
Explaining Recommendations Generated by

MDPs

Omar Zia Khan, Pascal Poupart, and James P. Black

David R. Cheriton School of Computer Science, University of Waterloo,
200 University Ave. W, Waterloo, ON, Canada N2L 3G1

{ozkhan,ppoupart,jpblack}@uwaterloo.ca

Abstract. There has been little work in explaining recommendations
generated by Markov Decision Processes (MDPs). We analyze the dif-
�culty of explaining policies computed automatically and identify a set
of templates that can be used to generate explanations automatically
at run-time. These templates are domain-independent and can be used
in any application of an MDP. We show that no additional e�ort is re-
quired from the MDP designer for producing such explanations. We use
the problem of advising undergraduate students in their course selection
to explain the recommendation for selecting speci�c courses to students.
We also propose an extension to leverage domain-speci�c constructs us-
ing ontologies so that explanations can be made more user-friendly.

1 Introduction

In many situations, a sequence of decisions must be taken by an individual
or system (e.g., course selection by students, inventory management for a fac-
tory, etc.). However, deciding on a course of action is notoriously di�cult when
there is uncertainty in the e�ects of the actions and the objectives are complex.
Markov decision processes (MDPs) [1] provide a principled approach for auto-
mated planning under uncertainty. While the beauty of an automated approach
is that the computational power of machines can be harnessed to optimize dif-
�cult sequential decision making tasks, the drawback is that users no longer
understand why certain actions are recommended. This lack of understanding is
a serious bottleneck that is currently holding back the widespread use of MDPs
in recommender systems. Hence, there is a need for explanations that enhance
the user's understanding and trust of these recommendations.

In MDPs, actions are selected according to the principle of maximum ex-
pected utility. Hence, explaining a decision amounts to explaining why the cho-
sen action has highest expected utility. However, this is complicated by the fact
that the numerical value of utility is not meaningful in most cases, and the com-
putation of the expected utility is usually too complex to be explained easily.
To address this, we generate simple and easy-to-understand explanations that
provide some insight into the expected utility computation by exposing some
of the important factors. More speci�cally, we are interested in answering two
types of questions: why was a particular action recommended, or why was it not

recommended? We do not concern ourselves with the natural language aspects
of explanation generation. Instead, we devise explanation templates to answer
these questions. We also demonstrate how to populate these templates at run-
time using only the information in the MDP and without any extra e�ort on the
part of the developer of the system. In certain cases, the explanations can be
more meaningful if additional domain knowledge is available. We use an ontology
to represent domain-speci�c facts and show how to use this information to enrich
the explanations. Finally, we demonstrate our approach in the domain of course-
selection advising, where an MDP recommends elective courses to upper-level
undergraduates, based on their previous performance.

2 Background and Related Work

A Markov decision Process (MDP) is formally de�ned by a set of states S and a
set of actions A, a transition model and a reward model. (A and S are assumed
to be �nite throughout the paper.) A set of state variables de�nes the state
space, with the current state of the MDP determined by the current values of all
state variables. We assume that the variable names are meaningful and related
to the concepts being represented. A transition model Pr : S′ × S × A → [0, 1]
speci�es the probability Pr (s′|s, a) of an action a in state s leading to a state s′.
A reward model R : S×A→ R speci�es the utility or reward R (s, a) associated
with executing action a in state s. A policy π : S → A consists of a mapping
from states to actions. The value V π (s) of a policy π when starting in state s is
measured by the sum of the expected discounted rewards earned while executing
the policy, with γ representing the discount factor.

V π (s0) = E

[∞∑
t=0

γtR (st, at)
∣∣∣∣π, s0

]
(1)

An optimal policy π∗ earns the highest value for all states (i.e., V π∗(s) ≥
V π(s) ∀π, s). Optimal policies for MDPs can be computed using techniques such
as value iteration in which Bellman's optimality equation (Equation 2) is treated
as an update rule that is applied iteratively. Essentially, the utility of a state is
determined by adding the immediate reward and the expected discounted utility
of the next state, determined by choosing the optimal action.

V ∗ (s) = max
a

[
R (s, a) + γ

∑
s′

Pr (s′|s, a)V ∗ (s′)

]
(2)

Thus, we can always explain that the recommended action maximizes ex-
pected utility, although this may not provide much information to the user.

