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ABSTRACT
We present a graph-theoretic analysis of the topological struc-
tures underlying the collaborative knowledge bases Wikipedia
and Wiktionary, which are promising uprising resources in
Natural Language Processing. We contrastively compare
them to a conventional linguistic knowledge base, and ad-
dress the issue of how these Social Web knowledge reposito-
ries can be best exploited within the Social-Semantic Web.

1. INTRODUCTION
The Social-Semantic Web endeavor pledges to combine the
expressibility and formal reasoning capabilities of the Se-
mantic Web with the large amounts of human knowledge col-
laboratively constructed via the community-oriented tech-
niques of Web 2.0. This would enable a new class of ap-
plications, in which the semantic relations latently existing
in web-accessible data are automatically identified and ag-
gregated in a network of structured knowledge. The Natu-
ral Language Processing (NLP) community has been mak-
ing moves towards this vision, experiencing a perceptible
shift from classical Linguistic Knowledge Bases (LKBs) like
wordnets and ontologies to Collaborative Knowledge Bases
(CKBs) as the background knowledge in applications. The
latter have evolved by collective contributions of users par-
ticipating in the Social Web and are constructed in a bottom-
up rather than top-down manner, thus posing challenges
due to their semi-structured and occasionally noisy knowl-
edge representation model. It is not yet well-studied how
traditional knowledge processing techniques can be suitably
applied to CKBs. To address this issue, we examine graph-
theoretic properties of the CKBs Wikipedia and Wiktionary1,
and compare them to a LKB, the German lexical semantic
wordnet GermaNet [1].

1http://www.{wikipedia|wiktionary}.org

2. NLP KNOWLEDGE BASES AS GRAPHS
The knowledge bases examined consist of separate intercon-
nected substructures that reflect different types of semantic
relations. The structures of our interest are (i) the network
of semantically related terms formed from Wikipedia’s arti-
cles, (ii) the user-generated taxonomy (a.k.a. folksonomy) of
the categories tagging Wikipedia’s articles, (iii) the network
of Wiktionary’s entries, and (iv) as an instance of a LKB,
the taxonomy of GermaNet’s concepts.2 We abstract over
these different types of semantic networks with the formal
notion of a directed graph G defined as a pair (V,E), where
V is a finite set of elements called vertices or nodes, and E
is a set of ordered pairs of nodes called edges.

Each Wikipedia article is viewed as a node of a graph (WAG).
Each hyperlink between two articles is a directed edge be-
tween the article nodes, while articles redirecting to each
other are represented as a single node. In Wikipedia’s cate-
gory graph (WCG), a node represents a category, whereas
a directed edge between two nodes exists in case the two cor-
responding categories are connected by means of a subcat-
egory relation. The directed graph modeling the structure
of Wiktionary’s entries (WiktG) represents each concept
in Wiktionary as a node, whereby a concept is specified by
surface form, language and part of speech. As nodes we
include exclusively concepts defined by German language
words. Two such nodes are connected with a directed edge
if the corresponding concepts stand in one of selected seman-
tic relations: hypernymy, hyponymy, meronymy, holonymy,
synonymy, antonymy, troponymy, coordination and see-also.
Finally, GermaNet is modeled as a directed graph (GNG)
by representing each synset (i.e. set of synonyms) as a dis-
tinct node. The edges are given by the hyponymy relation.
Representing the knowledge bases as graphs enables the di-
rect application of graph-theoretic and social network analy-
sis tools in order to characterize their topological structures.

The main elements that define the topology of a graph are
its nodes and edges. In a directed graph G = (V,E), the
out-degree of a node is the number of edges leaving it, and
its in-degree is the number of edges entering it. The sum
of the node’s out- and in-degree is its degree k. A scale-

2We use a snapshot of the German edition of Wikipedia from
February 6, 2007 and a snapshot of the German edition of
Wiktionary from October 9, 2007. The version of GermaNet
we employ is 5.0, released in May 2006.



free graph has the property that the degree distribution of
its nodes follows a power law P (k) ∼ k−γ , where the proba-
bility P (k) that a certain node connects with k other nodes
is roughly proportional to k−γ for some power law expo-
nent γ. In a scale-free network, therefore, a small num-
ber of nodes have many connections, whereas most nodes
have only a few. A path of length n from a node v to a
node u is a sequence (v1, v2, . . . , vn), where (vi, vi+1) ∈ E
for i = 1, 2, . . . , n − 1, v = v1 and u = vn. The length of
the shortest path between nodes v and u is their distance
d(v, u). The maximum distance from v to any other node
is its eccentricity εv = max{d(v, u) |u ∈ V }. The diame-
ter of the graph is then defined as DG = max{εv | v ∈ V }.
The weakly connected components (CCs) are the equiv-
alence classes of nodes under the is-reachable-from relation,
whereby reachability between nodes is established by the ex-
istence of a path connecting them. The largest connected
component (LCC) is the CC that is the largest in node
size. We denote the second largest CC as LCC2.

