
Explanation of OWL Entailments in Protégé 4

Matthew Horridge
The University of Manchester
horridge@cs.man.ac.uk

Bijan Parsia
The University of Manchester

parsia@cs.man.ac.uk

Ulrike Sattler
The University of Manchester

sattler@cs.man.ac.uk

ABSTRACT
This poster and demo presents new OWL ontology expla-
nation tools and facilities that are available in Protégé 4.
These explanations take the form of justifications. A jus-
tification is a minimal set of axioms that is sufficient for a
given entailment to hold. Justification finding services for
Protégé 4 are presented, including what have become de-
facto explanation services such as root/derived pinpointing,
and justification presentation. In addition to this, an imple-
mentation of recent theoretical work that computes so-called
precise justifications is presented. Finally, preliminary work
and new ideas of how justifications might be made easier to
understand is a topic for discussion. All feedback and discus-
sion is welcomed. Protégé 4 is open source, freely available
software.

Keywords
OWL, Reasoning, Explanation

1. INTRODUCTION
Explanation of entailments is now recognised as a highly de-
sirable, if not critical, feature that is required by end users
of OWL ontology browsing and editing environments. Orig-
inally exposed to the masses via the ontology editor Swoop,
explanation facilities have trickled through into other brows-
ing and editing tools such as Protégé 4, OWL Sight and Top
Braid Composer. Such facilities typically provide explana-
tions in the form of justifications [5, 2], which are minimal
sets of axioms that are sufficient for a particular entailment
to hold. This poster showcases the explanation tools that
have recently been developed for Protégé 4 (Figure 1)

2. BASIC EXPLANATION SERVICES
Previous versions of Protégé include basic debugging sup-
port. For example, the colouring of unsatisfiable class names
in red to permit manual tracing in order to attempt to find
a root unsatisfiable class. The OWLDebugger plugin [6]
also attempts to guide users in tracking down the causes of

Figure 1: A screenshot of the explanation work
bench in Protégé 4

unsatisfiable classes. While these approaches are obviously
improvements on no debugging support, they are only use-
ful for trying to understand the reasons as to why a class is
unsatisfiable. They do not handle demands for the explana-
tion of arbitrary entailments. Moreover, they are heuristic
based approaches and suffer from incompleteness. The latest
tools that are available in Protégé 4 remedy this situation
by providing the kinds of explanation facilities that users
have come to expect. Specifically, the means to automat-
ically pinpoint root unsatisfiable classes [2] and the ability
to generate all justifications for any arbitrary entailment [2].
The latest incarnation of the tools bring state of the art ex-
planation facilities to an ontology editing environment that
is widely used, and it is expected that users will have the
opportunity to provide feedback and suggestions on the user
interfaces that present these explanations.

3. PRECISE JUSTIFICATIONS
Due to the typical construction of rich ontologies, and the
way in which ontology development environments display
and make it easy to edit axioms, it is frequently the case that
axioms can be rather long. Hence, justifications can contain
“long” axioms, where only part of the axioms are required
for the entailment in question to hold. In many cases, these
parts can obfuscate the true reasons as to why an entailment
holds. Justifications that contain long axioms could also
result in information being unnecessarily lost when repairing
an ontology, because it isn’t clear which parts of the axioms
contribute to the entailment explained by the justification.
Further more, in certain situations, justifications can masked
other justifications [1].



Justifications that contain axioms that do not contain any
redundant parts tend to be known as precise justifications.
Recent theoretical work by the authors [1]1 has provided a,
previously lacking, formal definition of precise justifications.
Prior to this, it was not clear as to what constituted a precise
justification, which resulted in a situation where different
implementers used different ad-hoc approaches to comput-
ing justifications such that the axioms in these justifications
do not contain “redundant parts”. Examples include the re-
pair tool developed as part of Lam’s PhD thesis [4], or the
heuristic based strikeout feature used in Swoop [3]. With a
formal definition precise justifications at hand, an optimised
implementation that computes precise justifications was im-
plemented using the OWL API. This implementation has
been integrated into Protégé 4 along with a user interface
for browsing and working with precise justifications.