2.1 Course Selection Advising

Throughout the paper, we use the domain of course advising to illustrate our
approach for explanation generation. The model for course advising is a factored

Fig. 1. Dynamic Decision Network encoding of the MDP

MDP that recommends elective courses to upper year students, based on their
previous performance. The Dynamic Decision Network (DDN) associated with
our MDP model is depicted in Figure 1. We omit the complete list of pre-requisite
and elective courses for clarity.

In our model, students must choose two elective courses in each of their last
three terms, subject to ful�lling pre-requisite and course area constraints. Each
course belongs to one of three areas and has a grade variable taking one of four
values {G, P, F, N } corresponding to Good, Pass, Fail, and Not Taken. The
default value is N. We also have a variable for the CGPA (cumulative grade
point average) with two possible values {G, P} that correspond to Good and
Pass. In addition, book-keeping variables are used to indicate the total number
of courses completed, whether each area has been covered, and the number of
terms remaining. A state is de�ned by a particular instantiation of all these
variables. Each term corresponds to a time step and the values of the variables
may change with each term, giving rise to a di�erent state.

The actions consist of all pairs of courses. The MDP policy depends on the
values of all variables mentioned above, and recommends two courses to be taken
in the next term.

The transition function was constructed manually. (We will eventually use
historical data to estimate it.) It indicates a distribution over values for each
variable given the current state. For course grades, the distribution depends on

the CGPA and grades of the pre-requisites. If the pre-requisites for a course
are not completed, actions involving that course cannot be taken. Note that the
concept of pre-requisites is not explicitly present, however, the conditional prob-
ability tables have been encoded to have that e�ect (i.e., course grade remains
N). When a course is passed, the number of completed courses is incremented
and whenever an area is covered the value changes accordingly. Finally, after
each action, the number of terms passed is incremented.

The reward function is decomposed additively into two components based
on the degree requirements. We create two utility variables, course_reward and
area_reward, that have high utility values for states in which 6 courses are passed
and three areas are ful�lled. The rewards are only awarded at the end of the third
term to avoid multiple accrual if a requirement is completed before the end of
the last term. The objective is to maximize the values of these utility variables.
Since we are solving a �nite-horizon problem with three time steps, we do not
discount future rewards.

2.2 Related Work

Explanations for recommender systems have been studied widely [2]. Herlocker [3]
described a three-stage process for explanation in recommender systems. First,
users can be shown the key data that led to the recommendation, second, a
higher-level description of the mathematical process can be provided, and third,
a set of claims that can lead towards the conclusion can be presented. Our ap-
proach for explanations in MDPs is also motivated by this process with the
key di�erence that choices in MDPs also depend on future states and actions
in contrast to recommender systems in which a single decision needs to be ex-
plained. Explanations for task processing systems is another related area where
the choices also depend on possible future actions. McGuiness et al. [4] identify
several templates to present explanations in task processing systems based on
prede�ned work�ows. Our approach also uses templates, but we do not (and
cannot) use prede�ned work�ows due to the probabilistic nature of MDPs.

Druzdzel [5] �rst dispelled the notion that it is impossible to generate ex-
planations for probabilistic systems. Chajewska and Halpern [6] combined two
previous approaches [7,8] for explanations in probabilistic systems by represent-
ing causality using Bayesian Networks and exploiting di�erent links. Lacave and
Díez [9] surveyed the existing techniques and their limitation for explanation
in Bayesian Networks. Lacave et al. [10] present several approaches to explain
graphical models, including Bayesian networks and in�uence diagrams. Their ex-
planations are geared to users with a background in decision analysis and they
present utilities of di�erent actions graphically and numerically. We focus on
users without any knowledge of the underlying model or utilities, so we cannot
use this approach. The closest to our work is that of Elizalde et al. [11] who
present an approach to generating explanations for an MDP policy that rec-
ommends actions for an operator in training. A set of explanations is de�ned
manually by an expert; however, they also propose to generate explanations au-
tomatically. They present an algorithm that determines a relevant variable used

in each explanation. The relevant variable is the variable most a�ected by the ac-
tion, selected from those that de�ne the value function. This variable is reported
in a prede�ned template. Our approach is similar as we also use templates to
generate explanations and analyze the e�ects of the optimal action. However, we
do not restrict ourselves to a single relevant variable and consider the long-term
e�ects of the optimal action (beyond one time step). We present examples of
generic, domain-independent templates, as well as a structured mechanism to
use additional domain-speci�c knowledge.

