
Designing Component-Based Semantic Web Applications
with DESWAP

Olaf Hartig
Humboldt-Universität zu Berlin

Institut für Informatik
hartig@informatik.hu-

berlin.de

Martin Kost
Humboldt-Universität zu Berlin

Institut für Informatik
kost@informatik.hu-

berlin.de

Johann-Christoph Freytag
Humboldt-Universität zu Berlin

Institut für Informatik
freytag@informatik.hu-

berlin.de

ABSTRACT
We present the DESWAP1 system that relieves developers
of component-based Semantic Web applications of the bur-
den of manual component selection (CS). Our system imple-
ments a novel approach to automatic CS that utilizes seman-
tic technologies. We enable users to specify dependencies be-
tween the required components, an issue not considered by
existing approaches. To realize our approach in DESWAP
we developed a knowledge base with comprehensive seman-
tic descriptions of software and their functionalities.

1. INTRODUCTION
A component-based software system realizes specific tasks

by the integration of existing software components; the com-
ponents offer functionalities necessary to implement these
tasks. Due to the reuse of software, component-based de-
velopment (CBD) promises reduced development times, in-
creased flexibility, and increased reliability [2].

The main challenge of CBD is finding and selecting com-
ponents, often denoted as the component selection (CS) prob-
lem. Finding candidate components for each required func-
tionality may become laborious. From the set of all possible
candidate components a subset must be selected which sat-
isfies the developers’ objectives. A specific characteristic of
these objectives that has not been considered in existing CS
approaches such as [1], [3], and [4], are dependencies between
functionalities. Usually, the functionalities that may be re-
alized by components rely on each other. For instance, a
system may store the result of a remote query to a database;
since the data import format must be compatible with the
format of the query result the storage functionality depends
on the query functionality. These kinds of dependencies add
a higher degree of complexity to the selection process: se-
lecting a component for one of the functionalities reduces
the candidates for dependent functionalities to components
that are compatible with the selected one.

Since finding and selecting components will quickly be-
come too complex to be performed manually we developed
a framework that supports developers to solve the CS prob-
lem automatically. In this paper we present our approach
which applies semantic technologies such as ontologies, rules
and reasoning. To enable automatic CS we represent the
software components as well as the CS-specific requirements
in a machine-processable form (cf. Section 2). Based on this

1Development Environment for Semantic Web APplications

representation we developed strategies for machine-based
CS (cf. Section 3). We implemented our concepts in the
DESWAP system (cf. Section 4) that provides a sophisti-
cated CS tool and a machine- and human-accessible catalog
of software components for Semantic Web applications.

2. OUR DATA MODEL
The essential requirement for automatic CS is a machine-

processable representation of the requirements for CS and
of the available software. Therefore, we developed a com-
prehensive ontology of software and requirements.

Figure 1: Extract of a software catalog.

Figure 1 illustrates some of the main concepts in our ontol-
ogy that deal with software. We classify software in a hierar-
chy of software types. Each software offers certain function-
alities. These functionalities are classified in a hierarchy of
functionality types. All software of the same type offers the
same types of functionalities (e.g. each DBMS can import
data); hence, we define software types by the types of func-
tionalities they offer. The functionality types are specified
by sets of typical properties, called functionality properties;
each actual functionality that is offered by a specific soft-
ware has specific values for its functionality properties. For
instance, data import functionalities in general support an
import format; data import in DB2 in particular supports
the IXF format [5]. Besides the aforementioned concepts we
model software versions, composed software, dependencies
of software, and other properties such as licenses and prices.
Our ontology enables the realization of a sophisticated soft-
ware catalog. Due to the ontology the descriptions in the
catalog have a machine-processable meaning; our automatic
CS tool (cf. Section 4) utilizes these meanings to discover
potential software components.

In addition to software, our ontology represents CS re-
quirements which contain required functionalities and de-
pendencies between these functionalities. Required function-
alities are those functionalities of a component-based system



that may be realized by components. Required functionali-
ties are specified by a type and an optional set of property
restrictions. The type of a required functionality refers to
one of the functionality types that are associated with the
software types as mentioned before. Hence, each software
that offers functionalities of this type could potentially be
selected as a component that realizes the required function-
ality. However, property restrictions limit the set of po-
tential candidates. These restrictions predefine particular
values which are permitted for the functionality properties
of the corresponding functionality. For instance, a possible
restriction for a required data import functionality would
be the requirement of IXF as import format. Only those
software that offers a functionality with the permitted prop-
erties support the required functionality.

