
Finding Equivalent Ontologies in Watson∗

Carlo Allocca
Knowledge Media Institute,

Open University
Walton Hall, Milton Keynes

MK7 6AA
United Kingdom

c.allocca@open.ac.uk

Mathieu d’Aquin
Knowledge Media Institute,

Open University
Walton Hall, Milton Keynes

MK7 6AA
United Kingdom

m.daquin@open.ac.uk

Enrico Motta
Knowledge Media Institute,

Open University
Walton Hall, Milton Keynes

MK7 6AA
United Kingdom

e.motta@open.ac.uk

ABSTRACT
We present an efficient mechanism for finding equivalent on-
tologies motivated by the development of the Semantic Web
search engine Watson. In principle, it computes a canonical
form for the ontologies, which can then be compared syn-
tactically to assess semantic equivalence. The advantage of
using this method is that the canonical form can be indexed
by the search engine, reducing the search for equivalent on-
tologies to a usual text search operation using the canonical
form. This method is therefore more suitable for a search
engine like Watson than the naive comparison of all possible
candidate pairs of ontologies using a reasoner.

1. INTRODUCTION
In recent years, the Semantic Web (SW) community has
been contributing to the authoring of a myriad of ontolo-
gies. A large number of them are made available on-line
by specialized search engines, such as Watson. Watson1 is a
gateway for the SW that plays three main roles: 1) collecting
the available semantic content on the Web, 2) analyzing it
in order to extract useful metadata and indexes, and 3) pro-
viding efficient query facilities to access the data, both for
human users and applications. A missing aspect in Watson
concerns the detection and management of implicit semantic
relations between ontologies, such as semantic equivalence.

Informally, we consider that two ontologies describing the
same vocabulary are semantically equivalent if they express
the same meaning, even if they may be written differently
from a syntactic point of view. If we consider for example the
two ontologies O1 and O2 described by the sets of axioms:

O1: C v B,B v A,C v A,B v ¬∃R.D1

O2: C v B,B v A,B v ∀R.¬D1

a simple syntactic comparison would come up with the con-
clusion that these are different, while they are logically the
same: they are semantically equivalent.

Although Watson has already indexed hundreds of thou-
sands of ontologies, there is not yet an automatic mechanism
to find/detect such equivalences. For example, the query
“student” currently gives 1079 ontologies as a result2. How-
ever, already in the first page of results, at least 2 of the on-

∗This work was funded by the EC IST-FF6-027595 NeOn
Project.
1http://watson.kmi.open.ac.uk/WatsonWUI/
2valid on the 24/07/2008

tologies3 can be shown to represent exactly the same logical
model, even if they are written differently. Another common
situation is when an ontology has been translated in different
ontology languages, like it is the case of the first and second
results of the query “student, university, researcher”4. In
that case, it is obvious that these two ontologies are in fact
two different encoding of the same model.

Finding equivalent ontologies is an important problem to
tackle, as its solution would benefit both human users and
applications. Indeed, simply being able to cluster the re-
sults of Watson according to equivalence would reduce the
number of elements to be inspected by the user, and would
provide alternative syntactic representations to chose from
for each set of equivalent ontologies. For applications, ob-
taining non-redundant results is a good way to increase ef-
ficiency and being able to locate equivalent ontologies can
improve robustness. For example, in case the currently used
ontology is not available anymore, Watson could easily pro-
vide alternatives.

2. SEMANTIC EQUIVALENCE
Motivated by the concrete scenario of Watson, we want to
add to it a service to find equivalent ontologies. The main
issues we have been investigating are: 1) How to keep track
in Watson’s repository of the ontologies which are seman-
tically equivalent? and 2) How Watson recognizes that a
newly added ontologies is semantically equivalent to others
already indexed? For both these issues, it is necessary to
specify, formally, when two or more ontologies are semanti-
cally equivalent. Using the notions of axiom and entailment
(|=) as considered in description logics [1], we define the
equivalence relation between two ontologies as the follow-
ing:

Definition 1 (Ontology Equivalence). Let O1 and O2

be two ontologies. We say that O1 is semantically equivalent
to O2 (O1 ≡ O2) if and only if for every axiom α, O1 |= α
implies O2 |= α and O2 |= α implies O1 |= α (O2 |= α ⇔
O1 |= α)

A possible way to find out if two ontologies are equivalent
according to this definition is to use a reasoner to check if

3http://www.vistology.com/ont/tests/student1.owl
and http://www.vistology.com/ont/tests/student2.owl
4http://reliant.teknowledge.com/DAML/
Mid-level-ontology.owl and http://reliant.
teknowledge.com/DAML/Mid-level-ontology.daml

∀α ∈ O2, O1 |= α and ∀α ∈ O1, O2 |= α. However, this is
a very complex procedure, which, if applied within Watson,
would result in checking every candidate pair of ontologies
through a reasoning mechanism. In addition, every time
an ontology would be added to the repository, many candi-
date equivalent ontologies would have to be identified and
tested, which seems technically unfeasible in a large (sev-
eral hundred thousand ontologies), dynamic and distributed
repository like the one of Watson.

3. METHOD
In order to avoid the situation described above, we employ
a Knowledge Compilation technique [2]. The principle is to
transform the ontologies into canonical forms, such that if
the ontologies are semantically equivalent, the corresponding
canonical forms have to be syntactically equal. Specifically,
we employ the Canonical Prenex Conjunctive Normal Form
(CPCNF) of a first order logic (FOL) formula corresponding
to the ontology. Several steps are required to compute this
particular canonical form. Each of these steps preserves the
logical equivalence of formulas.

