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Abstract

Fault isolation is the art of localizing faults in
a process, given observations from it. To do
this, a model describing the relation between
faults and observations is needed. In this pa-
per we focus on learning such models both
from training data and from prior knowledge.
There are several challenges in learning fault
isolators. The number of data, as well as the
available computing resources, are often lim-
ited and there may be previously unobserved
fault patterns. To meet these challenges we
take on a Bayesian approach. We compare
five different methods for learning in fault iso-
lation, and evaluate their performance on a
real fault isolation problem; the diagnosis of
an automotive engine.

1 INTRODUCTION

We consider the problem of fault isolation, i.e. the
problem of localizing faults that are present in a pro-
cess given observations from this process. To do this, a
model of the relations between observations and faults
is needed. In the current work we investigate and com-
pare different methods for learning from training data
and prior knowledge.

We are motivated by the problem of fault isolation in
an automotive engine, and the learning methods are
evaluated using experimental training data and evalu-
ation data from real driving situations. In engine fault
isolation there may be several hundreds of faults and
observations. There will be fault patterns, i.e. co-
occuring faults, from which there are no training data.
Furthermore, training data is typically experimental
and obtained by implementing faults, running the pro-
cess, and collecting observations. On the other hand,
there is often engineering knowledge available about

the process. The engineering knowledge can for exam-
ple be used to determine the structure of dependencies
between faults and observations. This kind of knowl-
edge is often the only basis in previous algorithms for
fault isolation [6, 12, 19].

Due to the fact that there are previously unobserved
fault patterns in training data, frequentist and purely
data-based methods are bound to fail. To meet these
challenges we use a Bayesian approach to learning in
fault isolation. We consider five different methods of
learning a model from training data, which are all pre-
viously present in the literature in different forms. We
taylor these methods to incorporate the available back-
ground information. The methods we consider are Di-
rect Inference (DI), Logistic Regression (LogR), Lin-
ear Regression (LinR), Naive Bayes (NB) and general
Bayesian Networks (BN).

The main contributions of the current work are the in-
vestigation of Bayesian learning methods and regres-
sion models for fault isolation by comparing the five
methods mentioned above, the application and evalu-
ation of the methods on real-world data, and the com-
bination of data-driven learning and prior knowledge
within these methods. In order to do this investiga-
tion, we first discuss the characteristics of the fault
isolation problem in terms of probability theory, and
performance measures that are meaningful for fault
isolation. Consecutively we show how the five meth-
ods can be adopted to the isolation problem. We apply
them to the task of fault isolation in an automotive
diesel engine. Finally, we compare the five methods,
and discuss their advantages and drawbacks.

Bayesian methods for fault isolation are previously
studied in literature. In these previous works it is
generally assumed that the model is given [26, 15],
or can be derived from a physical model without us-
ing training data [17, 25]. In the current work on the
other hand, we focus on learning the models. Previous
works on Learning models for fault isolation typically
rely on pattern recognition methods described e.g. in



[1, 3]. Examples of such methods are presented for
example in [14]. Pattern recognition methods are ap-
plicable if there is sufficient training data available.
Unfortunately, this is rarely the case in fault isolation.
In [20] the problem of learning with missing fault pat-
terns is discussed. In [20] training data is combined
with fundamental methods for fault isolation described
in [2, 22]. This approach is referred to as Direct Infer-
ence in the current work, and compared to the other
four methods for learning.

The paper is structured as follows. We introduce no-
tation, and formulate the diagnosis problem in Sec-
tion 2. Therein we also define relevant performance
measures. In Section 3 we briefly describe the five
methods used, and in particular how they are applied
to the diagnosis problem, before we perform the evalu-
ating experiments and compare the results obtained in
Section 4. Finally, in Section 5 we conclude the paper
by summarizing our results and discussing future work
directions.

2 PROBLEM FORMULATION

Before going into the details of each of the learning
methods we introduce some notation, and discuss the
characteristics of the fault isolation problem. Then we
carefully state the problem at hand and define perfor-
mance measures.