Additionally, we represent dependencies between required
functionalities (cf. Section 1) as a part of the CS require-
ments. To specify conditions under which functionalities
can be combined without conflict we introduce composition
policies. We use these policies to verify whether a selection
of software is compatible with respect to the dependencies
between required functionalities. For each pair of function-
ality types a composition policy identifies those functionality
properties that must have mutually compatible values. For
instance, the policy for storage functionalities that depend
on query functionalities specifies that the storage import
format must be compatible with the query result format.

3. FINDING APPROPRIATE SELECTIONS
Based on our representation of software and requirements

we developed a method for automatic CS. A local solution
for a required functionality is a software that offers a func-
tionality which can implement the required functionality. A
selection of software that satisfies all CS requirements is a
global solution. To satisfy all CS requirements a selection
must associate every required functionality with a software
from its set of local solutions; furthermore, the selection
must be compatible with respect to the dependencies be-
tween required functionalities, i.e., the functionalities offered
by the associated software must not violate the composition
policies for the respective dependencies. A naive approach
to find a global solution is to iterate over all selections that
combine exactly one software from each set of local solutions
until a selection is found that does not violate the depen-
dencies. This naive strategy is too inefficent, especially for
complex requirements with many dependencies.

Our method reduces the search space by a propagation
of property restrictions. For instance, a storage functional-
ity may depend on a query functionality of which the result
format is restricted to XML; if the corresponding composi-
tion policy demands compatibility for the query result for-
mat and the storage import format then the import format
is implicitly restricted to XML. We apply our composition
policies as rules that propagate property restrictions and,
thus, make the implicit restrictions explicit. Since propaga-
tion adds further property restrictions to the required func-
tionalities it reduces the sets of local solutions. However,
the propagation cannot only be applied to the user-specified
property restrictions. Selecting a software from the local
solutions of a required functionality for the global solution
yields additional restrictions for the respective required func-
tionality. By propagating these restrictions we can reduce
the sets of local solutions even further.

We propose an algorithm that constructs a global solution
by incrementally adding one candidate from each set of lo-
cal solutions; with each addition the algorithm propagates
the restrictions and reduces the sets of local solutions (cf.
Figure 2). If a set of local solutions becomes empty it is
impossible to construct a global solution with the selected
candidates. In this case our algorithm applies a backtrack-
ing strategy to try different candidates. The algorithm ter-
minates when a global solution has been completed or when
all combinations of candidates have been considered without
avail.

Figure 2: The main steps of our CS method.

We currently do not consider optimality criteria such as
a minimal number of software in the selection. However,
we are working on an extension of our algorithm that finds
optimal global solutions.

4. THE DESWAP SYSTEM
We implemented our concepts in the DESWAP system

which is primarily intended to be used for component-based
systems that apply Semantic Web technologies. DESWAP
provides a sophisticated CS tool and a machine- as well as
human-accessible software catalog.

With the software catalog we provide a comprehensive
description of software and functionalities that are relevant
for Semantic Web applications. In addition to the descrip-
tions we provide composition policies for the functionalities
in the catalog. We represent our ontology with OWL; based
on our ontology we realize the software catalog as a knowl-
edge base with OWL descriptions. A SPARQL endpoint
provides machine-based access to the knowledge base. For
human users we provide a Web-based interface that enables
browsing as well as editing the data in the catalog.

The CS tool of DESWAP enables the specification of CS
requirements and determines a suitable selection of software
components which satisfies the requirements. The tool real-
izes our CS method. To find candidate software that offers
required functionalities the tool accesses our software cat-
alog. However, by using a reasoner the tool does not only
consider explicit statements about the functionalities of soft-
ware, but, it evaluates inferred statements and, hence, dis-
covers more potential candidates.

5. REFERENCES
[1] S. E. Carlson. Genetic algorithm attributes for

component selection. Engineering Design, 8(1), 1996.

[2] P. C. Clements. From subroutines to subsystems:
Component-based software development. The American
Programmer, 11(8), 1995.

[3] M. R. Fox et al. Approximating component selection.
In ACM/IEEE Winter Simulation Conference, 2004.

[4] N. Haghpanah et al. Approximation algorithms for
software component selection problem. In Proc. of the
Asia-Pacific Software Engineering Conference, 2007.

[5] IBM. Data Movement Utilities Guide and Reference.
DB2 Version 9.5 Manuals, Mar.2008.


