
ACE View — an ontology and rule editor
based on controlled English

Kaarel Kaljurand
Institute of Computational Linguistics, University of Zurich

kalju@ifi.uzh.ch

ABSTRACT
We describe the architecture of a novel ontology and rule
editor ACE View. The goal of ACE View is to simplify
viewing and editing expressive and syntactically complex
OWL/SWRL knowledge bases by making most of the in-
teraction with the knowledge base happen via Attempto
Controlled English (ACE). This makes ACE View radically
different from current OWL/SWRL editors which are based
on formal logic syntaxes and general purpose graphical user
interface widgets.1

Keywords
knowledge engineering, natural language based user inter-
faces, Attempto Controlled English, OWL, Protégé, ACE
View

1. INTRODUCTION
We describe the architecture of a novel ontology and rule

editor ACE View2. The goal of ACE View is to simplify
the exploration and editing of expressive and syntactically
complex OWL 2 [5] ontologies and SWRL [3] rulesets by
basing the user interface on Attempto Controlled English
(ACE) [1]. This makes ACE View radically different from
current OWL/SWRL editors which are based on formal logic
syntaxes and general purpose graphical user interface wid-
gets (checkboxes, trees, etc.), and which are often seen as
too complicated and confusing for domain experts with no
background in formal methods [2]. ACE View integrates two
mappings, ACE→OWL/SWRL and OWL→ACE, and is im-
plemented as a plug-in for Protégé 43. ACE View is currently
available in binary form. We are working towards releasing
it under an open source license.

The emerging OWL 2 specification describes several serial-
ization syntaxes for OWL ontologies (RDF and XML based,
functional-style, Manchester OWL Syntax). Some of these
syntaxes are oriented towards machines and are thus inher-
ently difficult to read and write for humans. Others have
been designed for logicians and programmers, but lack the
features that would bring OWL closer to domain experts
who are often not well-trained in formal methods. E.g. [6]

1
This research has been funded by the European Commission and by

the Swiss State Secretariat for Education and Research within the
6th Framework Programme project REWERSE number 506779. The
author is currently supported by the Swiss National Science Founda-
tion (grant 100014-118396/1). The author would like to thank Norbert
E. Fuchs, Tobias Kuhn and Fabio Rinaldi for their valuable feedback.
2http://www.cl.uzh.ch/kalju/ACE_View/
3http://www.co-ode.org/downloads/protege-x/

lists the problems that users encounter when working with
OWL and expresses the need for a “pedantic but explicit”
paraphrase language. While some of the problems are purely
semantic (e.g. caused by misunderstanding the open world
reasoning and the unique name assumption) and would be
encountered in any syntax, many problems are rooted in
the nature of current OWL syntaxes. Furthermore, many
knowledge bases require a rule component, often expressed
in SWRL. The proposed SWRL syntax, however, is com-
pletely different from the OWL syntaxes (mainly because
it explicitly uses variables) even though there is an overlap
of the semantics of OWL and SWRL. Query languages for
OWL ontologies introduce yet another set of syntaxes.

The syntactic complexity can be hidden to some extent by
front-end tools such as Protégé which use forms and other
standard user interface widgets to support viewing and edit-
ing knowledge bases. Still, the relative richness of OWL and
related languages means that for more complex expressions
(negation, property restrictions, etc.), the user interface has
to fall back to one of the standard syntaxes.

2. ACE ⇔ OWL/SWRL
ACE is a subset of English, such that each sentence in

the chosen subset is interpreted unambiguously, relating the
sentence to a unique logical form. The intention behind the
design of ACE is to offer expressivity required in knowledge
engineering tasks, but also remain a natural subset of En-
glish. The design minimizes what the users need to learn
(assuming knowledge of English) to correctly compose ACE
sentences and understand their meaning, e.g. to predict the
paraphrases or the logical entailments of the sentences. Re-
cently, ACE has been used in several Semantic Web projects,
e.g. as an interface language in the semantic wiki AceWiki4.

In order to make ACE interoperable with some of the
existing Semantic Web languages, mappings have been de-
veloped to relate ACE to OWL, SWRL, and DL-Query (see
a detailed description in [4]). For example, the mapping of
ACE to OWL/SWRL translates the ACE text

Everybody that does not own a car owns a bike.
Every man that owns a car likes the car.
Which car does John own?

into a combination of OWL axiom, SWRL rule and DL-
Query (an OWL class expression).

> u ¬ (∃ own car) v ∃ own bike
man(?x) ∧ own(?x, ?y) ∧ car(?y) → like(?x, ?y)
car u ∃ own− {John}

4http://attempto.ifi.uzh.ch/acewiki/

http://www.cl.uzh.ch/kalju/ACE_View/
http://www.co-ode.org/downloads/protege-x/
http://attempto.ifi.uzh.ch/acewiki/

The OWL→ACE mapping, on the other hand, allows us to
verbalize existing OWL ontologies as ACE texts. This map-
ping is not just the reverse of the ACE→OWL as it also cov-
ers OWL axiom and expression types that the ACE→OWL
mapping does not generate. For example, the OWL axiom

PropertyDomain(ObjectProperty(write) Class(author))

is verbalized as “Everything that writes something is an au-
thor.”.

