BitMat: A Main-memory Bit Matrix of RDF Triples for
Conjunctive Triple Pattern Queries

Medha Atre

Dept. of Computer Science
Rensselaer Polytechnic Institute
Troy, NY, USA
atrem@cs.rpi.edu

ABSTRACT

This poster proposes BitMat, a bit matrix structure for rep-
resenting a large number of RDF triples in memory and pro-
cessing conjunctive triple pattern (multi-join) queries using
it. The compact in-memory storage and use of bitwise oper-
ations, can lead to a faster processing of join queries when
compared to the conventional RDF triple stores. Unlike con-
ventional RDF triple stores, where the size of the intermedi-
ate join results can grow very large, our BitMat based multi-
join algorithm ensures that the intermediate result set re-
mains small across any number of join operations (provided
there are no Cartesian joins). We present the key concepts
of BitMat structure, its use in processing join queries, de-
scribe the preliminary experimental results with UniProt and
LUBM datasets, and discuss the possible use case scenarios.

1. KEY CONCEPTS

BitMat is a 3-dimensional (subject, predicate, object) bit ma-
trix flattened in 2-dimensions for representing RDF triples.
Each element of the matrix is a bit denoting the presence or
absence of that triple (subject predicate object) by the bit
value 1/0. Thus, very large RDF triple-sets can be repre-
sented compactly in memory as BitMats. Bitwise AND/OR
operators are used to process join queries expressed as con-
junctive triple patterns. The BitMat representation and its
use in processing joins allows i) fast identification of candi-
date result triples, and ii) a compact representation of the
intermediate results for multi-joins. BitMat is similar to
RDFCube [1], which builds a 3D cube of subject, predicate,
and object dimensions. However, RDFCube’s design approx-
imates the mapping of a triple to a cell by treating each cell as
a hash bucket containing multiple triples. It is primarily used
to reduce the network traffic for processing join queries over
a distributed RDF store (RDFPeers) by narrowing down the
candidate triples. In contrast, BitMat structure maintains
the unique mapping of a triple to a single bit element. This
does make the BitMat size larger compared to RDFCube for
the same dataset. However, the use of run length encoding
(RLE) on the bit sequences within a BitMat, reduces the
storage overhead (see Section 3). Also, here the join results
are represented by a result BitMat. The goal here is to speed
up multi-join queries, especially for the queries where indi-
vidual triple patterns in the join are not selective but the
combined join result is selective.

BitMat Creation and Auxiliary Tables: We leverage the
fact that the number of distinct predicates is typically small
(< 100) in a RDF dataset. The conceptual 3-dimensional bit
matrix is represented as a concatenation of (S,0) or (O,S)
matrices for all the distinct predicates (see Figure 1), which
together form a bit-matrix as well as a mat of bits (and hence

Jagannathan Srinivasan
Oracle
1 Oracle Drive
Nashua, NH, USA
jagannathan.srinivasan@oracle.com

James Hendler
Dept. of Computer Science
Rensselaer Polytechnic Institute
Troy, NY, USA
hendler@cs.rpi.edu

the name BitMat). The concatenation can be done along the
subject dimension ((S,0) matrices), referred to as subject
BitMat or the object dimension, referred to as object BitMat.

BitMat for a RDF triple-set is built as follows: 1) Create
three auxiliary tables to maintain mappings of distinct sub-
jects, predicates, and objects to the sequence-based identi-
fiers, 2) Group the RDF triples by predicates, 3) To build a
subject BitMat, for each predicate group, build a (S,0) ma-
trix by transforming the (s,0) pairs to the equivalent sequence-
id based representation and setting the corresponding bit in
(S,0) matrix to 1, and 4) Concatenate (S,0) matrices to-
gether to get the two-dimensional BitMat 5) Apply RLE
on each subject row in the concatenated BitMat. 5) We
maintain three more tables that contain position mappings
of URIs that appear in two dimensions in different triples
(subject-object, subject-predicate, predicate-object). These
tables help in evaluating cross-dimension join queries. E.g.
(?7y :p2 ?s . 7s :pl 7x) makes use of (subject-object) map-
ping table. Our join procedure can be carried out using the
following set of primitives.

