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Abstract 

Bayesian networks (BNs) are excellent tools for 
reasoning about uncertainty and capturing 
detailed domain knowledge. However, the 
complexity of BN structures can pose a 
challenge to domain experts without a 
background in artificial intelligence or 
probability when they construct or analyze BN 
models. Several canonical models have been 
developed to reduce the complexity of BN 
structures, but there is little research on the 
accessibility and usability of these canonical 
models, their associated user interfaces, and the 
contents of the models, including their 
probabilistic relationships. In this paper, we 
present an experimental procedure to evaluate 
our novel Causal Influence Model structure by 
measuring users’ ability to construct new models 
from scratch, and their ability to comprehend 
previously constructed models. [Results of our 
experiment will be presented at the workshop.] 

1. INTRODUCTION AND MOTIVATION 

A Bayesian network (BN) (Jensen, 2001; Pearl, 1988) is a 
probabilistic model used to reason under uncertainty. 
Successful efforts in applying Bayesian modeling to a 
variety of domains (e.g., computer vision (Rimey & 
Brown, 1994), social networks (Koelle et al., 2006), 
human cognition (Guarino et al., 2006; Glymour, 2001), 
and disease detection (Pang et al., 2004)) have inspired 
knowledge engineers to use BNs to capture domain 
knowledge from experts. However, expressing an expert’s 
domain knowledge in a BN is cumbersome due to the 
complex, tedious, and mathematical nature of conditional 
probability table (CPT) construction. Adding states and 
parents to a node quickly results in an exponential 
explosion in the number of CPT entries required (Pfautz 
et al., 2007). Canonical models such as Noisy-OR 
(Henrion, 1989; Pearl, 1988), Noisy-MAX (Diez & 
Galan, 2003; Diez, 1993; Henrion, 1989), Qualitative 
Probabilistic Networks (Wellman, 1990) and Influence 

Networks (IN) (Jensen, 1996; Rosen & Smith, 1996a; 
Rosen & Smith, 1996b) have been developed to mitigate 
this problem. In response to some issues raised by those 
models, and to simplify the Bayesian modeling process 
through novel user interface techniques, we developed a 
new canonical model, the Causal Influence Model (CIM) 
(Cox & Pfautz, 2007; Pfautz et al., 2007). The CIM 
paradigm was inspired by anecdotal evidence gained by 
developing systems for domain experts interacting with 
BNs and by an analysis of other canonical models to 
determine the constraints that limit their generalizability 
and applicability. 

There have been few user-centered evaluation efforts to 
assess how (and if) canonical models help domain experts 
elicit their knowledge and understanding of models 
presented to them, or how graphical interfaces and their 
features and properties impact the way people create, 
interpret, reason with, or base actions on Bayesian 
networks. The purpose of our study is to provide baseline 
information on how people construct and describe CIMs 
presented and created within a graphical user interface. 

1.1 BACKGROUND 

A canonical model (Diez & Druzdzel, 2001) is a 
modeling pattern that allows probabilistic relationships 
between nodes to be specified by a reduced set of 
parameters (i.e., without completing every cell in a CPT). 
By assuming that the reduced parameters can still 
accurately represent the domain being modeled, users can 
quickly build a complex BN that would otherwise take a 
large amount of time. Most canonical models achieve 
their reduced parameters by assuming the independent 
effects of parents. This assumption allows a linear number 
of parameters to quantify an entire CPT; in the best-case 
scenario, only a single parameter per parent is needed. 
Canonical models can also serve as a “front-end” tool for 
the initial model-building effort, since the CPTs can 
always be refined by hand or with data at a later time. 
Some of the simplified patterns followed by canonical 
models have been motivated by the process followed 
when eliciting key factors and probabilistic relationships 



 

from domain experts (O'Hagan et al., 2006; Hastie & 
Dawes, 2001).  

