
A framework for semantic web policies∗

P.A. Bonatti
Università di Napoli Federico II

bonatti@na.infn.it

J.L. De Coi
University of Hannover

decoi@L3S.de
D. Olmedilla

University of Hannover
olmedilla@L3S.de

L. Sauro
Università di Napoli Federico II

sauro@na.infn.it

ABSTRACT
Trust and policies are going to play a crucial role in enabling
the potential of many web applications. In this paper we
illustrate Protune, a system for specifying and cooperatively
enforcing security and privacy policies.

1. INTRODUCTION
Trust is the top layer of the famous semantic web picture.

It plays a crucial role in enabling the potential of the web.
While security and privacy do not cover all the facets of trust,
still they play a central role in raising the level of trust in web
resources. Web services obviously need some form of access
control: The application of suitable policies for protecting ser-
vices and sensitive data may determine success or failure of a
new service. In a near future, we might see web services com-
pete with each other by improving and properly advertising
their policies.

A major issue in moving towards such a policy-aware web
is usability, that in turn has several facets. It is well known
that as protection increases, usability is affected by the extra
steps required for authentication and other operations related
to access control. Moreover, it is frequently not clear to a
common user which policy is actually applied by a system,
and which are its consequences. Similarly, common users may
find it difficult to formulate their own privacy requirements
and compare them with whatever privacy policy is advertised
by a web service.

In this paper we describe the policy framework Protune, de-
signed and implemented to support the creation and enforce-
ment of advanced policies, supporting not only traditional
access control but also trust negotiation (to automate secu-
rity checks and privacy-aware information release) and second
generation explanation facilities (to improve user awareness
about—and control on—policies).

2. POLICIES AS SEMANTIC MARKUP IN
PROTUNE

Policies are semantic markups because they specify declar-
atively part of the semantics (in terms of behavior constraints
and admissible usage) of the static or dynamic resources poli-
cies are attached to. Accordingly, semantic techniques have
several roles in Protune

• Policies are formulated as sets of axioms and meta-axioms
with a formal, processing-independent semantics; this is

∗This work has been partially supported by the network of
excellence REWERSE, IST-2004-506779.

the basis for consistent treatment of policies for differ-
ent tasks: enforcement, negotiation, explanations, vali-
dation, etc.

• The aforementioned tasks involve different automated
reasoning mechanisms, such as deduction for enforce-
ment, abduction and partial evaluation for negotiation,
pruning and natural language generation for explana-
tions, etc.

• The auxiliary concepts needed to formulate policies (such
as what is a public resource or an accepted credit card,
...) and the link between such concepts and the evi-
dences needed to prove them (e.g. which X.509 creden-
tials are needed or what forms need to be filled in) are
defined by means of lightweight ontologies that may be
included in the policy itself or referred to by means of
suitable URIs; therefore, unlike XACML contexts, Pro-
tune’s auxiliary concepts are machine understandable
and allow agent interoperability

3. NEGOTIATIONS
In response to a resource request, a server may return its

policy for accessing the resource. The policy may contain (a
reference to) an auxiliary ontology, as explained in the previ-
ous section. In the simplest case, user agents may use such
machine understandable information to check automatically
whether the policy can be fulfilled and how, thereby (partially)
automating the operations needed for traditional access con-
trol and facilitating navigation in the presence of articulated
policies. In advanced scenarios, a user agent may reply with
a counter-request in order to enforce the user’s privacy policy.

The availability of a framework capable to enforce access
control and negotiations automatically given the two policies
has remarkable consequences on privacy as well as usability.
On the one hand a direct intervention of the user in the deci-
sion process would be required less frequently, since the user’s
decision would be already embedded to some extent into the
policies (s)he defines and sensitive resources would (not) be
disclosed without necessarily asking the user every time. On
the other hand, such usability improvement may encourage
users to refine their policies by specifying articulated policies,
thereby improving privacy guarantees.

4. PROTUNE’S POLICY LANGUAGE
Protune’s policy language is a logic programming language

enhanced with an object oriented syntax. For example, the
rule that allows to buy a book by giving a credit card could
be encoded with a set of rules including:



allow(buy(Resource))←
credential(C), valid credit card(C), accepted credit card(C).

valid credit card(C)←
C.expiration : Exp, date(Today), Exp > Today.

where C.expiration : Exp is an O.O. expression meaning that
Exp is the value of C’s attribute expiration.

Protune supports two pre-defined predicates: credential and
declaration. An atom credential(x) is true when an object x
representing an X.509 credential is stored in the current ne-
gotiation state. A peer may make credential(x) true on the
other peer by sending the corresponding credential. Predicate
declaration is analogous but its argument x is an unsigned
semi-structured object similar to a web form that, for ex-
ample, can be used to encode a traditional password-based
authentication procedure as in:

authenticated←
declaration(D), valid login data(D.username, D.password).