2.1 BAYESIAN FAULT ISOLATION

The fault isolation problem can be formulated as a
prediction problem, where the task is to determine
the fault(s) present in a system, given a set of ob-
servations from the system. Let the faults be repre-
sented by the binary variables Y = (Y1, . . . , YK), and
let the observations from the system be represented
by the variables X = (X1, . . . , XL), where each Xl is
discrete or continuous. Generally, we use upper case
letters to denote variables, and lower case letters to
denote their values. Boldface letters denote vectors.
We write p(X = x) (or simply p(x)) to denote either
probabilities or probability distributions both in the
continuous and in the discrete case. The meaning will
be clear from the context.

We are given a set of training data D, consisting of
samples (yn,xn), n = 1, . . . , ND, pairs of fault and
observation variables. The training data is collected
by implementing faults and then collecting observa-
tions, meaning that training data is experimental. To
evaluate the system we use a set E consisting of NE

samples. The evaluation data is collected by running
the system, meaning that it is observational. Further-
more, we assume that the fault isolation algorithm is
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Figure 1: A Bayesian network describing a typical
fault isolation problem.

triggered by a fault detector telling us there must be
at least one fault present in the process.

The structure of dependencies between the faults and
observations has three basic properties, illustrated in
the example Bayesian network of Figure 1.

The first property is that faults assumed to be a priori
independent, i.e. that

p(y) =
K
∏

k=1

p(yk|y1, . . . , yk−1) ≈
M
∏

k=1

p(yk), (1)

meaning that faults cannot cause other faults to occur.
Although not necessary for the methods in the current
work, this is a standard assumption in many fault iso-
lation algorithms [6], and it simplifies the reasoning in
the following sections.

Second, faults may causally affect one or several of
the observation variables introducing dependencies be-
tween faults and variables. A dependency between
fault variable Yk and observation variable Xl means
that the fault may be visible in the observation.

The third property is that an observation variable Xl

may be dependent on other observation variables. De-
pendencies between observation variables may arise
due to several reasons. For example they can be caused
by unobserved factors, such as humidity, driver behav-
ior, and operation point of the process. These unob-
served factors could be modeled using hidden nodes,
but since they are numerous and unknown they are
here simply modeled with dependencies between ob-
servation variables. This is more carefully discussed in
[21].

We take a Bayesian view point on fault isolation. The
objective is to find the probability for each fault to
be present given the current observation, the training
data, and the prior knowledge I, i.e. to compute the
probabilities p(yk|x,D, I), k = 1, . . . , K. The proba-
bility for each fault can be found by marginalizing over
y−k = (y1, . . . , yk−1, yk+1, . . . , yK),

p(yk|x,D, I) =
∑

y−k

p(y−k, yk|x,D, I). (2)

Note that (y−k, yk) = y, and (2) means that we seek
the conditional distribution p(y|x,D, I). To simplify



the notation we will omit the background information
I in the equations.

Computing the conditional distribution p(y|x,D) is
generally difficult. To approximate it we need a model
M and a method for determining the parameters of
the model.

2.2 PERFORMANCE MEASURES

To evaluate the different models to be used in Bayesian
fault isolation, we use two performance measures: log-
score and percentage of correct classification.

The log-loss is a commonly used measure [1], and given
by

µ(E ,M) =
1

NE

NE
∑

j=1

log p(yj |xj ,M), (3)

The scoring function µ measures two important prop-
erties of the fault isolation system; both the ability to
assign large probability mass to faults that are present,
and also the ability to assign small probability mass
to faults that are not present. Furthermore, the log-
score is a proper score. A proper score has the char-
acteristic that it is maximized when the learned prob-
ability distribution corresponds to the empirically ob-
served probabilities. In the fault isolation problem the
conditional probabilities for faults is often combined
with decision theoretic methods for troubleshooting
[8], where optimal decision making requires conditional
probabilities close to the generating distribution.

