

W
orkshop proceedings

11th International Conference on
Model Driven Engineering Languages
and Systems
Toulouse, France
September 28 – October 3, 2008

Empirical Studies of Model-Driven
Engineering (ESMDE'08)

September 29

 i

Preface

It is often difficult to rigorously evaluate Model-Driven Engineering (MDE)
technologies. Performing empirical studies require skills, experience and tacit
knowledge that are in many ways very different from the “core” MDE research.
Furthermore, empirical studies often entail large investments in terms of human
resources, time and money. Nevertheless, evaluations of MDE technologies are
needed in order to demonstrate the soundness, applicability, and cost effectiveness of
proposed technologies in various development contexts.

The aim of this workshop is to exemplify and discuss ways in which proposed model-
driven engineering (MDE) technologies should be evaluated, with a specific emphasis
on how to plan, conduct, analyze and report the results of empirical studies. The
workshop will have focus on the challenges of empirical studies involving human
users, since MDE technologies are typically expected to be used by software
engineers to improve various quality aspects of software systems and the productivity
of software development. More detailed topics include: What are the main obstacles
and potential remedies when performing empirical studies of MDE? What are the
main threats to validity of empirical studies of MDE, and how should they be dealt
with? For example, since MDE often represent new and complex technology, the
selection and training of human subjects who participate in empirical studies often
become critical factors. What are the most important outcome variables of the costs
and benefits of MDE? How can quality be measured in the context of MDE? And can
we define an unambiguous set of (benchmark) outcome measures to facilitate meta-
analyses across subjects, systems, tasks and technologies?

The goal of the workshop is to pave the way for the development of a MDE-specific
framework for empirical evaluation of MDE technologies, or at least provide a
minimum standard for evaluation that published work in the MDE community should
abide by.

Erik Arisholm
Lionel Briand
Bente Anda

 iii

Program committee

Colin Atkinson, University of Mannheim, Germany

Christian Bunse, International University, Germany

Michel Chaudron, Eindhoven University of Technology, Netherlands

Massimiliano Di Penta, University of Sannio, Italy

Robert B. France, Colorado State University, USA

Marcela Genero, University of Castilla-La Mancha, Spain

Marianne Huchard, University of Montpellier II, France

Ferhat Khendek, Concordia University, Canada

Yves Le Traon, IT/Telecom Bretagne, France

Tim Menzies, West Virginia University, USA

Alexander Pretschner, ETH Zurich, Switzerland

Per Runeson, Lund University, Sweden

Houari Sahraoui, University of Montreal, Canada

Miroslaw Staron, IT University of Göteborg, Sweden

 v

Content

Preface i

Program committee iii

On the Quantitative Assessment of Class Model Compositions: An
Exploratory Study 1

Preparing Meta-Analysis of Metamodel Understandability 11

Empirical comparison of two class model normalization techniques
Obstacles and questions 21

Assessing the Power of A Visual Notation – Preliminary Contemplations
on Designing a Test – 31

Embedded System Construction – Evaluation of Model-Driven and
Component-Based Development Approaches 41

Towards Quality-Driven Model Transformations: A Replication Study 51

Analyzing the Influence of Certain Factors on the Acceptance of a
Model-based Measurement Procedure in Practice: An Empirical Study 61

Towards a generic framework for empirical studies of Model-Driven
Engineering 71

On the Quantitative Assessment of
Class Model Compositions: An Exploratory Study

Kleinner Oliveira1, Alessandro Garcia2, Jon Whittle2

1 Computer Science Department

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, RJ - Brazil

kleinner@gmail.com

2 Computing Department
Lancaster University – InfoLab 21

Lancaster - UK
{alessandro,jon}@comp.lancs.ac.uk

Abstract. Model composition can be viewed in model-driven engineering as an
operation where a set of activities should be performed to merge two input
models into a single output model. The latter aggregates syntactical and
semantic properties from the original models. However, given the growing
heterogeneity of model composition strategies, it is particularly challenging for
designers to objectively assess them given a particular problem at hand. The
key problem is that there is a lack of canonical set of indicators to quantify
harmful properties associated with the output models, such as composition
conflicts and modularity anomalies. This paper presents an inquisitive study in
order to capture an initial set of metrics for assessing and comparing model
composition strategies in two case studies. We apply a number of metrics to
quantify different conflict types and modularity properties arising at composite
class models produced with override and merge-based strategies. We have
observed that some of the quantitative indicators were effective to pinpoint
when a model composition strategy is not properly chosen. In some cases, the
output models exhibited non-obvious undesirable conflicts and anti-modularity
factors.

Keywords: Model Composition, MDE, Metrics, Assessment.

1 Introduction

Given the central role that model composition plays in model-driven engineering
nowadays, researchers are increasingly focusing on defining and improving
alternative techniques for composing structural or behavioural models. Model
composition can be defined by a composition operation, a special type of model
transformation, that takes two models Ma and Mb as input models and combines their
elements into an output model Mab. Several mechanisms have been proposed in order
to put model composition into practice (e.g., see [2, 3, 4, 5, 6]), based on related work

MODELS`08 Workshop ESMDE

1

mailto:kleinner@gmail.com
mailto:xyz@gmail.com

in many different domains, such as database integration [7], aspect-oriented modeling,
model transformation , and merging of state charts.

However, not much attention has been paid to the quality assessment of such model
composition techniques. Even worse, according to [5] there is very little experience
that can be used to determine the worth of current approaches. Given the growing
heterogeneity of model composition strategies [3], such as override and merge, it is
intrinsically difficult to systematically quantify undesirable phenomena that arise in
the output composite models, including abstract syntax conflicts and semantic
clashes. It is particularly challenging for researchers or designers to objectively assess
the output model and the composition strategy itself given the problem at hand.

In this paper we start to tackle such needs through an exploratory study (Section 2)
on assessing composition strategies for class models. The goal is to inquisitively
identify an initial set of indicators for the evaluation and comparison of alternative
composition strategies. We have applied a metrics suite (Section 3) to quantify the
conflicts rate and modularity properties arising in class model compositions based on
merge and override. Our long-term goal is to define a comprehensive assessment
framework intended to guide researchers and designers on the assessment of model
composition techniques. In our study, we have detected that some of the used
quantitative indicators were effective to determine when a model composition
strategy is not properly chosen (Section 4). In certain cases, the output models
exhibited non-obvious syntactic and semantic conflicts and a number of modularity
anomalies not existing in the original input models. We also contrast the initial
findings of our exploratory investigation with related work (Section 5). Finally, we
present some concluding remarks (Section 6).

2 Experimental Procedures

This section describes the experimental procedures used in our exploratory study.
Two case studies were performed in order to investigate possible problems associated
with the use of composition strategies for class models. The first study comprises a set
of real-life models for an Automated Highway Toll System. In this case, different
members of a distributed software development team were in charge of modeling
different use cases of the system. They would need to cope with model composition
problems when bringing the use cases together.

There are three packages, namely (for simplification) Packages A, B, and C, where
each of them implements a set of use cases. There are two explicit compositions
defined for these packages (Figure 1). Package A presents a UML class diagram that
specifies basically functionalities related to: create user account, add funds, and stop
toll booth. Package B specifies functionalities related to: synchronizes accounts,
process credit card, transponder and vehicle. While the Package C specifies
functionalities related to add transponder and start toll booth. The goal is to produce
an output Package that gathers all functionalities together. To this end, we need to
merge the Package A, B and C according to a particular composition strategy
(override or merge specifically). The choice of a particular composition strategy is

MODELS`08 Workshop ESMDE

2

very important to produce sound output models while not introducing modularity
impairments.

Figure 1. Example of composition of an automated highway toll system.

The second study consists of a literature-based [11] example of a calculator that is
depicted in Figure 2. It has two packages: (1) Package A presents a UML class
diagram that specifies a Calculator to implement two basic functionalities: sum and
subtraction; and (2) Package B represents a Calculator that implements three
functionalities: sum, division, and multiplication. The goal is to produce an output
Calculator that contains four operations: sum, subtraction, division, multiplication. To
do this, we need to put these functionalities together in a single Package by merging
Package A and Package B.

Our aim is to assess in which ways the composition strategies (override and merge
specifically) impact on the input models’ properties. The merge strategy usage is
more appropriate when the input design models contain specifications for different
requirements of a software system. On the other hand, the override strategy can be
indicated when elements in an existing model need to be somehow evolved or
changed. The semantics of the override strategy [3] can be briefly defined as: (i) for
all elements in the Package A and Package B that are corresponding, the Package A’s
element should override its corresponding element; and (ii) elements in the Package A
and B that are not involved in a correspondence match remain unchanged and they are
inserted into the output model (Package AB).

The semantics of the merge strategy [3] can also be defined as: (i) for all
elements in the Package A and Package B that are corresponding elements, they
should be combined; and (ii) elements in the Package A and B that are not involved in
a correspondence match remain unchanged and they are inserted into the output
model (Package AB). However, when we put these elements together in the output
model (as the result of either overriding corresponding elements or adding elements in

MODELS`08 Workshop ESMDE

3

the Package AB directly) may result in some problems such as semantic clashes. We
will propose a metrics suite to provide ways to assess how useful or harmful such
composition relationships are following a specific composition strategy. The goal is to
provide initial support for designers and researchers objectively analyze which
composition strategy minimizes the conflicts rate while maximizing modularity
benefits in the output model.

Figure 2. Example of composition of calculators

3 A Metrics Suite for Model Composition

This section presents the metrics suite defined for assessing the model compositions
in our exploratory study. This framework guides the researchers for assessing and
coping with difficulties of UML model composition assessment.

3.1 Quantifying Composition Conflicts Rate

Number of Abstract Syntax Conflicts (NAbSC)
This metric counts the number of abstract syntax conflicts in a class model. Abstract
syntax conflicts occur when a model does not comply with the UML metamodel’
metaclasses and their structural relationships. It is a well-known problem, for
instance, in graph transformations. The goal is to quantify and check inconsistencies
of the target models against the UML metamodel. Once all the conflicts have been
addressed (i.e. NAbSC = 0), the output model can be considered as compliant to he
UML metamodel. Otherwise, the output model is an invalid or non-compliant model.

, ∑
=

=
SM

i
ikNAbSC

1

where:
SM – a set of model elements.

– the number of AbSC of the i-th model element. ik

MODELS`08 Workshop ESMDE

4

Number of Semantic Clash Conflicts (NSCC)
This metric counts the number of semantic clash conflicts in a model. A semantic
clash conflict occurs when model elements have different names, however, with same
semantic value. We need to quantify such conflicts in order to identify unexpected
semantic clash problems in the output models. For instance, models with semantic
clashes may become ambiguous and inconsistent. In addition, it may affect the model
understandability or complicate some tasks such as model transformation and code
generation. If the NSCC has a high value, it may imply that the output model is
useless. This metric is given by the formula:

∑
=

=
SM

i
iwNSCC

12
1

 ,
where:
SM – a set of model elements.

iw – a boolean value that represents if an i-th model

Number of Compositions of a Model Element (NCME)
This metric counts the number of compositions that a model element has participated.
The number of compositions may be an effective indicator of semantic mix conflict.
When model elements are composed, their semantics are mixed and it may lead to
unsound model elements. For example, a design pattern assigns roles to their
participant classes, which define the functionality of the participants in the pattern
context. When UML class diagrams are merged such roles may be modified having
negative impacts on quality attributes of the design pattern. This metric is given by
the formula:

MNCME = , where:
M – the number of compositions that a model element has
participated during the composition process.

Number of Behavioral Feature Conflicts (NBFC)
This metric counts the number of behavioral feature conflicts in a class. A behavioral
feature conflict may occur when a class: (1) has two (or more) methods that are used
with the same purpose, and (2) refers to a method that no longer exists, or exists
under a different behavior that is not expected. The high NBFC measure may
represent some undesirable model composition phenomena. This metric is determined
by the formula:

BNBFC = , where:
B – the number of behavioral feature (method) conflicts in a class

Number of Unmeaning Model Elements (NUME)
This metric counts the number of unmeaning model elements in a model. During the
composition process, the model elements are manipulated and sometimes some
elements are not referred nor make reference to other elements, that is, they are
isolated. This metric is given by the formula:

where:
U – the number of unmeaning model element in a mode.

UNUME = ,

MODELS`08 Workshop ESMDE

5

3.2 Quantifying Modularity Anomalies in Composite Models

We have also applied some classical metrics intended to measure some modularity-
related characteristics of a class, such as coupling degree, number of attributes, and
operations. These metrics are described in Table II. Due to space constraints, these
metrics are briefly presented. In fact, most of these metrics (e.g. NATC and CBC)
were originally defined by other authors and their definitions can be found in their
respective publications [14, 17]. The goal of using these metrics is to assess how the
composition process affects the output models regarding some design principles, such
as low coupling, when we specify different composition strategies. In addition, in
many cases, composition strategies can artificially lead to the introduction of design
anomalies (“bad smells”), such as “Temporary Field”; this bad smell can be identified
comparing the NATC of a class in the output model against the respective classes in
the input models used for the composition.

 Table I. The Class-level Modularity Metrics

Metric Description
Number of Attributes in a
Class (NATC)

Counts the number of attributes in a class.

Number of Operations in a Class
(NOPC)

Counts the number of operation in a class.

Number of Associations between
Classes (NASC)

Counts the number of associations per class; the new
language produced from a model composition may not
be consistent with the domain defined previously.

Coupling between Classes (CBC)

Counts the number of all dependencies of a class to
other classes in the system.

Number of Subclasses of a Class
(NSUBC)

Counts the number of children of a class.

Number of Superclasses of a
Class (NSUPC)

Counts the parents of a class.

4. Results and Discussion

Quantitative assessment is an effective way to supply measures and evidence that may
improve our understanding about model-driven engineering techniques, in our case,
model composition. Although quantitative studies have some disadvantages, they are
very useful because they boil a complex situation down to simple numbers that are
easier to grasp and discuss. This section provides a general analysis and discussion of
the data that have been collected from applying the set of defined metrics to model
compositions derived in the two case studies (Section 2).

Graphics are used to represent the data gathered in the measurement process. The
Y-axis presents the absolute values gathered by the metrics. Each pair of bars is
attached to an integer value, which represents the measure. The X-axis specifies the
metric itself. These graphics help analyzing how the composition of the input models
affects (or not) the output model regarding a particular metric. These graphics support
an analysis of how the change of composition strategy affect (or not) the output
model. The results shown in the graphics were gathered according to the model point

MODELS`08 Workshop ESMDE

6

of view; that is, they represent the total of metric values associated with all the model
elements for each model (output model) that is being considered.

Figure 3 depicts the overall composition results between Package A, B and C of
the Automated Highway Toll System following the override and merge strategy. We
compare the output model produced by the override and merge strategy and it is
possible to observe that no measure was detected to the metrics such as NSUNC,
NSUPC, NAbSC, and NSCC. On the other hand, the NOPC metrics have a higher
measurement following merge strategy than override strategy. This observation can
indicate a negative point considering reusability. Although not showing differences
between each other with regard to the NASC, NSUBC, and NSUPC metrics, the
output models presents significant differences, for example, the Package BAC
produced by the merge strategy presents all functionalities defined in the Package A,
B and C, while the Package BAC produced by the override strategy contains only
functionalities defined in the Package B.

According to the measures concerning the number of associations between
classes (NASC), the number of abstract syntax conflicts (NAbSC), and the number of
subclasses (NSUBC) and superclasses of a class (NSUPC), no significant difference
was detected in favor of a specific composition strategy when applied to the two case
studies. The measures of NSUBC and NSUPC can be easily explained because both
case studies do not exhibit a hierarchy-depth in their inheritance relationships. On the
other hand, the measure of NASC supplies evidence of that number of associations of
a Class contains is independent of type of composition strategy.

Package BAC produced by the override strategy provided higher results in two
measurements, NCME and NUME. When EntranceLightInterface is inserted in the
Package BAC this class becomes unmeaning, because of the class that it makes
relationship, PackageA.BoothController, no longer exists (PackageA.BoothController
is overridden by the PackageB.BoothController). The NASC and CBC measurement
have same values. So the coupling in the Package BAC is independent of the kind of
composition strategy in this case.

Figure 3. Comparison between output models produced following

override and merge strategy.

MODELS`08 Workshop ESMDE

7

The measurement regarding the output Calculators has provided some results that
are depicted in Figure 4. We compare the output Calculators produced following
override and merge strategy. Although not showing differences between each other
regarding the NASC, NSUBC, and NSUPC metrics, the output models present
significant differences. The Package AB produced by the merge strategy has higher
values for some metric measures such as NATC, NOPC, CBC, NSCC, NCME, and
NBFC. On the other hand, Package AB produced by the override strategy provided
higher results in one only measure, NUME, because two enumerations,
CalculatorType and ExpressionType, are unmeaning in the Package.

Figure 4. Comparison between calculators produced following override and

merge strategy.

According to the data gathered, the most useful metrics in this exploratory study
were as follows. First, number of semantic clash conflicts (NSCC) as it indicated the
presence of a significative number of negative semantic clashes. This measure served
as warnings of not helpful output models using a particular composition strategy
through the identification of ambiguity and inconsistency arising in semantic clashes.
The observation of Figure 3 provides evidence of the effectiveness of this metrics.
Second, number of unmeaning model elements (NUME) supplied evidence that
override strategy is potentially harmful when used beyond the purposed of evolving
or changing an existing model. The output models, based on override-driven
compositions, had elements that are not referred nor make reference to other
elements, that is, they are isolated (unmeaning in the package). Thus, regarding this
metric the better strategy to be applied in the case studies was the merge strategy.

Finally, after observing all the conflict rate and modularity results, the metrics
indicated that the merge strategy is the best strategy to be used in our two case
studies. This finding is also mainly based on the measures of NUME and NSCC
(discussed above). Moreover, we should highlight that, as expected, it is particularly
challenging for researches to objectively assess the output models and identify
conflicts associated with some metrics such as NUME, NAbSC and NSCC.
Therefore, the issue of improving automated support for measuring conflict rates
should be a topic of future work.

5. Related Work

There is little related work focusing on either the quantitative assessment of models in
general or on the quantitative assessment of model compositions. Up to now, most

MODELS`08 Workshop ESMDE

8

approaches involving model composition rest on subjective assessment criteria. Even
worse, they lead to dependence on experts who have built up an arsenal of mentally-
held indicators to evaluate the growing complexity of design models in general [5].
As a consequence, the truth is that modelers ultimately rely on feedback from experts
to determine “how good” the input models and their compositions are. According to
[5], the state of the practice in assessing model quality provides evidence that
modeling is still in the craftsmanship era and when we assess model composition this
problem is accentuated.

To the best of our knowledge, the need for assessing models during a model
composition process neither have been pointed out nor even proposed by current
model composition techniques [2, 3, 4, 8, 9]. For example, the UML built-in
composition mechanism, namely package merge, does not define metrics or criteria to
assess the merged UML models. Moreover, it has been found to be incomplete,
ambiguous and inconsistent [6].

The lack of quantitative indicators for model compositions hinder our process of
understanding better side effects peculiar to certain model composition strategies.
Many different types of metrics have been developed during the past few decades for
different UML models. These metrics have certainly helped designers analyze their
UML models to some extent. However, as researchers’ focus has shifted to the
activities related to model management (such as model composition, evolution and
transformation), hence the shortcomings and limitation of UML model metrics have
become more apparent. Some authors [1, 12, 13-18] have proposed a set of metrics
that consider UML model’s properties. These works have shown that their measures
satisfy some properties expected for good measures of design models. However, these
metrics can not be employed to assess problems that may arise in a model
composition process such as semantic clashes.

6. Concluding Remarks and Future Work

If models are seen as primary development and transformation artifacts in model-
driven engineering, then software designers naturally become concerned with how
their quality is evaluated. In order to be considered for use in mainstream software
development, model composition techniques should be supplemented with quality
criteria and indicators. These elements are fundamental for developing and analyzing
composition processes and output models. We presented an exploratory study and an
initial metrics suite for assessing class model compositions generated by a selected set
of model composition strategies. Such metrics are applied to output models and some
analysis are performed according to the data gathered.

Our initial evaluation has demonstrated the feasibility of our candidate set of
metrics for quantifying modularity properties and conflict rates in composition
processes. Obviously, more investigations on its applicability to large UML model
compositions are required. Further empirical evaluations are indeed fundamental to
validate our quantitative indicators in real-world design settings involving UML
model compositions. Thus, future work will concentrate on designing and carrying
out a family of empirical studies to assess, for example, compositions of the most
popular OMG’s UML profiles in realistic scenarios. Finally, we should point out that

MODELS`08 Workshop ESMDE

9

model composition assessment is in initial stage and there is very little experience that
can be used to determine the feasibility of current approaches. Moreover, its
empirical-driven improvement, supported by a comprehensive set of well-validated
metrics suite, is absolutely necessary to the evolution of model-driven engineering
field. This work represents one of the first stepping stones towards this end.

References

1. J. Aranda, N. Ernst, J. Horkoff, and S. Easterbrook. A Framework for Empirical Evaluation
of Model Comprehensibility. In International Workshop on Modeling in Software
Engineering (MiSE), pp. 20-26, May, 2007.

2. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A Manifesto
for Model Merging. In International Workshop on Global Integrated Model Management
(GaMMa’06), pages 5–12, Shanghai, China, May 2006. ACM Press.

3 S. Clarke and R. Walker. Composition Patterns: an Approach to Designing Reusable
Aspects. 23rd Intl. Conf. on Software Engineering, pp. 5–14, Toronto, Canada, 2001.

4 T. Cotternier, A. van den Berg, and T. Elrad. Modeling Aspect-Oriented Composition. In
7th International Workshop n Aspect-Oriented Modeling co-located with (MODELS’ 05),
Montego Bay, Jamaica, October 2005.

5 R. France and B. Rumpe. Model-Driven Development of Complex Software: A Research
Roadmap. In Future of Software Engineering (FOSE’07) co-located with ICSE’07, pages
37–54, Minnesota, EUA, May 2007.

6 OMG, Unified Modeling Language: Infrastructure version 2.1, Object Management Group,
February 2007.

7 E. Rahm and P. Bernstein. A Survey of Approaches to Automatic Schema Matching. VLDB
Journal: Very Large Data Bases, 10(4):334–350, 2001.

8 R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry. Model Composition – a
Signature-Based Approach. In Aspect Oriented Modeling (AOM) Workshop, Montego Bay,
Jamaica, October 2005.

9 Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Models. Transactions of Aspect-Oriented
Software Development, 1(1):75–105, 2006.

10 B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–25,
2003.

11. Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, 1995.

12. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994

13. A. Baroni, Quantitative assessment of UML dynamic models, SIGSOFT Software Eng.
Notes, vol. 30, no. 5, pp. 366-369, 2005.

14. Baroni, A.L., Abreu, F.B. and Guerreiro, P. The State-of-the Art of UML Design Metrics.
Technical Report, Universidade Nova de Lisboa, Monte da Caparica, 2005.

15. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994

16. A. Baroni, Quantitative assessment of UML dynamic models, SIGSOFT Software Eng.
Notes, vol. 30, no. 5, pp. 366-369, 2005.

17. A. Baroni, F. Abreu, and P. Guerreiro. The State-of-the Art of UML Design Metrics.
Technical Report, Universidade Nova de Lisboa, Monte da Caparica, 2005.

18. M. Genero, M. Piattini-Velthuis, J. Lemus, and L. Reynoso Metrics for UML Models,
UPGRADE, vol. 5, number 2, April, 2002.

MODELS`08 Workshop ESMDE

10

Preparing Meta-Analysis of Metamodel
Understandability

Susanne Patig1

1 University of Bern, IWI, Engehaldenstrasse 8, CH-3012 Bern, Switzerland
susanne.patig@iwi.unibe.ch

Abstract. Metamodels are designed to be used by machines and humans. For
human users, the understandability of the metamodel is important. Experimen-
tal investigations of understandability in computer science have led to conflict-
ing results. To resolve such conflicts and gain insights into the nature of some
phenomenon beyond singular experiments, meta-analysis can be applied, i.e.,
the statistical analysis of results obtained by other (primary) empirical studies.
This paper shows the current obstacles for a meta-analysis of metamodel under-
standability: They consist in the heterogeneity of the individual experiments
and deficient reporting. The paper provides a framework to increase the
comparability of experiments on understandability. Such comparability enables
future meta-analysis.

Keywords: Understandability, Metamodels, Experimental Research

1 Motivation

Designing and modifying metamodels are major topics of model-driven development.
Metamodels must be understandable for both machine and human users. Following a
definition of language understandability in cognitive psychology [1], the understand-
ability of a metamodel means the effort required to read and correctly interpret its
constructs and their connections. Understandability is a prerequisite both for reading
artifacts (like documents or source code) that have been created by a applying a
metamodel (comprehension) and for creating such artifacts (specification).

The ‘understandability’ of a metamodel for a machine shows up in error-free com-
pilation. For human users, metamodel understandability must be empirically inves-
tigated, usually by controlled experiments. The results of such experiments are con-
flicting (see Section 3).

Conflicting empirical results can be statistically evaluated by meta-analysis (see
Section 2). Meta-analysis could increase our knowledge about the nature of under-
standability – also to facilitate future metamodel design or modification. But, Section
3 shows that meta-analysis on metamodel understandability is currently hindered by
(1) the heterogeneity of the conducted experiments and (2) insufficient reporting of
the experimental results. This paper provides a framework to achieve comparability of
experiments on metamodel understandability (see Section 4), which is a prerequisite
for meta-analysis. Appropriate reporting guidelines exist (e.g., [16], [19]).

MODELS`08 Workshop ESMDE

11

2 Meta-Analysis

Meta-Analysis is the statistical evaluation of numerical results that have been obtained
by other (primary) studies [25], [13]. Hence, it is a kind of secondary research that
aims at (1) finding evidence for some investigated phenomenon beyond individual
studies (by calculating general descriptive statistics), (2) explaining conflicting results
(by discovering new influencing variables), and (3) removing the bias potentially
contained in ‘normal’ literature reviews of empirical studies [27].

Literature reviews often concentrate only on significant results that support the re-
viewer’s theoretical position. But, statistical significance can be misleading, because
it is affected by sample size [9]: If the same experiment is conducted independently, a
larger sample may yield a statistically significant result, while a smaller one does not.
The ‘empirical truth’ can be revealed by effect size. Effect size expresses the magni-
tude of a result, independently of sample size [9]. Table 1 summarizes main effect
size measures and defines what constitutes a small, medium or large effect.

Table 1. Measuring Effect Size

Effect Effect size measure Statistical test
procedure

Refe-
rence Small Medium Large

[10]: d 0.2 0.5 0.8

σ
μμd 21 −= or

dft
tr 2

2

t,es +
=

t-test*

[10]: r 0.1 0.3 0.5

N
χω

2

=
χ2-test [10] 0.1 0.3 0.5

2

2
μ2

σ
σ

η =
F-test (ANOVA) [10],

[9]
0.01 0.06 0.14

N

z
r z,es =

U-test or any
other that yields
a z-score♦

[28] 0.1 0.3 0.5

μ1, μ2: Group means, σ: Standard deviation. σ2 (σμ
2): Total (Between group means) variance,

t, χ2 (z): Test statistics (z: normal distribution), N: Total number of participants (N = Σni),
df: Degrees of freedom (df = n-2; n: [constant] number of participants of each group)

∗ Between-subjects design: σ of either group, within-subjects design: adjusted σ [9].
♦Requires N ≥ 25 to calculate the z-scores by assuming normal distribution [10].

Meta-analysis typically integrates the effect sizes of singular studies. The basic steps
are as follows [27], [25]:
1. Define the independent and the dependent variables of interest.
2. Systematically collect the studies to be included in the meta-analysis.
3. Estimate effect sizes for each study.
4. Combine the individual effect sizes to calculate and test the central tendency (e.g.,

the mean or median) and dispersion (e.g., variance) of the overall effect.

Various ways of combining effect sizes exist (see, e.g. [27]). The combined effect size
quantifies the overall magnitude of some observed result, at least in the population of

MODELS`08 Workshop ESMDE

12

the included studies. To yield useful results from meta-analysis, the included studies
must satisfy the following requirements [25]:
[RQ1] They must be of the same type (e.g., controlled experiments or case studies).
[RQ2] They must test the same hypothesis. Since a statistical hypothesis assumes

that the independent variable(s) will cause the changes in the dependent
variable(s) [28], these variables should be identical or comparable.

[RQ3] Often several measures for the same variable exist. Ideally, all included
studies should use the same or comparable measures.

[RQ4] The studies should report effect sizes or provide at least statistics according to
Table 1 or raw data to calculate the effect sizes.

The next section will show that current experiments on the understandability of
metamodels do not satisfy these requirements.

3 Meta-Analysis of Research on Metamodel Understandability

This section sketches a failed attempt of meta-analysis – to prepare the ground for the
framework in Section 4. The intended meta-analysis should find out whether certain
(types of) metamodels have proven to be generally better understandable for human
users. One of the earliest disputes relevant for this question took place in artificial
intelligence by praising the merits of either predicate logic [12], which is usually
written as text, or visual representations and diagrams [29]. This debate is excluded
here from further investigation as it is based only on (quite suggestive) examples and,
thus, differs in type from controlled experiments (see [RQ1] in Section2).

Table 2 lists some experiments examining the understandability of (types of) meta-
models. The selection of the studies (deliberately) does not satisfy the requirements
postulated in Section 2, as it is intended to point out the obstacles for meta-analysis:

The experiments differ in their independent variables and, thus, in the hypotheses
(Ha)1 investigated. Most independent variables are related to metamodels, but refer to
abstract2 syntax ([3]: Ha: metamodels with more constructs easier to understand),
concrete2 syntax ([8], [14]; Ha: graphical notation is easier to understand) or a mixture
of both ([5], [6], [20], [22]). In the mixture case, the understandability of particular
metamodels (the listed ‘levels’ in Table 2) is tested, whereas syntactically pure
independent variables characterize types of metamodels. Besides the metamodel, also
other factors influencing understandability are investigated, e.g., the complexity of the
presented artifacts [14] and the knowledge of the participants [23].

The dependent variables are more homogeneous (correctness, time, perceived ease
of use), but the particular measures vary. For example, correctness is quantified by the
number of correct answers and by reviews. Additionally, diverse experimental
designs have been used. Experimental design, i.e., the way participants are selected
and assigned to experimental conditions [26], is discussed in Section 4.2

None of the studies in Table 2 reported effect sizes. [3], [6], [8], [20] and [22]
provide at least enough aggregated data to calculate the effect sizes ex post according

1 Ha denotes the alternative hypothesis, which is given in an aggregated and simplified form.
2 Abstract (concrete) syntax mean the constructs and their allowed connections (notation).

MODELS`08 Workshop ESMDE

13

to Table 1. The effects are small [6], medium [3] or large [6], [8], [20], [22]; see
Table 2. But, because of the heterogeneous variables and hypotheses, a methodol-
ogically sound meta-analysis cannot be conducted.

Meta-analysis of understandability would be facilitated by some guideline for the
planning, conducting and reporting of the underlying experiments. The following
groups of guidelines have been proposed:
1. General guidelines on experimental research in software engineering (e.g., [4],

[19]) with ‘best practices’ for planning, conducting, evaluating and reporting any
kind of experiment. They do not help researchers in selecting variables and
experimental designs to investigate understandability.

2. Guidelines on reporting the results of experiments e.g., [19], [16]. Though the
latter ones have recently been criticized [18], they provide a solid foundation for
the prospective availability of data needed to calculate effect sizes.

3. Guidelines for experiments in the field of conceptual modeling, e.g. 23], [2], [11]
or management information systems (MIS) research [15]: These guidelines cover
specific aspects of metamodel understandability (e.g., the role of domain know-
ledge) [23], remain vague sets of hints without well-founded recommendations of
variables or experimental designs [2] or aim at classifying existing experimental
studies [11]. As a consequence, the classification guideline [11] concentrates on
variables that have been used in experiments on metamodel understandability, but
neglects potential variables known from cognitive psychology, which is the major
field for scientific investigations of understandability. Meta-analytic comparability,
however, requires the consideration of all known factors affecting some phenom-
enon. Experimental design is only discussed in the MIS research framework [15].
Because of focusing on the usage of MIS, ‘metamodel’ is not considered as an
independent variable. Corresponding modifications of the framework have been
proposed [6], but remain at the surface. Additionally, the MIS research framework
differs in terminology and methodology form empirical software engineering.

To sum it up, owing to heterogeneous experiments and deficient reporting of the
experimental results, meta-analysis of metamodel understandability is currently not
possible. Appropriate reporting guidelines exist. The next section proposes a frame-
work that is to increase the comparability of experiments on metamodel understand-
ability, which is a prerequisite for meta-analysis.

4 A Framework for Comparable Experiments on Metamodel
 Understandability

4.1 Affecting Factors

An experiment is a scientific investigation in which one or more independent
variables (IV) are systematically manipulated to observe their effects on one or more
dependent variables (DV) [28]. The outcome of an experiment depends on the
affecting factors [11]. This term comprises both independent variables whose (causal)
relationship to the dependent variables is examined and other factors (extraneous
variables, EV) that confound the causal results [28]. Whether some affecting factor

MODELS`08 Workshop ESMDE

14

Table 2. Experiments on the Understandability of Metamodels

Ref. Independent Variables
(Levels)

Tasks
(Number)

Dependent
Variables

Experim.
Design

N
(T)

Statistical
Procedure

Results Effect

[5] Data model
(EER, RDM)

Spec
(1 case)

CO (review),
PEU

2 groups,
matched in
experience

42
(M)

t-test of means EER leads to higher correctness; no
difference in perceived ease of use

not
applicable

[6] Conceptual data model
(EER, KOOM)

Spec
(1 case)

CO (review) 2 groups 38
(−)

matched-pairs t-
test for means

Mostly no differences in
correctness; higher correctness of
EER only for some facets

d = 0.04 to
d = 2.12

[8] Graphical query
languages

Comp (32),
Spec (14)

CO (review) 1 group 27
(U)

χ2-test on
distribution

Graphical queries are easy to
comprehend, not easy to specify

ω = 0.61

[14] Datebase representation
(graphical, textual),
complexity

Spec (20) CO (review),
ST, PEU

2 x 2
factorial

36
(M)

ANOVA Graphical representations are faster,
lead to higher correctness and
higher perceived ease of use.

not
applicable

[20] Conceptual data models
(EER, SOM, ORM,
OMT)

Spec
(2 cases)

CO (review),
MT, PEU

4 groups 100
(−)

Duncan test Increased correctness and faster
solutions for EER and OMT

η2 = 0.14

[22] Conceptual models
(DSD, ERM, OOM)

Comp (30) CO (answers),
ST

3 groups 121
(M)

ANOVA, cor-
relation analysis

Highest correctness for OOM; faster
for OOM, followed by DSD, ERM

η2 = 0.15

[3] Conceptual data models
(varying construct
number)

Comp (40) a) CO (answers),
b) inverse of
time, c) learn-
ability

2 groups 64
(M)

t-test of means
difference

Models with more constructs lead to
more accurate conceptualization,
increase the time to process a
schema, are faster to learn

r = 0.41

[23] Conceptual data models
(ER, EER), knowledge

Comp (36) CO (answers and
review)

2 x 2
factorial

81
(U)

paired t-test of
means

IS knowledge affects problem
solving; domain knowledge is
helpful in solving demanding tasks

not
applicable

Abbreviations: CO: Correctness, Comp: Comprehension, DSD: Data Structure Diagram, EER: Extended Entity-Relationship Model, (K)OOM:
(Kroenkes) Object Oriented Model, MT: Modeling Time, N: Total number of participants, PEU: Perceived ease of use, SOM: Semantic Object Model,
Spec: Specification, ST: solution Time, ORM: Object Role Model, OMT: Object Modeling Technique, RDM: Relational Data Model, T: Type of
participants

MODELS`08 Workshop ESMDE

15

constitutes an independent or an extraneous variable is, to some extent, a matter of the
researcher’s decision (contingent on the research question, the availability of
participants, costs etc.). This decision requires knowledge on (at most) all the factors
that affect the outcomes of an experiment. For experiments on understandability in
computer science, this knowledge is provided by Fig. 1.

Affecting factors for experiments

Understandability
(Potential independent variables)

General
(Extraneous variables)

Modeling ParticipantsTask Conduct Experimenter

Metamodel Content

Abstract
Syntax

Concrete
Syntax

DemographicsKnowledgeType Size

Comprehension Specification

Surface Level Problem Solving

Syntactic Semantic

Tool

Fig. 1: Affecting factors in experiments on metamodel understandability.

It can be distinguished between factors that affect the outcome of any experiment
(general affecting factors) and factors with a known influence on understandability;
see Fig. 1. In the field of behavioral sciences (to which cognitive psychology be-
longs), the following general affecting factors are acknowledged:

• The conduct of the experiment, comprising:
• The experimental situation, namely the location (noise, room temperature), the

time of day and the equipment (failures, calibration) [9].
• Position effects: Performance depends on the timely distance of a task from the

start of the experiment (e.g., fatigue, getting bored, learning) [21].
• Carry-over effect: The performance achieved in some task depends on whether

or not some other task has been done before [28].
• The experimenter: His/her ability to instruct participants; his/her bias (expecting a

particular outcome can distort the experimenter’s behavior or data gathering) [26].

These general affecting factors are not causally related to the dependent variables, but
distort the experimental results and, thus, are extraneous variables. In contrast, in
investigating metamodel understandability, the following affecting factors – related to
modeling, participants and task - are potential independent variables (see Fig. 1):

Both the metamodel’s abstract syntax (e.g., the number [3] or type [7] of con-
structs) and its concrete syntax (graphical vs. textual notation; e.g., [14]) affect under-
standability. Metamodels cannot be tested in isolation, but only by applying them to
some content. The content should be ‘informationally equivalent’ [23], i.e., it must be

MODELS`08 Workshop ESMDE

16

possible to model this content by any of the investigated metamodels, and the content
should be comparably difficult. Finally, the tool used to create or present models (e.g.,
its navigation or dynamic layout capabilities) influences understandability.

Among the affecting factors, participants play an intermediate role: Their demo-
graphic characteristics (e.g., age, gender) affect any experiment [1] and, thus, also
understandability. For example, the participants’ age is treated as an independent
variable in MIS research [15]. Knowledge comprises experience and skills related to
domain and metamodel as well as general mental abilities. Domain knowledge dis-
torts results on metamodel understandability as it enables inferences [23]. Metamodel
knowledge is usually provided in preparing the participants for the experiment.

Tasks in experiments on understandability can be characterized by their type and
size. As Table 2 indicates, the task types used are comprehension or specification
(defined in Section 1), which agree to the dependent variables cognitive psychology
suggests (see Section 4.3). Comprehension tasks can be subdivided into surface-level
understanding and problem-solving tasks [17]. In problem-solving tasks, participants
are requested to determine whether and how certain information can be retrieved from
an artifact created by applying the metamodel. In contrast, syntactic surface level
understanding tasks refer to the constructs of the metamodel and their relationships
(e.g., ‘How many attributes describe the entity type ORDER?’), whereas semantic
tasks assess the understanding of the contents described (e.g., ‘Every employee has
(a) a unique employee number, (b) more than one employee number.’) [17]. An
influence of the size of some task, e.g., the complexity of the database described by
some metamodel, is generally assumed, but it was only marginally significant in [14].

Depending on the decision of the researcher, a potential independent variable is
either systematically manipulated or becomes an extraneous variable. Extraneous
variables decrease the internal validity of experiments, i.e., the degree to which the
variation of the dependent variables can be attributed to the independent variables
(rather than to some other factor) [28]. Consequently, extraneous variables must be
controlled, which is main constituent of experimental design (see Section 4.2).

4.2 Experimental Design

An experimental design can be regarded as a general plan for (types of) experiments
that joins independent variables and control techniques for extraneous variables. The
main control techniques are removing, constancy and randomization [26], [28]; they
should be applied in the following order:
1. Remove the extraneous variable (EV), especially if it is related to the experimental

situation (e.g., use a quite room).
2. If the EV cannot be removed, its influence on the dependent variable is known and

the sample is small, keep the EV constant. Constancy guarantees that all conditions
are identical except for the manipulation of the independent variable, but reduces
the external validity of the experiment, i.e., its generalizability [26].

3. If sample size does not matter and the influence of some irremovable EV on the
dependent variable is not surely known (e.g., gender), must be neutralized (e.g.,
position or carry-over effects) or should be equated (e.g., age, knowledge),
randomize the EV. Randomization increases the external validity of experiments.

MODELS`08 Workshop ESMDE

17

Table 3. Summary of Experimental Designs

Design Between-subjects Within-subjects Block (Matched) Factorial

No. of IV
(levels)

1 (n) 1 (n) 1 (n) m > 1 (n)

Groups n 1 n m × n

Pro:

No carry-over effects • Simple
• Small samples
• Constancy of

individual
characteristics

• Precise
• No carry-over

effects
• Individual dif-

ferences balanced

Interactions
between IV
can be examined

Contra: • Unequal groups
possible

• Large samples

• Carry-over effects
• Experimenter bias

• Effort
• Matching factor

must exist

• Large samples
• Difficult to in-

terpret for m > 3

EV
Control

Randomization Constancy Constancy and
Randomization

Randomization

Statistical test procedures

Metric
DV

♦: independent t
∗: F-test, ANOVA

♦: paired t-test of means
∗: MANOVA

MANOVA

Ordinal
DV

♦: Mann-Whitney U
∗: Kruskal-Wallis H

♦: Wilcoxon signed rank test (matched)
∗: Friedman’s χ2

-

Nominal
DV

♦/∗: χ2 contingency
test

♦: Sign test, McNemar’s test of change
∗: Cochran’s Q-test

-

Sample
Size ♣

1-t: ni = 20 [50]
2-t: ni = 25 [60]

1-t: N = 11 [23]
2-t: N = 15 [35]

see between-
subjects

2-t only, m = 3:
ni = 20 [50]

♣ To detect a large [a medium] effect (see Table 1) with (1 - β) = 0.8 and α = 0.05.

The experimental design to be chosen depends on (1) the number of independent
variables and (2) the control technique. Table 3 summarizes typical experimental
designs and their (dis-) advantages (for details, see [9], [26], [28]). Experimental
design and the dependent variables determine the statistical test procedures for
evaluation (see Table 3). For each statistical procedure, an effect size measure exists
(see Table 1). The sample size required to detect a small, medium or large effect for a
given experimental design and statistical test procedure can be calculated by power
analysis (e.g., [9], [10]); the resulting recommendations are given in Table 3.

4.3 Affected Factors

The dependent variable is the one on which the effect of the independent variable is
measured. Behaviorism, the origin of experimental research in psychology, requires
the dependent variable to refer to observable behavior [1]. Thus, ‘perceived ease of
use’ (even though applied, see Table 2) is not an acceptable dependent variable.
Instead, the following measures of behavior are common [26]:
1. Frequency, e.g., the number of correct answers or solved problems.
2. Selection, e.g., which of several answers is chosen.

MODELS`08 Workshop ESMDE

18

3. Response latency (or response time), which is concerned with how long it takes for
a behavior to be emitted, e.g., how quickly a participant reacts.

4. Response duration, i.e., the length of time some behavior occurs (e.g., how long a
participant deals with a task).

5. Amplitude, measuring the strength of response.
The dependent variables in experiments on metamodel understandability (see Table 2)
use these measures as follows: Solution time refers to response latency and modeling
time to response duration. If correctness is verified by multiple-choice questions (e.g.,
[17]), it is based on the measure ‘selection’, whereas numbers of correct answers are a
measure of frequency.

Thus, the dependent variables in experiments on understandability in computer
science are well-grounded in cognitive psychology. Completeness could be achieved
by measuring amplitude, which, however, is mainly common in neuroscience [1], and
by using selection of some metamodel from a list in specification tasks.

5 Conclusion

Missing comparability of the integrated studies is a major reservation about meta-
analysis [27]. But, comparability of heterogeneous experiments can be achieved by
methodologically equalizing differences among experiments [13] – provided that the
differences are known. In other words, sound meta-analysis is possible if all variables
and (for EV) their control techniques are reported. The taxonomies provided by the
framework (see Section 4) help researchers to compile such lists; further advances can
be achieved by web-publishing them (and the related experimental studies) as well as
by tool support for the experiments on understandability. A simple open-source tool
called notate already exists (http://sourceforge.net/projects/notate). It has been
successfully applied in experiments on understandability [24] and can be extended to
cover the complete framework of Section 4.

In contrast to the narrow view of MIS research, extensibility and flexibility are
major requirements for a framework to investigate understandability in computer
science, since the nature of language understanding in general still is an open research
question in cognitive psychology [1]. Workshops are an appropriate place to
exchange experience in this field and to advance the framework proposed here.