3 Templates for Explanations and their Relative Ordering

We are primarily interested in answering the following two questions:

1. Why has a speci�c recommendation been made?
2. Why is another particular action not the recommended action?

The �rst question focuses on the case where the user is interested in understand-
ing the rationale behind choosing a particular action. In response, we need to
show the user with bene�ts of this action, and if necessary, highlight them in
comparison to other actions. The second question is comparative and we need to
argue that the action chosen by the policy is better. We de�ne a set of templates
for explanations that are populated at run-time.

3.1 Templates for Explanations

The policy for an MDP is computed by maximizing the sum of expected dis-
counted rewards (Equation 2). Explanations for MDPs primarily need to explain
how this expectation is being maximized by executing a particular action. Our
approach is to anticipate the di�erent e�ects of an action and show the contri-
bution of those e�ects to the sum of expected rewards.

We call states with high rewards �preferred� states. For instance, we have
a reward associated with completing all course areas, and users (students) un-
derstand that this is a good thing. Note that the reward may depend only on
a subset of variables, such as the area variables. Hence, there may be a set of
preferred states (e.g., all possible combinations of passed courses that satisfy the
areas) associated with a reward. We use the term preferred scenario to refer to
a set of preferred states. A preferred scenario is de�ned by assigning values to a
subset of the variables in the MDP. The expected reward is the sum of products
of the probability of each reachable state with its reward. To explain why an
action yields the highest expected utility, it may be su�cient to point out that a
preferred scenario is reached with high probability. This is especially convincing
when there are no other actions that reach this preferred scenario with high
probability.

We can categorize actions as leading to a preferred scenario with a single
high reward or multiple high rewards. For instance, one action may lead to

Fig. 2. Di�erent sets of actions for explanations

completing area requirements, but another action may lead to completing both
area and course requirements. Furthermore, we can distinguish between actions
that are likely to do this immediately and actions that do it only in the future.
The actions that lead immediately to a preferred scenario will have a lower
discount factor applied to their expected reward. Even though rewards are not
discounted in our course advising scenario, we still argue that users are more
likely to understand how an action can lead immediately to a preferred state.

We show the relationship among the di�erent sets of actions in Figure 2 using
a Venn diagram. The set of available actions, A5, is de�ned as actions that can
be executed in the current state. In the course advising domain, we exclude from
this set all actions with courses whose pre-requisites have not been satis�ed. All
other sets are subsets of A5. Below we describe templates in which preferred
scenarios and their probabilities are �lled in at run-time and these sets are used
to select a template.

If there are no other actions in A5 apart from the chosen action, then we use
Template 1. (A5 should not be empty unless the MDP is ill-formed, which we
ignore.) The underlined expressions are replaced by actual values at run-time.

� Template 1: �Action ActionName is the only action available in state(s)
with: V ar1 = V al1, V ar2 = V al2, ...�

For action sets A1 to A4, we de�ne three explanation templates shown below.

� Template 2: �Action ActionName is the only action that can lead (imme-
diately) to a preferred scenario with: V ar1 = V al1, V ar2 = V al2, ... with a
high probability (>50%)�

� Template 3: �Action ActionName leads (immediately) to a preferred sce-
nario with: V ar1 = V al1, V ar2 = V al2, ... with highest probability: P%�

� Template 4: �Action ActionName is one of the actions that can lead (im-
mediately) to a preferred scenario with: V ar1 = V al1, V ar2 = V al2, ... with
a high probability (>50%)�

The word �immediately� is placed in parentheses as it is only used for expla-
nations for sets A1 and A3. For explanations from sets A1 and A2, the list of
variable assignments will generally be longer, re�ecting all the conditions that
must be met to earn multiple high rewards.

An action can yield the highest expected reward without necessarily reaching
a state of high reward with high probability, so it is possible that none of the pro-
posed templates can be used. We can reduce this possibility by also considering
whether an action minimizes the likelihood of entering an undesirable state and
using Templates 2, 3 or 4. Undesirable states are those with low rewards, such
as failing a course. The process of populating these templates is similar, except
that the probability computed is that of not reaching an undesirable state.

Sample explanations for the second question, in which the student asks why
a certain action was not taken, can be answered by inverting one of the above
explanations. For instance, it could be that it does not maximize the likelihood
of reaching a preferred scenario, or it is not a possible action at this stage, or if
this action is taken it is likely to move towards an undesirable state with a high
probability.