A review of canonical models sheds light on the 
advantages and drawbacks of each model. The Influence 
Network (IN) model can only be used with Boolean 
nodes. It assumes that the child node has a baseline 
probability of occurring independently of any parent 
effects and that each parent independently influences the 
child to be more or less likely to be true. Since a single 
baseline probability for the child and a single change in 
probability for each parent are simple parameters for users 
to specify, the IN represents a powerful mechanism for 
capturing domain knowledge. However, since only 
Boolean nodes are allowed in the IN model, model 
flexibility is significantly reduced. BNs commonly 
contain nodes that represent concepts other than the 
occurrence or non-occurrence of events, and INs cannot 
be used to simplify these BNs without considerably re-
architecting the model.  

The Noisy-OR model is also used only with Boolean 
nodes and assumes that a true state in any parent can 
cause the child to be true independently of the other 
parents, with some uncertainty. Similar to INs, the main 
drawback of the Noisy-OR is its limitation to only 
Boolean nodes. The Noisy-MAX model generalizes the 
Noisy-OR and allows ordinal nodes at the expense of 
increasing the complexity of parameters. Although Noisy-
MAX does work with ordinal nodes, it cannot be used 
with more general discrete nodes that do not have ordered 
states. These nodes, referred to as categorical nodes, have 
an arbitrary number of unordered states and usually 
represent the category or type of something. Qualitative 
Probabilistic Networks (QPNs) allow for the construction 
of purely qualitative relationships between nodes in a 
network, to abstract from the highly quantitative and 
numerical nature of typical Bayesian models. QPNs 
consider the “signs” inherent in probabilistic relationships 
between nodes, and consider the additive synergies 
between nodes to capture more complicated probabilistic 
relationships between them (i.e., if A and B both have a 
positive influence on node C, their influences may be 
synergistic in nature: if A and B are both true, their 
cumulative influence upon C may be greater than just the 
sum of their individual influences.) QPNs allow for more 
qualitative model elicitation and may therefore be 
appropriate for interactions with non-technical experts, 
but they are limited in their ability to provide hard, 
numerical estimates of the likelihood of events. 

The Causal Influence Model (CIM) is a canonical model 
that retains the desirable properties of the IN while 
providing solutions to its problems. The CIM assumes 
that each node is discrete and has an arbitrary number of 
states with arbitrary meaning. Each node has a baseline 
probability distribution, independent of any parent effects. 
Each parent independently influences these baseline 
probabilities to be more or less likely. The CIM also 
introduces simplifications that govern the generation of 

conditional probability relationships, enabling Boolean, 
ordinal, and categorical nodes to be included. A full 
description of the mathematical formulas that govern 
CIMs, including formulas to translate CIM link strengths 
into conditional probability tables, is provided in (Cox et 
al., 2007). 

Studies have been conducted to analyze and mitigate 
complexities that arise in the construction of Bayesian 
models as a result of knowledge elicitation (Onisko, 
Druzdzel, & Wasyluk, 2001), but no studies to date have 
assessed the accessibility and usability of various 
canonical models and associated user interfaces when 
provided directly to domain experts. The following study 
investigates how users interpret and create CIMs within a 
particular user interface. 

2. METHOD 

2.1 PARTICIPANTS 

Up to twenty participants are recruited from the university 
community to perform the study. After providing 
informed consent, participants are given the Ishihara Test 
for color blindness. Participants who pass this screening 
continue with the study. 

2.2 EXPERIMENTAL SYSTEM 

We have developed an CIM-enabled version of our 
BNet.Builder product to allow us to experiment with 
graphical interfaces for Bayesian network modeling 
(Pfautz et al., 2007). Using a simple point-and-click 
interface, users can create, label, connect, and move nodes 
in the model. Users can also create and modify causal 
links to represent positive or negative influences between 
nodes and the strength of those relationships. Users can 
also post or remove evidence to any node and view the 
effects of posted evidence on the belief states of other 
nodes. Link strengths are converted using CPTs based on 
algorithms provided in (Cox et al., 2007; Pfautz et al., 
2007). The positivity or negativity of a causal link and the 
link strength are represented visually by the color and 
thickness of the link, respectively.  

