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Abstract

In this paper, we examine the influence
of overconfidence in parameter specification
on the performance of a Bayesian network
model in the context of Hepar II, a sizeable
Bayesian network model for diagnosis of liver
disorders. We enter noise in the parameters
in such a way that the resulting distributions
become biased toward extreme probabilities.
We believe that this offers a systematic way
of modeling expert overconfidence in proba-
bility estimates. It appears that the diagnos-
tic accuracy of Hepar II is less sensitive to
overconfidence in probabilities than it is to
underconfidence and to random noise, espe-
cially when noise is very large.

1 INTRODUCTION

Decision-analytic methods provide an orderly and co-
herent framework for modeling and solving decision
problems in decision support systems [5]. A popu-
lar modeling tool for complex uncertain domains is a
Bayesian network [13], an acyclic directed graph quan-
tified by numerical parameters and modeling the struc-
ture of a domain and the joint probability distribution
over its variables. There exist algorithms for reason-
ing in Bayesian networks that typically compute the
posterior probability distribution over some variables
of interest given a set of observations. As these algo-
rithms are mathematically correct, the ultimate qual-
ity of reasoning depends directly on the quality of the
underlying models and their parameters. These pa-
rameters are rarely precise, as they are often based
on subjective estimates. Even when they are based
on data, they may not be directly applicable to the
decision model at hand and be fully trustworthy.

Search for those parameters whose values are critical
for the overall quality of decisions is known as sensi-

tivity analysis. Sensitivity analysis studies how much
a model output changes as various model parameters
vary through the range of their plausible values. It
allows to get insight into the nature of the problem
and its formalization, helps in refining the model so
that it is simple and elegant (containing only those
factors that matter), and checks the need for precision
in refining the numbers [8]. It is theoretically pos-
sible that small variations in a numerical parameter
cause large variations in the posterior probability of
interest. Van der Gaag and Renooij [17] found that
practical networks may indeed contain such parame-
ters. Because practical networks are often constructed
with only rough estimates of probabilities, a question
of practical importance is whether overall imprecision
in network parameters is important. If not, the effort
that goes into polishing network parameters might not
be justified, unless it focuses on their small subset that
is shown to be critical.

There is a popular belief, supported by some anecdo-
tal evidence, that Bayesian network models are overall
quite tolerant to imprecision in their numerical pa-
rameters. Pradhan et al. [14] tested this on a large
medical diagnostic model, the CPCS network [7, 16].
Their key experiment focused on systematic introduc-
tion of noise in the original parameters (assumed to be
the gold standard) and measuring the influence of the
magnitude of this noise on the average posterior prob-
ability of the true diagnosis. They observed that this
average was fairly insensitive to even very large noise.
This experiment, while ingenious and thought provok-
ing, had two weaknesses. The first of these, pointed
out by Coupé and van der Gaag [3], is that the ex-
periment focused on the average posterior rather than
individual posterior in each diagnostic case and how
it varies with noise, which is of most interest. The
second weakness is that the posterior of the correct
diagnosis is by itself not a sufficient measure of model
robustness. The weaknesses of this experiment were
also discussed in [6] and [9]. In our earlier work [9],
we replicated the experiment of Pradhan et al. using



Hepar II, a sizeable Bayesian network model for diag-
nosis of liver disorders. We systematically introduced
noise in Hepar II’s probabilities and tested the di-
agnostic accuracy of the resulting model. Similarly
to Pradhan et al., we assumed that the original set
of parameters and the model’s performance are ideal.
Noise in the original parameters led to deterioration
in performance. The main result of our analysis was
that noise in numerical parameters started taking its
toll almost from the very beginning and not, as sug-
gested by Pradhan et al., only when it was very large.
The region of tolerance to noise, while noticeable, was
rather small. That study suggested that Bayesian net-
works may be more sensitive to the quality of their nu-
merical parameters than popularly believed. Another
study that we conducted more recently [4] focused on
the influence of progressive rounding of probabilities
on model accuracy. Here also, rounding had an ef-
fect on the performance of Hepar II, although the
main source of performance loss were zero probabili-
ties. When zeros introduced by rounding are replaced
by very small non-zero values, imprecision resulting
from rounding has minimal impact on Hepar II’s per-
formance.