References
1. Anderson, J.R.: Cognitive Psychology and its Implications. 5th ed., Worth, New York (2000)
2. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A Framework for Empirical Evaluation of

Model Comprehensibility. Proc. Intern. Workshop on Modeling in Software Engineering
(MISE’07), Minneapolis/ MN. IEEE (2007)

3. Bajaj, A.: The effect of the number of concepts on the readability of schemas: an empirical
study with data models. Requirements Engineering 9, 261-270 (2004)

4. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in Software Engineering. IEEE
Transactions on Software Engineering SE-12 7, 733-743 (1986)

MODELS`08 Workshop ESMDE

19

5. Batra, D., Hoffer, J.A., Bostrom, R.P.: Comparing Representations with Relational and EER
Models. Comm. of the ACM 33, 126–139 (1990)

6. Bock, D., Ryan, T.: Accuracy in Modeling with Extended Entity Relationship and Object
Oriented Data Models. J. of Database Management 4, 30-39 (1993)

7. Bodart, F., Patel, A., Sim, M., Weber, R.: Should Optional Properties Be Used in Conceptual
Modelling? A Theory and Three Empirical Tests. Information Systems Research 12,
384-405 (2001)

8. Chan, H.C.: Naturalness of Graphical Queries Based on the Entity Relationship Model. J. of
Database Management 6, 3–13 (1995)

9. Clark-Carter, D.: Quantitative psychological research. Psychology Press, Hove (2004)
10. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd ed., Erlbaum,

Hillsdale (1988)
11. Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual modeling

techniques. Requirements Engineering 9, 248-260 (2004)
12. Hayes, P.J.: Some Problems and Non-Problems in Representation Theory. Proc. of the

AISB Summer Conference. University of Sussex, 63-79 (1974)
13. Hwang, M.I.: The Use of Meta-Analysis in MIS: Research: Promises and Problems. The

DATA BASE for Advances in Information Systems 27, 35-48 (1996)
14. Jamison, W., Teng, J.T.C.: Effects of Graphical Versus Textual Representation of Database

Structure on Query Performance. J. of Database Management 4, 16–23 (1993)
15. Jenkins, M.A.: MIS Design Variables and Decision Making Performance. UMI Research

Press, Ann Arbor (1976)
16. Jedlitschka, A., Pfahl, D.: Reporting Guidelines for Controlled Experiments in Software

Engineering. Proc. of ACM/IEEE Intern. Symposium on Software Engineering 2004
(ISESE 2004), 261-270. IEEE (2004)

17. Khatri, V., Vessey, I., Ramesh, V., Clay, P., Park, S.-J.: Understanding Conceptual
Schemas: Exploring the Role of Application and IS domain Knowledge. Information
Systems Research 17, 81-99 (2006)

18. Kitchenham, B. et al.: Evaluation guidelines for reporting empirical software engineering
Studies. Empirical Software Engineering 13, 97-121 (2008)

19. Kitchenham, B.A. et al.: Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering 28, 721-734 (2002)

20. Lee, H., Choi, B.G.: A Comparative Study of Conceptual Data Modeling Techniques. J. of
Database Management 9, 26-35 (1998)

21. Mook, D.: Classic experiments in psychology. Greenwood, Westport (2004)
22. Palvia, P.C., Liao, C., To, P.-L.: The Impact of Conceptual Data Models on End-User

Performance. J. of Database Management 3, 4-15 (1992)
23. Parsons, J., Cole, L.: What do the pictures mean? Guidelines for experimental evaluation of

representation fidelity in diagrammatical conceptual modelling techniques. Data & Know-
ledge Engineering 55, 327-342 (2005)

24. Patig, S.: A Practical Guide to Testing the Understandability of Notations. Proc. 5th Asia-
Pacific Conf. on Conceptual Modelling (APCCM 2008). CRPIT Volume 79. ACS, (2008)

25. Pickard, L.M., Kitchenham, B.A., Jones, P.W.: Combining empirical results in software
engineering. Information and Software Technology 40, 811-812 (1998)

26. Robinson, P.W.: Fundamentals of Experimental Psychology, 2nd ed., Prentice-Hall, Engle-
wood Cliffs (1981)

27. Rosenthal, R., DiMatteo, M.R.: Meta-Analysis: Recent Developments in Quantitative
Methods for Literature Reviews. Annual review of psychology 52, 59-82 (2001)

28. Sarafino, E.P.: Research Methods: Using Processes and Procedures of Science to
Underssand Behavior. Pearson, Upper Saddle River (2005)

29. Sloman, A.: Interactions Between Philosophy and Artificial Intelligence. Artificial
Intelligence 2, 209–225 (1971)

MODELS`08 Workshop ESMDE

20

Empirical comparison of two class model
normalization techniques
Obstacles and questions ?

J.-R. Falleri1, M. Huchard1, and C. Nebut1

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France

{falleri, huchard, nebut}@lirmm.fr

Abstract. Designing accurate models is a true challenge for model driven
engineering approach. We are currently exploring techniques derived
from Formal Concept Analysis (FCA) theory for finding possible class,
association, attribute or method generalizations in models with the aim
of improving their abstraction level. Using four models, we compare clas-
sical FCA approach to Relational Concept Analysis (RCA) which allows
to discover more subtle generalizations. Interestingly, expected combi-
natorial explosion does occur in all cases when using RCA, making it
a feasible solution in a special range of models. The study highlights
several difficulties, including the need for costly and subjective human
intervention in assessing or filtering the results.

1 Introduction

We are involved for 11 years in several projects with an industrial partner, France
Télécom R&D, dealing with the general problem of assessing and improving the
quality of the abstraction level of a class model. By class model we refer to
UML structural class models, Ecore models as well as Java or C++ programs.
A small part of our work is dedicated to abstraction metrics [1] while the main
effort is put on developing theory [2,3], methodology [4,5], algorithms [6] and
software tools [4,5] for improving abstraction level. We are currently involved in
a project which is concerned with Model Driven Engineering (MDE) approach in
two ways: we use the MDE spirit and technologies for developing a generic tool,
based on data input/output metamodels and on a configuration metamodel; the
purpose of the tool, which is improving abstraction level of models, deals with
the core material of MDE, namely models. Our approach is based on Formal
Concept Analysis (FCA) and a derived data analysis method called Relational
Concept Analysis (RCA). RCA helps discovering more accurate generalizations
in models, unattainable by FCA, but the counterpart is that many non relevant
generalizations can be found at the same time. In this paper, we study four mod-
els, mining generalizations using classical FCA as well as RCA. Results show a

? France Télécom R&D has supported this work (CPRE 5326).

MODELS`08 Workshop ESMDE

21

combinatorial explosion for RCA applied to the two Ecore models, but a reason-
able result size for Java models. In the last case, the gain in obtaining relevant,
more subtle, generalizations is not ruined by the necessity of mining these inter-
esting generalizations into a huge amount of artifacts. In Section 2, we describe
the research problem and the studied solutions. Section 3 presents the empiri-
cal comparison which was conducted, as well as the difficulties encountered. We
conclude by a discussion in Section 4.

2 Clustering techniques for Class Model Normalization

Problem description One effect of the lack of abstraction in class models is the
introduction of duplicated elements (e.g. attributes, parts of methods). This oc-
curs because of the iterative way of building software and its constant evolution.
Table 1 gives an insight of the number of duplicated attributes names (identifiers)
in four class models that will be used in the case study. UML2 and Docbook are
two metamodels designed with Ecore, Apache Common Collections (ACC) and
Minjava are written in Java. Those name duplications do not necessarily imply
redundant declarations since two attributes can have the same name and differ-
ent meanings. However, it gives an indication on the actual number of duplicated
attributes. More generally, we would like to improve the level of abstraction of

Docbook UML2 Minjava ACC

#Classes 40 246 29 250

#Attributes 183 615 340 544

#Attrib. name
duplications

161 319 63 373

For a given identifier I duplicated n times, we count n duplications (and not one).
Table 1. Attribute name (identifier) duplications in four class models

class models: adding generalizations of operations factoring out common code
in their body, adding generalizations of attributes because of common or close
name and compatible types (with a common semantically close super-type) or
adding generalizations of associations in UML because their ends and part of
their description can be generalized. As a consequence of these generalizations,
new classes are introduced, and they often highlight new abstract concepts use-
ful in next steps of evolution, for reusing and easy maintenance. Among existing
proposals for finding generalizations, we study more precisely derived solutions
from Formal Concept Analysis field.

Studied solutions Formal Concept Analysis [7] is a clustering method that classi-
fies a set of entities described by attributes. More formally, let K = (E,A, R) be
a formal context. E is a set of entities, A is a set of attributes and R the own rela-
tion, with R ⊆ E×A. A sample formal context is shown at the right of Figure 1.

2

MODELS`08 Workshop ESMDE

22

In this context, entities (UML classes) are the rows and attributes (UML proper-
ties) are the columns. A concept is a set of entities that share several attributes.
It can be considered as an abstraction of these entities. More formally, a concept
is a pair (X, Y) with X ⊆ E, Y ⊆ A and X = {e ∈ E|∀y ∈ Y, (e, y) ∈ R} is the
extent (covered entities), Y = {a ∈ A|∀x ∈ X, (x, a) ∈ R} is the intent (shared
attributes). These definitions ensure maximal factorization of attributes, and in
the context of class model, avoid property and method duplications.

The concepts can be organized in a specialization lattice: a concept c1 is
lower than a concept c2 if the intent of c2 is included in the intent of c1. The
specialization lattice ensures, in the context of class model normalization, that
inheritance or specialization links respect property/method sets inclusion and
refinement. A sample lattice corresponding to the context of Figure 1 is shown
at the left of Figure 2 (intents are the upper part of the labels, extents are the
lower part).

Three steps are required to apply formal concept analysis on a class model.
First, the class model is converted into a formal context (Figure 1), which en-
codes the ownership (by contrast with [8] approach that mainly encodes access
in formal contexts). Second, a concept lattice is built, according to the formal

Fig. 1. First step of FCA on a UML model
[9]

Fig. 2. Second step of FCA on a UML
model

context. This concept lattice will contain concepts that represent the existing
entities (and thus the classes) of the formal context, and new concepts that will
lead to the creation of new classes. The last step (Figure 2-right) is to build a
class model according to the concept lattice. It is clear that the output class
model is normalized whereas the input class model was not. This normal form
is called attribute lattice factored form in [10].

Formal Concept Analysis is powerful to distribute attributes in a class hi-
erarchy, but is unable to deal with relational descriptions. As an example, let
us consider the class model in the left of Figure 3. The same conversion and
application of FCA on this model, as previously described, would lead to the
creation of the model shown in the right of Figure 3. The resulting model, even
if it is in normal form, could still be improved with a new property with type Per-
son, introduced in the class Person, and redefined by the friends and colleagues
properties.

3

MODELS`08 Workshop ESMDE

23

Fig. 3. Limitations of FCA on a UML model
Fig. 4. RCA result on a
UML model

Relational Concept Analysis [2,3] is an extension of FCA. It is designed to
take into account entities described by attributes and by inter-entity links. In
RCA, instead of having just one formal context, there is one formal context for
each kind of entities. Then these formal contexts are filled out with other contexts
that show relations between entities coming from one context and entities coming
from another context (which can be the same). More formally, a Relational
Context Family (RCF) is a pair F = (K, L) where K is a set of formal contexts
where Ki = (Ei, Ai, Ri) and L a set of relational contexts, Li = (Ea, Eb, Ri)
with Ri ⊆ Ea × Eb. Figure 5 shows the relational context family corresponding
to the class model at the left of Figure 3.

Fig. 5. Applying RCA on a UML model: produced contexts

An iterative lattice construction is applied on the relational context family.
A concept lattice is built for each formal context Ki of the Relational Context
Family. The discovered concepts of these lattices are injected as new entities in
the RCF, and new lattices are built. This iterative construction stops whenever
for each category of entities, the lattices built while performing two successive
steps are isomorphic. The set of lattices produced after each step of the process
is called a Concept Lattice Family (CLF). The class model in Figure 4 has been
produced from the contexts of Figure 5.

4

MODELS`08 Workshop ESMDE

24

3 An empirical comparison of Class Normalization
techniques

In this section, we develop our view on an empirical study we began to carry
out. We examine four facets: how a precise hypothesis we would like to check
is formulated, how the experiment is prepared, how it is conducted and finally
how results are evaluated.

3.1 Formulating hypothesis

As presented on small examples, FCA and RCA are very attractive techniques.
From a theoretical point of view, it can be shown that RCA finds relevant gener-
alizations (abstractions) that are not obtained by FCA. From a practical point
of view, RCA is intrinsically much more combinatorial than FCA and it seems
more difficult to fine-tune and control the huge set of produced generalizations.
When the initial model contains long paths of associations, some inferred gener-
alizations can have poor semantics and often mean something like (for a class)
”class whose instances are linked to instances that are linked to instances that
are linked to instances of” a given initial class of the model.

The question we would like to answer is formulated as follows: ”Comparing
generalizations produced by RCA versus those produced by FCA, and consider-
ing the effort needed for parameterizing and using results of FCA/RCA, is RCA
an interesting improvement in practice?”. This question is still too general, as
several parameterizations are possible for FCA and RCA, depending of what
we decide to encode in the tables (formal contexts for FCA and relational con-
text family for RCA). This can be considered as part of the preparation of the
experiment (reducing the hypothesis).

3.2 Preparation of the experiment

Preparing the experiment in our context involved choosing class models on which
we could test, choosing some procedures to make the data usable or more rel-
evant, choosing the part of models to consider because many elements can be
abstracted, and choosing the gauges for evaluating results.

In previous experiments with industrial models from France Telecom R&D,
data were confidential and it was impossible even for us to see them and we just
could access to partial informations: partial examples of built abstractions and
partial results. Now, after several years, these models are no more confidential
but people who designed the models are no more in charge of the projects and
have no time to devote to new experiments. The problem we face here is the
obsolescence of data.

Choosing data To evaluate our class model normalization approach, we carried
out an experiment on four open source class models. Two of them, UML [11]
and Docbook [12], are design models written in Ecore. The two others, Apache
Commons Collections (ACC) [13] and Minjava [14] (author: J.R. Falleri), are
implementation models, obtained by reverse-engineering on Java code. UML
stands for the UML 2.0 meta-model. Docbook is a meta-model of the Docbook

5

MODELS`08 Workshop ESMDE

25

language. Apache Commons Collections is a Java library that extends the Java
collections. Minjava is a Java reverse engineering tool that analyses Java byte-
code and produces an Ecore compliant Java model conforming to a simple Java
meta-model. Open source class models have the advantage of being available by
everyone. Designers may change or may be too busy to discuss with experimen-
talists about the models, but at last, in industrial context this is often the same
situation.

Choosing configurations We restricted the experiment, for a first study, to parts
of models composed of classes and attributes (properties in UML terms):

1. Basic FCA configuration (FCA1): it corresponds to the one in [10], that
generates a class and a property context and analyses the attribute ownership
to discover super-classes, based on attribute names.

2. Enhanced FCA configuration (FCA2): same as the previous configuration,
but using information specific to the input language (e.g. static keyword in
Java, cardinality in Ecore) to avoid incorrect generalizations.

3. Enhanced Properties configuration (RCA): a RCA configuration that gen-
erates a class and a property context and analyses the attribute ownership
and the attribute type to discover super-classes and redefined properties.

Choosing gauges To understand the results of the application of FCA (resp.
RCA) to our sample models, we use the produced lattice (resp. Concept Lat-
tices Family). We classify the concepts of these lattices into three disjoint cat-
egories. ExistingConcepts: for elements that were already present in the in-
put class model; NewConcepts: for elements created during the RCA process;
MergeConcepts: for the merge of existing elements from the input model.

The ExistingConcepts set is not really interesting since it contains only con-
cepts representing the input entities. The NewConcepts set is very interesting.
It contains the concepts that may introduce new useful elements (abstractions
of existing ones) in the class model. The MergeConcepts set is also interesting,
since it contains the elements from the source model that have been considered
similar and therefore have led to the creation of the new elements. To present
the result of our case study, we choose to use the two following quantities: N ,
the number of new elements i.e. |NewConcepts|; M , the number of merges i.e.
|MergeConcepts|.

Of course, the previous quantities show how the different configurations of
the RCA process behave, but are unable to show the quality of these results.
Metrics are a way of assessing quality, but they are not so easy to use: based
on current inheritance metrics from [15,16], it has been shown in [17] that in-
heritance metrics (associated with size metrics) are useful in measuring software
stability, but don’t really help in detecting concrete design problems.

In [18], the case study uses a structural metric to analyze the result of FCA
application on real world class hierarchies. The chosen metric, called M2 is de-
rived of the M1 metric introduced in [19]. This metric measures redundancy and
inheritance quality. Basically, M2 is a weighted sum of the number of attributes

6

MODELS`08 Workshop ESMDE

26

and the number of inheritance links. To defavor the use of multiple inheritance,
for a given class the inheritance links count as double after the first one. The
lower metric M2 is, the better the class model is designed.

Unfortunately, this metric can lead to wrong analysis of the class model. If
we imagine an output class model where a super-class has been found but is not
correct (for instance because of homographs), the M2 metric will still consider
this output model as better than the input one. Moreover, this metric is not
compatible with the use of redefined properties or methods. If we use the class
model shown in Figure 3, the metric M2 will be 24 for the input model, 22
for the output model without attribute redefinition and 26 for the output class
model with attribute redefinition. This clearly shows that this metric is unable to
correctly measure the quality of a class model design when attribute redefinition
is used.

Results from FCA/RCA on class model could be assessed using recent pro-
posals and results on specialization quality measurement [1,20]. But in this first
experiment, four simple, specific metrics have been introduced based on human
analysis:. cn: number of concepts included in the NewConcepts set that are con-
sidered as correct; a rate is obtained with cnr = cn/|NewConcepts|; cm: number
of concepts included in the MergeConcepts set that are considered as correct; a
rate is obtained with cmr = cm/|MergeConcepts|.

3.3 Experimenting

During Java model building, we faced to the presence of the standard Java API
library and had to decide whether looking for abstraction in the model combined
with the Java API, or inside the model only. When building our sample models,
we finally chose to restrict the extraction of Java entities to the program itself,
and blocked the extraction of the Java standard library (except base types).
So when a Java class introduces an attribute typed by a class included in the
standard Java API (for instance a LinkedList), the attribute appears as not
typed in the resulting Java model. The output of this phase is the set of results,
in the expected form if no problems for measuring have been found. For our
experiments, results are presented in Figures 6, 7, 8, 9 and Tables 10, 11.

Fig. 6. Results for Minjava
class model Fig. 7. Results for Docbook class model

7

MODELS`08 Workshop ESMDE

27

Fig. 8. Results for ACC class
model Fig. 9. Results for UML class model

FCA1 FCA2 RCA

|MergeConcepts| 12 10 10

cm 10 10 10

cmr 0.83 1 1

|NewConcepts| 2 2 6

cn 0 0 0

cnr 0 0 0

Fig. 10. Attribute results for Minjava

FCA1 FCA2 RCA

|MergeConcepts| 4 4 4

cm 3 3 3

cmr 0.75 0.75 0.75

|NewConcepts| 9 8 12

cn 5 5 5

cnr 0.56 0.63 0.42

Fig. 11. Class results for Minjava

3.4 Evaluating

Quantitative results shown in Figures 6, 7, 8, 9 are not sufficient to conclude on
quality and relevancy of FCA/RCA, but they confirm that in some data (Java
software here: ACC, MinJava) feasibility of FCA and RCA is assessed, com-
binatorial explosion does not occurs and results can be manually explored; in
other cases (Ecore models: Docbook, UML2) the number of abstractions created
by FCA remains reasonable, while abstractions created by RCA explodes, e.g.
1534 new classes are created by RCA for the UML2 metamodel using 246 ini-
tial classes and 615 initial properties. This last result is rather depressing and
highlights the need for adapted filters. Because we face to the problem of the
gold-seeker: looking for a nugget in a heap of uninteresting rocks.

Results of cn and cm metrics on Minjava are shown in Tables 10 and 11.
Concept correction has been assessed by the designer of Minjava. These results
confirm what was expected from the quantitative results. FCA1 is the configu-
ration that produces most incorrect merges and RCA produces most incorrect
new concepts. On the other hand, new concepts produced by RCA could not
have been created using a FCA configuration and can contain useful concepts.
However it is necessary to find a way to analyse those new concepts in a semi-
automatic way, because they are too numerous to be analysed by hand.

8

MODELS`08 Workshop ESMDE

28

4 Discussion

We have shown several facets of an on-going empirical study about FCA and
RCA techniques. Now we would like to open the discussion, based on the lessons
learned during this first approach and the raised questions.

Place of humans is crucial: to decide which data are used, to evaluate quality
of results. For three models we have only quantitative results which, at the end,
only give indications of the number of built abstractions. For the (small-size)
MinJava model, we have an evaluation which takes into account the judgment of
one of us who is the designer of MinJava. This allows us to give a precision mea-
sure as it is commonly used in the information retrieval field: the fraction of the
relevant retrieved abstractions among the retrieved abstractions. This interesting
measure is difficult to compute for large models and when we do not have good
knowledge of their semantics. It is also a subjective question. A second measure
coming from information retrieval field is the recall measure which gives the
fraction of the relevant retrieved abstractions among the relevant abstractions.
This is even more difficult to obtain because finding all relevant abstractions in
a model needs many different designers to have a kind of consensus.

Reproducibility of the study is always a challenge: in our case, it is ensured by
the use of open source software MinJava for Java models, Ecore tools for Ecore
models, the declarative configuration of which entities are taken into account, in
available files thanks to a Model Driven Engineering approach [9].

Concerning evaluation, besides precision and recall measure, we could use
comparisons between the number of duplications (Fig. 1) and the number of
added abstractions. But, beyond these technical considerations, we are aware of
the fact that we have (partially) evaluated a first level of quality. A more difficult,
second level, of evaluation would consist of measuring: The effort achieved to
build the abstractions and (manually) filtering them; What we gained in terms
of software quality (readability, extensibility, maintainability).

To conclude, what could help us in our quest:

– sharing problems: organizing challenges like other domains do as the KDD
Cup (http://www.sigkdd.org/kddcup/); This could guarantee relevancy of
problems themselves;

– sharing data: stable benchmarks, different versions of models; an example of
that in MDE domain is the zoo of metamodels (http://www.eclipse.org/gmt/
am3/zoos/atlantEcoreZoo/); simulation (randomly generated data) can also
be a solution in some special cases but is difficult to control; What is still
missing is a benchmark of models, because in our experiment we had to build
some of them by transforming source code, thus adding an interpretation
step;

– sharing methodologies: Using metrics, using human skills, defining filtering
techniques to restrict evaluation in relevant zones, etc.

– sharing results: repositories of results for given benchmarks to confront ex-
periences; making possible the publications of negative results to avoid bias
and begin again unuseful experiences.

9

MODELS`08 Workshop ESMDE

29

Acknowledgments The authors would like to thank the anonymous referees
for their suggestions and comments that helped to improve the paper.