3.2 Ordering of Explanations

It is quite possible that many templates can be populated for a particular rec-
ommendation. Thus, it is necessary to select an ordering mechanism. We �rst
consider Template 1, since it gives a simple and su�cient explanation (no other
action available) when applicable. Then, we focus on explanations with Tem-
plates 2, 3 and 4 based on A1 to A4. We �rst consider whether the chosen action
is a member of A1 since it is a subset of all other action sets and earning multiple
high rewards immediately can be more convincing than the explanations with
respect to other action sets. If not, we present an explanation from A2 since
earning multiple high rewards at some point in the future should be more con-
vincing than a single reward. Similarly, if this is impossible, we try to present an
explanation from A3 (single immediate high reward) and then A4 (single future
high reward). For each set A1 to A4, we �rst consider Template 2, then Template
3 and �nally Template 4.

3.3 Automatic Generation of Explanations

In this section, we describe algorithms to generate explanations automatically,
using the above templates. We do not require any extra information apart from
what is available in the encoded MDP. However, we do need a mechanism to

compute the sets shown in Figure 2. We also need a technique to populate the
various templates once we are given these sets.

Actions unavailable to the system are generally represented by assigning a
reward of −∞. We can �nd all actions that do not lead to a reward of −∞ for
the utility variables and add them to A5.

We can compute a set PS1 of preferred scenarios ps from the dependencies
of the reward variables, by identifying variable assignments with high rewards.
Furthermore, by combining preferred scenarios that are consistent, we obtain a
new set PS2 of preferred scenarios with multiple rewards. A pair of preferred
scenarios are consistent if the common variables in their variable assignments
have identical values. The combination of two or more consistent preferred sce-
narios yields a new preferred scenario by merging their variable assignments.
Thus, |PS2| can at most be 2|PS1| when all ps ∈ PS1 are consistent.

To compute sets A1 and A3, we compute each Pr (ps|s, a) for the current
state s and each preferred scenario ps de�ned by some variable assignment.
As mentioned earlier, if all state variables are assigned a value, then ps is a
single state, otherwise it is a set of states. When ps is a single state, then its
probability is the product of the conditional probabilities of each individual
variable assignment that de�nes ps. When ps is a set of states, the aggregate
probability is computed by variable elimination [12], which e�ciently sums out
the unassigned variables from the product of the conditional probabilities of each
individual variable assignment.

To compute sets A2 and A4, we need to compute the probability of reaching
a preferred state using the available actions. For a set of preferred states ps,
let L (ps|s, a) represent the cumulative probability of ultimately reaching any
state in ps if action a is executed in the current state s, and the MDP policy is
executed thereon. This is computed by solving the following recurrence relation.

L (ps|s, a) = Pr (ps|s, a) +
∑
s′ /∈ps

γPr (s′|s, a)L (ps|s′, π (s′)) ∀s, a

In practice, we use the variable elimination algorithm to perform each iteration
of the recurrence e�ciently (details are beyond the scope of this paper). Since the
course advisor domain only has 3 terms, we do not discount the probabilities (i.e.,
γ = 1) and we only need to traverse 3 levels in the recurrence. For in�nite horizon
problems, the recurrence can be terminated when convergence is achieved (due
to the discount factor) or when the probability of reaching a preferred state
exceeds some threshold.

Given these sets, we need to determine which template should be used for
each. For Template 1, we only need to check that |A5| = 1. Template 2 is used if
|Ai| = 1 ∀i ∈ {1 . . . 4} and the chosen action belongs to it. Let vars(ps) denote
the set of variables that determine the set of preferred states ps. Also let vi
denote the value required of the ith variable in ps. Now Template 3 is used if
achosen = argmaxa Pr (ps|s, a) holds true. We substitute the probability with
the cumulative probability L (ps|s, a) for sets A2 and A4. If the chosen action
belongs to a set but neither of Templates 2 or 3 is possible, we use Template 4.

4 Using Domain-Speci�c Constructs in Explanations

The templates mentioned in previous sections are completely domain-indepen-
dent. Domain-speci�c constructs cannot be leveraged to convey information that
is not encoded explicitly in the MDP. For instance, we know that failing a course
is an undesirable state even though our model does not have a low utility value
associated with all transitions resulting in it. The MDP is indirectly aware that
getting an F in a course is undesirable since the course requirement can never
be completed after a course has been failed.

The above discussion points towards the possibility of enriching explanations
by using concepts from the domain. However, this requires additional e�ort on
the part of a domain expert. In this section, we present a mechanism to assist
the designer by de�ning an ontology for MDP explanations that encodes extra
information so that it can be used in our templates.