3.1 Transformations
The first step is about transforming the ontology O into
an equivalent FOL formula F . For example, with O1 an
ontology containing the axioms C v B, B v A, and C v A
and O2 another ontology containing C v B and B v A, we
obtain the following FOL formulas:

F1 = ∀x1 [C(x1)→ B(x1)] ∧ ∀x1[B(x1)→A(x1)] ∧
∀x1[C(x1)→ A(x1)]

F2 = ∀x1 [C(x1)→ B(x1)] ∧ ∀x1[B(x1)→A(x1)]

The second step is about transforming the formula F into
its Prenex Conjunctive Normal Form (PCNF), obtaining
PCNF(F). Let L be a FOL language5:

Definition 2 (PCNF). A formula F ∈ L is in a prenex
conjuntive normal form if it is of the form:
F = Q1v1Q2v2...Qnvn.M where each Qi is a quantifier, i.e.
Qi ∈ {∃, ∀} , v1... v1 are variables and M (called matrix)
is a quantifier free formula in Conjunctive Normal Form.

Continuing the example above, the PCNFs of the previous
F1 and F2 formulas are:

PCNF (F1) = ∀x1 [¬C(x1) ∨B(x1)] ∧ [¬B(x1)∨A(x1)] ∧
[¬C(x1) ∨A(x1)]

PCNF (F2) = ∀x1 [¬C(x1) ∨B(x1)] ∧ [¬B(x1)∨A(x1)]

An essential property of PCNF is that if F1 and F2 are
FOL formulas then if PCNF(F1) = PCNF(F2) then F1 ≡
F2. The transformation of a formula into PCNF elimi-
nates some syntactic differences. For example, formulas
∀x∀y¬(P (x) ∧ Q(y)) and ∀x∀y(¬P (x) ∨ ¬Q(y)) have the
same PCNF. However, it is not necessarily true that if F1 ≡
F2 then PCNF(F1) = PCNF(F2). To obtain such a property
we need to introduce a canonical form.

Definition 3 (CPCNF). A PCNF formula F is in
CPCNF if all the clauses of the matrix are maximized follow-
ing the rule: Gi 7−→ Gi∨(P∧¬P) 7−→ (Gi∨P)∧(Gi∨¬P),
5In the definitions of this section, we use notions from FOL
such as formula, literal and Conjunctive Normal Form as
defined in [3].

for each P belonging to the set of positive literals in F and
missing in the clause Gi.

Applying this final step on the previously obtained formulas
gives:

CPCNF (F1) = ∀x1[A(x1) ∨B(x1) ∨ ¬C(x1)] ∧
[¬A(x1) ∨B(x1) ∨ ¬C(x1)] ∧ [A(x1) ∨ ¬B(x1) ∨ C(x1)] ∧
[A(x1) ∨ ¬B(x1) ∨ ¬C(x1)] ∧ [A(x1) ∨B(x1) ∨ ¬C(x1)] ∧
[A(x1) ∨ ¬B(x1) ∨ ¬C(x1)]

CPCNF (F2) = ∀x1[A(x1) ∨B(x1) ∨ ¬C(x1)] ∧
[¬A(x1) ∨B(x1) ∨ ¬C(x1)] ∧ [A(x1) ∨ ¬B(x1) ∨ C(x1)] ∧
[A(x1) ∨ ¬B(x1) ∨ ¬C(x1)]

By eliminating duplicated clauses in CPCNF(F1), we can
see that we obtain twice exactly the same formula. We can
therefore conclude that the original ontologies were seman-
tically equivalent.

4. APPLICATION IN WATSON
The main advantage of this method is that the computed
canonical form of an ontology can simply be indexed as text
within the Watson search engine, hence acting as a sort of
signature for this ontology. In this case, the task of finding
ontologies that are equivalent to a given ontology O is re-
duced to a search using the canonical form of O as a query.
This method not only benefits from existing, very efficient
search mechanisms, but also simplifies the offline treatment
of equivalence in Watson. Indeed, whenever a new ontol-
ogy is added to the repository, it is only needed to compute
and index its canonical form so that it can be searched for
equivalence. Hence, the process of adding this new ontology
in the collection is independent from any other ontology al-
ready indexed, as it does not require any direct comparison.

5. CONCLUSIONS AND FUTURE WORK
In this document we have presented, briefly, a mechanism
for finding equivalent ontologies in a large-scale ontology
repository, such as the one of Watson. For that, we de-
scribed a method based on a Knowledge Compilation tech-
nique that transform the ontologies in a canonical form:
CPCNF. The correctness and completeness of our method
have been proved for OWL-DL with some restrictions on the
axioms that can be employed in the ontology6. A prototype
working for OWL-DL ontologies has been implemented and
tested. In accordance with initial theoretical and experi-
mental results, we anticipate that a practical evaluation of
the tool will show that it is effective for a large majority of
the ontologies made available on the Semantic Web through
Watson.

6. REFERENCES
[1] F. Baader. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge
University Press, 2003.

[2] A. Darwiche and P. Marquis. A knowledge compilation
map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[3] R. M. Smullyan. First-Order Logic. Dover Publications,
1995.

6i.e. axioms that leads to CPCNF formulas containing only
universal quantifiers