References

1. Dao, M., Huchard, M., Libourel, T., Roume, C., Leblanc, H.: A New Approach to
Factorization - Introducing Metrics. In: IEEE METRICS. (2002) 227–236

2. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Improving Gen-
eralization Level in UML Models Iterative Cross Generalization in Practice. In:
ICCS. Volume 3127 of LNCS., Springer (2004) 346–360

3. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4) (2007) 39–76

4. Arévalo, G., Falleri, J.R., Huchard, M., Nebut, C.: Building abstractions in class
models: Formal concept analysis in a model-driven approach. In: MoDELS. Volume
4199 of LNCS., Springer (2006) 513–527

5. Falleri, J.R., Huchard, M., Nebut, C., Arévalo, G.: A Model Driven Engineering
approach for making generic FCA/RCA tools. In: Proceedings of the Fifth Inter-
national Conference on Concept Lattices and Their Applications (CLA’07). (2007)
229–252

6. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of
Galois Sub-hierarchy-building Algorithms. In: ICFCA. Volume 4390 of LNCS.,
Springer (2007) 166–180

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc. Secaucus, NJ, USA (1997)

8. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM
Trans. Program. Lang. Syst. 22(3) (2000) 540–582

9. Falleri, J.R., Huchard, M., Nebut, C.: A generic approach for class model normal-
ization. In: Proc. of ASE’08, short paper. (to appear)

10. Godin, R., Valtchev, P.: Formal concept analysis-based class hierarchy design in
object-oriented software development. In: Formal Concept Analysis. Volume 3626
of LNCS., Springer (2005) 304–323

11. Eclipse: UML2 EMF Plugin. http://www.eclipse.org/modeling/mdt/?project=uml2
(2008)

12. Triskell: Docbook metamodel. http://www.kermeta.org (2008)
13. : Apache Foundation: Apache Commons Collections. http: //commons.apache.org/

collections (2008)
14. Falleri, J.R.: Minjava. http://code.google.com/p/minjava/ (2008)
15. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design.

IEEE Trans. Software Eng. 20(6) (1994) 476–493
16. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Guide.

Prentice-Hall (1994)
17. Demeyer, S., Ducasse, S.: Metrics, Do They Really Help? In: LMO, Hermès (1999)

69–82
18. Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of class

hierarchies based on concept,(Galois) lattices. Theory and Practice of Object Sys-
tems 4(2) (1998) 117–134

19. Lieberherr, K., Bergstein, P., Silva-Lepe, I.: From objects to classes: algorithms for
optimal object-orienteddesign. Software Engineering Journal 6(4) (1991) 205–228

20. Breesam, K.M.: Metrics for Object-Oriented Design Focusing on Class Inheritance
Metrics. In: DepCoS-RELCOMEX, IEEE Computer Society (2007) 231–237

10

MODELS`08 Workshop ESMDE

30

Assessing the Power of A Visual Notation
- Preliminary Contemplations on Designing a Test -

Dominik Stein and Stefan Hanenberg

Universität Duisburg-Essen
{ dominik.stein, stefan.hanenberg }@icb.uni-due.de

Abstract. This paper reports on preliminary thoughts which have been
conducted in designing an empirical experiment to assess the comprehensibility
of a visual notation in comparison to a textual notation. The paper sketches
shortly how a corresponding hypothesis could be developed. Furthermore, it
presents several recommendations that aim at the reduction of confounding
effects. It is believed that these recommendations are applicable to other
experiments in the domain of MDE, too. Finally, the paper reports on initial
experiences that have been made while formulating test questions.

1 In troduction

Although modeling does not imply visualization, people often consider the visual
representation of models to be a key characteristic of modeling. One reason to this
could be that modeling techniques such as State Machines or Petri-Nets are often
taught and explained with help of circles and arrows rather than in terms of
mathematical sets and functions. Apart from that, other kinds of modeling, e.g. data
modeling with help of Entity-Relationship-Diagrams, make heavy use of visual
representations, although the same concepts could be specified in a purely textual
manner, too.

However, let alone the impression that visual representations are considered very
appealing by a broad range of developers, customers, maintainers, students, etc., a
scientific question would be if visual representations actual yield any extra benefit to
software development, maintenance, or teaching, etc.

Driven by a personal belief of the authors that this extra benefit exists, this paper
reports on preliminary thoughts which have been conducted in designing an empirical
experiment. The goal of this empirical experiment is to assess (such a "soft" property
as) the "comprehensibility" of a visual notation in comparison to a textual notation.

This paper does not formulate a concrete hypothesis. Instead, it conducts general
contemplation about hypotheses that are concerned with the evaluation of
"comprehensibility". In particular, the paper presents several recommendations that
aim at the reduction of confounding effects while running the test. It is suggested that
these recommendations should be obeyed in other experiments in the domain of
MDE, too. Furthermore, the paper reports on experiences that have been made while
formulating the test questions for a test on comprehensibility.

The paper is structured as follows: In section 2, the process to define a hypothesis
is outlined. In sections 3 and 4, a couple of considerations are presented in order to

MODELS`08 Workshop ESMDE

31

reduce confounding effects. In section 5, problems are presented which have been
encountered while formulating test questions. Section 6 presents some related work.
And section 7 concludes the paper.

2 Defining the Goal of the Experiment, and What to Measure?

When designing an controlled experiment, everything is subordinate to the overall
assumption, or hypothesis, that is going to be tested. Usually, the development of the
test will require to repeatedly reformulate (refine) the hypothesis since the initial
hypothesis turned out not to be (as easily) testable (as presumed). (A possible reason
for this could be, for example, that it is overly hard, or impossible, to reduce the
impact of confounding effects or to find suitable questions; cf. sections 3, 4 and 5.)

2.1 Experiment Definition

A fist step could be to define the experiment in general. When comparing visual vs.
textual notations, this could be done as follows (using the experiment definition
template suggested by [10]):

The goal of the study is to analyze visual and textual program specifications (i.e.
diagrams versus code), with the purpose of evaluating their effect on the
"comprehensibility" of the information shown. The quality focus is the perception
speed and completeness and correctness with which all relevant information is
apprehended. The perspective is that of teachers and program managers, who would
like to know the benefit that visual notations can bring to their work (i.e. teaching
students in computer science or developing software). The context of the experiment
is made up of artificial/sample code snippets and their corresponding diagrams
(= objects) as well as undergraduate and graduate students (= subjects).

2.2 Hypothesis Formulation

According to [4], a scientific hypothesis meets the following three criteria:

• A hypothesis must be a "for-all" (or rather a "for-all-meeting-certain-
criteria") statement. This means in particular that the hypothesis must be true
for more than a singular entity or situation.

• A hypothesis must be (able to be reformulated as) a conditional clause (of
the form "whenever A is true/false, this means that B is (also) true/false").

• A hypothesis must be falsifiable. That means that, in principle, it must be
able to find an entity or situation in which the hypothesis is not true.

Furthermore, for practical reasons, [1, 5] suggest to base the hypothesis on
observable data. That is, in the (possibly reformulated) conditional clause, the value
of one observable data (called "the dependent variable") must be specified to depend
on the value of one other observable data (called "the independent variable") in a
consistent way. The hypothesis is falsified if at least one example can be found where
this dependency is not satisfied.

MODELS`08 Workshop ESMDE

32

A starting point to find a hypothesis for the experiment outlined in section 2.1
could be the following:

When investigating program specifications, a visual representation X (as
compared to a textual representation Y) significantly facilitates comprehension of
information Z.

Following the aforementioned criteria, the above hypothesis is a scientific
hypothesis because it can be rephrased as "whenever a program specification is
represented using a visual notation X, it is easier to comprehend (with respect to
information Z) than an equivalent representation using a textual notation Y". In this
statement, the possible values (treatments) of the independent variable (factor) are
"visual/not visual" and the possible values of the dependent variable are "easier to
comprehend/not easier to comprehend". The claimed dependency would be "visual →
easier to comprehend". The statement could be falsified by showing that visual
notation X is not easier to comprehend than textual notation Y (with respect to
information Z).

comparing a visual and
a textual notation

background knowledge
and skills of the subjects

semantic familiarity of
the subjects with the

notations to test

semantic compression
of the objects

semantic equality
of the objects

syntactic representation
of the objects

Fig. 1. Confounding impacts.

2.3 Variable Selection

Turning a the preliminary idea of a hypothesis into a testable hypothesis which is
thoroughly rooted on objectively observable data is a challenging task in developing
an empirical test. For example, since comprehensibility by itself is difficult to
observe, another variable must be found whose values are considered to inherently
depend on the level of comprehension of a tester. A commonly accepted variable
measuring the level of comprehension, for example, is "correctness", i.e. the number
of correct answers1 given to a (test) questions (cf. [8, 7, 6]). However, as pointed out
by [7], correctness is only one facet of comprehensibility. Another variable is
"comprehension speed", e.g. the number of seconds that the subjects looked at the
object (or maybe even "easy to remember", i.e. the number of times that the subjects

1 if the correct answer consists of multiple elements, it could be some mean of precision and

recall [2] (cf. [6]).

MODELS`08 Workshop ESMDE

33

looked at the objects; cf. [7]). The inherent effect of the variable that is of interest on
the variable that is measured must be substantially elucidated (and defended) in the
discussion on the (construct) validity of the test.

The only factor (independent variable) in the experiment would be "kind of
presentation" with the treatments (values) {visual, textual}.

One of the big challenges when investigating the casual dependencies between the
(dependent and independent) variables is to reduce confounding impacts (see Fig. 1)
as much as possible, and thus to maximize the validity of the experiment (cf. [10]).
Otherwise, the "true" dependency could possibly be neutralized (at least, in parts), or
might even be turned into its reciprocal direction (in the worst case).

In the following sections, some means are presented which should be taken in
order to improve the validity of an experiment comparing a visual and a textual
notation. The authors believe that these means are general enough to be applied to
other evaluating experiments in the domain of MDE approaches, too.

3 Preparing Objects – Ensuring Construct Validity (I)

Construct validity refers "to the extent to which the experiment setting actually
reflects the construct under study" [10]. In particular, this means to ensure that the
objects of the experiment which are given to the subjects in order to perform the tests
represent the cause well (i.e. a visual vs. a textual representation, in this case).

3.1 Semantic Equality

One obvious, yet carefully to ensure, requirement is to compare (visual and textual)
representations that have equal semantics, only. It would be illegal and meaningless to
compare any two representations with different semantics.

class A {
B b;

}

class B {
A a;

}

A

B

a

b
⇔⇔⇔⇔⇔⇔⇔⇔

A

B

a

b

Fig. 2. Ensure semantic equality.

Fig. 2 shows an example. It would be illegal to compare the visual representation
on the left with the textual representation in the middle since they mean different
things. The bidirectional association between classes A and B in the UML model in
the left of Fig. 2 denotes that two instances of class A and B are related to each other
such that the instance of class A can navigate to the instance of class B via property b,
while at the same time the instance of class B can navigate to the instance of class A
via property a (meaning a = a.b.a is always true). The Java program code in the

MODELS`08 Workshop ESMDE

34

middle of Fig. 2, however, does not imply that an instance of class A which is
associated with an instance of class B (via its property b) is the same instance which
that associated instance of class B can navigate to via its property a (meaning a =
a.b.a does not need to be true).

Hence, in an empirical test comparing the performance2 of visual vs. textual
representations of associations, it would be more appropriate (in fact, obligatory) to
compare the textual representation in the middle of Fig. 2 with the visual
representation in the right of Fig. 2. Now, the semantic meaning of one notation is
equally represented in the other notation, and comparing the results of their individual
performance is valid3.

3.2 Equal Degree of Compression

Apart from semantic equality, the expressions being compared need to be expressed at
an equal degree of compression (here, the degree of compression shall refer to the
degree with which semantic information is condensed into one language construct).
Otherwise, "better" performance of one notation could be induced by the fact that one
notation uses a "higher" compression (e.g. one language construct of that notation
conveys the same semantic information than four language constructs of the other
notation) rather than that it uses a "better" representation.

A

B

a

b

class A {
B b;
B getB() { return b; }
void setB(B b) { this.b = b; b.a = this; }

}

class B {
A a;
A getA() { return a; }
void setA(A a) { this.a = a; a.b = this; }

}

⇔⇔⇔⇔

Fig. 3. Do not test expressions of unequal degree of compression.

Fig. 3 gives an example. Other than in Fig. 2, the Java code now contains extra
lines which states that an instance of class A which is associated with an instance of
class B (via its property b) must be the same instance to which that associated instance
of class B can navigate via its property a (meaning a = a.b.a is always true).
Hence, the Java expression in the right of Fig. 3 now equates to the semantics of the
UML expression in the left of Fig. 3.

2 in this paper, "performance" refers to "the notation's ability to be read and understood" rather

than computation speed.
3 note that asserting the semantic equality of two notations is not trivial. For example, there is

no general agreement on how a UML class diagram should be transformed into Java code.

MODELS`08 Workshop ESMDE

35

If – in a test – the UML expression should actually yield "better" results than the
Java expression now, it is unclear (and highly disputable) whether the "better"
performance is due to the visual representation or due to the higher degree of
compression (i.e. the fact that we need to read and understand four method definitions
in the Java code as compared to just one association in the UML diagram).

3.3 Presenting Objects

Apart from equal semantics and equal degree of compression, the expressions have to
be appropriately formatted, each to its cleanest and clearest extent. This is because the
authors estimate that disadvantageous formatting of expressions could have a negative
impact on the test outcome, whereas advantageous formatting of expressions could
improve the test results.

Fig. 4 gives an example. In the left part of Fig. 4, the Java code has been formatted
in a way which is tedious to read. In the right part of Fig. 4, the UML representation
has been formatted disadvantageously. With expressions formatted like this, it is
assumed that the respective notation is condemned to fail in the performance test.

A

B

a

b

class A { private B
b; B getB() { return
b; } void setB(B b) { this
.b = b; b.a = this; } }

class B { private A
a; A getA()
{ return a; } void
setA(A a) { this
.a = a; a.b =

this; } }

⇔⇔⇔⇔

class A {
B b;

}

class B {
A a;

}

⇔⇔⇔⇔
A

B

a

b

Fig. 4. Format expressions to their cleanest and clearest extent.

Unfortunately, there usually is no (known) optimal solution for the formatting task.
Therefore, expressions should be formatted clearly and consistently following some
strict and predefined guidelines (e.g. some formatting guidelines such as the [9]). It is
important to keep in mind, though, that even though uniform guidelines are used to
format the expressions, the effects of those formatting guidelines on the test outcomes
are unclear. Moreover, the effects may even be different for each notation.
Consequently, the (unknown) impact of formatting guidelines on the test results needs
to be respected in the discussion of the (construct) validity of the test.

Likewise, syntactic sugar is to be avoided. That means, all means that are not
related to the semantics of the underlying notation, such as syntax highlighting in
textual expressions, or different text formats and different line widths in visual
expressions, should not be used. Syntactic sugar (fonts, line width, colors, etc.) are
likely to draw the attention of the testers to different parts of the expressions and thus
may confound the pure comparison between their visual and textual representation.

MODELS`08 Workshop ESMDE

36

Evaluating the impacts of formatting, fonts, line width, and colors on the
comprehensibility of a notation is an interesting test of its own. However, that test
should focus on the comparison of different style guidelines for one notation rather
than on the comparison of (different) guidelines for different notations.

4 Preparing Subjects – Ensuring Internal Validity

To ensure internal validity, it must be ensured that a relationship between a treatment
and an outcome results from a causal relationship between those two, rather than from
a factor which has not been controlled or has not been measured (cf. [10]). In
particular this means how to "treat", select, and distribute the subjects such that no
coincidental unbalance exists between one group of testers and another.

4.1 Semantic Familiarity

The imperative necessity of comparing semantically equivalent "expressions" (see
section 3.1) is complemented with the necessity that testers are equally trained in, and
familiar with, both notations. Otherwise, i.e. if the testers of one notations are more
experienced with their notation than the testers of the other notation with their
notation, a "better" test result of the former notation could be induced by the fact that
its testers have greater experience in using/reading it rather than by the fact that it is
actually "better" (in whatsoever way). This is particularly probable whenever the
performance of new notations shall be evaluated in contrast to existing ones.

One way to control the knowledge of the tested notations is to look for testers that
are not familiar with both notations, and have them take a course in which they learn
the notations to test. This approach seems particularly practicable in academia – even
though the test results will usually assert the performance of "beginners", and thus
make extrapolation to the performance of "advanced" software developers in
industrial settings difficult (which does not mean that assessing the benefits of visual
notations for "beginners" isn't worthwhile and interesting). This problem represents a
threat to the external validity of the experiment (cf. [10]).

The goal of teaching the notations to novices is to ensure that the testers of each
notation attain similar knowledge and skill with their notation. The challenge here is
to defined what it means that testers are "equally familiar" (i.e. equally knowing and
skilled) with their notations. It also needs to be investigated how the knowledge and
skills of an individual tester with his/her notation can be actually assessed (so that we
can decide afterwards whether or not "equal familiarity" has been reached). Another
challenge is how "equal familiarity" can be achieved by a teaching course in a timely
and didactically appropriate manner (e.g., what is to be done if a particular group of
testers encounters unforeseen comprehension problems with their notation).

The knowledge and skill test could occur prior to the actual performance test, or
intermingled with the performance test (in the latter case, some questions test the
knowledge and the skills of the testers, while other questions test the performance of
the notations). If the knowledge and skill test reveals that the semantic familiarity of
the testers with their notation is extremely unbalanced (between the groups of testers),
the test outcome must be considered meaningless.

MODELS`08 Workshop ESMDE

37

5 Measuring Outcomes – Ensuring Construct Validity (II)

Once the hypothesis is sufficiently clear, the next challenging step is to formulate
questions that are suitable to test the hypothesis and to find a test format that is
suitable to poll the required data. This is another facet of construct validity, according
to which the outcome of the test needs to represent the effects well (cf. [10]).

In this section, considerations and experiences are presented that have been made
in designing a test evaluating the comprehensibility of a visual notation.

5.1 Test Format, and How to Measure?

Multiple Choice tests (when carefully designed; cf. [3]) are considered to be a good
and reliable way to test the knowledge of a person, in particularly in comparison to
simple True/False tests. Hence, Multiple Choice tests would have a higher construct
validity with respect to the correctness of comprehension than True/False tests. A
question format with free answer capabilities would be more realistic (and thus would
increase the external validity of the experiment; cf. [10]). However, such short-answer
test is much more laborious because it requires manual post-processing in order to
detect typos and/or semantically equivalent answers.

When it comes to measuring the response time, it is important to discriminate
between the time to find the answer in the expression and the time to understand the
question. This is because if testers need 30 sec. to understand a question and then 10
sec. to find the answer in the textual expression and just 5 sec. to find the answer in
the visual expression, it makes a difference whether 40 sec. are compared to 35 sec.,
or 10 sec. to 5 sec. Not to discriminate between the time to find an answer and the
time to understand a question is only valid, if the ratio is reciprocal, i.e. if the time to
understand a question is negligible short in comparison to the time to find the answer.

If the test outcome consists of more than one data, it is a big challenge to define
how the outcomes can be combined in order to obtain a meaningful interpretation. In
this case, for example, it needs to be decided how "correctness of answers" and
"response time" can be combined to indicate a "level of comprehension". One option
would be to disregard all incorrect answers, and consider the response time of correct
answers, only.

5.2 Volatile (Time) Measurements – Problems of A First Test Run

Preliminary and repeated test runs of a test evaluating simple analysis of one textual
expression4 (with the same person) have shown that the measured time needed to
answer the question (exclusive of the time needed to understand the question; cf.
section 5.1) is rather short (in average ~10 sec.) and varies tremendously (3 sec. to
30+ sec., even for same or similar questions!). It seems as if the measured time is
heavily confounded by some external factor (maybe slight losses of concentration).
This is problematic because due to the short (average) response time, even the
slightest disturbance (of about 1 sec.) could confound the measured (average) time
significantly (e.g. by one tenth, in this case).

4 in another case than association relationships

MODELS`08 Workshop ESMDE

38

Another problem was to strictly discriminate between the time to find the answer
in the expression and the time to understand the question (which, again, was essential
due to the short (averaged) response time). The testers were required to explicitly flip
to the expression once they have carefully read (and understood) the question (which
was shown first). As it turned out, however, testers sometimes realized that they have
not fully understood the question after they have already flipped to the expression. As
a result, the measured response time was partly confounded.

It is currently being investigated how the problem of high variation in
measurements can be tackled. One option would be to pose questions that are more
difficult to answer, and thus takes more time. This will only work, though, if the
confounding effects do not grow proportionally. Another option would be to repeat
the test countless times (with the same person and similar questions) in order to get a
more reliable average response time. A big problem of this approach is to ensure that
the testers will not benefit from learning effects in the repeated tests.

A promising solution to properly discriminate between the time to find the answer
in the expression and the time to understand the question has been found in [7].

6 Related Work

In 1977, Shneiderman et al. [8] have conducted a small empirical experiment that
tested the capabilities of flow charts with respect to comprehensibility, error
detection, and modification in comparison to pseudo-code. Their outcome was that –
statistically – the benefits of flow charts was not significant. Shneiderman et al. did
not measure time, though.

This was determined to be inevitable by Scanlan [7]. Scanlan formulated five
hypotheses (e.g. "structured flow charts are faster to comprehend", "structured flow
charts reduce misconceptions", to name just the two which are closely related to this
paper). Scanlan's test design is very interesting: Scanlan separated comprehension
(and response) time of the question from comprehension time of the expression. To
do so, testers could either look at the question or look at the expression (an algorithm,
in this case). This is an interesting solution for the aforementioned problem of
separating comprehension time and response time (see section 5.1). Scalan's outcome
was that structured flow charts are beneficial.

7 Conclusion

This paper has presented preliminary thoughts which have been conducted in
designing an empirical experiment to assess the comprehensibility of visual notations
in comparison to textual notations. The paper has discussed shortly how a
corresponding hypothesis could be developed. Furthermore, it has presented several
recommendations that aim at the reduction of disturbances in the measured data,
which are considered to be helpful for other experiments in the domain of MDE, too.
Finally, the paper has reported on initial experiences that have been made while
formulating the test questions.

MODELS`08 Workshop ESMDE

39

It needs to be emphasized that this paper presents preliminary considerations rather
than sustainable outcomes. On the contrary, each of the presented contemplations
could be subject of an empirical evaluation of itself (e.g. whether or not advantageous
formatting really has an positive effect on comprehensibility). Also, decisions need to
be made about how to execute the test (e.g. how textual and visual expressions are
shown to the testers, if they can use zooming or layouting functions, etc.) . The
authors plan to pursue the considerations presented here and, ultimately, come up
with a test design. Getting there will require many (self-)tests before finally a test
design will be found that is capable to assess the specified hypothesis reliably.

Acknowledgement

The authors thank the anonymous reviewers for their patients with the tentativeness of
these contemplations and for their productive comments which have helped to further
advance the test design.