The second measure we use is not proper. It is closely
related to the 0/1-loss used e.g. in pattern classifica-
tion [1]. However, in case of multiple faults present it
suffices to assign highest probability to any of them.
We define

ν(E ,M) = #{j : yj
max(xj ,M) = 1}/NE , (4)

where yj
max(xj ,M) is the fault assigned highest prob-

ability by M given xj . The ν-score reflects the per-
formance of the fault isolation system combined with
the simple troubleshooting strategy “check the most
probable fault first”.

3 MODELLING APPROACHES

In this section we briefly present the inference meth-
ods used to tackle the fault isolation problem. We
carefully state all assumptions made, and describe the
adjustments of each method to apply it to the diag-
nosis problem. However, we begin by describing two
assumptions that need to be made for all methods ex-
cept DI.

3.1 MODELLING ASSUMPTIONS

All the methods considered in this paper – with the
exception of DI – build separate models for each fault
and thus assume independence among these. A priori
this corresponds to approximation (1). However, when
we build separate models for each fault, we also make
a stronger assumption, namely that the faults remain
independent given the observations,

p(y|x) =

K
∏

k=1

p(yk|x, y1, . . . , yk−1) ≈

K
∏

k=1

p(yk|x) (5)

This approximation is (after applying Bayes’ rule and
canceling terms) equivalent to

K
∏

k=1

p(x|yk) ≈

K
∏

k=1

p(x|y1, . . . , yk), (6)

meaning that the observation x is dependent on each
fault yk, but this dependency is assumed to be inde-
pendent of all other faults yk′ , k′ 6= k. In other words,
we assume no “explaining away” [10]. Looking at Fig-
ure 1 we observe, that this indeed is a strong assump-
tion, since there are unshielded colliders (V-structures,
bastards, common children of non-connected nodes) of
the faults present.

Assumption (5) is primarily made for technical rea-
sons, in order to be able to build separate models for
each fault. But often it is also the case (as in the
application of Section 4) that there is training data
only from single faults. This means we do not have
any training data telling us about the joint effect of
multiple faults.

Remember that it is known that there is at least one
fault present when the fault isolator is employed, see
Section 2.1. Therefore, instead of computing p(y|x),
we search

p(y|x,
∑

k

yk > 0) = p(y|x)(1 − p(y ≡ 0|x)). (7)

Unfortunately

p(y|x,
∑

k

yk > 0) 6=
∏

k

p(yk|x,
∑

k

yk > 0), (8)

a fact which recouples the single-fault models intro-
duced in (5). This fact is ignored during the learning
phase and the single-fault models are trained individ-
ually. We then apply (7) in the evaluation phase.

3.2 DIRECT INFERENCE

Several previous fault isolation algorithms rely on prior
knowledge about which observations may be affected



Table 1: An example of an FSM
Y1 Y2 Y3

X1 1 1 0
X2 1 0 1

by each fault [2, 22, 12]. Such information is typi-
cally expressed in a so called Fault Signature Matrix
(FSM). An example of an FSM is given in Table 1.
In the FSM, a zero in position (k, l) means that fault
Yk can never affect observation Xl. The direct infer-
ence method aims at combining the information given
by the FSM with the training data available. Assume
that observations are binary and that the background
information I containing the FSM is given. Then, un-
der certain assumptions it can be shown [20] that

p(y|x,D) =

{

0 x ∈ γ
nxy+αxy

Ny+Ay

p(y|I)
π0

otherwise,
(9)

where π0 is a normalization constant, nxy is the count
of training data with fault y and observations x, αxy

is a parameter describing the prior belief in the ob-
servation x when the fault is y (a Dirichlet prior),
Ny =

∑

x′ nx′y, and Ay =
∑

x′ αx′y. The sets γ
are determined by the background information as de-
scribed in [20].

The direct inference method is developed for sparse
sets of training data, particularly when there is only
training data from a subset of the fault patterns to
isolate.

3.3 BAYESIAN NETWORKS

When using Bayesian networks for prediction, we
search the joint distribution p(y,x|θ), where θ are pa-
rameters describing the conditional probability distri-
butions in the network. From the joint distribution,
the conditional distribution for y can be computed.
We consider two types of Bayesian networks: Naive
Bayes and general Bayesian Networks.