This work on precise justifications resulted in some surpris-
ing results when experiments were performed on several pub-
licly available ontologies. For example for some ontologies
it was found that for a given entailment the number of pre-
cise justifications were fewer in number that the number of
regular justifications. Example were also found where reg-
ular justifications masked further precise justifications. Full
details are available in [1].

4. LEMMAS
While justifications have proved to be incredibly useful for
end users when debugging ontologies, preliminary experi-
mental evidence suggests that, in many cases, even with
justifications in hand, users can still find it difficult to under-
stand the causes of entailments. The exact reasons for this
are unknown. However, in the course of observing users who
are tying to understand justifications, it has been noted that
there are certain justifications that seem difficult for most
users to understand. The authors hypothesise that these jus-
tifications contain non-obvious (“hidden”) entailments, and
in order to understand the whole justification, a user must
spot these non-obvious entailments.

An example of such a case is shown in Figure 2 which is
taken from an ontology about movies that was posted to
the Protégé mailing list 2. In this example, the justification
for Person v Movie also entails that the class Movie is
equivalent to Thing, and hence every class is a subclass of
Movie. However, this isn’t explicit in the justification, and
for most people this is far from obvious, yet it is critical to
realise that this entailment holds in order to understand the
explanation.

One possible solution is to augment justifications with au-
tomatically generated lemmas. These lemmas can help to
bridge the gap in understanding, highlighting the non-obvious
entailments that are required in order to understand a jus-
tification. What lemmas should be used in what context is
the subject of further research.

1Accepted as a paper in the research track at the main con-
ference.
2http://thread.gmane.org/gmane.comp.misc.ontology.
protege.owl/22321/focus=22370

ParentalAdvSuggested ≡ ∀hasV iolenceLevel.Medium

hasV iolenceLevel domain Movie

ParentalAdvSuggested v CertificationCatMovie

CertificationCatMovie vMovie

Figure 2: A justification for Person vMovie. This is
an example of a justification that seems to be diffi-
cult for most users to understand.

5. UTILISING PRECISE JUSTIFICATIONS
AND LEMMAS

The use of lemmas in order to aid understanding, in con-
junction with precise justifications raises issues of how they
should be presented an incorporated into a user’s workflow.
In particular,it may not necessarily be clear how lemmas
and precise justifications relate back to asserted axioms or
how axioms should be modified in order to generate a repair.
The challenge remains, how can lemma generation services
be effectively used so as to make the services useful to end
users? This is open for discussion during the poster session.

6. SUMMARY
It is hoped that this work will go some way to making it
easier for users to develop OWL ontologies, giving them con-
fidence in the knowledge that if they make a change to an
ontology that results in some undesirable entailment, then
they will have a better chance of understanding and remov-
ing the entailment than exists at present. In turn, this will
encourage and foster the development of rich ontologies that
will contribute to the enhancement of the semantic web.

7. REFERENCES
[1] M. Horridge, B. Parsia, and U. Sattler. Computing

precise justifications for entailments in owl. In ISWC 08
The International Semantic Web Conference 2008,
Karlsruhe, Germany, 2008.

[2] A. Kalyanpur. Debugging and Repair of OWL
Ontologies. PhD thesis, The Graduate School of the
University of Maryland, 2006.

[3] A. Kalyanpur, B. Parsia, and B. C. Grau. Beyond
asserted axioms: Fine-grain justifications for owl-dl
entailments. In DL 2006, Lake District, U.K., 2006.

[4] S. C. J. Lam. Methods for Resolving Inconsistencies In
Ontologies. PhD thesis, Department of Computer
Science, Aberdeen, 2007.

[5] S. Schlobach and R. Cornet. Non-standard reasoning
services for the debugging of description logic
terminologies. In IJCAI International Joint Conference
on Artificial Intelligence, 2003.

[6] H. H. Wang, M. Horridge, A. Rector, N. Drummond,
and J. Seidenberg. Debugging owl-dl ontologies: A
heuristic approach. In ISWC 05 The International
Semantic Web Conference 2005, Galway, Ireland, 2005.