References

[1] Bortz, J., Döring, N., Forschungsmethoden und Evaluation für Sozialwissenschaftler
(Research Methods and Evaluation for Social Scientist), Springer, 1995

[2] Frakes, W.B., Baeza-Yates, R., Information Retrieval: Data Structures and Algorithms,
Prentice-Hall, 1992

[3] Krebs, R., Die wichtigsten Regeln zum Verfassen guter Multiple-Choice Fragen (Most
Important Rules for Writing Good Multiple-Choice Questions), IAWF, Bern, 1997

[4] Popper, K., Logik der Forschung, 1934 (The Logic of Scientific Discovery, 1959)
[5] Prechelt, L., Kontrollierte Experimente in der Softwaretechnik (Controlled Experiments in

Software Engineering), Springer, 2001
[6] Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M., The Role of Experience

and Ability in Comprehension Tasks supported by UML Stereotypes, Proc. of ICSE'07,
IEEE, pp. 375-384

[7] Scanlan, D.A., Structured Flowcharts Outperform Pseudocode: An Experimental
Comparison, IEEE Software, Vol. 6(5), September 1989, pp. 28-36

[8] Shneiderman, B., Mayer, R., McKay, D., Heller, P., Experimental investigations of the
utility of detailed flowcharts in programming, Communications of the ACM, Vol. 20(6),
1977, pp. 373-381

[9] Sun, Code Conventions for the Java Programming Language, April 20, 1999,
http://java.sun.com/docs/codeconv/

[10] Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.,
Experimentation in Software Engineering - An Introduction, Kluwer, 2000

MODELS`08 Workshop ESMDE

40

Embedded System Construction – Evaluation of Model-

Driven and Component-Based Development Approaches

Christian Bunse
1
, Hans-Gerhard Gross

2
, and Christian Peper

3

1
 International University in Germany, Bruchsal, Germany

Christian.Bunse@i-u.de
2
 Delft University of Technology, Delft, The Netherlands

h.g.gross@tudelft.nl
3
 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany

Christian.Peper@iese.fraunhofer.de

Abstract. Model-driven development has become an important engineering para-
digm. It is said to have many advantages, such as reuse or quality improvement,

over traditional approaches, even for embedded systems. Along a similar line of

argumentation, component-based software engineering is advocated. In order to
investigate these claims, the MARMOT method was applied to develop several

variants of a small micro-controller-based automotive subsystem. Several key fig-

ures, like model size and development effort were measured and compared with

two main-stream methods: the Unified Process and Agile Development. The
analysis reveals that model-driven, component-oriented development performs

well and leads to maintainable systems and a higher-than-normal reuse rate.

Keywords: Exploratory Study, Embedded, Model-Driven, Components

1 Introduction

Embedded software design is a difficult task due to the complexity of the problem

domain and the constraints from the target environment. One specific technique that

may, at first sight, seem difficult to apply for the embedded domain, is modeling and

Model-Driven Development (MDD) with components. It is frequently used in other

engineering domains as a way to solve problems at a higher level of abstraction, and

to verify design decisions early. Component-oriented development envisions that new

software can be created with less effort than in traditional approaches, simply by

assembling existing parts. Although, the use of models and components for embedded

software systems is still far from being industrial best practice. One reason might be,

that the disciplines involved, mechanical-, electronic-, and software engineering, are

not in sync, a fact which cannot be attributed to one of these fields alone. Engineers

are struggling hard to master the pitfalls of modern, complex embedded systems.

What is really lacking is a vehicle to transport the advances in software engineering

and component technologies to the embedded world.

Software Reuse is currently a challenging area of research. One reason is that software

quality and productivity are assumed to be greatly increased by maximizing the (re)use of

MODELS`08 Workshop ESMDE

41

mailto:Christian.Bunse@i-u.de
mailto:h.g.gross@tudelft.nl
mailto:Christian.Peper@iese.fraunhofer.de

(part of) prior products instead of repeatedly developing from scratch. This also stimulated

the transfer of MDD and CBD [12] techniques to the domain of embedded systems, but

the predicted level of reuse has not yet been reached. A reason might be that empirical

studies measuring the obtained reuse rates are sparse. Studies, such as [7] or [8] examined

only specific aspects of reuse such as specialization or off-the-shelf component reuse, but

did not provide comparative metrics on the method’s level. Other empirical studies that

directly focus on software reuse either address non-CBD technology [14], or they focus on

representations on the programming language-level [15]. Unfortunately, there are no

studies in the area of MDD/CBD for embedded systems.

This paper shortly introduces the MARMOT system development method. MARMOT

stands for Method for Component-Based Real-Time Object-Oriented Development and

Testing, and it aims to provide the ingredients to master the multi-disciplinary effort of

developing embedded systems. It provides templates, models and guidelines for the prod-

ucts describing a system, and how these artifacts are built. The main focus of the paper is

on a series of studies in which we compare MARMOT, as being specific for MDD and

CBD with the RUP and Agile Development to devise a small control system for an exte-

rior car mirror. In order to verify the characteristics of the three development methods,
several aspects such as model size [13] and development effort are quantified and ana-

lyzed. The analysis reveals that model-based, component-oriented development performs

well and leads to maintainable systems, plus a higher-than-normal reuse rate, at least for

the considered application domain.

The paper is structured as follows: Section 2 briefly describes MARMOT, and Sec-

tions 3, 4, and 5 present the study, discuss results and address threats to validity. Fi-

nally, Section 6 presents a brief summary, conclusions drawn, and future research.

2 MARMOT Overview

Reuse is a key challenge and a major driving force in hardware and software devel-

opment. Reuse is pushed forward by the growing complexity of systems. This section

shortly introduces the MARMOT development method [3] for model-driven and

component-based development (CBD) of embedded systems. MARMOT builds on

the principles of KobrA [1], assuming its component model displayed in Fig. 1, and

extends it towards the development of embedded systems. MARMOT components

follow the principles of encapsulation, modularity and unique identity that most com-

ponent definitions put forward, and their communication relies on interface contracts

(i.e., in the embedded world these are made available through software abstractions). An

additional hardware wrapper realizes that the hardware communication protocol is trans-

lated into a component communication contract. Further, encapsulation requires separating

the description of what a software unit does from the description of how it does it. These

descriptions are called specification and realization (see Fig. 1).

The specification is a suite of descriptive (UML [11]) artifacts that collectively define
the external interface of a component so that the component can be assembled into or used

by a system. The realization artifacts collectively define a component’s internal realiza-

tion. Following this principle, each component is described through a suite of models as if

it was an independent system in its own right.

MODELS`08 Workshop ESMDE

42

Fig. 1. MARMOT component model.

The fact that components can be realized using other components, turns a MARMOT

project into a tree-shaped structure with consecutively nested abstract component repre-

sentations. A system can be viewed as a containment hierarchy of components in which

the parent/child relationship represents composition. Any component can be a contain-

ment tree in its own right, and, as a consequence, another MARMOT project. Acquisition

of component services across the tree turns a MARMOT project into a graph. The four

basic activities of a MARMOT development process are composition, decomposition,

embodiment, and validation as shown in Fig. 2.

Fig. 2. Development Activities in MARMOT.

Decomposition follows the divide-and-conquer paradigm, and it is performed to sub-

divide a system into smaller parts that are easier to understand and control. A project al-

ways starts above the top left-hand side box in Fig. 2. It represents the entire system to be

built. Prior to specifying the box, the domain concepts must be determined, comprising

descriptions of all relevant domain entities such as standard hardware components that

will appear along the concretization dimension. The implementation-specific entities de-

termine the way in which a system is divided into smaller parts. During decomposition,

Structural Model

(UML class/object
diagrams)

Functional Model

(operation specs.)

Behavior Model

(UML statechart diagram)

Decision ModelSpecification

Realization

Structural Model

(UML class/object
diagrams)

Interaction Model

(UML collaboration
diagrams)

Activity Model
(UML activity
diagrams)

Decision Model

S
yste

m
C

o
m

p
o

n
e

n
t

Specification

MODELS`08 Workshop ESMDE

43

newly identified logical parts are mapped to existing components, or the system is decom-

posed according to existing components. Whether these are hard- or software is not impor-

tant since all components are treated in a uniform way, as software abstractions.

Composition represents the opposite activity, which is performed when individual

components have been implemented or reused, and the system is put together. After

having implemented some of the boxes and having some others reused, the system

can be assembled according to the abstract model. The subordinate boxes with their

respective super-ordinate boxes have to be coordinated in a way that exactly follows

the component description standard introduced above.

Embodiment is concerned with the implementation of a system and a move towards

executable representations. It turns the abstract system (i.e., models) into concrete

representations that can be executed. MARMOT uses refinement and translation pat-

terns for doing these transformations. MARMOT supports the generation of code

skeletons and can thus be regarded as a semi-automatic approach.

Validation checks whether the concrete representations are in line with the abstract

ones. It is carried out in order to check whether the concrete composition of the em-

bedded system corresponds to its abstract description.

3 Description of the Study

In general, empirical studies in software engineering are used to evaluate whether a “new”

technique is superior to other techniques concerning a specific problem or property. The

objective of this study is to compare the effects of MARMOT concerning reuse in embedded
system development to other approaches such as the Unified process and agile development.

The study was organized in three runs (i.e., one run per methodology). All runs fol-

lowed the same schema. Based on an existing system, documentation subjects performed

a number of small projects. These covered typical project situations such as maintenance,

ports to another platform, variant development, and reuse in a larger context. The first run

applied MARMOT. The second run repeated all projects but used a variation of the Uni-

fied process, specifically adapted for embedded system development. The third run, apply-

ing an agile approach, was used to validate that modeling has a major impact and to rule

out that reuse effects can solely be obtained at the code level. Metrics were collected in all

runs and were analyzed in order to evaluate the respective research questions.

3.1. RESEARCH APPROACH

Introducing MDD and CBD in an organization is generally a slow process. An organiza-

tion will start with some reusable components, and eventually build a component reposito-

ry. But they are unsure about the return on investment gained by initial component devel-

opment plus reuse for a real system, and the impact of the acquired technologies on quality
and time-to-market. This is the motivation for performing the study and asking questions

on the performance of these techniques.

Research Questions. Several factors concerning the development process and its

resulting product are recorded throughout the study in order to gain knowledge about

using MDD and CBD for the development of small embedded systems. The research

MODELS`08 Workshop ESMDE

44

questions of the case-study focus on two key sets of properties of MDD in the context of

component-oriented development. The first set of questions (Q1-Q4) lead to an

understanding of basic and/or general properties of the embedded system development

approach:
Q1: Which process was used to develop the system? Each run of the study used a

different development approach (i.e., MARMOT, Unified Process, and Agile). These

are compared in terms of different quality attributes of the resulting systems.

Q2: Which types of diagrams have been used? Are all UML diagram types required,

or is there possibly a specific subset sufficient for this domain?
Q3: How were models transferred to source code? Developers typically work in a proce-

dural setting that impedes the manual transformation of UML concepts into C [10].

Q4: How was reuse applied and organized? Reuse is central to MDD with respect to

quality, time-to-market, and effort, but reuse must be built into the process, it does not

come as a by-product (i.e., components have to be developed for reuse).

The second set of questions (Q5-Q9) deals with the resulting product of the applied

approach (i.e., with respect to code size, defect density, and time-to-market).

Q5: What is the model-size of the systems? MDD is often believed to create a large

overhead of models, even for small projects. Within the study, model size follows the

metrics as defined in [13].

Q6: What is the defect density of the code?

Q7: How long did it take to develop the systems and how is this effort distributed
over the requirements, design, implementation, and test phases? Effort saving is one

promise of MDD and CBD [12], though, it does not occur immediately (i.e., in the

first project), but in follow-up projects. Effort is measured for all development phases.

Q8: What is the size of the resulting systems? Memory is a sparse resource and pro-

gram size extremely important. MDD for embedded systems will only be successful if

the resulting code size, obtained from the models, is small.

Q9: How much reuse did take place? Reuse is central for MDD and CBD and it must

be seen as an upfront investment paying off in many projects. Reuse must be ex-

amined between projects and not within a project.

Research Procedure. MDD and CBD promise efficient reuse and short time-to-

market, even for embedded systems. Since it is expected that the benefits of MDD

and CBD are only visible during follow-up projects [5], an initial system was

specified and used as basis for all runs. The follow-ups then were:
R1/R2 Ports to different hardware platforms while keeping functionality. Ports were

performed within the family (i.e., ATMega32) and to a different processor family (i.e.,

PICF). Implementing a port within the same family might be automated at the code-

level, whereas, a port to a different family might affect the models.

R3/R4 Evolving system requirements by (1) removing the recall position functionali-

ty, and (2) adding a defreeze/defog function with a humidity sensor and a heater.

R5 The mirror system was reused in a door control unit that incorporates the control

of the mirror, power windows, and door illumination.

MODELS`08 Workshop ESMDE

45

3.2. PREPARATION

Methodologies. The study examines the effects of three different development me-

thods on software reuse and related quality factors. In the first run, we used the

MARMOT method that is intended to provide all the ingredients to master the multi-

disciplinary effort of developing component-based embedded systems. In the second

run we followed an adapted version of the Unified Process for embedded system devel-

opment [4] (i.e., RUP SE). RUP SE includes an architecture model framework that sup-

ports different perspectives. A distinguishing characteristic of RUP SE is that the compo-

nents regarding the perspectives are jointly derived in increasing specificity from the over-

all system requirements. In the third run, an agile process (based on Extreme Pro-

gramming) [9], adapted towards embedded software development, was used.

Subjects of the study were graduate students from the Department of Computer Science

at the University of Kaiserslautern (1
st
 run) and the School of IT at the International

University (2
nd

 and 3
rd
 run). All students, 45 in total (3 per team/project), were enrolled

in a Software Engineering class, in which they were taught principles, OO methods,

modeling, and embedded system development. Lectures were supplemented by practical

sessions in which students had the opportunity to make use of what they had learned. At

the beginning of the course, subjects were informed that a series of practical exercises

were planned. Subjects knew that data would be collected and that an analysis would be

performed, but were unaware of the hypotheses that were being tested. To further con-

trol for learning and fatigue effects and differences between subjects, random assign-

ment to the development teams was performed. As the number of subjects was known

before running the studies it was a simple procedure to create teams of equivalent size.

Metrics. All projects were organized according to typical reuse situations in compo-

nent-based development, and a number of measurements were performed to answer

the research questions of the previous sub-section:

Model-size is measured using the absolute and relative size measures proposed in [13].

Relative size measures (i.e., ratios of absolute measures) are used to address UMLs multi-

diagram structure and to deal with completeness [13]. Absolute measures used are: the

number of classes in a model (NCM), number of components in a model (NCOM), num-

ber of diagrams (ND), and LOC, which are sufficient as complexity metrics for the simple
components used in this case. NCOM describes the number of hardware/software compo-

nents, while NCM is represents the number of software components. These metrics are

comparable to metrics such as McCabe’s cyclomatic complexity for estimating the

size/nesting of a system. Code-size is measured in normalized LOC. System size is meas-

ured in KBytes of the binary code. All systems were compiled using size optimization.

The amount of reused elements is described as the proportion of the system which can

be reused without any changes or with small adaptations (i.e., configuration but no model

change). Measures are taken at the model and code level.

Defect density is measured in defects per 100 LOC, whereby defects where collected

via inspection and testing activities.

Development effort and its distribution over development phases are measured as

development time (hours) collected by daily effort sheets.

Materials. The study uses a car-mirror control system that moves a mirror horizontally

and vertically into the desired position. Positions can be stored/recalled to support driver

profiles. The simplified version of this study controls two servos via potentiometers, and

MODELS`08 Workshop ESMDE

46

indicates movement on a LCD. A replication package is available from the authors.

For each run, the base system documentation was developed by the authors of this pa-

per. The reason was that we were interested in the reuse effects of one methodology in the

context of follow-up projects. Using a single documentation for all runs would have

created translation and understanding efforts. Therefore, reasonable effort was spent to

make all three documents comparable concerning size, complexity, etc. This is supported

by the measures of each system.

4 Evaluation and Comparison

In the context of the three experimental runs, a number of measurements were per-

formed with respect to maintainability, portability, and adaptability of software sys-

tems. Tables 1, 2, and 3 provide data concerning model and code size, quality, effort,

and reuse rates. Table columns denote the project type1.

Table 1. Results of the First Run (MARMOT)
 Original R1 R2 R3 R4 R5

LOC 310 310 320 280 350 490

Model Size

(Abs.)

NCM 8 8 8 6 10 10

NCOM 15 15 15 11 19 29

ND 46 46 46 33 52 64

Model Size

(Rel.)
1 1 1 1 0.8 1

3.25 3.25 3.25 2.5 3 3.4

1.375 1.375 1.375 1.33 1.3 1.6

Reuse Reuse Fraction(%) 0 100 97 100 89 60

New (%) 100 0 3 0 11 40

Unchanged (%) 0 95 86 75 90 95

Changed (%) 0 5 14 5 10 5

Removed (%) 0 0 0 20 0 40

Effort (h) Global 26 6 10.5 3 10 24

Hardware 10 2 4 0.5 2 8

Requirements 1 0 0 0.5 1 2

Design 9.5 0.5 1 0.5 5 6

Implementation 3 1 3 0.5 2 4

Test 2.5 2.5 2.5 1 2 4

Quality Defect Density 9 0 2 0 3 4

First Run Porting the system (R1) required only minimal changes to the models. One
reason is that MARMOT supports the idea of platform-independent modeling (plat-

form specific models are created in the embodiment step). Ports to different processor

families (R2) are supported by MARMOT’s reuse mechanisms.

1 Project types are labeled following the scheme introduced in section 3 (e.g., “Original” stands

for the initial system developed by the authors as a basis for all follow-up projects, “R1” –
Port to the ATMEGA32 microcontroller (same processor family), “R2” – Port to the PIC F

microcontroller (different processor family), “R3“ – Adaptation by removing functionality

from the original system, “R4” – Adaptation by adding functionality to the original system,

and “R5” – Reuse of the original system in the context of a larger system.

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

47

Concerning the adaptation of existing systems (R3 and R4), data show that large por-

tions of the system could be reused. In comparison to the initial development project the

effort for adaptations is quite low (26hrs vs. 3/10hrs). The quality of the system profits

from the quality assurance activities of the initial project. Thus, the promises of CBD

concerning time-to-market and quality could be confirmed.

Interestingly, the effort for the original system corresponds to standardized effort

distributions over development phases, whereby the effort of follow-ups is signifi-

cantly lower. This supports the assumption that component-oriented development has

an effort-saving effect in subsequent projects.

Porting and adapting an existing system (R1-R4) implies that the resulting variants are

highly similar, which explains why reuse works well. It is, therefore, interesting to look at

larger systems that reuse (components of) the original system (i.e., R5). 60% of the R5

system was reused without requiring major adaptations of the reused system. Effort- and

defect density are higher than those of R1-R4, due to additional functionality and hard-

ware extensions. However, when directly compared to the initial effort and quality, a

positive trend can be seen that supports the assumption that MARMOT allows embedded

systems development at a low cost but with high quality.

Table 2. Results of the Second Run (Unified Process)
 Original R1 R2 R3 R4 R5

LOC 350 340 340 320 400 500

Model Size

(Abs.)

NCM 10 10 10 8 12 13

NCOM 15 15 15 11 19 29

ND 59 59 59 45 60 68

Model Size

(Rel.)
1.5 1.5 1.5 0.72 1.33 1.07

4 3.5 3.5 3.25 3 3.46

2.5 2.3 2.3 2.5 2.16 1.76

Reuse Reuse Fraction(%) 0 100 94 88 86 58

New (%) 100 0 6 11 14 42

Unchanged (%) 0 92 80 70 85 86

Changed (%) 0 4 15 6 15 14

Removed (%) 0 4 5 24 0 41

Effort (h) Global 34 8 12 5.5 13 29

Hardware 10 2 4 0.5 2 8

Requirements 4 1 1 1.5 3 4

Design 12 1 2 1 4 7

Implementation 5 2 3 1.5 2 6

Test 3 2 2 1 2 4

Quality Defect Density 8 1 2 0 3 4

The Second and Third Run replicated the projects of the first run but used different

development methods. Interestingly, the results of the second run are quite close to

those of the first. However, the Unified Process requires more overhead and increased
documentation, resulting in higher development effort. Ironically, model-size seems to

have a negative impact on quality and effort. Interestingly, the mapping of models to

code seems not to have added additional defects or significant overheads.

Although the amount of modeling is limited in the agile approach, it can be observed

that the original system was quickly developed with a high quality. However, this does

not hold for follow-up projects. These required substantially higher effort than the effort

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

48

required for runs 1 and 2. A reason might be that follow-ups were not performed by the

developers of the original system. Due to missing documentation and abstractions, reuse

rates are low. In contrast, the source-code is of a good quality.

Table 3. Results of the Third Run (Agile)
 Original R1 R2 R3 R4 R5

LOC 280 290 340 300 330 550

Model

Size

(Abs.)

NCM 14 15 15 13 17 26

NCOM 5 5 5 4 7 12

ND 3 3 3 3 3 3

Model

Size

(Rel.)

0 0 0 0 0 0

3.21 3.3 3.3 3.15 3.23 4.19

3.5 3.3 3.3 3.46 3.17 2.57

Reuse Reuse Fraction(%) 0 95 93 93 45 25

New (%) 100 5 7 7 55 75

Unchanged (%) 0 85 75 40 54 85

Changed (%) 0 14 15 40 36 10

Removed (%) 0 1 10 20 10 5

Effort (h) Global 18 5 11.5 6 13.5 37

Hardware 6 2 4 1 2 8

Requirements 0.5 0 0 0.5 1 1

Design 2 0 0 1 1.5 3

Implementation 7 2 5 2 6 18

Test 2.5 1 2.5 1.5 3 7

Quality Defect Density 7 0 2 1 5 7

5 Threats to Validity

The authors view this study as exploratory. Thus, threats limit generalization of this

research, but do not prevent the results from being used in further studies.

Construct Validity. Reuse is a difficult concept to measure. In the context of this paper

it is argued that the defined metrics are intuitively reasonable measures. Of course, there

are several other dimensions of each concept. However, in a single controlled study it is

unlikely that all the different dimensions of a concept can be captured.

Internal Validity. A maturation effect is caused by subjects learning as the study

proceeds. The threat to this study is subjects learned enough from single runs to bias

their performance in the following ones. An instrumentation effect may result from
differences in the materials which may have caused differences in the results. This

threat was addressed by keeping the differences to those caused by the applied me-

thod. This is supported by the data points as presented in table 1, 2, and 3. Another

threat might be the fact that the studies were conducted at different institutes.

External Validity. The subjects were students and are, therefore, unlikely to be represent-

ative of software professionals. However, the results can be useful in an industrial context

for the following reasons: Industrial employees often do not have more experience than

students when it comes to applying MDD. Furthermore, laboratory settings allow the

investigation of a larger number of hypotheses at a lower cost than field studies. Hypo-

theses supported in the laboratory setting can be tested further in industrial settings.

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

49

6 Summary and Conclusions

The growing interest in the Unified Modeling Language provides a unique opportunity

to increase the amount of modeling work in software development, and to elevate quali-

ty standards. UML 2.0 promises new ways to apply object/component-oriented and
model-based development techniques in embedded systems engineering. However, this

chance will be lost, if developers are not given effective and practical means for han-

dling the complexity of such systems, and guidelines for applying them systematically.