The domain-speci�c information is encoded in the ontology using three basic
concepts, namely variables, actions, and scenarios. Each variable has a name,
a current value, and can optionally have di�erent properties associated with it.
Each action also has a name, a �eld to indicate its availability given the current
values of all other variables, and optional information about what variables this
action may a�ect. A scenario is described by a list of variables and their values,
with a �eld isDesirable indicating whether it is desired or undesired.

The ontology is bootstrapped with the names of the courses and possible
actions. It is also populated with domain-speci�c scenarios during the initializa-
tion step. Note that the optimal value function could also be used to determine
which states are desirable/undesirable, but the user may not appreciate why
high/low value states are necessarily desirable/undesirable. This would also re-
quire scenarios that specify complete variable assignments. Using the ontology,
a domain expert can ensure that the scenarios have a small subset of MDP vari-
ables and scenarios that will be well-understood by users. For example, we can
create a scenario with the course as a variable and give F as its value. We set
the isDesirable �eld of this scenario to -1. The negative sign indicates that it is
undesirable and the magnitude indicates the level of desirability of the scenario.
We can create such assignments in the ontology for every course so that the
system knows that getting an F in any course is undesirable.

We can augment the sets of preferred scenarios extracted from the MDP with
this new set. We still favor explanations involving preferred scenarios extracted
from the MDP because the MDP policy is determined solely by them. Since
preferred scenarios derived from the ontology do not have explicit rewards, they
only provide an intuition regarding good/bad states.

We also perform inference using the ontology to enhance our explanations.
Consider the following example. Let each course be a variable having a name
and its value the grade obtained. We associate a property hasPreReq with it. We
de�ne a new property hasPreReqComp that indicates whether all pre-requisites
for a course have been completed. This property is computed by assigning Y as
default value and then using the following rule.

∀c
(
∃p : hasPreReq (c, p)

∧(
hasV al (p, 'F')

∨
hasV al (p, 'N')

))
⇒

hasPreReqComp (c, 'N')

We also de�ne a property hasCourse for each action that indicates the course
appearing in the action. Now we use the following rule to �nd available actions
such that the courses appearing in them have hasPreReqComp = 'Y'. We only
need to consider actions having isAvailable = 'Y' while generating explanations.

∀a
(
∃c :

(
hasCourse (a, c)

∧
hasPreReqComp (c, 'Y')

))
⇒ isAvailable (a, 'Y')

Using our ontology, it is clear that we can represent three di�erent types of
domain knowledge. First, we can indicate various preferred scenarios. Second,
we can include concepts speci�c to a domain, such as pre-requisites. Third, we
can provide additional rules to prune the set of available actions.

5 Implementation Details and Sample Explanations

5.1 Course-Selection Advising Model and Implementation

Our course-selection MDP has 4 pre-requisite courses: cs240, cs241, cs251, and
cs350, and 7 elective courses: cs343 and cs454 (pre-req cs350), cs457 (pre-req
cs343), cs445 and cs448 (pre-req cs240), cs370 (pre-reqs cs251 and cs343),

and cs372 (pre-req cs370). It has

(
7
2

)
= 21 possible actions, with each action

representing a pair of courses. The �rst three electives belong to area1, the
next two to area2 and the last two to area3. We also populate the ontology
with the course names, all possible actions and then list preferred scenarios.
We identify 9 preferred scenarios, 1 for each area with value Y indicating that
it is covered, and 6 for the number of courses being greater than 0. Later we
generate all combinations of 4 or fewer preferred scenarios to get sets of desired
states with multiple rewards. We cannot combine 5 or more scenarios because
courseCount can only have a single value. We solve the MDP to yield its optimal
policy π∗ which is stored for future use. Whenever a student asks for advice, her
current grades are entered into the model and the policy is consulted for the
recommended action a = π∗ (s). If the student asks for an explanation, we then
populate the ontology with the current state and run our rules to get available
actions. The explanations are generated using these available actions and the
preferred scenarios de�ned earlier. Note that if a student is already in a preferred
scenario, for instance if the course requirements are already complete, then that
preferred scenario is not included in our explanations.