Empirical studies conducted so far that focused on the
impact of noise in probabilities on Bayesian network
results disagree in their conclusions. Also, the noise
introduced in parameters was usually assumed to be
random, which may not be a reasonable assumption.
Human experts, for example, often tend to be over-
confident [8]. This paper describes a follow-up study
that probes the issue of sensitivity of model accuracy
to noise in probabilities further. We examine whether
a bias in the noise that is introduced into the network
makes a difference. We enter noise in the parameters
in such a way that the resulting distributions become
biased toward extreme probabilities. We believe that
this offers a systematic way of modeling expert over-
confidence in probability estimates. Our results show
again that the diagnostic accuracy of Hepar II is sen-
sitive to imprecision in probabilities. It appears, how-
ever, that the diagnostic accuracy of Hepar II is less
sensitive to overconfidence in probabilities than it is to
random noise. We also test the sensitivity of Hepar II
to underconfidence in parameters and show that un-
derconfidence in paramaters leads to more error than
random noise.

The remainder of this paper is structured as follows.
Section 2 introduces the Hepar II model. Section 3
describes how we introduced noise into our probabili-
ties. Section 4 describes the results of our experiments.
Finally, Section 5 discusses our results in light of pre-
vious work.

2 THE Hepar II MODEL

Our experiments are based on Hepar II [10, 11], a
Bayesian network model consisting of over 70 vari-
ables modeling the problem of diagnosis of liver dis-
orders. The model covers 11 different liver diseases
and 61 medical findings, such as patient self-reported
data, signs, symptoms, and laboratory tests results.
The structure of the model, (i.e., the nodes of the
graph along with arcs among them) was built based
on medical literature and conversations with domain
experts and it consists of 121 arcs. Hepar II is a
real model and it consists of nodes that are a mix-
ture of propositional, graded, and general variables.
There are on the average 1.73 parents per node and
2.24 states per variable. The numerical parameters of
the model (there are 2,139 of these in the most recent
version), i.e., the prior and conditional probability dis-
tributions, were learned from a database of 699 real pa-
tient cases. Readers interested in the Hepar II model
can download it from Decision Systems Laboratory’s
model repository at http://genie.sis.pitt.edu/.

As our experiments study the influence of precision of
Hepar II’s numerical parameters on its accuracy, we
owe the reader an explanation of the metric that we
used to test the latter. We focused on diagnostic accu-
racy, which we defined in our earlier publications as the
percentage of correct diagnoses on real patient cases.
When testing the diagnostic accuracy of Hepar II, we
were interested in both (1) whether the most probable
diagnosis indicated by the model is indeed the correct
diagnosis, and (2) whether the set of w most probable
diagnoses contains the correct diagnosis for small val-
ues of w (we chose a “window” of w=1, 2, 3, and 4).
The latter focus is of interest in diagnostic settings,
where a decision support system only suggest possi-
ble diagnoses to a physician. The physician, who is
the ultimate decision maker, may want to see several
alternative diagnoses before focusing on one.

With diagnostic accuracy defined as above, the most
recent version of the Hepar II model reached the di-
agnostic accuracy of 57%, 69%, 75%, and 79% for win-
dow sizes of 1, 2, 3, and 4 respectively [12].

3 INTRODUCTION OF NOISE
INTO Hepar II PARAMETERS

When introducing noise into parameters, we used es-
sentially the same approach as Pradhan et al. [14],
which is transforming each original probability into
log-odds function, adding noise parametrized by a pa-
rameter σ (as we will show, even though σ is propor-
tional to the amount of noise, in our case it cannot be
directly interpreted as standard deviation), and trans-



Figure 1: Transformed (biased, overconfident) vs. original probabilities for various levels of σ.

forming it back to probability, i.e.,

p′ = Lo−1[Lo(p) + Noise(0, σ)] , (1)

where
Lo(p) = log10[p/(1− p)] . (2)

3.1 Overconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the smallest probability pS . We transform this
smallest probability pS into p′S by making it even
smaller, according to the following formula:

p′S = Lo−1[Lo(pS)− |Normal(0, σ)|] .

We make the largest probability in the probability dis-
tribution Pr, pL larger by precisely the amount by
which we decreased pS , i.e.,

p′L = pL + pS − p′S .

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr′ add up to
1.0.

Figure 1 shows the effect of introducing the noise. As
we can see, the transformation is such that small prob-

abilities are likely to become smaller and large prob-
abilities are likely to become larger. Please note that
distributions have become more biased towards the ex-
treme probabilities. It is straightforward to prove that
the entropy of Pr′ is smaller than the entropy of Pr.
The transformed probability distributions reflect over-
confidence bias, common among human experts.