This paper shortly introduced the MARMOT approach that supports the compo-

nent-oriented and model-based development of embedded software systems. A series

of studies was described that were defined to empirically validate the effects of

MARMOT on aspects such as reuse or quality in comparison to the Unified Process

and an agile approach. The results indicate that by using MDD and CBD for embed-

ded system development will have a positive impact on reuse, effort, and quality.

However, similar to product-line engineering projects, CBD requires an upfront in-

vestment. Therefore, all results have to be viewed as initial. This has led to the plan-

ning of a larger controlled experiment to obtain more objective data.

References

[1] Atkinson, C., Bayer, J., Bunse, C., and others. Component-Based Product-Line Engineering

with UML, Addison-Wesley, UK, 2001.

[2] Bunse, C., Gross, H.-G., Peper, C., Applying a Model-based Approach for Embedded Sys-
tem Development, 33rd SEAA, Lübeck, Germany, 2007.

[3] Bunse, C., Gross, H.-G., Unifying Hardware and Software Components for Embedded

System Development, In: Architecting Systems with Trustworthy Components, Reussner,

Staffort, Szyperski (Eds), Lecture Notes in Computer Science, Vol. 3938, Springer, 2006.
[4] Cantor, M., Rational Unified Process for Systems Engineering, the Rational Edge e-Zine,

2003, http://www.therationaledge.com/content/aug_03/f_rupse_mc.jsp.

[5] Crnkovic, I., Larsson, M. (Eds.), Building Reliable Component-Based Software Systems,

Artech House, 2002.
[6] Douglass, B.P., Real-Time Design Patterns, Addison-Wesley, 2003.

[7] Briand, L.C., Bunse, C., Daly, J.W., A Controlled Experiment for Evaluating Quality

Guidelines on the Maintainability of Object-Oriented Designs, IEEE TSE, 27(6), 2001

[8] Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., Bunse, C., A State-of-
the-Practice Survey of Risk Management in Development with Off-the-Shelf Software,

IEEE Transaction on Software Engineering, 34(2), 2008

 [9] Hruschka, P., Rupp, C., Agile SW-Entwicklung für Embedded Real-Time Systems mit

UML, Hanser, 2002.
[10] Marwedel, P., Embedded System Design, (Updated Version), Springer, 2006.

[11] Object Management Group, UML Infrastructure and Superstructure, V2.1.2, 2007

[12] Szyperski, J., Component Software. Beyond OOP, Addison-Wesley, 2002

[13] Lange, C.F., Model Size Matters, Workshop on Model Size Metrics, 2006 (co-located with
the ACM/IEEE MoDELS/UML Conference); October, 2006.

[14] Burkhard, J-M., Detienne, F., An Empirical Study of Software Reuse By Experts in Ob-

ject-Oriented Design, INTERACT'95, Lillehammer Norway, June 27-29 1995

[15] Lee, N-Y., Litecky, C.R., An Empirical Study of Software Reuse with Special Attention to
ADA, IEEE Transaction on Software Engineering, 23(9), 1997

MODELS`08 Workshop ESMDE

50

Towards Quality-Driven Model Transformations: A
Replication Study

Emilio Insfran1, José Ángel Carsí1, Silvia Abrahão1, Marcela Genero2, Isidro
Ramos1, Mario Piattini2

1 ISSI Group, Department of Information Systems and Computation

Universidad Politécnica de Valencia
Camino de Vera, s/n, 46022, Valencia, Spain

{einsfran, pcarsi, sabrahao, iramos}@dsic.upv.es

2 ALARCOS Group, Department of Information Systems and Technologies,
University of Castilla-La-Mancha

Paseo de la Universidad Nº 4, 13071, Ciudad Real, Spain
{Marcela.Genero, Mario.Piattini}@uclm.es

Abstract. Commonly, there are several ways to transform a source model into a
target model. These alternative target models may have the same functionality
but can differ in their quality attributes. One of the key challenges of an
automated transformation process is to identify the transformations that will
produce a target model with the desired quality attributes. In this paper, we
present a replica of a controlled experiment to investigate the selection of
alternative transformations to obtain UML class models from a Requirements
Model. This is a concrete instantiation of a wider domain-independent approach
for quality-driven model transformation. Specifically, we focus on a set of
transformations related to structural relationships between classes (association,
aggregation and association class) and the understandability quality attribute.
Although, some results could be foreseen even by a superficial analysis of the
alternatives, the goal of this work is to use experimentation to gather empirical
evidence about which alternative transformation produces the UML class model
that is the easiest to understand. The empirical results support the original
results showing that there is a tendency to favor the use of association
relationships to drive these transformations when understandability is chosen.

Keywords: Model transformations, MDA, Software Quality, Requirements,
UML class model, Empirical Software Engineering.

1 Introduction

Model-Driven Architecture (MDA) is an emerging approach to software
development. It promotes the use of models and model transformations as the primary
artefacts to be built and maintained. In essence, an MDA development process
transforms a Platform-Independent Model (PIM) into one or more Platform-Specific
Models (PSM), which are then transformed into code (Code Model – CM). Therefore,

MODELS`08 Workshop ESMDE

51

 2

in this context, a model is no longer simply a means for describing software, but
rather an essential piece of the software development process. Consequently, the
quality of the models built throughout this process is of great significance since these
models will determine the quality of the software product that is finally deployed.

Usually, in an MDA development process there are several ways to transform a
source model into a target model. Alternative target models may have the same
functionality but differ in their quality attributes. One of the key challenges for an
automated transformation process is to identify which transformations will produce a
target model with the desired quality attributes (e.g., understandability, modifiability).

In the last few years, some approaches that deal with quality in Model-Driven
Engineering (MDE) have been proposed [15] [14] [12] [13] [8] [9]. One disadvantage
of these approaches is that the practical applicability of model transformations is often
reported based on the intuition of the researcher. As pointed out by Czarnecki and
Helsen [4], there is a lack of controlled experiments to fully validate the observations
made by the researchers in the field of MDE. Therefore, more systematic approaches
to ensure quality in MDE processes are needed.

In this paper, we present a replica of a controlled experiment to investigate the
selection of alternative transformations to obtain UML class models from a
Requirements Model [5] [6]. This work is part of a project on quality-driven model
transformations whose overall goal is the definition of a quality metamodel to drive
the selection of alternative model transformations according to different quality
attributes.

Specifically, we focus on a sub-set of transformations that are related to structural
relationships between classes (association, aggregation, and association class) and the
‘understandability’ quality attribute. These transformations have been selected
because the determination of structural relationships has a great impact on the UML
class model. Understandability has been selected since it is recognized as the main
quality attribute that influences maintainability. A UML class model must be
understood before any desired change to it can be identified, designed or
implemented.

The goal of the experimentation is to gather empirical evidence about which
alternative transformation produces the UML class model that is the easiest to
understand. The empirical evaluation of the best transformation is particularly
important when the transformations are automatically applied, which is the main
reason for adopting MDA [11].

This paper is organized as follows. Section 2 gives an overview of our approach to
transform a Requirements Model into UML class models. This section also shows the
analysis of alternative model transformations. Section 3 describes the design of the
original experiment and its replica to empirically validate the selection of alternative
transformations with regard to the understandability. Section 4 presents the data
analysis and the interpretation of the results. Finally, section 5 presents our
conclusions and future work.

MODELS`08 Workshop ESMDE

52

bentea
Cross-Out

 3

2 Transforming Requirements into UML Class Models

Following an MDA development approach, it is important to ensure quality in every
step of the development process. In this context, automated model transformation
plays a key role for success. We propose to empirically validate model
transformations with regard to quality attributes and use this information to drive the
selection of alternative transformations. A quality attribute is a measurable physical or
abstract property of an entity (e.g., conceptual model) [7].

A model transformation is executed taking a transformation definition as input. A
transformation definition contains transformation rules that relate constructs in the
source model to constructs in the target model. We use another input for the
transformation process that is the definition of the quality attributes together with the
corresponding empirical evidence gathered from controlled experiments. This
information will feed the transformation process with the criteria to choose the
alternative transformation that maximizes the selected quality attribute. The rationale
of this approach is to be able to automatically select the alternative transformation that
an experienced software developer would select if the transformation process were
manually applied. In this section, we present a concrete application of the quality-
driven model transformation approach to transform software requirements into UML
class models (see Fig. 1).

Fig. 1. The quality-driven model transformation approach

The Requirements Model [5] [6] defines the structures and the process followed to
capture the software requirements following an MDA approach. It is composed of a
Functions Refinement Tree (FRT) to specify the hierarchical decomposition of the
system functionality, a Use Case Model to specify the system communication and
functionality, and Sequence Diagrams to specify the required object-interactions
necessary to realize each Use Case. This Requirements Model is supported by a
Requirements Engineering TOol – RETO (http://reto.dsic.upv.es). Once the
Requirements Model has been specified, a conceptual model including a UML class
model can be obtained by applying a set of transformations from the Transformation
Rules Catalog (TRC) [5]. These transformation rules establish traceability
relationships between the Requirements Model and the UML class models.

MODELS`08 Workshop ESMDE

53

 4

The application of a Transformation Rule (TR) implies that a certain structural
pattern match in the Requirements Model and that a resultant structure in the UML
class model can be generated while establishing a traceability relationship between
them. Some transformations are easy to apply once the transformation pattern has
been matched (a one-to-one relation). For example, the generation of classes for the
UML class model is based on the analysis of participating classes in all the Sequence
Diagrams. However, other transformations are not easy to identify or apply for three
main reasons: the complexity of the transformation pattern, the non-disjoint condition
pattern of the transformation, and the multiple valid representation of a conceptual
model for a given requirement pattern.

2.1 Analyzing Alternative Transformations

Following, we explain with examples some transformations where multiple
alternatives arise because of non-disjoint condition patterns and multiple possible
representations of the same pattern. Fig. 2 shows the Sequence Diagram used to
specify the necessary object interactions to realize the Use Case Create Insurance of a
Car Rental system. This Use Case represents the creation of a car Insurance policy
that must be bought from an Insurance Company and assigned to the Car before using
the car for rentals. The actor Administrator initiates the interaction (message 1). After
introducing the necessary data and checking the existence of the corresponding car
(messages 2 to 4), a new Insurance object is created (message 5). In addition, an
Insurance Company object and a Car object must be connected to the newly created
Insurance policy object (messages 6 and 7).

After analyzing the requirement specification provided by the previous Sequence
Diagram, the analyst of the system could possibly determine that the partial Class
Model that best represents this requirement is defined by two association relationships
that relate the newly created class Insurance (message 5) to the InsuranceCompany
and Car classes as shown in Fig. 3(a). This partial Class Model can be obtained by
applying twice the following transformation rule TR15 (Association) from the
Transformation Rule Catalog to the messages 6 and 7:

TR15 (Association): For every message between two classes labeled with the stereotype
«connect», THEN an association relationship between these classes will be generated.
Pattern condition: Result:

MODELS`08 Workshop ESMDE

54

 5

Fig. 2. Sequence Diagram showing the required interactions for the Use Case Create Insurance

As an alternative solution to the same requirement specification, the analyst could
prefer a solution that uses an association class (named Insurance) to relate the Car
rented with the Insurance Company as shown in Fig. 3 (b). This partial Class Model
can be obtained by applying the transformation rule TR39 (AssociationClass) to the
messages 5, 6 and 7. Finally, another possibility is the definition of two aggregation
relationships, one between Insurance Company and Insurance classes and another
between Car and Insurance classes as shown in Fig. 3 (c). This partial Class Model
can be obtained by applying twice the transformation rule TR28b (Aggregation) to the
messages 6 and 7.

a) Association b) Association class c) Aggregation

Fig. 3. Two partial Class Models for the Car Rental system

An important issue derived from these examples is that different alternative
structural relationships can be derived from the analysis of the requirements
specifications described using Sequence Diagrams. And what is more important is the
fact that the part of the information used in the Sequence Diagrams for deriving these

MODELS`08 Workshop ESMDE

55

 6

structural relationships follows the same pattern: a message with the stereotype new,
followed by two messages with a stereotype connect.

In the examples, we have shown that TR15, TR39, or TR28b transformation rules
could be applied, depending on the interpretation of the analyst if the transformation
process is performed manually. In an automated transformation process, the
information provided by the stereotyped Sequence Diagrams is not sufficient to
automatically determine which structural relationship of a Class Model best realizes
the specified requirement. Because these alternatives exist, it is the human analyst
who should decide which alternative better represent a solution in the corresponding
problem domain. In this work, considering that alternatives exist, we use controlled
experiments to discover which alternative transformation maximizes a given quality
attribute of the resulting target model (e.g., understandability).

3 A Controlled Experiment and its Replica

In a previous work [1], we presented a controlled experiment to determine which of
the transformation rules for structural relationships: association (A1), aggregation
(A2), or association class (A3), obtained the easiest to understand UML class model.
The results show a slight tendency to favor the transformations related to associations
(A1). However, as Basili et al. [2] suggested relevant and credible results can only be
obtained by replicating the experiments. In other words, single studies rarely provide
definitive answers. Therefore, we carried out an internal strict replication (changing
only the subjects) to corroborate the findings. To provide an overall view of the
experimentation, we explain both the original experiment and the replica.

3.1 Planning

The participants in the original experiment were 39 fourth-year students in Computer
Science at the Universidad Politécnica de Valencia, who were taking part in the
second Software Engineering course. We took a “convenience sample” (i.e., all the
students in the class). The subjects had six month of experience in modeling with
UML and three years of experience in the OO paradigm. The subjects that
participated in the replica were a different group of 37 students from the same course.

The independent variables for the experiments were the transformation rules for
structural relationships between classes (A1, A2 and A3). The dependent variable was
understandability. The experimental material and tasks consisted of:
• 9 Sequence Diagrams from three different case studies (a car rental system, a

hotel management system, and a singer contest system), with 3 UML class
models each. These were obtained by applying the alternative transformation
rules. The material used is available at: www.dsic.upv.es/~einsfran/experiment.

• Each Sequence Diagram had a questionnaire attached consisting of 6 Yes/No
questions to test the subjects’ understanding of the Sequence Diagrams. The
effectiveness of the subjects in answering the questionnaires (number of correct

MODELS`08 Workshop ESMDE

56

 7

answers by number of answers) was used to exclude those observations that did
not fulfill a minimum level of quality.

• Each of the three UML class models had a questionnaire attached (with 6
questions) for assessing which UML class model was best understood by the
subjects. In addition, the subjects had to write down the starting and ending times
for completing the questionnaires. For this purpose we used a wall clock. From
this understanding task, we obtained three measures for understandability:
Understandability Time, which reflects the time, in seconds, that the subjects
spent answering each questionnaire (calculated by the difference between the
ending time and the starting time). Each subject completed 4 questionnaires
detailing 3 alternatives (A1, A2 and A3). Three understandability time measures
(A1Time, A2Time and A3Time) were obtained.
Effectiveness, which reflects the correctness of the answers (number of correct
answers by number of answers). Three understandability effectiveness measures
(A2Effec, A2Effec and A3Effec) were obtained.
Efficiency, which reflects the correctness of the answers by time (number of
correct answers by understandability time). Three measures for understandability
efficiency (A2Effic, A2Effic and A3Effic) were obtained.

• The final task of each test asked the subjects which of the three alternative UML
class models best reflected the problem modeled in the Sequence Diagram. It is a
subjective measure (Alternative Selected) based on the subjects’ perception.

The following hypotheses were formulated:
• H10: The use of different alternative transformations does not affect the

Understandability Time (A1Time, A2Time and A3Time). H11=¬H10
• H20: The use of different alternative transformations does not affect the

Understandability Effectiveness (A1Effec, A2Effec and A3Effec). H21=¬H20
• H30: The use of different alternative transformations does not affect the

Understandability Efficiency (A1Effic, A2Effic and A3Effic). H31=¬H30
• H40: There is no correlation between the Alternative Selected and the means of

objective Understandability variables (Understandability Time, Effectiveness,
and Efficiency). H41= ¬H40

We selected a balanced within-subject design, i.e., each subject received the same
experimental material.

3.2 Execution

Both the original experiment and the replica started with an introductory session in
which we reviewed the main concepts of the Requirements Model (e.g., the notation
of Sequence Diagrams). The goal of the experiment was not disclosed to the subjects.
Then, we showed an example of the experimental material, which was similar to the
material they would use during the execution of the experiment.

Each subject was assigned all the material, with the nine tests (balanced within-
subject design). The models were assigned in different order to limit learning effects.
We showed them how to develop the experimental tasks, and they had a maximum of
two hours to complete all the tasks.

MODELS`08 Workshop ESMDE

57

 8

After the experiment took place, we collected the experiment data, which consisted
of a table of 351 rows (9 models x 39 subjects) and 9 columns (A1Time, A2Time,
A3Time, A1Effec, A2Effec, A3Effec, A1Effic, A2Effec, A3Effec). The replica had
the same structure, but with 331 rows (9 models x 37 subjects). In both samples, we
performed a “data cleaning”, excluding the observations that were not complete
because the subjects had not written down the time or because the subjects did not
select the best alternative. All the questions were answered in each questionnaire,
thereby assuring the completeness of the performed tasks. We also excluded the
observations that had a value of effectiveness of 50% or less for each Sequence
Diagram. We considered that if the level of correct answers was low in relation to the
Sequence Diagram, the subjects had not really understood the model, and they would
probably not perform well in the following tasks, so we discarded them. Therefore,
the final data for testing the hypotheses were 325 observations for the original
experiment and 293 for the replica.

4 Data Analysis and Interpretation

The following statistical analyses were performed to analyze the data: (1) a
descriptive study was done to characterize the variables Alternative Selected,
Understandability Time, Effectiveness, and Efficiency; (2) Hypotheses H1, H2, and
H3 were tested using an ANOVA test with repeated measures; (3) Hypothesis H4 was
tested using the Spearman correlation coefficient.

We used SPSS to carry out the data analyses presented in this study. The
transformation most selected by the subjects was A1, i.e., the subjects believed that
the use of associations obtained the easiest to understand UML class model.
Association class (i.e., alternative A3) was the transformation that was least selected,
which reveals that it could be the least appropriate transformation.

The descriptive statistics we carried out for Understandability Time, Effectiveness
and Efficiency suggest the following:
• Original Experiment. On average, the subjects spent less time performing the

tasks related to alternative A2; however, the difference with the others is not very
significant (≈ 8 seconds for A1 and A3). The subjects were more effective and
efficient performing the tasks related to alternative A1; however, the difference in
effectiveness with the other alternatives is not very significant.

• Replica. The measures related to A1 have the best values, which means that, on
average, the subjects spent less time and were more effective and more efficient
performing the tasks related to the class model that was obtained via associations.

In summary, the descriptive statistics show a slight tendency in favor of A1, the
transformation based on associations. Surprisingly, the difference between the
minimum and maximum time values is significant. This may be due to the fact that
the subjects were novice modelers.

To test the hypotheses presented in section 3.1, we carried out an ANOVA for
repeated measures, which is the appropriate statistical test for analyzing the collected
data [10]. Due to space constraints, we will briefly present the main findings obtained
through the ANOVA for each data sample:

MODELS`08 Workshop ESMDE

58

 9

• Original Experiment. We can reject hypotheses H10 (p = 0.0002), H20 (p =
0.0001), and H30 (p = 0.0005), with a significance level = 0.05. This means that
the use of different alternative transformations really affects understandability
time, effectiveness, and efficiency.

• Replica. We can reject H10 (p = 0.0028) and H20 (p = 0.0003), which means that
the use of one alternative or another does not affect efficiency but does affect
time and effectiveness when the subjects understand the class models.

When planning the experiment, we designed it in such a way as to alleviate the
threats to the internal validity.

One limitation to the external validity (i.e., the generalization of the findings) of
this study is the fact that the three alternative transformation rules cannot be applied
simultaneously to all modeling situations. For instance, to establish an association
class relationship (A3), at least one «service/new» message and two «connect»
messages are needed in the source model. The goal of this experimentation was to
gather empirical evidence for the specific case when the three alternative
transformations could be applied to obtain a relationship between classes. We are
aware that, more alternatives may be possible to represent structural relationships
between classes. More experimentation is needed to validate these other
combinations. Another limitation to the external validity might be the use of students
as experimental subjects. However, the students who participated in the experiment
can be considered to be representative of novice users of conceptual modeling
approaches. To increase external validity, the current study needs to be replicated
using experienced practitioners.

5 Conclusions and Future Work

This paper has presented an analysis of alternative model transformations and how
controlled experiments can be used to provide useful information to guide the
selection of transformations in an automated transformation process. In particular, we
presented the results of an experiment to gather evidence about which alternative
transformation produces the UML class model that is easiest to understand.

The main findings obtained from the experimentation are the following: (a) the
transformation that was most selected in the original experiment and the replica was
the association transformation (A1); (b) the results of the replica confirm the results of
the original experiment for effectiveness. The subjects were more effective when they
understood the class models with association relationships; (c) the fact that the
hypothesis related to efficiency could not be confirmed in the replication has no great
impact on our approach since the transformations are automatically executed in a
Model Management framework (MOMENT) [3].

These results show that there is a slight tendency to favor the use of association
relationships as part of an automated transformation process. A possible reason for
this could be that this relationship has less semantic strength than the other kinds of
relationships. When an aggregation relationship is chosen instead of an association
relationship, analysts know that they are defining a part-of relationship. In the case of
an association class, it is possible to represent almost the same relationship using two

MODELS`08 Workshop ESMDE

59

 10

association relationships. Although the results obtained can be quite obvious the
important point is the systematic approach presented to validate this ‘obvious’ results.
That the association relationship is more understandable than the aggregation
relationship or association classes is something that almost all the people can say but
until this moment no one has the data to confirm that result but merely by intuition.

These preliminary results provided empirical evidence that can be further used to
define a domain-independent quality metamodel to drive the execution of model
transformations. Nevertheless, more replication is needed for building a body of
knowledge. We plan to replicate this experiment with practitioners. Future work also
includes the evaluation of the remaining transformations of the Transformation Rules
Catalog taking into account other quality attributes (e.g., usability, modifiability).

Acknowledgments. This research is part of the META project TIN2006-15175-C05-
05, the MECENAS project PBI06-0024, and the IDONEO project PAC08-0160-6141.

References

1. Abrahão, S., Genero, M., Insfran, E., Carsí, J.A., Ramos, I., Piattini, M.: Quality-Driven
Model Transformations: From Requirements to UML Class Diagrams. In: Model-Driven
Software Development: Integrating Quality Assurance, IGI Publishing, 2008.

2. Basili, V., Shull, F., Lanubile F.: Building Knowledge through Families of Experiments.
In: IEEE Transactions on Software Engineering, 25(4): 435–437, 1999.