BitMat Primitives: (1) filter(BitMat, TriplePattern) re-
turns BitMat: Identifies a subset of triples that satisfy the
triple pattern, and clears bits of all other triples. E.g. 1)
a triple pattern with only bound subject value, clears all
the bits in the rows other than the row corresponding to the
bound subject value in the BitMat, a bound predicate retains
bits in a single (S,0) matrix, a bound object retains bits in
a list of (S,P) columns; ii) A triple pattern with two bound
values retains a subset of the bits retained in the one bound
value case, e.g. (:sl :pl 7x) retains a part (corresponding
to predicate :pl) of single :s1 horizontal row of BitMat. (2)
fold(BitMat, retainDimension) returns a bit-array: Bitwise
OR is performed on the two dimensions other than retainDi-
mension which results in a bit-array. E.g. fold(filter(BM,
‘?s ?p 21’°), ‘predicate’) folds all the object and subject bits
and reduces the BitMat to a bit-array. fold(filter(BM, ‘sl
?p ?z’°), ‘predicate’) folds all the object bits in ‘:s1’ row to re-
duce it to a bit-array. Length of this bit array is the number
of distinct predicates. Intuitively, a bit set to 1 correspond-
ing to “:pl’ in the bit-array indicates the presence of at least
one triple of the form (:s1 :pl 7x). (3) unfold(BitMat, Mask,
retainDimension) returns BitMat: For the bit set to 0 in the
mask, all the corresponding bits in the BitMat for the spec-
ified dimension are cleared. E.g. unfold(filter(BM, ‘s1, ?p,
?z’), ‘101°, ‘predicate’) would result in clearing all the bits in
the input BitMat corresponding to predicate ‘:p2’ (see Fig-
ure 1). Although conceptually the return type is shown as
BitMat for these operations, internally they are managed as
a collection of compressed bit sequences.

Join over
s172p ?x
s32p 7y

-p1 -p2 :p3
;01 :02 :03 :04 :05 :0l :02 :03 :04 :05 :ol :02 :03 :04 :05

| L1 T[T T [o []

M: I BitM: 1 2
ap triples to a BitMat P P p3 fold(retainDINi = predicate)
q s2:p2:03 ol :02 :03 04 :05 :0l :02 :03 04 05 10l :02 :03 :04 :05 Pl p2
isiipliol 5 303 1 1 Filter operation produces 2 BitMats
:s1:p1:02 3ot 01 sif 1| 1 1 1 1 s corresponding to (:s1 ?p ?x) and (:s3 ?p ?y).
is1ip2:i02 oo PL© T AND For the simplicity of the figure they are shown
s1:p2:04 s3:pl:o4 s2 1] 1 1 as 2 bit arrays of :s1 and :s3 (as internally
$1:p3:03 53 Pl 05> —1— s3 - bits in other rows are set to 0 as per the
s2:pliol :53:p3:03 Ei] T R B S S 11 - filter semanlici)/
s2:p2:02 :s3:p3:04 fold(rétainDIM = predicate)
:p1 :p2 :p3
el T LI LT Tala]]
s = -
Unfold(with retainbiv < predicate) 1 retainDIM
pl :p2 :p3 1 p2 :p3
p
01 :02.-:03 04 :05 0l .:02 703 :04 :05 01.:02 03 :04 :05 :01 :02 :03 :04:05 :0l1l :02 :03 :04..:05 :0l :02 03 .:04..:05 Similar to the fl!ter operation shown as abit array
above, unfold is shown on a bit array for the
o] [] PR I [ol [] eelol [[(PP [Jafol | simovenyortmerouwe
Bits cleared T T Matching subgraphs (as would be produced by a query engine)
b1 b2 5 (Variable bindings)
p: ?p ?x 2y
01 :02 03 :04 :05 01 :02 :03 :04 :05 :0l :02 :03 :04 05 Result triples (with BitMat) ‘o110l 01
ey s1:pl:ol 1:01:04
sif1 |1 1 s1:pl:o2 '21'01 o5
Result BitMat zé;ﬂi;gf :pl:02:0l
52 S3iPlioa :pl:02:04
s3:pl:05 pl:02:05
s3:p3:03 :p3:03:03
sg L 1]t 1 S3:p3 04 :p3:03:04

Figure 1: BitMat and sample join

2. JOIN PROCESSING

A conventional RDF query processing engine produces zero
or more rows (matching subgraphs) having variable bind-
ings (see Figure 1). Formally, a BitMat join takes the orig-
inal RDF graph G represented by BitMat and produces an-
other graph G’ represented by the result BitMat such that
G’ is a subset of G in which: (1) A triple being absent in-
dicates that it is not part of any matching subgraph. (2)
A triple being present indicates that it must be part of at
least one matching subgraph. Our join algorithm is given
below.

