MDPs is due to its high computational complexity, because in the transition model

)(', ,T s a s the search space grows exponentially with the number of variables.

3 The Relational Action Approach

It is clear that if we apply all the domain actions over the whole state space, then it
results a great amount of information, and this one will be very difficult to process
because it will require a lot of computational effort. In this way, the necessity of an
action hierarchy for planning systems has been proposed [3], but it was tested on
simple problems. Other researchers have used a constrained action set (r-actions) for
each state during the inference process through STRIPS probabilistic operators [13].
Relational actions (r-actions) can take the form:

if <state(i)> then <r-action(k)>.

In order to obtain r-actions, it is necessary to evaluate the k-th r-action as a function
of the i-th state. This type of actions only depends on the current state and the planner
does not have to compute on the whole action domain.

If we consider the simple example represented in Figure 1, we can observe that the
model contains three actions (a1, a2, a3) and four states (s1, s2, s3, s4) for
an autonomous agent. It is easy to observe that when a1 operates on s1 (initial state),
the agent has 90% of probability of reaching s2 and it has 10% of probability of
staying in the same state. Otherwise, when a3 is executed on s3, then the agent can
reach s4 (final state) with 50% of probability and it can stay in the same state with
another 50%.

From this diagram, it is easy to obtain the r-action set for each state (see Table 1).

Table 1. Sets of r-actions for each state.

state r-action set

s1 a1,a2

s2 a1,a2

s3 a3

In this way, the use of r-actions promises computational effort savings during the
solution of MDPs. However, the scalability problem still remains as a great challenge
of these processes, because the solution time has been intractable [19].

4 Our Approach: Association Rules in the solution of MDPs

In our approach, we propose to represent, learn and apply r-actions through
association rules (ARs) in the solution of MDPs. These rules can be derived from a
decision tree, in which the leaves are the applicable actions (r-actions) on each state
(node or attribute set) and the branches are instances of attributes. The decision tree
can be constructed by using techniques such as C4.5 [15], Apriori [1], etc. For
instance, the C4.5 algorithm generates a decision tree by using data recursive
partitions, by means of a depth-first strategy, considering all the possible tests for
dividing datasets, and selecting the best information gain test. For each attribute is
considered a test with “n” possible values. For each node, the system decides which
test is more convenient for dividing the data. Figure 2 shows a decision tree derived
from the problem “Play Golf”, based on the weather outlook [15].

Figure 1. A Markov model.

We can observe that if raining and windy attributes have value T (True), then the
decision is <NP> (NoPlay).

Summarizing, AR’s can be formulated from a decision tree. In our case, we obtain
ARs by means of the Apriori algorithm, because this one yields ARs in the format
required by the value iteration algorithm [16]. This algorithm calculates and selects
the attribute set having at least the default support and confidence (percentage of
examples covered by a rule). Afterwards, Apriori gives the best rules found, with
maximum support and confidence. This means that this algorithm is capable of
obtaining the set of r-actions required by our method.

Following with the example shown in Figure 2, the Apriori algorithm found the next
best four ARs:

 outlook=overcast 4 ==> play=yes 4 confidence:(1)
 humidity=normal windy=FALSE 4 ==> play=yes 4 confidence:(1)
 outlook=sunny humidity=high 3 ==> play=no 3 confidence:(1)
 outlook=rainy windy=FALSE 3 ==> play=yes 3 confidence:(1)

In those rules, the numbers 4 and 3 indicate the support of the rule and the number 1
indicates the 100% of confidence of the rule. The first rule can be written as:

if <overcast> then <play>.

Then, for the reformulation of the value iteration algorithm in terms of ARs, we
defined ARs which contain 3 attributes: initial state, final state and r-action.
Let ()'{ | , , }k k k k kL L L s s a= = be the set of ARs, 1 2, ,..., nR R R R⎡ ⎤= ⎣ ⎦ be the state

rewards, 1 2, ,..., nT T T T⎡ ⎤= ⎣ ⎦ be the transition probabilities (such that 0kk T∀ >) of
each rule where n is the number of states. The modified value iteration algorithm
[16] for the use of AR is the following:

Figure 2. A decision tree.

Algorithm 1. RulesMDP.