3. Boronat, A., Carsí, J.A., Ramos, I.: Algebraic Specification of a Model Transformation
Engine. In: Fundamental Approaches to Software Engineering (FASE'06). ETAPS'06.
Vienna, Austria, 2006, pp. 262–277.

4. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Approaches.
In: IBM Systems Journal 45(3): 621–645, 2006.

5. Insfran, E.: A Requirements Engineering Approach for Object-Oriented Conceptual
Modeling, PhD Thesis, DSIC, Valencia University of Technology, 2003.

6. Insfran, E., Pastor, O., Wieringa, R.: Requirements Engineering-Based Conceptual
Modelling. In: Journal of Requirements Engineering 7(2): 61–72, 2002.

7. ISO, ISO/IEC 9126-1, (2001). Software Engineering – Product quality P1:Quality model.
8. Ivkovic, I., Kontogiannis K.: A Framework for Software Architecture Refactoring using

Model Transformations and Semantic Annotations. In: Conf. on Software Maintenance
and Reengineering, 2006, pp. 135–144.

9. Kerhervé, B., Nguyen, K.K., Gerbé, O., Jaumard, B.: A Framework for Quality-Driven
Delivery in Distributed Multimedia Systems. In: AICT/ICIW 2006, 2006, pp. 195–205.

10. Kirk, R.E.: Experimental design. Procedures for the behavioural sciences. Brooks/Cole
Publishing Company, 1995.

11. Kontio, M.: Architectural Manifesto: The MDA adoption manual, (2005), Accessible at
http://www-128.ibm.com/ developerworks/wireless/library/wi-arch17.html

12. Kurtev, I.: Adaptability of Model Transformations. PhD Thesis, Univ. of Twente, 2005.
13. Markovic, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams. In: 8th Int.

Conf. on Model Driven Engineering Languages and Systems, 2005, pp. 280–294.
14. Merilinna, J.: A Tool for Quality-Driven Architecture Model Transformation. In: Espoo,

VTT Electronics, VTT Publications, 2005.
15. Rottger, S., Zschaler, S.: Model-Driven Development for Non-functional Properties:

Refinement Through Model Transformation. In: The Unified Modelling Language
(UML) Conference, LNCS Volume 3273, 2004, pp. 275–289.

MODELS`08 Workshop ESMDE

60

Analyzing the Influence of Certain Factors on the
Acceptance of a Model-based Measurement Procedure in

Practice: An Empirical Study

Nelly Condori-Fernández, Oscar Pastor

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia.

{nelly, opastor}@pros.upv.es

Abstract. Full automatic software measurement from conceptual models is now
accepted by academics, although take-up of these model-based measurement
procedures in practice by software practitioners has been slow. To encourage
acceptance in industry, an acceptance model for measurement procedures is
proposed, identifying a set of factors that influence perceived usefulness and
perceived ease of use when a user employs a measurement procedure.
Analyzing the results of an empirical study carried out with software
engineering academics, we find which factors have an influence on other
factors. Using regression analysis, certain factors are identified that affect
perceived usefulness and ease of use, and which in turn will affect intention to
use.

1. Introduction

Although software measurement is recognized as a key element of engineering
science, it has not yet been widely accepted in practice by software practitioners. The
Software Engineering Measurement and Analysis (SEMA) group at the Software
Engineering Institute (SEI) concluded from a series of explorative studies carried out
from 2004-2005 [1] that there is still a significant gap between the current and desired
state of software measurement. One of reasons for this is that there are no programs
that use measures and empirical evidence to assess the practical relevance of such
programs.
Nowadays, with the appearance of the model-driven development process, several
approaches have arisen which allow for full-automatic software measurement of
specific artifacts developed at early stages and in particular contexts [2][3][4][5][6].
However, the question is whether these model-based measurement procedures would
be accepted in practice.

According to Cooper and Zmud [7], acceptance is one of the stages in the diffusion
of technological innovations, and is defined from an employee perspective; an
organization’s personnel are induced to commit to Information Technology
application usage. Acceptance must not be confused with adoption; which is defined

MODELS`08 Workshop ESMDE

61

as a stage where negotiations are started in relation to the decision to adopt the
innovation and mobilizing of organizational and financial resources for doing so [7].

The acceptance of technology has been investigated in a number of different fields
[7][8][9]; however, in the software measurement field there are few papers on this
subject in the literature.
Umarji and Emurian [10] focus on the evaluation of the likelihood of acceptance of a
metrics program. Their model takes as input organizational culture, and the nature of
the metrics program. Gopal et al. [11] researched the influence of institutional factors
on the assimilation of metrics in software organizations. They also identified a set of
determinants for metrics program success [12]. These determinants are divided into
organizational and technical variables.

Our proposal focuses on a model-based measurement procedure relating to
acceptance from a software practitioner’s perspective. A number of models exist for
evaluating the acceptance of new techniques and technology, in particular the
Technology Acceptance Model (TAM) [14]. The Method Evaluation Model (MEM)
[21], which uses the same TAM constructs, was the first to be applied in the context
of Functional Size Measurement (FSM) procedures ([3], [17]). From preliminary
results obtained with MEM, a theoretical model was defined, which includes a set of
factors that affect practitioners’ perceptions, perceptions that will determine the user’s
intention to use the model-based measurement procedures [13].

The aim of this paper is to analyze the influence of these factors on acceptance of
RmFFP in practice, using the regression analysis technique. RmFFP is a measurement
procedure designed to automatically estimate the functional size of object-oriented
applications generated in an MDA environment

This paper is structured as follows: Section 2 introduces an acceptance model for
model-based measurement procedures, Section 3 shows how an initial empirical study
is carried out to analyze the causal relationships of the model, and finally, our
conclusions are given and further work is suggested.

2. Evaluating the acceptance of measurement procedures

In order to define our model for evaluating acceptance of model-based measurement
procedures; we use the same TAM constructs, but which have been redefined in the
following way [13]:
• Perceived Ease of Use: the extent to which a person believes that using a

particular measurement procedure would be free of effort.
• Perceived Usefulness: the extent to which a person believes that a particular

measurement procedure will be effective in achieving intended objectives.
• Intention to Use: the extent to which a person intends to use a particular

measurement procedure.
In addition, we identified the following factor types:
• Intrinsic Factors related to the intrinsic nature of software measurement

procedure; these correspond to quality and tangibility of results, and the
minimum number of actions required for calculating the measure using a
measurement procedure.

MODELS`08 Workshop ESMDE

62

o Quality of results: extent to which a person believes that the results of using
a measurement procedure are accurate and convertible.

o Tangibility of results: extent to which a person believes that the results of
using a measurement procedure are observable and understandable.

o Minimum actions: extent to which a person believes that using a particular
measurement procedure would obtain results with the minimum number of
actions required.

• Extrinsic Factors that do not depend on the measurement procedure in itself;
these correspond to the experience and job relevance of the software practitioner.
o Job relevance: extent to which an individual believes that a measurement

procedure is applicable and relevant to his or her job.
o Experience: knowledge or skill gained in the use of measurement procedures

over a period of time.
• External factors that depend on the organization as a whole. These factors

include where the business follows trends in the market based on advertising and
marketing or peer company use, or the maturity level of an organization, or has
business priorities giving rise to time or cost constraints.

The causal relationships hypothesized between the TAM constructs and factors of
the model are shown in Figure 1. In the next section, we present an empirical study to
analyze these causality relationships.

Figure 1. Acceptance model for model-based measurement procedures

3. Analyzing causality relationships in the Acceptance of RmFFP

RmFFP is a functional size measurement procedure designed on the basis of the
COSMIC standard method, which has been approved by ISO/IEC 19761 [20].
RmFFP was proposed in order to automatically estimate the functional size of object-
oriented systems generated in an MDA environment [5]. The object to be measured is
the functional requirements specification obtained using the OO-Method requirements
model [18].

MODELS`08 Workshop ESMDE

63

This procedure starts with the definition of the measurement strategy, which
includes the purpose, the scope, and the measurement viewpoint. The scope of
RmFFP comprises the functionality to be included in a particular measurement. The
measurement viewpoint corresponds to the ‘analyst’ viewpoint, which will focus on a
requirements specification (object of interest).

Then, RmFFP starts a mapping phase to identify the significant primitives of the
Requirements Model that contribute to the system’s functional size according to the
concepts of the COSMIC [20]. We defined sixteen mapping rules whose principal
purpose is to reduce misinterpretation about the COSMIC generic concepts and to
facilitate the automation of the RmFFP procedure. For instance, each use case is
identified as a functional process; each message of the sequence diagram is identified
as a data movement type, etc. The main outcome of this phase is the identification of
data movements that are fundamental components of COSMIC.

Once the data movements have been correctly identified, we proceed with the
measurement phase, whose purpose is to produce a quantitative value that represents
the software functional size of a requirements specification. To do this, we apply the
measurement function, which consists of assigning a numerical value of 1 Cfsu
(Cosmic Functional Size Unit) to each data movement. We defined four rules to add
together these quantified data movements. To do this, we used the relationship types
between use cases to calculate the size of the functional processes (use case) and the
size of the entire system

3.1 Planning: Case study

In order to define the goal of our empirical study, we used the
Goal/Question/Metric (GQM) template [15], which is described as follows:
To analyze the Acceptance Model proposed for the purpose of evaluating RmFFP
with respect to their acceptance in the practice from the viewpoint of the researcher in
the context of software engineering professors using a measurement procedure for
requirements specifications.

From this goal, the following research questions were addressed by this study:
RQ1: is perceived usefulness of the RmFFP measurement procedure really influenced
by certain intrinsic factors?
RQ2: is perceived usefulness of the RmFFP measurement procedure really influenced
by certain extrinsic factors?
RQ3: is perceived ease of use the RmFFP measurement procedure really influenced
by certain intrinsic factors?
RQ4: is the intention to use really a result of the perceptions experienced by the
subjects using the RmFFP measurement procedure?

Selection of subjects. The subjects were 20 professors from various Peruvian
universities. They were enrolled in the United Nations summer school on “Advanced
Techniques in Software Development”, February - March 2007. The careful selection
of participants was based on academic qualifications, teaching or industrial
experience, technical background, and specific interest in software engineering. The

MODELS`08 Workshop ESMDE

64

empirical study was organized as a part of the “Measurement and Software Quality”
course given during the summer school.

Variables and Hypotheses. Using the framework proposed by Juristo and Moreno
[16], we identified three types of variables:
• Response variables: variables that correspond to the outcomes of the empirical

study. For this study, we considered certain factors and constructs of the Model
as response variables: Perceived Ease of Use (PEOU), Perceived Usefulness
(PU), Intention to Use (IU), Job Relevance (JR), Quality of Results (QR),
Tangibility of Results (TR), and Minimum Actions (MA). We omitted the
extrinsic factor: “experience” and the external factors, which will be considered
in further studies. As these outcomes should be measurable, we used a 5-point
Likert scale format.

• Factors: variables that affect the response variable. In our study, this variable
corresponds to the Models-based Measurement Procedures, and as single
treatment: the RmFFP procedure [5]

• Parameters: variables that we do not want to influence the experimental results:
level of practitioner’s experience using a measurement procedure; complexity of
conceptual models to be measured.

The following hypotheses regarding the research questions were considered:
H1: Perceived Usefulness is determined by the quality of results of the RmFFP
measurement procedure.
H2: Perceived Usefulness is determined by the tangibility of results of the RmFFP
measurement procedure.
H3: Perceived Usefulness is determined by job relevance using the RmFFP
measurement procedure for the software practitioner.
H4: Perceived ease of use is determined by the minimum number of actions required
using the RmFFP measurement procedure.
H5: Intention to use is determined by usefulness perceived.
H6: Intention to use is determined by perceived ease of use.

3.2 The Collection Data Method

First, we gave an introduction on how to apply the RmFFP measurement procedure
by means of illustrative examples. Finally, we verified the knowledge learned by the
participants by working through an assigned application. The time used for the
training session was 4 hours distributed over two days. Then, each subject used the
RmFFP measurement guide to measure a requirements specification of a Car Rental
application with thirty-five use cases. The time allowed for this task was unlimited.

Finally, each subject was asked to complete a specially-designed survey to
evaluate RmFFP acceptance. The time allowed for this task was also unlimited.

MODELS`08 Workshop ESMDE

65

Instrumentation. A survey instrument1 was designed to measure the response
variables, with twenty closed questions. These questions consisted of 6 items used to
measure PEOU; 2 items to measure PU; 3 items to measure IU; 4 items to measure
JR; 2 items to measure QR; 1 item to measure TR; and 2 items to measure MA. Table
1 presents the four items used for the job relevance factor.

Table 1. Items formulated for measuring the job relevance factor

Construct Description Items

Job
relevance

It is possible for a
measurement procedure not to
be perceived as useful even
though the procedure provides
accurate results, possibly
because the use of the
measurement procedure is not
relevant for the job type of the
software practitioner
concerned.

1. Using the measurement
procedure, the performance of my
job will improve.

2. The use of the measurement
procedure is relevant for my job.

3. Using the measurement
procedure could increase the
effectiveness of the development
of my tasks.

4. I would use a measurement
procedure, if I had to manage a
software project

Responses to the instrument were based on a 5-point Likert scale ranging from (1),

strongly disagree, to (5), strongly agree. The order of the items was randomized and
some questions negated to avoid monotonous responses.

We also used a set of training materials, such as: a set of instructional slides on
RmFFP procedure; an example of the application of RmFFP, and a measurement
guide.

3.3 Data Analysis and Interpretation

As we can see in Figure 1, the intention to use a measurement procedure is
influenced by perceptions of usefulness and ease of use; which can be influenced by
certain type of factors. We identified several relationships, which were defined above
in the six hypotheses (H1-H6). In this section, we analyze them by applying the
regression analysis technique.

H1: Quality of results → Perceived usefulness. The regression equation resulting
from the analysis is: PU = 2.376 + 0.477*QR.

The regression had a high significance level (p < 0.01), which means that H1 was
confirmed. The determination coefficient (R2 = 0.316) showed that 31.6% of the total
variation in perceived usefulness can be explained by variation in quality of results.

H2: Tangibility of results → Perceived usefulness. The regression equation
resulting from the analysis is: PU = 3.208 + 0.236*TR.

1 http://www.dsic.upv.es/~nelly/survey2.pdf

MODELS`08 Workshop ESMDE

66

The regression had a null significance level (p > 0.1), which means that H2 was not
confirmed.

H3: Job Relevance → Perceived usefulness. The regression equation resulting
from the analysis is: PU = 2.86 + 0.348*JR.

The regression had a medium significance level (p < 0.05), which means that H1
was confirmed. The determination coefficient (R2 = 0.186) showed that 18.6% of the
total variation in perceived usefulness can be explained by variation in job relevance.

H4: Minimum actions → Perceived ease of use. The regression equation
resulting from the analysis is: PEOU = 2.733 + 0.314*MA.

This regression had a null significance level (p> 0.1), which means that H4 was not
confirmed.

H5: Perceived usefulness → Intention to use. The regression equation resulting
from the analysis is: ITU = 1.628 + 0.577* PU.

The regression had a medium significance level (p < 0.05), which means that H5
was confirmed. The determination coefficient (R2 = 0.166) showed that 16.6% of the
total variation in intention to use can be explained by variation in perceived
usefulness.

H6: Perceived ease of use → Intention to use. The regression equation resulting
from the analysis is: ITU = 2.881 + 0.298* PEOU.

The regression had a null significance level (p > 0.1), which means that H6 was not
confirmed.

Table 2 below summarizes the regression analysis results in terms of the predictive
power (R2) and significance level of the model (p), and the confirmation of the casual
relationships.

Table 2. Regression analysis results

Causal hypotheses Predictive
power

Significance. level* Confirmed?

H1: QR → PU 31.6% High Yes

H2: TR → PU -- Null No
H3: JR→ PU 18.6% Medium Yes
H4: MA→ PEOU -- Null No
H5: PU → IU 16.6% Medium Yes
H6:PEOU→IU -- Null No

Note that three hypotheses out of six were confirmed using a regression analysis

(H1, H3, and H5). This means, that the perceived usefulness is determined by the
quality of results, and by the job relevance using RmFFP for the software practitioner.
In addition, the intention to use RmFFP is determined by the perceived usefulness.

3.4 Validity evaluation

It is important to ensure that the obtained results are valid, we present the more
important threats related to our empirical study in Table 3.

* Null: α > 0.1, Low : α < 0.1, Medium: α < 0.05, High: α < 0.01, Very high: α < 0.001

MODELS`08 Workshop ESMDE

67

Table 3. Type of threats to the validity of the results obtained in our empirical study

Type of threats Description

Conclusion validity • Random heterogeneity of subjects: All the subjects
selected for the empirical study had approximately the
same level of background. We are aware that this
homogeneity reduces the external validity of our
empirical study.

• Reliability of measures: We are aware that the measures
based on perceptions are less reliable than objective
measures, since it does not involve human judgment.
However, to diminish this threat, we carried out a
reliability analysis on the survey used, which is explained
below.

Construct validity • Inadequate pre-operational explanation of constructs: To
ascertain whether the constructs are sufficiently defined,
and, hence the experiment is sufficiently clear, we
conducted a reliability analysis on the survey, calculating
reliability using the Chronbach alpha technique. The
generic value obtained was 0.85 indicating that the items
included in the survey are reliable. However, a design
adjustment on the questions corresponding to the
constructors PU, MA and QR would be required for
further empirical studies, since their corresponding
Cronbach alpha values were lower than 0.7 ([19]).

Internal validity • Instrumentation: This is the effect caused by the artefacts
used in the study execution. The requirements
specification of the Car Rental System was reviewed; and
the measurement guide was verified in advance with a
small group of people in order to improve its
understandability.

External validity • Interaction of selection and treatment: This is the effect
of not having a representative population in the
experiment with which to generalize. In our case, we are
aware that more studies with a larger number of subjects
would be appropriate to reconfirm the initial results
obtained.

4. Conclusions and further work

This paper provides a brief introduction to a theoretical model to evaluate the
acceptance of measurement procedures from an individual perspective. The model
includes three types of factors that influence perceptions of usefulness and ease of use
(intrinsic, extrinsic and external factors). An empirical study has been carried out to
verify causal relationships that include the intrinsic and extrinsic factors. The analysis

MODELS`08 Workshop ESMDE

68

shows that perceived usefulness is influenced by the job relevance of the people that
use a measurement procedure. However, with respect to intrinsic factors, only the
quality of results could affect the perception of usefulness. Perceived ease of use
cannot be determined by the minimum actions factor. Furthermore, the results show
that the intention to use a measurement procedure can be influenced more strongly by
perceived usefulness than by perceived ease of use.
We plan to make further adjustments to the questions on the survey to improve the
reliability of certain constructs, such as PU, MA, and QR. In addition, we are aware
that further experimentation with industry practitioners will be appropriate in order to
reconfirm these initial results. Finally, as further empirical studies, we also intend to
consider the influence of software practitioners’ experience on the acceptance of
model-based measurement procedures.

Referencias

[1] Kasunic M., State of Software Measurement Practice Survey, Carnegie Mellon,
Software Engineering Institute, 2006,
www.sei.cmu.edu/sema/presentations/stateof-survey.pdf

[2] Abrahão S., Gomez J., Insfran E. Mendes E., A Model-Driven Measurement
Procedure for Sizing Web Applications, Conference on Model-Driven
Engineering Languages and Systems (MODELS 2007), Nashville, TN, USA,
September 30-Octuber 5, 2007, LNCS Springer, 2007.

[3] Abrahao S., Poels G., Pastor O. A Functional Size Measurement Method for
Object-Oriented Conceptual Schemas: Design and Evaluation Issues. Software &
System Modelling, 5(1): 48-71, Springer Verlag, 2005.

[4] Azzouz S., Abran A., “A Proposed Measurement Role in the Rational Unified
Process and its Implementation with ISO 19761: COSMIC-FFP” in Software
Measurement European Forum, Rome, Italy, 2004.

[5] Condori-Fernández N., Abrahão S., and Pastor O., On the Estimation of
Software Functional Size from Requirements Specifications, Journal of
Computer Science and Technology (JCST), Springer, 22(3): 358-370, 2007.

[6] Marín B., Pastor O., Giachetti G.: Automating the Measurement of Functional
Size of Conceptual Models in an MDA Environment, 9th International
Conference Product-Focused Software Process Improvement, Italy, June 2008,
pp. 215-229.

[7] R.B. Cooper and R.W Zmud, “Information Technology Implementation
Research: A Technological Diffusion Approach”, Management Science,
36(2):123-139, 1990

[8] W. G. Chismar, S. Wiley-Patton, Does the Extended Technology Acceptance
Model Apply to Physicians?, 36th Annual Hawaii International Conference on
System Sciences, IEEE Computer Society, Big Island, USA, January 2003, pp.
160-167.

[9] Chau P.Y. K., An empirical investigation on factors affecting the acceptance of
CASE by systems developers, Journal on Information and Management,
Elsevier, 30(6): 269-280, 1996.

MODELS`08 Workshop ESMDE

69

[10] Umarji M.and Emurian H., Acceptance Issues in Metrics Program
Implementation, Proceedings of the 11th IEEE International Software Metrics
Symposium METRICS 05, IEEE Computer Society, 2005, Washington,USA,
pp. 10-29.

[11] Gopal A., Krishnan M.S., Mukhopadhyay T., Impact of Institutional Forces on
Software Metrics Programs, IEEE Trans. on Software Eng, 31(8):679-695,
August 2005.

[12] Gopal A., Krishnan M.S., Mukhopadhyay T., and Goldenson, Measurement
Programs in Software Development: Determinants of Success, IEEE Transaction
on Software Eng., 28(9):863-875, 2002.

[13] Condori-Fernández N., Pastor O., Towards a Theoretical Model for Evaluating
the Acceptance of Model-Driven Measurement Procedures, Proceedings of the
20th International Conference on Software Engineering & Knowledge
Engineering, SEKE 2008, San Francisco, USA, July 1-3, 2008, pp. 22-25 .

[14] Davis F. D., "Perceived Usefulness, Perceived Ease of Use and User Acceptance
of Information Technology", MIS Quarterly, vol. 3, no. 3, 1989.

[15] Basili V. R. and Rombach H. D., The TAME Project: Towards Improvement-
Oriented Software Environments, IEEE Transactions on Software Engineering,
14(6):758-773, 1988.

[16] N. Juristo, Moreno A, Basics of Software Engineering Experimentation, Kluwer
Academic Publishers, Boston, 2001.

[17] Condori-Fernández N., Pastor O., An Empirical Study on the Likelihood of
Adoption in Practice of a Size Measurement Procedure for Requirements
Specification, Sixth International Conference on Quality Software (QSIC 2006),
October 2006, Beijing, China, pp. 133-140.

[18] Pastor, O., Molina, J. Model-Driven Arquitecture in Practice. Valencia, Springer
Berlin Heidelberg, New York, 2007.