5.2 Sample Explanations

Consider a student who has not completed any electives and who asks for
advice from the system. For this student, all elective courses have value 'N',
and the book-keeping variables have their initial values. The policy returns
act_cs343cs348 as the optimal action. The explanation provided for this ac-
tion is:

� Action act_cs343cs448 leads to a preferred scenario with:
area1 = Y , area2 = Y , area3 = Y , courseCount = 6, termCount = 3 with
highest probability: 73.51%

The above explanation is generated using Template 3 for set A2 by only using the
preferred scenarios extracted from the MDP. It re�ects the likelihood (73.51%)
of ful�lling both degree requirements (area and course.) Five other templates
are also populated for this state. The exact number of templates that can be
populated depends on the structure of the model. For this problem, we can
reach almost all preferred scenarios from the initial state, so a large number of
templates can be populated. Thus, if we include preferred scenarios de�ned in
the ontology, 450+ templates can be populated. A sample explanation using a
preferred scenario from the ontology is:

� Action act_cs343cs448 leads to a preferred scenario with:
area1 = Y , area2 = Y , courseCount = 2 immediately with
highest probability: 90.25%

Assume that the student disregarded the above advice, and instead took and
passed two courses cs454 and cs448 with grades G and P respectively. The
new state of the MDP has modi�ed values for courseCount, area1, area2 and
termCount. If the student seeks a recommendation now, the recommended ac-
tion is act_cs343cs370. A sample explanation using preferred scenarios from the
ontology is:

� Action act_cs343cs370 leads to a preferred scenario with:
area1 = Y , area2 = Y , area3 = Y immediately with
highest probability: 95.00%

This explanation shows that with this action the student is very likely (95%)
to cover an extra area (area3) immediately. The number of populated tem-
plates using preferred scenarios from ontology decreases to 40 at this point. Let
us assume that the student accepts this recommendation and gets grade G in
both courses. Now area3, termCount, and courseCount also change and the new
recommended action is act_cs457cs445. The number of templates populated is
much fewer (only 9) at this stage.

We evaluated the number of templates populated for other states of the
MDP and the same trend was observed; initially we have more explanations
available, but as the variables are modi�ed from their default values the number

decreases. This matches our intuition, since the grades of courses do not change,
so as the variable assignments increase, the number of preferred scenarios that
can be reached decreases, and we populate fewer templates. This behaviour may
vary for other domains and models depending on their structure. It may be
argued that fewer templates indicates a stronger explanation because they are
only explaining the relevant aspects of the choice. We are currently investigating
techniques for determining the optimal number of explanations, which taken
together, can justify a particular choice completely.

6 Conclusion and Future Work

We presented a mechanism to generate explanations for an action chosen by
a policy computed by solving an MDP. We identi�ed a set of templates that
can be used for any domain in which the MDP is being used. Our approach
does not require any additional e�ort from the MDP designer. We intend to
explore alternate explanations for situations when none or too many of our
templates can explain the choice of an optimal action. We also plan to develop
an interactive mechanism in which users can request further justi�cation using
follow-up questions. Finally, we also plan to seek feedback from real-world users
on the e�ectiveness of explanations presented through our templates.

References

1. Boutilier, C., Dean, T., Hanks, S.: Decision theoretic planning: Structural assump-
tions and computational leverage. JAIR 11 (1999) 1�94

2. Tintarev, N., Mastho�, J.: A survey of explanations in recommender systems. In:
ICDE Workshop on Recommender Systems & Intelligent User Interfaces. (2007)

3. Herlocker, J.: Explanations in recommender systems. In: CHI' 99 Workshop on
Interacting with Recommender Systems. (1999)

4. McGuinness, D.L., Glass, A., Wolverton, M., da Silva, P.P.: Explaining task pro-
cessing in cognitive assistants that learn. In: Proceedings of AAAI 2007 Spring
Symposium on Interaction Challenges for Intelligent Assistants. (2007)

5. Druzdzel, M.: Explanation in probabilistic systems: Is it feasible? Will it work?
In: Fifth International Workshop on Inteligent Information Systems. (1996)

6. Chajewska, U., Halpern, J.: De�ning explanation in probabilistic systems. In:
Thirteenth Conference on Uncertainty in Arti�cial Intelligence. (1997)

7. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press (1988)

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1998)
9. Lacave, C., Díez, F.J.: A review of explanation methods for Bayesian networks.

The Knowledge Engineering Review 17 (2002) 107�127
10. Lacave, C., Luque, M., Díez, F.: Explanation of Bayesian networks and in�uence

diagrams in Elvira. IEEE Transactions on Systems, Man, and Cybernetics 37(4)
(2007) 952�965

11. Elizalde, F., Sucar, E., Reyes, A., deBuen, P.: An MDP approach for explanation
generation. In: Workshop on Explanation-Aware Computing with AAAI. (2007)

12. Zhang, N., Poole, D.: A simple approach to Bayesian network computation. In:
Canadian Arti�cial Intelligence. (1994) 171�178