The mappings between ACE and OWL/SWRL provide
an alternative syntax for OWL and SWRL. This syntax
is readable as standard English and provides linguistically
motivated syntactic sugar. It also makes the difference be-
tween OWL, SWRL and DL-Query invisible. This syntax is
mainly intended for structurally and semantically complex
OWL/SWRL knowledge bases for which visual methods and
traditional syntaxes fail to provide a user-friendly front-end.

3. ACE VIEW
The ACE View editor lets the user manage an ACE text.

An ACE text is a set of ACE snippets where each snippet is a
sequence of one or more anaphorically linked ACE sentences.
When a snippet is added to the text, it is automatically
parsed and translated into OWL/SWRL. If the translation
fails then the snippet is still accepted, it simply does not have
any logical axioms attached and thus cannot participate in
reasoning. In case the translation succeeds, the snippet is
mapped to one or more OWL axioms and SWRL rules which
are merged into the Protégé managed ontology. In case a
snippet is deleted, its corresponding axioms (if present) are
removed from the underlying ontology.

Alternatively, the ACE View user can switch to one of
the standard Protégé views (or views offered by other Pro-
tégé plug-ins) to perform an ontology editing task. In case
an OWL axiom is added in another view, then it is auto-
matically verbalized and merged into the ACE text. If the
verbalization fails (e.g. the verbalizer does not support the
FunctionalProperty-axiom with data properties) then an er-
ror message is stored and the axiom is preserved in the
ACE text in Manchester OWL Syntax. In case an axiom
is deleted, then its corresponding snippet is deleted as well.

The ACE text (and thus the ontology) can be viewed and
edited at several levels. Word level provides an access to
individual words in the text so that the surface forms (sin-
gular, plural, past participle) of the words can be edited.
As words correspond directly to OWL entities, they can be
further annotated using the standard Protégé views. Snip-
pet level provides access to three categories of snippets:
asserted declarative snippets, asserted interrogative snippets
(i.e. questions) and entailed (declarative) snippets. Asserted
snippets are editable and provide access to their details (e.g.
syntax errors, syntax-aware layout, ACE paraphrase, cor-
responding OWL/SWRL axioms). Questions are managed
in the same way as asserted snippets but they additionally
provide answers (sets of words) whenever the user runs the
reasoner over the ontology. Entailed snippets are declarative
snippets that follow logically from the ACE text. Similarly
to questions, the set of entailments is updated whenever the
reasoner is executed. Each entailment can be explored to
find out the reason for the entailment (which is presented as
a list of asserted snippets that cause the entailment). A ba-
sic mechanism for tracking changes in the entailment set is
also provided. Vocabulary is a set of ACE content words.
It can be sorted alphabetically or by frequency of usage,

and standard Protégé views offer even more presentation
options, e.g. the “back-bone hierarchy” of subclass and “part
of” relations. The vocabulary level provides an easy access
to the word level, each selected/searched word can be au-
tomatically shown in the word level, or its corresponding
snippets in the text level. An ACE text is a set of ACE
snippets. This set can be filtered, sorted, and searched. Rea-
soning can be performed on the whole text to find out about
its (in)consistency. Linguistic metrics characterize the com-
plete text (by number of sentences, number of sentences that
map to SWRL, etc.).

ACE View is tightly integrated into the Protégé frame-
work. Most operations done via standard Protégé menus
(e.g. undo/redo, renaming) trigger a corresponding change
in the ACE text. Any Protégé-supported reasoner can be
used for semantic feedback, and any OWL/SWRL serializa-
tion syntax can be used to store the ACE text — the ACE
snippets are saved as axiom annotations, and the wordform
mappings as entity annotations. The main user interface ele-
ment in ACE View is a table that organizes ACE snippets or
words. The tables respond to Protégé events (e.g. selection
of an entity) via filtering and highlighting.

4. CONCLUSIONS
ACE View introduces a novel paradigm to OWL/SWRL

engineering. We assume that ontologies and rulesets are usu-
ally first expressed (in the minds of domain experts) in nat-
ural language, and thus working in ACE involves fewer con-
ceptual problems. On the other hand, the combination of
natural language based ontology editing and the standard
form/formula-based editing offers more alternatives for the
user and can result in an interesting synergy especially in the
case of novice ontology engineers and domain experts work-
ing with semantically expressive and syntactically complex
knowledge bases.

5. REFERENCES
[1] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.

Attempto Controlled English for Knowledge
Representation. In Reasoning Web, Fourth
International Summer School 2008, 2008.

[2] Glen Hart, Martina Johnson, and Catherine Dolbear.
Rabbit: Developing a Controlled Natural Language for
Authoring Ontologies. In ESWC 2008, 2008.

[3] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, and Mike Dean. SWRL:
A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission 21 May 2004.
Technical report, 2004.

[4] Kaarel Kaljurand. Attempto Controlled English as a
Semantic Web Language. PhD thesis, Faculty of
Mathematics and Computer Science, University of
Tartu, 2007.

[5] Boris Motik, Peter F. Patel-Schneider, and Ian
Horrocks. OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. W3C
Working Draft 11 April 2008. Technical report, 2008.

[6] Alan L. Rector, Nick Drummond, Matthew Horridge,
Jeremy Rogers, Holger Knublauch, Robert Stevens, Hai
Wang, and Chris Wroe. OWL Pizzas: Practical
Experience of Teaching OWL-DL: Common Errors &
Common Patterns. In EKAW 2004, 2004.

	Introduction
	ACE OWL/SWRL
	ACE View
	Conclusions
	References