We can observe that the modified value iteration algorithm first calculates the
expected utility (),J s a for each rule kL and its corresponding transition probability

kT . Then, it calculates the maximum expected utility and the optimal policy from

(),J s a . Finally, after several iterations, it returns the optimal policy that gives
maximum utility (present and future) in the current state, π .
For a given number of states sn , number of actions an , and number of iterations itn ,

the number of rules is bounded by a sL n n≤ . Thus the complexity of the algorithm

is (), , ()s a it s a itT n n n O n n n∈ . An upper bound of the required number of iterations
[12] is given by:

1 1

1
log() log() 1

1it

B
n ε γ

γ
−

+ + +
≤

−
 (2)

function RulesMDP(), , , , ,R L T NumItγ ε
0
i iU R= for 1,2,...,i n=

1t =
(), 0J s a = for 1,2,...,s n= and 1,2,...,a m=

do

 for 1k = to L

 ()ka action L=

 ()ks initialState L=

 ()'
ks finalState L=

 () () '
1, , t

k s
J s a J s a TU −= +

 end
 for 1s = to n

 ()max ,t
s s a
U R J s aγ= +

 ()argmax ,s
a
J s aπ =

 end
 1t t= +

while t NumIt≤ and)(
1

2211 t t
s sU U

n
ε−

⎡⎛ ⎞ ⎤⎟⎜⎢ ⎥⎟Σ − >⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

return π

where B is the number of bits used to encode instantaneous costs and state transition
probabilities, ε is the threshold of the Bellman residual and γ is the discount factor.
For large sn , the number of iterations is smaller than the number of states, which
means that the complexity is a linear function of the number of states. In this way, our
algorithm can solve quickly to the MDPs. In order to apply our algorithm, we first
create a file with instances generated by means of a random walk over the whole state
space and the whole action domain. Next, the instances file is used to generate the set
of ARs by using the Apriori algorithm. Finally, the state transition probabilities are
estimated by using dynamic Bayesian networks [10]. All rules for which the transition
probability is cero are eliminated.

5 Experimental Results

We tested on a robot path planning task, and for each experiment we set up a bi-
dimensional grid-world where an autonomous agent is moving with 5 possible
actions. For all the experiments, we set 0.9γ = , 61 10ε −= × , 32B = , and 500itn =
(given by equation (2)). The grid contained from 25 to 400 states, and they were
associated with different number of rewards (see Table 2). We repeated 120 times
every grid setup of combinations of the parameters. Our algorithm was implemented
in Java language inside the simulator for planning of robotic movements, SPRM [18]
and we compared the performance of both algorithms, our algorithm (RulesMDP) and
the previous value iteration algorithm (PREV) in the SPRM environment. All the
experiments were performed on a 2.66 GHz Pentium D computer with 1 GB RAM.
The combinations are presented in Table 2. The policies achieved with our algorithm
were very similar (with some different visited states, but with the same goal state and
with the same number of steps in the obtained policies) to the ones obtained with the
previous value iteration algorithm. The time spent in calculating the rules was smaller
than the time taken for a single iteration of the proposed algorithm.

Table 2. Results obtained in SPRM: PREV vs. RulesMDP.

No. of
rewards

No. of
states

Time (ms)
PREV

No. of operations
PREV

Time (ms)
RulesMDP

No. of operations
RulesMDP

2 25 47 375000 12 14625

4 25 47 384375 12 14750
10 100 94 6000000 12 60000
26 100 94 6200000 15 60500
6 225 389 30261000 21 128625
10 225 396 30832000 21 128900
6 400 1195 96000000 31 224000
10 400 1266 102400000 31 254000
12 400 2969 242187500 266 1512500

In Table 2, we can see that when the number of states is 25, the solution time required
by the previous algorithm is 47 ms, while it is 12 ms for our algorithm. Otherwise,
when the number of states is 400, the solution time by the previous algorithm is 1266
ms, while it is 31 ms for our algorithm (it includes the calculation of the
corresponding ARs). In both cases, our RulesMDP algorithm is faster than the
previous one, whereas in the same table the solution time increases softly when the
number of rewards grows, for each number of states. Results obtained in Table 2 are
presented in Figure 3 for each method. This figure shows how the solution time
required by the previous algorithm increases quadratically with the number of states,
whereas the solution time required by our algorithm increases linearly. Otherwise, in
the same table is shown that an increase on the number of rewards has not significant
effect when the number of states grows. Summarizing, at least in our experiments, we
obtained a considerable reduction in the solution time of MDPs when we applied
ARs.