3.3.1 Naive Bayes

The Naive Bayes classifier assumes that the observa-
tions are independent given the fault. Naive Bayes is
is one of the standard methods for Bayesian prediction
and often performs surprisingly well [3, 23]. However,
due to the erroneous independence assumptions it is
poorly calibrated when there are strong dependencies
between the observations. To alleviate this problem,
we apply variable selection according to an internal

leave-one-out scoring function:

S(V ) =
1

ND

ND
∑

n=1

log P (yn
k |x

n, V,D \ {(yn,xn)}, α),

(10)

where V ⊂ X is the variable set under consideration
and α is the Dirichlet hyper-parameter for the NB-
model.

3.3.2 General Bayesian Network

Since it is known that the faults causally precede the
observations, and since the observations are known to
be dependent given the faults, a natural step forward
from the Naive Bayes structure is a Bayesian network.
In the network we constrain the fault to be a root
node, but otherwise leave the structure unconstrained.
One such network was learned for each fault using a
BDe score (with an equivalent sample size parameter
of 1.0). For small systems (< 30 variables) learning can
be performed using the exact algorithm in [27], while
for larger systems approximate methods, e.g. [9], can
be used.

3.4 REGRESSION

Fault isolation is a discriminative task, where we are
to predict the fault vector y given the observations x,
i.e. estimate the conditional likelihood

p(y|x, θ) =
p(y,x|θ)

∑

y
p(y,x|θ)

. (11)

It is well known [18, 11] that in such case it can be
of great benefit to employ a discriminative learning
method, that only learns the probabilities asked, in-
stead of wasting training data to learn the joint data
likelihood as in the Bayesian network methods of Sec-
tion 3.3. Regression models form a family of such
methods.

3.4.1 Linear Regression

The most straight-forward regression method is linear
regression, where each fault variable is assumed to be a
linear combination of the observations plus a gaussian
noise term,

yk = wT
k x + wk0 + ǫk, ǫ ∼ N(0, σ).

Here wk, wk0, and σ are parameters to be determined.
This gives the probability distribution

p(yk|x) =
1

Z
exp(−

(wT
k x + wk0 − yk)2

2σ2
), (12)



where Z is a normalization constant. To determine the
parameters we use the standard methods described for
example in [1].

w∗ = argmin
w

−

ND
∑

n=1

log p(yn
k |x

n,w)

= argmin
w

−

ND
∑

n=1

(wT
k xn + wk0 − yn

k )2.

When the parameters w∗ are known, the parameter σ
can also be computed. The normalization constant in
(12) is given by Z = exp(−((w∗)T

k x+w∗
k0−1)2/2σ2)+

exp(−((w∗)T
k x + w∗

k0 − 0)2/2σ2).

3.4.2 Logistic Regression

Learning parameters to maximize (11) for a Bayes Net
B is known to be equivalent to logistic regression under
the condition that no child of the class can be a “bas-
tard”, a common child of two variables that are not
interconnected directly. More formal definition and
proofs can be found in [24]. In our case, this implies
approximation (5).

To start with, for each fault we learn a logistic regres-
sion model corresponding to a discriminative Naive
Bayes classifier 1.

We name the parameters of the logistic regression
model α and β such that the conditional likelihood
is defined as

p(yk = 1|x, α, β) :=
exp s(x, α, β)

exp s(x, α, β) + exp−s(x, α, β)
(13)

where

s(x, α, β) := α +

L
∑

l=1

xlβl. (14)

We also include a smoothing term c(α, β) in our ob-
jective function which takes the place of a prior in
the corresponding NB classifier. To unify its role for
different observations, we first normalize our data by
shifting and scaling such that for l = 1, . . . , L

∑

n

xn
l = 0 and max

n
|xn

l | = 1 (15)

Starting out from the uniform prior, we pretend to
have seen one vector of each class at node Yk and two
vectors of each class with extreme values ±1 at each
node Xl, with all other values zero (∼unobserved).