Let BM be the BitMat of the original triple-set

Let tp1 and tps be the join triple patterns

/* filter and fold */

BMyip1 = filter(BM, tp1); BMypz = filter(BM, tp2)

f1 = fold(BMp1, retainDimensionpy)

f2 = fold(BMq¢p2, retainDimensionpz)

Jres = AND(f1, f2)

ri=unfold(BM;p1, jres, retainDimension;py)

ro=unfold(BM;p2, jres, retainDimensionips)

/* Produce final result BitMat */

Let B’ be an empty BitMat

B, = OR(OR(BI, Tl), T2)
Figure 1 shows the join of (:s1 ?p ?x . :83 7p ?y) using the
above join algorithm. In both the triple patterns, subject is
bound and they are joined over the predicate. Thus, we fold
both the filtered BitMats by retaining ‘predicate’ dimension
to get two bit sequences which are ANDed. The result is
used as the mask in unfold operations to set the bits corre-
sponding to :p2 to 0.
Multi-Joins: In multi-joins two or more triple patterns join
over two or more variables (e.g. (:s1 ?p ?x . 2 7p 7y . 7z :p3
7x)). In multi-joins the result of a later join can change the
variable bindings generated by a previous join. E.g. consider
(:s1 7p ?x . :83 7p 7x) join over the BitMat in Figure 1, af-
ter obtaining the result BitMat (B’) for predicate join (?p),
the join on object (?x) requires filter and fold of B’ for (:sl
7p 7x) and (:s3 7p ?x) by retaining the ‘object’ dimension,
ANDing them, and unfolding. This clears all the bits in :02,
:04, and :05 columns thereby returning two distinct match-
ing subgraphs (p,x)={(:pl,:01),(:p3,:03)}. Our algorithm to
build and resolve multi-join dependencies is omitted due to
lack of space. Also, currently we assume that the conjunctive
triple patterns do not have Cartesian products.
Join Reduction Fraction (JRF): is defined to characterize
the effectiveness of the BitMat based join processing.
JRF = (#Triples in the result BitMat)/(#Total triples).
JRF for the example in Figure 1 is 8/14 = 0.57.

3. RESULTS AND USE CASES
We experimented with 200K UniProt and 1million LUBM
RDF triple-sets. Since BitMats will be sparsely populated
(10% or lower), using run length encoding (RLE) significantly
reduces the compressed BitMat size (Table 1).

Table 1: BitMat size

BitMat size (# | BitMat size (uncompr
of cells) / compr)

75,511,715,290 9GB / 1.4MB
1004,445,322,713 | 116GB / 11.5MB

Dataset (#triples)

UniProt (200k)
LUBM (1million)

The storage overhead of auxiliary tables is ~10MB and ~20MB
for UniProt and LUBM datasets respectively. Thus, overall
memory requirement of our scheme is quite small (11.4MB
and 31.5MB respectively). We executed the following query
on UniProt 200K dataset, which involved a join on subject
dimension:

(?s <urn:lsid:uniprot.org:ontology:author> ?x . 7s <rdf:type> ?y)
The above query (#resulting triples=31,044 JRF=0.16) took
0.02sec. A similar two pattern query on LUBM (#resulting
triples=386,519 JRF=0.29) took 0.28sec. These preliminary
results demonstrate the effectiveness of joins using BitMat
data structure.

Although currently we do not have an algorithm to enumer-
ate matching subgraphs from the result BitMat, BitMat join
procedure can be used as a precursor to a conventional in-
memory query processing engine (e.g. Jena-ARQ) for fast
identification of the result triples from a large triple-set. Let
TBitmat be the time taken by our join algorithm to produce
the join result BitMat, TQoBitma: be the time taken by a
query engine to produce the matching subgraphs by using
the BitMat results, and Thorig be the time taken by a query
engine to produce the results without BitMat interception.
It is our hypothesis that Titaviat + TQoBitMar K TQorig for
a useful class of queries (e.g. JRF < 0.5). Also, ‘EXISTS’
or ‘ASK’ queries for an arbitrarily large number of joins can
be performed faster using BitMat (existence of one or more
1 bits in the result BitMat indicates the existence of one
or more matching subgraphs). Lastly, as a part of ongoing
work, we are designing an efficient algorithm to produce the
matching subgraphs using the result BitMat so that BitMat
based join can be used as an independent query processor.

4. REFERENCES

[1] A.Matono, S.Mirza, and [.LKojima. RDFCube: A P2P-based
Three-dimensional Index for Structural Joins on Distributed
Triple Stores. In DBISP2P, In conjunction with VLDB’06.