[19] Garson D., Scales and standard measures from statnotes, North Carolina State
University, Copyright 1998, last updated March 2008.
http://www2.chass.ncsu.edu/garson/pa765/standard.htm.

[20] ISO, ISO/IEC 19761 Software Engineering-COSMIC-FFP-A Functional Size
Measurement Method, International Organization for Standardization_ISO,
Geneva, 2003.

[21] Moody D. L., The method evaluation model: a theoretical model for validating
information systems design methods, 11th European Conference on Information
Systems, ECIS 2003, Naples, Italy 16-21 June 2003.

MODELS`08 Workshop ESMDE

70

Towards a generic framework for empirical
studies of Model-Driven Engineering

Benoit Vanderose and Naji Habra

PReCISE Research Centre
Faculty of Computer Science

University of Namur
5000 Namur, Belgium

{bva,nha}@info.fundp.ac.be

http://www.fundp.ac.be/precise

Abstract. The goal of this paper is to introduce a work-in-progress
approach that intends to formalize and facilitate empirical studies in
Software Engineering in general and in Model-Driven Engineering in par-
ticular. The main idea is to use a detailed model of software that makes
explicit the different intermediate models used at the different levels of
abstraction, their different quality characteristics together with their re-
lationships. The expected benefits of using such an explicit modeling is
illustrated though five examples for which empirical studies are designed
(but not yet conducted) on basis of that approach.

1 Introduction

Though Model-Driven Engineering techniques are very in vogue in academic
world, their introduction into industry seems very slow. One of the suggested
reasons is the difficulty to convince decision makers of Model-Driven Engineering
advantages in terms of qualities and consequently regarding return on invest-
ment. Indeed, such argumentation necessitates empirical evidence.

Some major problems in conducting empirical studies in MDE are related
to the use of classical quality models. In this paper, we claim that considering
software as a single product with a list of quality characteristics (maintainability
readability, efficiency...) is too rough to be used as basis for empirical studies in
MDE. Instead, we suggest the use of a detailed model of the software products
that makes explicit the different intermediate products (the different interrelated
models) together with their relationships. The ultimate goal is to elaborate a
framework to help design empirical studies in MDE. The remainder of this paper
is organized as follows: Section 2 presents some related works our approach relies
on and complements as well as the remaining problems we intend to address.
Section 3 describes the framework and the approach themselves while Section 4
describes some examples of use.

MODELS´08 Workshop ESMDE

71

2 Related work and Issues

The effort described here relies on research linked to both quality measurement
and empirical software engineering. The basis of empirical studies in software
engineering can be found in [28, 18]. Software measurement has witnessed too
many metric proposals to cite them here but also benefits from generic theoretical
works like [9, 16] while quality assessment benefits from numerous quality mod-
els — notably McCall’s [25, 19], Boehm’s [3, 2], FURPS [15], ISO [17], Dromey’s
[8]. Unfortunately those works do not take explicitly into account design-related
quality. Software design quality still benefits from its own research. For instance,
[6] summarizes many object-oriented design measures and studies the relation-
ships between them and software quality. We can find publications, notably [13,
14, 12, 11, 10, 20, 21], that focus on how to estimate the quality of models. Finally,
a generic approach to evaluate design is also proposed in [7].

Nevertheless we still identify some difficulties and limitations that appear
when conducting empirical investigations in Software Engineering in general and
in Model-Driven Engineering in particular.

To begin with, software measurement methods in general lack clarity about
what they really measure. Theoretically, measurement process consists in quan-
tifying relevant features (attributes) of a product (entity) in order to estimate
another feature (quality) that is not directly quantifiable [9]. Practically, the
entity supposed to be measured is very frequently not defined in a precise way
and roughly called “software”. If this view is sufficient for some empirical studies
focusing on the quality of the software product as a whole, investigating Model-
Driven Engineering necessitates more. In fact, since Model-Driven Engineering
copes with different models and handles them as distinguished products, the
qualities of the different models have to be clearly distinguished.

Moreover, the attribute supposed to be measured is frequently unclear. Num-
bers produced by applying a measurement method on a given model are some-
times used to estimate or predict different attributes without any clarification
— e.g., a complexity measurement method used as size measurement. This can
lead to incongruous use of software metrics and therefore to a completely wrong,
or at least biased, quality assessment [16].

Model-Driven Engineering deals with a succession of models, from the more
abstract ones to the code. Each model corresponds to a given abstraction level
and has its own concerns about quality. But, as any model produced during
software development is a part of an overall workflow, the inner quality of a given
model is as important as the preservation of this quality through subsequent
transformation steps leading to the final product. As a consequence, it can be
unclear whether a quality criteria of a given model from a given development
step actually improves or worsens the quality of the overall software product.

Also, Model-Driven Engineering is based on model transformations. However,
research focuses are usually put on the preservation of semantic properties —
the correctness of a transformation is defined on that basis. Traditional seman-
tics approaches only encapsulate the “functional” aspects while empirical studies
are needed to estimate a larger set of software quality attributes — including

MODELS´08 Workshop ESMDE

72

various non-functional aspects. Whatever quality model and vocabulary is used
quality attributes include not only the functionality but also other attributes
which are based on cognitive sub-characteristics — e.g., understandability, mod-
ifiability,. . . — related to the syntax. Empirical investigation in Model-Driven
Engineering should thus take this specific type of qualities into account.

Finally, software development is mainly a matter of information transmis-
sion between people and transformation through different levels of abstraction
and viewpoints [7]. Nevertheless, almost every effort relating to quality does
not address such aspects — i.e. how easy the transformation process of a given
model will be. Model-Driven Engineering also supposes that most of the models
should be generated through automated — or at least very systematic — trans-
formations. Investigating the preservation of the quality attributes all along the
transformation process trough empirical studies should thus also imply to ques-
tion the quality of these transmissions and transformations.

3 An approach to improve empirical studies of quality

This section introduces a framework we are elaborating with the intent to address
the previously cited issues. The basic idea is to use model of software that makes
explicit the various models used in the development as well as their relationships
in terms of quality. Section 3.1 deals with the model of the software while Section
3.2 is concerned with the quality characteristics.

3.1 Modeling the software product(s).

Our framework relies on an explicit representation of software as a complex
and composite product. In the followings we introduce a generic structure of
software (see Figure 1) we claim to be sufficient to illustrate our approach.
Our generic model introduces two levels of decomposition. The first level of
decomposition focuses on software as the collection of outcomes of a multifaceted
process involving many distinct activities. As a matter of fact, software life cycle
models intend to organize those activities in a structured and rational manner
[26] and the outcome of these activities is mostly composed of models — it is
even arguable that this outcome is exclusively composed of models if “model” is
defined as just a representation. In order to be as general as possible and to cover
most life cycle models, we use a generic structure which divides the process into
three categories of activities: Requirement Engineering, Architectural Design and
Implementation where each category includes all the (sub)activities involved
in the production of three global artifacts: the Requirements, the Design and
the Source Code. Even though the process behind a software life cycle is not
necessary linear — as shown notably in [4, 5, 24, 22] —, each global artifact relies
on another previously produced one (except for the Requirements).

The second level of decomposition logically focuses on the internal structure
of those composite global artifacts. Each of them is in fact made of one or more
specialized elements referenced to as elementary artifacts in the framework. The

MODELS´08 Workshop ESMDE

73

Fig. 1. Software as a composite and complex artifact

word elementary artifact means here any self sufficient piece of information com-
prised in a global artifact (e.g. a diagram, a structured text, a list of items in
a text, a file, etc.). Each elementary artifact has a type (e.g., static structure
diagram, dynamic structure diagram, source file, etc.), is written in a given
language (e.g., UML, java, etc.), with a given level of abstraction and can be
requirement-, design-, or code-related. Moreover, the granularity of the decom-
position is variable so that it is possible to define elementary artifacts with more
or less important scope. Finally, each element is part of an interconnected net-
work of dependencies partially inherited from the dependencies of the composite
global artifacts. At this level of our investigation, such a generic model seems to
be sufficient to support the approach.

3.2 Modeling the software characteristics.

The main use of this view is to support a refined definition of the different qual-
ity characteristics, to relate each of them to the adequate product (elementary
artifact or composite one) and to express and study relationships between them.
The final aim is to build a quality model that is more flexible and adequate for
model-driven approaches than the existing ones. Practically, as the quality of
any type of elements can almost certainly be evaluated through a set of pro-
posed “quality characteristics” — as hinted notably in [12, 11, 10]—, a powerful

MODELS´08 Workshop ESMDE

74

quality model could be built by defining a list of characteristics assigned to each
element then by determining the “influence” relationship between attributes.
At this point, we can illustrate the “influence relationship” with the following
partial example based on our practice, and common sense.

Each entry of the table below has the following structure:

Globalartifact.TypeOfElementaryartifact.Characteristic, where

– Globalartifact is either R(equirements), D(esign) or C(ode).
– TypeOfElementaryartifact is : NFu stands for non functional require-

ments, Fu for functional requirements, Struc for structural aspect, Behav
for behavioral aspects, Run for aspects involved at runtime or “*” which
means that any type of Elementary Artifact is involved. The type is used
to categorize the elementary artifacts according to the role they play in the
development. Not every type is present in every global artifact.

– Characteristic is either Main(tainability), Usab(ility), Func(tionality), Effi
(ciency) [17] or Pres(ence) — since the presence of a given artifact can be
considered as quality-related information in this approach as we will see in
Section 4. A characteristic could be meaningful for only a subset of a type
of elementary artifact but this preliminary attempt intends to be as generic
and simple as possible.

– Each cell contains either N(no influence expected) or I (some influence ex-
pected)

Table 1. Expected Influence relationships

..
.

D
.S

tr
u
c.

M
a
in

D
.B

eh
av

.M
a
in

C
.R

u
n
.F

u
n
c

C
.R

u
n
.E

ffi

C
.*

.M
a
in

R.NFu.Usab . . . N I N I N

R.Fu.Usab . . . I N I N N

R.*.Pres . . . I I I I I

D.Struc.Main . . . @
@@

N I I I

D.Behav.Main . . . N @
@@

I I I

D.*.Pres . . . I I I I I

. .

The table intends to give a new formulation of the questions to be dealt with
through empirical studies. It shows the plausible expectations in terms of in-
fluence at a very general level. That is, its content represents a set of plausible

MODELS´08 Workshop ESMDE

75

hypotheses to explore through empirical investigations, each of them involving
going to a lower level (subtype of element artifact, quality sub-characteristic and
internal metrics). The table is far from being final at this point and each “path”
can be questioned. Also, this current table is only focusing on very generic char-
acteristics so that each user of the framework can expand, propose and study
new relationships or refine existing ones with different characteristics or other
classifications of artifacts. So it is only through the massive use of the proposed
method within the community of Empirical Software Engineering that a con-
sensual and widely accepted table of this kind could be achieved. We believe
that such table would be a more helpful basis to conduct empirical studies in
model-driven engineering than usual quality models.

4 Some typical scenarios of use

The novelty of the framework introduced above lies in the particular point of
view adopted. It is more flexible in the sense that it allows to get inside Model-
Driven process and investigate the influence of various artifacts on other ones.
Then this approach supports more specialized investigation such as the relevance
of a particular transformation in comparison with another.

The first step in order to use the framework is to make explicit the dependen-
cies between studied artifacts — e.g., elementary artifact c1 is produced thanks
to d1 and d2. Then the idea is to consider these variables as “typed” variables
where each “type” (requirement-, design, code-related) has its own set of mean-
ingful quality characteristics. Finally, the table of influences is used to express
the hypotheses about the characteristics involved and their relationships. Besides
being an innovative way to support empirical studies in general, the present ap-
proach particularly suits Model-Driven Engineering for two main reasons. First,
most of elementary artifacts, are supposed to be models. Since elementary ar-
tifacts are almost the primary form of expression of our framework and models
are the one of MDE, the two approaches should be compatible. Secondly, our
approach is designed to address the transformation of information, which is a
core concept of any model-driven approach.

The remainder of this Section illustrates the use of the framework on five
hypothetical experiments and highlights the benefits of the framework in those
situations. The structure of the cases is inspired by the GQM paradigm [1, 27].
Case 1

– Goal. Study the impact of the presence of a design pattern P on the main-
tainability of the produced code.

– Question. Let d1, d2 be 2 class diagrams, where d2 satisfies the same set
of requirement-related elementary artifacts REQ1 than d1, but d1 uses a
design pattern P while d2 does not; c1 & c2 are two pieces of java program
produced from d1, d2, respectively, through a transformation T. Is c2 more
maintainable than c1?

MODELS´08 Workshop ESMDE

76

– Metrics. To study the maintainability of the code, the experimenter could
use the effort needed to complete a maintenance task as a metric. This is con-
sistent with classical quality models which propose to decompose maintain-
ability into sub-characteristics which are mainly measurable through effort.
Though the choice of such measurement method is questionable by itself, it
could still be used as an approximation.

– Discussion. This experiment could be achieved without the support of the
framework but would miss some benefits. With our framework, this exper-
iment can be expressed as the investigation of the influence of a structural
design-related elementary artifact on the maintainability of a code-related
elementary artifact. This path is present in the table of expected influences
(Table 3.2), which means that the experiment seems relevant. Moreover, the
use of the framework highlights the fact than design patterns are part of the
design and not the code, a view that is not always admitted.

Case 2

– Goal. Study the impact of one design characteristic on the same character-
istic at the code level. For instance the goal could be to investigate whether
a focus on the maintainability at the design level does not produce more
complex code and therefore impact negatively the global maintainability of
the software product.

– Question. Let d1, d2 be 2 diagrams at the design level, where d1 is more
maintainable than d2, and c1 & c2 be two pieces of java program produced
from d1 & d2, respectively, through a transformation T. Is c2 more main-
tainable than c1?

– Metrics. This situation illustrates perfectly the case where the present ap-
proach complements and is nurtured by other related works when it comes
to selecting the adequate metrics. Indeed, we can use and integrate to the
framework the research that has been done regarding the maintainability of
UML diagrams and how to evaluate it thanks to internal metrics [12, 11].
For the code maintainability, see Case 1.

– Discussion. This case is almost similar to the first one but illustrates how
the framework allows us to further investigate software quality. While the
first case was about the influence of a technique on a quality characteristic,
this case proposes to confront the quality characteristics of two entities and
see how they are related. Without the framework and its specific point of
view, this experiment — the investigation of the influence of the maintain-
ability of a design-related elementary artifact on the maintainability of a
code-related elementary artifact — would need an extra descriptive effort to
show that maintainability does not apply to the same entity on both sides
of the relationship.

Case 3

– Goal. Study the impact of one design characteristic on another characteristic
at the code level. For instance the goal could be to investigate whether a

MODELS´08 Workshop ESMDE

77

focus on the maintainability all along the design process does not impact
negatively the efficiency of the software code.

– Question. Let d1, d2 be 2 design models where d1 is more maintainable
than d2 and c1 & c2 be two pieces of java program produced from d1, d2,
respectively, through a transformation T. Is c2 more efficient than c1?

– Metrics. The same principles as in Case 2 apply for d1 and d2. Metrics
related to efficiency could be specifically designed for the experiment or
taken from ISO standards.

– Discussion. This case is set at the same level than Case 2 : the aim is to
study internal mechanisms of software quality by questioning the relationship
between two quality characteristics. The framework helps give sense to this
experiment : though maintainability and efficiency do not seem to be related
in any way when applied to the same entity, the framework allows us express
the fact that a relation of cause and effect exists between the two elementary
artifacts and probably between their respective quality characteristics. In
this context, the legitimacy of the question is clearer.

Case 4

– Goal. Study the benefits of a given transformation methodology (or tool)
regarding the preservation of a given quality characteristic. For instance the
goal could be to question whether a transformation T preserves, improves
or worsens the complexity of the software code.

– Question. Let DES be a collection of design-related elementary artifacts
(e.g., class diagrams & statecharts & sequence diagrams) and let C1, C2,. . . ,
Cn be different source code — and thus global artifacts — produced by
the transformations T1, T2,. . . ,Tn, respectively. Is C1 more complex than
C2,. . . , Cn?

– Metrics. McCabe’s number could be used to assess complexity according
that some precaution is taken [23].

– Discussion. This case illustrates how the framework can support investi-
gations about the quality of the engineering process. In previous cases, the
transformation process was fixed and the studied variable was an elementary
artifact. Here, we fix the design-related elementary artifacts and investigate
how various transformations provide various level of quality at the code level.

Case 5

– Goal. Determine the relevant level of abstraction — requirement-, design-
or code-related — and the suitable models involved where it would be mean-
ingful to take a given characteristic into account — e.g., security.

– Question. Let < R1, D1, C1 >, < R2, D2, C2 > and < R3, D3, C3 >
be three software products; the non-functional requirement of security is
modeled by an adequate elementary artifact since the requirement level in
< R1, D1, C1 >, since the design level in < R2, D2, C2 > and in the code
in < R3, D3, C3 >, which is the most secure product?

– Metrics. Security metrics are not proposed here but could be designed
specially for the experiment.

MODELS´08 Workshop ESMDE

78

– Discussion. This case illustrates how the framework can express questions
about the “temporal” impact of the introduction of some elementary arti-
facts. It also shows how the particular point of view chosen in this approach
allows to make a quality characteristic out of a very simple attribute like the
presence of absence of a given artifact.

5 Conclusion and future work

The approach introduced in this paper is a first and currently evolving attempt
to address some limitations of software quality assessment. Though relying on a
very simple and light mechanism, the main benefit brought by this framework is
to force the experimenter to adopt a more accurate and flexible view of software.
The examples given in Section 4 are just some of the possible experimentations
that could benefit from it. In each case, the use of “typed variables” clarifies
the “dimension” involved and allows to avoid ambiguity about what the experi-
menter expects to address. Section 4 also illustrates how basic attributes like the
presence of a given elementary artifact become valuable quality criteria when
software is considered from this point of view — i.e., as a composite artifact
resulting from a network of interconnected pieces of information.

As an early work, the approach naturally lacks experimental data to con-
firm all the benefits we expect. The next step of the development will be to
apply the framework to an actual empirical study in the context of a student
development project. The table of expected influences also need experimental
confirmation, but should eventually constitute a valuable reference for anyone
interested in further transversal investigations about the internal mechanisms of
software quality.

References

1. Basili, V.R.: Using Measurement to Build Core Competencies in Software. Seminar
sponsored by Data and Analysis Center for Software. (2005)

2. Boehm, B.W., Brown, J. R., Lipow, M.: Quantitative evaluation of software quality.
In: International Conference on Software Engineering (1976)

3. Boehm, B.W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., and Merritt, M.:
Characteristics of Software Quality. North Holland (1978)

4. Boehm, B. W.: Software Engineering Economics. 1st. Prentice Hall PTR. (1981)
5. Boehm, B. W.: A Spiral Model of Software Development and Enhancement. Com-

puter 21, 5,pp. 61-72. (1988)
6. Briand, L.C., Wust, J., Daly, J.W., Porter, D.V.: Exploring the relationships be-

tween design measures and software quality. In: object-oriented systems, Journal of
Systems and Software, 51, 3, pp. 245-273. (2000)

7. Budgen, D.: Software Design. 2. Addison-Wesley Longman Publishing Co.,
Inc.(2003)

8. Dromey, R. G.: A model for software product quality. In: IEEE Transactions on
Software Engineering, no. 2, pp. 146-163. IEEE Computer Society, Los Alamitos
(1995)

MODELS´08 Workshop ESMDE

79

9. Fenton, N. E., Pfleeger, S. L. : Software Metrics: a Rigorous and Practical Approach.
2nd. PWS Publishing Co. (1998)

10. Genero, M., Piattini, M., Calero, C.: Empirical Validation of Class Diagram Met-
rics. In Proceedings of the 2002 international Symposium on Empirical Software En-
gineering (October 03 - 04, 2002). International Symposium on Empirical Software
Engineering. IEEE Computer Society, Washington, DC (2002)

11. Genero, M., Piattini, M., Manso, E., Cantone, G.: Building UML Class Diagram
Maintainability Prediction Models Based on Early Metrics. In: Proceedings of the 9th
international Symposium on Software Metrics (September 03-05, 2003),METRICS.
IEEE Computer Society, Washington, DC (2003)

12. Genero Bocco, M., Moody, D. L., Piattini, M. : Assessing the capability of internal
metrics as early indicators of maintenance effort through experimentation :Research
Articles. J. Softw. Maint. Evol. 17, 3, pp.225-246 (2005)

13. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams
Journal of Object Technology, 4, 9, 59-92. (2005)

14. Genero, M.: Metrics for Software Conceptual Models. World Scientific Publishing
Co., Inc. (2005)

15. Grady, R. B.: Practical Software Metrics for Project Management and Process
Improvement. Prentice-Hall, Inc, Upper Saddle River, NJ, USA (1992). Practical
Software Metrics for Project Management and Process Improvement. Prentice Hall,
p. 32.

16. Habra, N., Abran, A., Lopez, M., and Sellami, A.: A framework for the design
and verification of software measurement methods. J. Syst. Softw. 81, 5, pp633-648.
(2008)

17. ISO/IEC 9126. Software Product Evaluation–Quality Characteristics and Guide-
lines for the User, Geneva, International Organization for Standardization. (2001)

18. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers. (2001)

19. Kitchenham, B., Pfleeger, S. L.: Software quality: the elusive target [special issues
section]. IEEE Software, no. 1, pp. 12-21 (1996)

20. Lange, C.F.J.: Empirical Investigations in Software Architecture Completeness.
TU Eindhoven; November 12. (2003)

21. Lange, C., Chaudron, M., Muskens, J.: In Practice: UML Software Architecture
and Design Description. In: IEEE Software ,vol. 23, no. 2, pp. 40-46. (2006)

22. Larman, C. and Basili, V. R.: Iterative and Incremental Development: A Brief
History. Computer 36, 6,pp. 47-56. (2003)

23. Lopez, M., Habra, N., Abran, A.: A Structured Analysis of the McCabe Cyclomatic
Complexity Measure. In: Proceedings of the 14th International Workshop on Software
Measurement (IWSM2004) Berlin, Germany (2004)

24. Martin, J.: Rapid Application Development. Macmillan Publishing Co., Inc.(1991)
25. McCall, J. A., Richards, P. K., Walters, G. F.: Factors in Software Quality. Nat’l

Tech.Information Service, Vol. 1, 2 and 3 (1977)
26. Pressman, R. S.: Software Engineering: a Practitioner’s Approach. McGraw-Hill

Science/Engineering/Math.(2004)
27. Van Solingen, R.: The Goal/Question/Metric Method. McGraw-Hill Education.

(1999)
28. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Ex-

perimentation in software engineering: an introduction. Kluwer Academic Publishers
(2000)

MODELS´08 Workshop ESMDE

80

	Empirical Studies of Model
	Preface
	Program committee
	Content
	Paper1
	Paper2
	Paper3
	Paper4
	Paper5
	Paper6
	Paper7
	Paper8