1possible other choices include tree-augmented Naive
Bayes (TAN) [24, 5]

This amounts to a smoothing term

c′(α, β) − 2 log(exp(α) + exp(−α))

− 4
L

∑

l=1

log(exp(βl) + exp(−βl)). (16)

However, we found this smoothing term problematic,
since it is flat near zero. Therefore, we never get any
parameters exactly zero. But in logistic regression
many small parameters can make a difference, while
they may be weakly supported. We choose to replace
log(exp(x) + exp(−x)) by |x|. This is a good approxi-
mation away from zero, but forces unsupported param-
eters to zero, implicitly performing attribute selection.

For fault Yk we search parameters as to maximize

log p(yk|x, α, β) + c(α, β)

=

ND
∑

n=1

log p(yn
k |x

n, α, β) − 2|α| − 4

L
∑

l=1

|βl|. (17)

We do this by simple line search, one parameter at a
time2.

Finally, we try a variant of this algorithm which
weights the training vectors. We have prior knowl-
edge about the probabilities p(yk) with which to ex-
pect some fault yk in the real-world setting or, in this
case, the evaluation set. These probabilities differ from
the relative frequencies observed in the training set.
The idea is to weight the training vectors in the objec-
tive as to focus the optimization on areas of the data
space more likely to be seen later on. The correspond-
ing objective for fault Yk becomes

ND
∑

n=1

log wkp(yn
i |x

n, α, β) + c(α, β) (18)

where the weight wk is the prior p(yk) divided by the
observed relative frequency #{n : yn

k = yk}/ND.

4 EXPERIMENTS

To evaluate the different methods learning fault isola-
tion models, we apply them to the diagnosis of the gas
flow in a 6-cylinder diesel engine in a Scania truck. In
automotive engines, sensor faults are one of the most
common faults, and here we consider five faults that
may appear in different sensors. The faults are listed
together with their prior probabilities in Table 2.

2There are much faster optimization techniques, some
of which are compared in [16], but for our purposes this
did nicely



Table 2: The faults considered

Fault description p(yk)

y1 exhaust gas pressure 0.4
y2 intake pressure 0.13
y3 intake air pressure 0.057
y4 EGR vault position 0.13
y5 mass flow 0.057

4.1 EXPERIMENTAL SETUP

For the gas flow of the diesel engine there is physical
model from which a set of 29 diagnostic tests are au-
tomatically generated using structural analysis [4, 13].
Each of the observations is constructed to be sensitive
to a subset of the faults.

For training and evaluation data we use measurements
from real operation of the truck, with faults imple-
mented. The training data consists of 100 samples
each from the five single faults. Evaluation data con-
sists of data from the five single faults, but also of data
from two multiple faults y1&y2, and y1&y4. Evalua-
tion data is observational, and consists of 1000 sam-
ples, distributed roughly according to the prior prob-
abilities in Table 2.

The data we consider is originally continuous, but all
except the regression algorithms take in discrete data.
The data is discretized in two different ways: binary,
with thresholds set such that all fault free data is
known to be contained in the same bin; and discretized
using k-means clustering [7] with k = 4. DI is applied
to the discrete data. NB and BN are run both on dis-
crete and binary data. The regression methods LinR
and LogR are applied to the continuous data.

As described in Section 3 the NB and DI algorithms
perform best if not all observations are used. For both
DI and NB we perform variable selection such that an
internal log-score is maximized. For DI, the best result
is obtained by using only six of the observations. In
NB between seven and 18 observations are used for
each fault.

4.2 RESULTS

In Table 3 the log-score (µ) and percentage of cor-
rect classification (ν) are presented for the different
methods. In addition we report the number of param-
eters used by each predictor. This is relevant, since
for on-board fault isolation the computing and stor-
age capacity is often limited. For comparison we also
report the default which is obtained by simply using
the prior probabilities given in Table 2.