6 Conclusions and related works

Markov decision processes [16] have successfully solved problems of process control,
but for problems with continuous or high dimensionality domains, high computational
complexity arises, because the search space grows exponentially with the number of
variables. In order to reduce computational complexity in these processes, we have
proposed a new value iteration algorithm based on ARs for solving MDPs. The
proposed technique uses the Apriori algorithm for generating rules to build the r-
action set. At least in our experimental results we found that the solution time was
linear in the number of states and our algorithm was faster than the previous value
iteration algorithm [16]. Policies achieved with our method had the same goal state
and the same number of steps in the resulting policies as with the previous value

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

Number of states

So
lu

tio
n

tim
e

(m
s)

P RE V

RulesMDP

PREV

RulesMDP

Figure 3. Solution time for previous algorithm (PREV) vs. our algorithm (RulesMDP).

iteration algorithm. In the literature there are two related works: the grid based
discretization and the parametric approximations. Unfortunately, in the classic grid
algorithms the search space grows exponentially with the number of actions [5], and
the parametric approximation based on hierarchical clustering techniques [14] has
been used with little success.

References

1. Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules,
Proceedings of the 20th VLDB Conference, IBM Almaden Research Center
(1994)

2. Bellman, R.E., Dynamic Programming, Princeton United Press, Princeton, USA
(1957)

3. Benson, S.S., Learning action models for reactive autonomous agents, PhD
Thesis, University of Stanford (1996)

4. Bertsekas, D.P., Dynamic Programming, Prentice Hall, Eaglewood Cliffs, MA,
USA (1987)

5. Bonet, B., Pearl, J., Qualitative MDP and POMDP: An order-of-magnitude
approach, Proceedings of the 18th Conference on Uncertainty in AI, Edmonton,
Canada, pages 61-68 (2002)

6. Bonet, B., Geffner, H., Learning depth-first search: A unified approach to
heuristic search in deterministic and non-deterministic settings and its
application to MDP, Proceedings of ICAPS (2006)

7. Boutilier, Craig, Dean, T., Hanks, S., Decision-theoretic planning: structural
assumptions and computational leverage, Journal of AI Research, 11, pages 1-94
(1999)

8. Boutilier, C., Dearden, R., Goldszmidt, M., Stochastic Dynamic Programming
with factored representations, Artificial Intelligence, 121(1-2) pages 49-107
(2000)

9. Darwiche, A., Goldszmidt M., Action networks: A framework for reasoning
about actions and change under understanding, Proceedings of the 10th

Conference on Uncertainty in AI, UAI-94, pages 136-144, Seattle, USA (1994)
10. Dean, T., Givan, R., Model minimization in Markov Decision Processes,

Proceedings of the 14th National Conference on AI, pages 106-111 (1997)
11. Hauskrecht, M., Kveton, B., Linear program approximations for factored

continuous- states Markov Decision Processes, Proceedings of the NIPS (2003).
12. Littman, M. L., Dean, T. L. and Kaelbling, L. P., On the Complexity of Solving

Markov Decision Problems, Proc. of the Eleventh International Conference on
Uncertainty in Artificial Intelligence, pages 394-402 (1995)

13. Morales, E., Scaling up reinforcement learning with a Relational Representation,
Proceedings of the Workshop on Adaptability in MultiAgent Systems, AORC,
Sydney, Australia (2003)

14. Pineau, J., Gordon, G., Thrun, S., Policy-contingent abstraction for robust
control, Proceedings of the 19th Conference on Uncertainty in AI, pages 477-
484 (2003)

15. Quinlan, J.R., C4.5: Programs for machine learning, Morgan Kaufmann, San
Francisco, CA, USA (1993)

16. Puterman, M.L., Markov Decision Processes, Wiley Editors, New York, USA
(1994)

17. Quinlan, J.R., C4.5: Programs for machine learning, Morgan Kaufmann, San
Francisco, CA, USA (1993)

18. Reyes, A., Ibarguengoytia, P., Sucar, L.E., Morales, E., Abstraction and
Refinement for Solving Continuous Markov Decision Processes, 3rd European
Workshop on Probabilistic Graphical Models, Czech Republic, pages 263-270
(2006)

19. Van Otterlo, M., A Survey of Reinforcement Learning in Relational Domains,
Technical Report Series CTIT-05-31, ISSN 1381-3625, July (2005)