When a set of rules like the above ones is disclosed by a
server in response to a client’s request, the client—roughly
speaking—works back from allow(Request) looking for the
credentials and declarations in its portfolio that match the
conditions listed in the rules’ bodies. In logical terms, the
selected credentials and declarations (represented as logical
atoms) plus the policy rules should entail allow(Request):
this is called an abduction problem by the automated reason-
ing community. After receiving credential and declarations
from a client, a server checks whether its policy is fulfilled
by trying to prove allow(Request) using its own rules and the
new atoms received from the client, as in a standard deduction
problem.

When a client enforces a privacy policy and issues a counter-
request as in Alice’s scenario, the roles of the two peers are
inverted: the client plays the role of the server and viceversa.
For example, the client may publish rules governing credit
card release such as:

allow(release(C))← credit card(C), bbb member(Server), . . .
bbb member(Server)←

credential(BBB), BBB.issuer = “BBB CA”, . . .

5. EXPLANATIONS: PROTUNE-X
Protune-X, the explanation facility of Protune, plays an es-

sential role in improving user awareness about—and possibly
control over—the policy enforced by a system. Protune-X
is also a major element of Protune’s cooperative enforcement
strategy: Since a crude denial may discourage new users from
using a system, the explanation system is meant to enrich the
denials with information about how to obtain the permissions
(if possible) for the requested service or resource.

For this purpose four kinds of queries are supported: How-to
queries provide a description of a policy and may help a user in
identifying the prerequisites needed for fulfilling it or may be
used to verify a complex policy. What-if queries are meant to
help users foresee the results of a hypothetical situation, which
may be useful for validating a policy before its deployment.
Finally, why and why-not queries explain the outcome of a
concrete negotiation (i.e. provide a context-specific help) and
can be used both by end users who want to understand an
unexpected response, and by policy administrators who want
to diagnose a policy.

Some of the major desiderata that guided Protune-X’s de-
sign are

• explanations should not increase significantly the compu-
tational load of the servers. For this reason explanations

are produced by a distinct module, ProtuneX, which op-
erates client-side

• almost no further effort should be added to the policy in-
stantiation phase. This is achieved by exploiting generic
heuristics as much as possible. In most cases, the only
extra effort needed for enabling explanations consists in
writing verbalization metarules in order to specify how
domain-specific atoms have to be rendered, e.g.

passwd(X, Y )→ verbalization :
Y &“ is the password of ”&X.

• explanations should support so-called second generation
features. Such features include methods to present the
explanation in manageable pieces, highlight relevant in-
formation while pruning irrelevant parts, present expla-
nations in a user friendly fashion rather than following
the engine’s artificial reasoning method

6. DEMO: POLICY-DRIVEN WEB CONTENT
PROTECTION & PERSONALIZATION

We have integrated Protune in a Web scenario capable of
advanced decisions based on expressive conditions, including
credential negotiation to establish enough trust to complete
a transaction while obtaining some privacy guarantees on the
information released [1, 2]. We have developed a component
that is easily deployable in web servers supporting servlet tech-
nology, which adds support for negotiations and policy rea-
soning. It allows web developers to protect static resources
by assigning policies to them. In addition to protection of
static content, it also allows web developers to generate parts
of dynamic documents based on the satisfaction of policies
(possibly involving negotiations). We provide an extension to
the web design tool Macromedia Dreamweaver in order to help
web designers to easily and visually assign policies to their dy-
namic web pages1. A live demo is publicly available2 as well
as a screencast3.

7. DISCUSSION AND CONCLUSIONS
We have illustrated the policy framework Protune and its

implementation, reporting some positive, preliminary perfor-
mance evaluation experiments. More information about Pro-
tune and the vision behind it can be found on the web site
of REWERSE’s working group on Policies: http://cs.na.

infn.it/rewerse/.

8. REFERENCES
[1] Piero A. Bonatti and Daniel Olmedilla. Driving and

monitoring provisional trust negotiation with
metapolicies. In 6th IEEE Policies for Distributed
Systems and Networks (POLICY 2005), pages 14–23,
Stockholm, Sweden, June 2005. IEEE Computer Society.

[2] Piero A. Bonatti, Daniel Olmedilla, and Joachim Peer.
Advanced policy explanations on the web. In 17th
European Conference on Artificial Intelligence (ECAI
2006), pages 200–204, Riva del Garda, Italy, Aug-Sep
2006. IOS Press.

1As described in http://skydev.l3s.uni-hannover.de/
gf/project/protune/wiki/admin/?pagename=Integration+
with+Dreamweaver
2http://policy.l3s.uni-hannover.de/
3http://www.viddler.com/olmedilla/videos/1/