Table 3: Comparison of the methods

method log-score ν-score #pars

DI -1.088 0.781 106
NB-bin. -1.340 0.748 293
NB-disc. -1.044 0.843 335
BN-bin. -1.297 0.782 287
BN-disc. -1.398 0.840 1136

LinR -1.839 0.834 150
LogR -1.071 0.829 46

LogR+weights -0.953 0.829 44

default -1.738 0.592 5

Table 4: Comparision of DI and LogR on single faults

fault µ DI µ LogR+w

y1 -0.346 -0.385
y2 -0.324 -0.287
y3 -0.087 -0.008
y4 -0.334 -0.294
y5 -0.177 -0.133

We observe, that among the four best methods in Ta-
ble 3 three are discriminative and learn the conditional
distribution instead of the joint distribution. Further-
more, LogR with training sample weighting performs
best on this data in log-score sense, while using a
small number of parameters. Surprisingly the weight-
ing trick has made quite a difference and LogR without
weights it is outperformed by NB-disc. NB performs
better when it is fed with discretized observations in-
stead of binary, while for BN the effect is reversed.
Clearly the discretized data contain more information,
but it seems that in more complex Bayes Nets the con-
ditional probability tables easily grow too large. In DI
good results are obtained by exploiting prior knowl-
edge in terms of that some faults never cause an ob-
servation to pass certain thresholds.

Measured by the ν-score the relative differences be-
tween the methods become smaller. We observe
that this score favors the regression models and the
Bayesian methods using binary data. The reason for
the good performance of the methods using binary
data is the particular way of thresholding the data
such that all fault free samples are contained in the
same bin.

Table 4 compares the log-scores of the predictions
given for the single faults by DI and LogR+weights.
Note that because of inequality (8) the columns do
not sum to the corresponding entries in Table 3. Not
surprisingly, both methods (as all others) have most



trouble with faults y1, y2 and y4, the ones appearing
simultaneously in evaluation data, but not in training
data. This gives evidence for explaining away being
important in this problem. Figure 2, in which the
probabilities for each fault using LogR + weights are
plotted, shows this in more detail. In the Figure we
have ordered the evaluation data such that the right-
most samples have multiple faults, visualizing that the
double faults are most difficult to predict.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

p
(y

1
|x

n
)

p
(y

2
|x

n
)

p
(y

3
|x

n
)

p
(y

4
|x

n
)

p
(y

5
|x

n
)

n

n

n

n

n

Figure 2: The predicted probability for the different
faults given by LogR+w. Evaluation data is ordered
after their fault patterns. The true fault is marked
with a solid line.

5 CONCLUSIONS

We have considered the problem of fault isolation in
an automotive diesel engine. We have discussed the
special characteristics of this problem. There is ex-
perimental training data available which is distributed
differently from what we expect to see in the real-world
setting. In particular, evaluation data consists partly

of previously unseen fault patterns. In addition there
is prior knowledge available about which faults may
affect each observation, and also the knowledge that
at least one fault is present.

We have studied different Bayesian and regression ap-
proaches to combine this by nature heterogeneous in-
formation into probability distributions for the faults
conditioned on given observations. We have compared
the performance of the methods using real-world data,
and have found that the discriminative logistic regres-
sion method to perform best. Among the best methods
we have also found the naive Bayes classifier and the
direct inference method.

One of the clearest implications of this work is that
all methods have difficulties with handling unobserved
fault patterns. Unfortunately, unobserved patterns are
common in fault isolation, so this problem should be
tackled in future work. All the methods used, except
direct inference, ignore explaining away. However, this
explaining away effect can possibly be helpful when di-
agnosing unseen patterns. Furthermore, it is crucial to
include background information in the learning phase
whenever it is available.

In our work to come we will investigate models capa-
ble of both explaining away and taking prior knowl-
edge into account, while providing an efficient infer-
ence procedure, as on-board computers offer very lim-
ited resources. We expect further improvement of per-
formance is possible.
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ple Approach for Finding the Globally Optimal
Bayesian Network Structure. In Proceedings of
the 22nd Conference on Uncertainty in AI (UAI),
2006.