To simplify model construction for this particular 

experiment, the CIM interface has been constrained so 

that all nodes are Boolean; initial beliefs are set to 0.5 for 

all nodes and cannot be changed directly by the user (but 

can change based on evidence or link strengths); and only 

“hard” evidence can be posted (e.g., evidence that the 

node was either fully true, or fully false). This represents 

a set of simplifications we have found useful in other 

work, particularly among users less familiar with 

Bayesian modeling techniques. Our main goal in this 

study is to determine whether participants can reason 

about previously constructed CIMs and construct models 

to match a given situation. Since these are specific, novel, 

and fundamental questions with little previous research 

behind them, we have started with a simple case. The 



 

inclusion of additional node types, in particular, is useful 

for future work in comparing CIMs to other canonical 

models such as INs, Noisy-OR, and Noisy-MAX. 

2.3 EXPERIMENTAL TASKS  

Participants will be asked to provide descriptions of and 
answer questions about a series of CIMs shown in the 
BNet.Builder interface. In the first task, participants will 
be shown a model and asked questions about the structure 
and nature of relationships in the model (specifically, 
questions asking them to describe elements of the model, 
and questions related to abductive and deductive 
reasoning using the model). For instance, given the 
following example model (Figure 1), participants would 
be asked:  

• Description: This picture shows a model of part of a 
car. Describe what causes headlights to be dim, or not 
dim.  

• Abductive Reasoning: If the headlights are dim, what 
does that mean about the other parts of the car? 

• Deductive Reasoning: The alternator is working. 
What does that suggest about the headlights? The 
battery is old. What does that suggest about the 
headlights? What if the battery is new and the 
alternator is failing? 

 

Figure 1. Example model used in the experiment. The 
green link represents positive influence, while the red link 
represents negative influence within our CIM-enabled 
interface. 

In the second task, participants can manipulate the causal 
links and post evidence to see how changing the strength 
and directionality of the links between the nodes, and 
evidence about the state of the nodes, affects beliefs about 
whether the nodes are true or false. They will respond to 
similar sets of questions as provided in the first task. 
Finally, in the third task, participants will be asked to 
construct models from scratch using the interface based 
on several different vignettes, such as the following: 

The headlight system on a car is dependent on two 
components: a battery, which stores energy to power 
the lights, and an alternator, which converts 
mechanical energy from the car’s engine into stored 

energy in the battery. When the car is running, the 
alternator “recharges” the battery. This process only 
works if the alternator is working, and the battery is 
new.  

Four models/vignettes have been constructed for each 
task (a total of 12). Each model has the following 
relationships: 1 child/1 parent, 2 children/1 parent, 1 
child/2 parents, 2 children/2 parents. In all cases, all 
children are linked to all parents. Also, in all but the 1 
child/1 parent case, one parent-child link is negative. This 
simplification provides the basis for the initial study. We 
expect to expand upon this simple representation with 
later empirical work. 

2.4 INDEPENDENT VARIABLE 

Two stimuli sets are created based on the 12 models. 
Either the nodes in the models (or phrases in the vignette) 
are phrased positively, or they include at least one node 
that uses negative phrasing (e.g., “battery is not new”). 
This difference allows us to investigate how semantic 
properties of the model or situation affect task 
performance. This condition has been inspired by our 
experience in domain expert interaction with CIM 
modeling interfaces, where we observed the articulation 
of variable names as a source of common confusion. The 
use of negatives in the variable name (e.g., “not raining”) 
or logical antonyms (e.g., “happy” and “sad”) tends to 
lead to later confusion in expressing causal relationships 
(e.g., “if it is not not-raining, then it is unlikely that 
Rakesh will not bring his umbrella”). By including this 
specific independent variable, we will be able to assess 
which specific patterns of reasoning are most difficult for 
users. Participants are randomly assigned to one of the 
two stimuli sets (up to 10 participants per condition). This 
sample size is consistent with those used in usability type 
tests, and will allow us to analyze verbal protocols of 
participants to look for patterns across conditions. 