An alternative way of introducing biased noise, sug-
gested by one of the reviewers, is by means of build-
ing a logistic regression/IRT model (e.g., [1, 2, 15])for
each conditional probability table and, subsequently,
manipulating the slope parameter.

3.2 Underconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the highest probability pS . We transform this
largest probability pL into p′L by making it smaller,
according to the following formula:

p′L = Lo−1[Lo(pL)− |Normal(0, σ)|] .

We make the smallest probability in the probability
distribution Pr, pS larger by precisely the amount by
which we decreased pL, i.e.,

p′S = pS + pL − p′L .



Figure 2: Transformed (biased, underconfident) vs. original probabilities for various levels of σ.

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr′ add up to
1.0.

Figure 2 shows the effect of introducing this noise. The
transformed probability distributions reflect undercon-
fidence bias.

3.3 Random noise

For illustration purpose, Figure 3 shows the transfor-
mation applied in our previous study [9]. For σ > 1
the amount of noise becomes so large that any value
of probability can be transformed in any other value.
This suggests strongly that σ > 1 is not really a region
that is of interest in practice. The main reason why we
look at such high σ values is that this was the range
used in Pradhan et al. paper.

4 EXPERIMENTAL RESULTS

We have performed an experiment investigating the
influence of biased noise in Hepar II’s probabilities
on its diagnostic performance. For the purpose of our
experiment, we assumed that the model parameters
were perfectly accurate and, effectively, the diagnos-
tic performance achieved was the best possible. Of
course, in reality the parameters of the model may not
be accurate and the performance of the model can be

improved upon. In the experiment, we studied how
this baseline performance degrades under the condi-
tion of noise, as described in Section 3.

We tested 30 versions of the network (each for a dif-
ferent standard deviation of the noise σ ∈< 0.0, 3.0 >
with 0.1 increments) on all records of the Hepar data
set and computed Hepar II’s diagnostic accuracy. We
plotted this accuracy in Figures 4 and 5 as a function
of σ for different values of window size w.

Figure 4: The diagnostic accuracy of Hepar II for
various window sizes as a function of the amount of
biased overconfident noise (expressed by σ)
.

It is clear that Hepar II’s diagnostic performance de-
teriorates with noise. In order to facilitate compari-
son between biased and unbiased noise and, by this,



Figure 3: Transformed (unbiased) vs. original probabilities for various levels of σ.

Figure 5: The diagnostic accuracy of Hepar II for
various window sizes as a function of the amount of
biased underconfident noise (expressed by σ)
.

judgment of the influence of overconfidence bias on
the results, we reproduce the experimental result of
[9] in Figure 6. The results are qualitatively similar,
although it can be seen that performance under over-
confidence bias degrades more slowly with the amount
of noise than performance under random noise. Perfor-
mance under underconfidence bias degrades the fastest
of the three. Figure 7 shows the accuracy of Hepar II
(w = 1) for biased and unbiased noise on the same
plot, where this effect is easier to see.

It is interesting to note that for small values of σ, such
as σ < 0.2, there is only a minimal effect of noise on
performance. This observation may offer some justi-
fication to the belief that Bayesian networks are not

Figure 6: The diagnostic accuracy of Hepar II for var-
ious window sizes as a function of amount of unbiased
noise (expressed by σ) [9].

too sensitive to imprecision of their probability param-
eters.

5 SUMMARY

This paper has studied the influence of bias in param-
eters on model performance in the context of a prac-
tical medical diagnostic model, Hepar II. We believe
that the study was realistic in the sense of focusing on
a real, context-dependent performance measure. Our
study has shown that the performance of Hepar II
is sensitive to noise in numerical parameters, i.e., the
diagnostic accuracy of the model decreases after intro-
ducing noise into numerical parameters of the model.



Figure 7: The diagnostic accuracy of Hepar II as a
function of the amount of noise (random, underconfi-
dent, and overconfident), window w = 1

While our result is merely a single data point that
sheds light on the hypothesis in question, it looks like
overconfidence bias has a smaller negative effect on
model performance than random noise. Underconfi-
dence bias leads to most serious deterioration of per-
formance. While it is only a wild speculation that
begs for further investigation, one might see our re-
sults as an explanation of the fact that humans tend
to be overconfident rather than underconfident in their
probability estimates.
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