The average distance between pairs of nodes in a connected
graph is referred to as the graph’s characteristic path
length LG. The clustering coefficient Cv of a node v is the
fraction of the allowable edges between v’s neighbors that ac-
tually exist, while the clustering coefficient CG of G is the
average of Cv over all nodes v in V . Small-world networks
[4] have relatively low values of characteristic path lengths,
comparable to the ones of random graphs, but much higher
values of clustering coefficients than the ones expected by
random graphs: LG � Lrandom whereas CG � Crandom.
The values for the corresponding random graphs are approx-

imated as Lrandom ≈ ln |V |
ln(k)

and Crandom ≈ k
|V | , where k is

the average degree over the nodes in V . Thus, in a small-
world network most nodes are not each other’s neighbors,
yet are reachable from each other by relatively few hops.

3. ANALYSIS
The analysis focuses on LCCs, as connectivity is particularly
important for several NLP tasks, e.g. the computation of
semantic relatedness. The results are presented in Table 1.
The connectivity analysis suggests the existence of a large
portion of concepts in Wiktionary with few or no seman-
tic connections. With almost half of its concepts practically
not having been semantically related to any other concept,
as the size of the LCC2 indicates, it is clear that the knowl-
edge base is still at a premature stage of development. The
highest connectivity appears in GermaNet. All graphs are
found to be sparse, i.e. with an actual number of edges
much lower than the possible number of edges that would
correspond to a fully connected graph. Moreover, average
degrees are low, ranging between approx 4 and 6. This indi-
cates that all four knowledge bases encode semantic relations
among their concepts only in a limited, selective way. With
a relatively higher average degree, Wiktionary appears to be
richer in the encoding of explicit semantic relations than the
other knowledge bases. On all graphs, the distributions of
the number of semantic connections between the concepts
follow a power law, denoting that the graphs are scale-free.
The diameters are small, indicating that the largest num-
ber of nodes having to be traversed in order to navigate
between two concepts cannot be more than 28, even in a
knowledge base of almost 40,000 concepts. The compari-

WAG* WCG WiktG GNG
|V | 38,594 38,057 20,011 42,129
|E| 80,567 74,975 33,650 99,130
#CCs 1 48 8,214 355
|VLCC | / |V | 1.00 0.99 0.57 0.67
|VLCC2| / |V | - < 0.01 < 0.01 0.21

k in LCC 4.18 3.94 5.80 3.82
γ in LCC 1.98 1.89 2.28 1.96
DLCC 28 20 17 25
LLCC 5.0014 6.9390 5.0290 8.7668
Lrandom 7.3897 7.6852 5.3074 7.6480
CLCC 0.0120 0.0134 0.0822 0.0155
Crandom 0.0001 0.0001 0.0005 0.0001

Table 1: Results of the graph-theoretic analysis.
*The figures for the WAG correspond to a sample of
size 7% of the original graph, created following [2].

son of characteristic path lengths and clustering coefficients
against corresponding random graphs demonstrates that the
graphs indeed have the dynamics of small-world networks.

These distinctive topological features shared by CKBs and
LKBs (high degree of sparsity, a single CC containing the
vast majority of concepts, small-world characteristics and
scale-free pattern of connectivity) have also been found in
many other biological, social or man-made networks, such as
the WWW, and the principles of their large-scale structures
are extensively analyzed in [3]. Models of semantic process-
ing should be sensitive to these principles and adapt to the
semantic structures of the knowledge bases, accounting for
similarities but also differences. For example, the compu-
tation of concept relatedness using a path-based measure
would not perform optimally on Wiktionary, which suffers
from particularly low network connectivity. Further observa-
tions are made in ongoing work extending to centrality and
link analysis, as well as content analysis of the networks.
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