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ABSTRACT
The vision of the Semantic Web is to make use of seman-
tic representations on the largest possible scale - the Web.
Large knowledge bases such as DBpedia, OpenCyc, Gov-
Track, and others are emerging and are freely available as
Linked Data and SPARQL endpoints. Exploring and an-
alyzing such knowledge bases is a significant hurdle for Se-
mantic Web research and practice. As one possible direction
for tackling this problem, we present an approach for obtain-
ing complex class descriptions from objects in knowledge
bases by using Machine Learning techniques. We describe
how we leverage existing techniques to achieve scalability
on large knowledge bases available as SPARQL endpoints
or Linked Data. Our algorithms are made available in the
open source DL-Learner project and can be used in real-life
scenarios by Semantic Web applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing ; F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; H.4 [Information Systems Applica-
tions]: Miscellaneous

General Terms
Algorithms, Performance
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1. INTRODUCTION
The vision of the Semantic Web is to make use of seman-
tic representations on the largest possible scale - the Web.
We currently experience that Semantic Web technologies are
gaining momentum and large knowledge bases such as DB-
pedia[1], OpenCyc[6], GovTrack1 and others are freely avail-
able. These knowledge bases are based on semantic knowl-
edge representation standards like RDF and OWL. They
describe millions of concepts, contain hundred thousands of
properties as well as classes and an even larger number of
facts and relationships. These knowledge bases and many
more2 are available as Linked Data [2] or SPARQL end-
points.

1http://www.govtrack.us
2http://esw.w3.org/topic/SparqlEndpoints and
http://linkeddata.org

Due to their sheer size, precise retrieval of information re-
mains a burden for users. Domain experts often have a very
precise imagination what kind of results they would like to
retrieve, but might not be able to express their queries in a
structured form at all. A historian, for example, searching
for ancient Greek law philosophers influenced by Plato in
DBpedia can easily name some examples and if presented
a selection of prospective results he will be able to quickly
identify false results. However, he might not be able to
efficiently construct a formal query adhering to the large
DBpedia knowledge base a priori.

2. THE METHOD
The basic problem we want to solve is common in Machine
Learning: Given a set of positive and negative examples,
find a definition entailing all positive examples and none of
the negatives. For instance, given a set of substances know-
ing to cause cancer and other substances, which do not cause
cancer, we can try to learn a description of the substances
causing the disease. In our context, examples are OWL indi-
viduals and the learned descriptions are OWL class descrip-
tions3. Section 3 gives a concrete example learning problem.

One of the challenges of such methods is that they heavily
rely on reasoning to learn class descriptions. Their scala-
bility is thus limited by that of the underlying reasoning
algorithm. Although advancements have been made in ap-
proximate reasoning for OWL, it is not feasible to load very
large knowledge bases like DBpedia, OpenCyc, and others
into a reasoner. Furthermore, not all of the knowledge may
be locally available, i.e. large volumes of data may need to be
transferred over a network to obtain the background knowl-
edge for a given learning problem.

For this reason, we propose a knowledge fragment selection
approach. Figure 1 gives a general overview. A number
of example instances is used as a starting point. The frag-
ment selection method gathers knowledge about these in-
stances using SPARQL queries or available Linked Data.
This knowledge forms a small fragment of the underlying
large knowledge bases and can be consumed efficiently by a
reasoner. Finally, this reasoner can be used as a backend for
learning algorithms.

The fragment selection approach is, in principle, indepen-
dent of the used learning algorithm. We implemented our
approach in the DL-Learner framework and refer to the lit-

3http://www.w3.org/TR/owl2-syntax/#Descriptions

http://www.govtrack.us
http://esw.w3.org/topic/SparqlEndpoints
http://linkeddata.org
http://www.w3.org/TR/owl2-syntax/#Descriptions


Figure 1: Process Illustration: In a first step, a frag-
ment is selected based on instances from a knowl-
edge source and in a second step the learning process
is started on this fragment and the given examples.

erature[3, 4, 5] for information about some of the algorithms
implemented within this framework. The main goal of the
fragment selection procedure is to select relevant knowledge.
For learning OWL class descriptions, this includes related
individuals up to a given recursion depth as well as the sub-
sumption hierarchy of concepts and properties of those indi-
viduals. Therefore, the algorithm explores the RDF graph
recursively and extracts information that provides a suffi-
cient description of the individuals and corresponding con-
cepts to apply the learning algorithm. The extraction of
resource descriptions is inspired by Concise Bounded De-
scriptions (CBD4), but resources are additionally filtered
(to omit irrelevant facts) and corrected in a way that they
comply with OWL DL, normally a requirement for reason-
ers. Figure 2 depicts the basic process: Starting from a set
of instances, neighbours of those are explored and in a final
step schema information is obtained for those instances. For
brevity, we omit the technical details.

Figure 2: Extraction with three starting instances.
The inner line represents recursion depth 1 and the
outer recursion depth 2.

We evaluated the method on the DBpedia and YAGO knowl-
edge bases. For our experiments we choose a typical ontol-
ogy enrichment task, i.e. learn class definitions. We ran-
domly selected YAGO classes and retrieved DBpedia in-
stances that belong to the class as positive examples and
then selected the same number of negative examples from su-
perclasses. We performed an extraction with varying recur-
sion depth, which is the most important factor influencing
performance, and measured 1) number of triples extracted,
2) time needed for extraction and 3) total time needed for

4http://www.w3.org/Submission/CBD

extraction and learning. To summarize the results, we found
out that all the number of extracted triples grows exponen-
tially with recursion depth and that all three curves have a
similar shape. This means that extraction and learning per-
formance are largely determined by the knowledge fragment
size, which can in turn be regulated by the recursion depth.

3. USAGE SCENARIOS
Learned class descriptions are useful in numerous scenarios,
because they represent a concise theory about the example
instances. This opens the field for uses such as:
Discovery/Recommendation: Find instances via retrieval
which are similar to the positive examples, but not similar
to the negative examples.
Navigation: Generate navigation suggestion based on pre-
viously visited sites, articles etc.
Ontology Engineering: Enrich very large knowledge bases
by learning the definition of a class using existing instances
of this class.
Instance data analysis - The learning algorithm is biased
towards short human-readable class descriptions, which give,
like short profiles, insight into the data.
Classification: Learn descriptions to classify unseen in-
stances, e.g. detecting which substances may cause cancer
based on a learned description.

In continuation of the evaluation, we used the method to
learn class descriptions in DBpedia with the goal of finding
missing instances, i.e. instances which belong to the class,
but where Wikipedia authors forgot to make such assertions.
Furthermore, we used the AudioScrobbler RDF Service5 to
obtain a list of artists, which a user from Last.fm listened
to. Because they are connected to MusicBrainz 6, we were
able to create short profiles in form of a class description (e.g.
UK-Artistt(Rock-Genreu∃bioEvent.Death)) for the artists
most recently listened to by a user (in this case ”Genesis”,
”Children of Stun”, ”Robbie Williams”, and ”Dusty Spring-
field” as positive examples).
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