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ABSTRACT
The authors present a case for an ontology of finite alge-
bras. This vocabulary is a direct response to the limitations
of the formats employed by first-order model searchers, such
as Mace4, and specialized software, such as UACalc. It will
support a semantically rich format for algebra storage and
interchange intended to improve the efficiency of computa-
tional discovery processes in universal algebra. The class
of finite quandles is considered as a case study in order to
understand some of the challenges of designing such a knowl-
edge base.

1. REPRESENTING ALGEBRAS
Current research projects within the Bard College Labora-
tory for Algebraic and Symbolic Computation (ASC) con-
cern finite quandles [6], a class of algebras [2] inspired by
the crossover arithmetic of three dimensional knots [3]. A
finite algebra A is a pair 〈A, F 〉, where A is a finite set and
F a set of finitary operations on A. The finite algebra A
is a quandle when F consists of a single binary operation
∗ that satisfies idempotence, right cancellation, and right
self-distributivity. That is, for any a, b, c ∈ A,

• a ∗ a = a;

• a ∗ c = b ∗ c implies a = b; and

• (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

For example, Figure 1 is the Cayley table of the Tait quan-
dle.

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Figure 1: The Tait Quandle Q = 〈{0, 1, 2}, {∗}〉

1.1 Algebra Formats
ASC lab researchers employ many symbolic software sys-
tems during the mathematical discovery process. The first-
order model searcher Mace4, in conjunction with the other
LADR-based programs [8], eases the process of finding and
isolating finite algebras with particular properties. Its na-
tive format represents algebras as legal Prolog terms [10].

For example, Figure 2 displays the Mace4 version of the
Tait quandle of Figure 1. Mace4 algebras can be read di-

interpretation(3,[number=5, seconds=0],[

function(*(_,_),[

0,2,1,

2,1,0,

1,0,2])

]).

Figure 2: Mace4 Version of the Tait Quandle

rectly by SWI-Prolog and easily translated into expressions
in the Mathematica computer algebra system [11]. As a con-
sequence, most of the ASC lab’s custom quandle software is
designed in one of these two languages.

The UACalc system [4] can determine certain important
characteristics of an algebra, such as its congruence and sub-
algebra lattices. It uses a specialized XML [1] format with
no accompanying schema or documentation. The markup
only records an algebra’s operations in table form without
the results of any UACalc computations. It is clear that the
sole purpose of this format is to serialize algebras to a file.

1.2 Sharing Algebras
The effective sharing of algebras between researchers, rather
than between software systems, requires a more comprehen-
sive approach. Indeed, a thoughtful solution could reap
great rewards. For example, one of the more important
quandles discovered by ASC lab members was the fruit of a
Mace4 run that lasted for several days. Making this algebra
publicly available allows others to leverage this investment
of computing time. A natural, distributed sharing method is
simply to post algebras in these formats on the World Wide
Web.

However, neither the Mace4 nor the UACalc formats add
any unique identifiers to the internet search lexicon, so even
reasonably sophisticated internet searches are likely to iso-
late few algebras in these forms. Another weakness of both
the Mace4 and UACalc formats is the lack of any notations
to indicate classification or other properties. For example,
the Mace4 version of the Tait quandle of Figure 2 makes no
indication that it is a quandle.



2. ALGEBRA ONTOLOGY
The authors of this work propose an ontology for finite al-
gebras that will specify classes of universal algebras, such
as groups, loops, and quasigroups, and properties applica-
ble to finite algebraic systems, such as solvability for groups,
distributivity for lattices, and tractability for general alge-
bras. It will also record known logical relationships between
classes, between classes and properties, and between prop-
erties.

In order to ensure a distributed and extensible knowledge
base it will be designed using the OWL [9] plugin for Pro-
tégé [5]. Thus a lattice theory expert, for example, will be
able to contribute directly to the lattice vocabulary by sim-
ply posting some OWL online. She may also serialize an
individual algebra along with its major classifications and
properties to a variety of semantically rich formats, such as
RDF [7], for storage and internet searches.

2.1 Design Challenges
Of course, classes of algebras will be represented by OWL
classes and individual algebras by instances. However, the
ontology must reflect that not all classes of algebras are the
same to universal algebraists. This issue is illustrated below
in the realm of finite quandles (see Figure 3).

Quandle

Latin

Structural

Involutory
Conjugation

Dihedral

Figure 3: Some Classes of Quandles

A quandle Q is Latin if ∗ satisfies left cancellation: For any
a, b, c ∈ Q, a∗b = a∗c implies b = c. Thus the class of Latin
quandles is a first-order axiomatizable subclass of the class
of quandles. Such subclasses are among the most natural
to universal algebraists. Hence this subclass relationship
corresponds to direct subclassing in OWL (Figure 3).

Other subclasses arise via more complex constructions. As
an example, consider the class of conjugation quandles. Given
a group G = 〈G, {◦, ( )−1}〉, one forms a quandle by letting

g ∗ h = h−1 ◦ g ◦ h,

for g, h ∈ G. Such a structure is called a group quandle.
A conjugation quandle Q is a subquandle of 〈G, {∗}〉 for
some group G. Classes constructed via similar means are
rarely first-order axiomatizable over the target language. An
abstract class for subclasses that arise via some structural
method is added to the ontology. This class (”Structural” in
Figure 3) acts as an umbrella term for many well-known sub-
classes of quandles, such as conjugation and dihedral quan-
dles.

One may demonstrate via an elementary yet nontrivial proof
that Latin quandles form a subclass of conjugation quan-
dles. However, this is neither an immediate consequence of
first-order subclassing, nor the results of a restriction of the
conjugation construction to some subclass of finite groups.
Therefore, this is not indicated using ordinary subclassing,
but instead is specified as a property of Latin quandles.
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