2.5 DEPENDENT MEASURES AND ANALYSIS  

Throughout all three tasks, participants are asked to “talk 
aloud” while performing the task to describe how they are 
thinking about or creating the models. Screen capture 
software is used to record participants’ interaction with 
and construction of models. Participants are also fitted 
with a view point eye tracker (lightweight glasses that 
have an attached camera that tracks the corneal 
movements of the participant’s eye to assess gaze relative 
to the computer screen they are working on). The eye 
tracking system is used to record aspects of gaze position 
and dwell time at a screen location. Time to complete the 
tasks is also being recorded. 

Data from the audio, eye track, and screen capture 
processes is combined to create a “process trace” of each 
participant’s behavior describing and creating CIMs 
(Woods, 1993). Verbalizations and actions are coded and 
analyzed (Bainbridge & Sanderson, 1995; Sanderson & 
Fisher, 1994; Woods, 1993) to identify the correctness 



 

and completeness of the descriptions and answers 
provided by participants in the first task, the processes 
with which participants constructed the models in the 
second task, and the form and content of the models 
produced in the third task.  

3. ANTICIPATED RESULTS AND 

DISCUSSION 

The purpose of this study is to provide baseline 
information regarding how people construct and describe 
CIM models presented and created within the 
BNet.Builder interface. There is continued interest in 
simplifying the manner in which domain expertise is 
elicited, and the creation and presentation of Bayesian 
network models through direct manipulation and 
visualization. However, information on how these tools 
are used by practitioners, how they affect the models that 
people produce, and how they affect the way that people 
interpret models or predict outcomes is missing. We 
anticipate that users will have more difficulty explaining 
and constructing models with more parent-child 
connections. We also anticipate users having more 
difficulty explaining and constructing models when there 
are more nodes with negative causal links because of the 
increase in complexity of the models.  

In this study, we intend to measure reasoning patterns 
involving negative quantities that give users the most 
trouble. We anticipate that users will have the most 
difficulty interpreting and creating models when nodes 
are presented with “negatively phrased” labels (e.g., 
assessing the influence of a node labeled “battery is not 
new” on a node labeled “headlights are dim”). If this is 
the case, it suggests a need for developers of CIMs (and 
BNs in general) to encourage users to employ certain 
modeling patterns, possibly by constraining the 
description of nodes. These constraints, in turn, can be 
accomplished through prior training or interface wizards, 
or through intelligent, automatic processing of user 
entries, and provision of suggested alternatives (e.g., pop-
up suggestions). These interventions could be tested in 
further studies. 

The primary contribution of this paper will be process- 
and product-oriented descriptions of how this graphical 
tool is used to interpret and create CIMs. Future research 
could compare how models created within the CIM 
framework compare to those using more traditional BN 
structures, from the point of view of the user. This study 
used simple Bayesian models, with constrained 
parameters and interaction capabilities, and used only 
Boolean nodes. Future studies, guided by these initial 
findings, can be conducted using more complex models, a 
greater variety of node types (e.g., categorical, ordinal), 
and allow subjects greater flexibility in manipulating 
CPTs and posting evidence. Other issues for investigation 
include measuring and mitigating user tendencies to 
confuse “evidence” and “belief” (both as terms, and in the 
values these terms represent), measuring tendencies to 

disregard parental independence when constructing CIMs, 
and further observation of user reaction to non-intuitive 
but correct behavior (e.g., becoming confused when 
particular variables appear overly sensitive or insensitive 
to posted evidence.) 

The CIM interface provides a user-friendly way to 
express causal influences between nodes, vastly 
decreasing the number of parameters needed to construct 
causal models and providing the capability for a much 
broader base of users to perform Bayesian modeling. 
Within the experimental interface, participants express 
relative degrees of influence over a range of 11 steps 
(from positive to negative 5, with a neutral intermediate 
value). Additional studies are necessary to clarify the 
appropriate level of granularity of influence assignment 
(e.g., 3 steps? 11 steps? 51 steps?) as well whether other 
methods of assigning strengths across sets of links (e.g., 
normalized strengths, rank ordered strengths) have merit. 
Finally, detailed studies with real-world models, 
situations, and domain experts are required.  
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