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An Analysis of Many-to-Many Relationships Between Fact and 
Dimension Tables in Dimensional Modeling 

 

 

 
 

Abstract 
 

Star schema, which maintains one-to-many 
relationships between dimensions and a fact table, 
is widely accepted as the most viable data 
representation for dimensional analysis. Real-
world DW schema, however, frequently includes 
many-to-many relationships between a dimension 
and a fact table.  Having those relationships in a 
dimensional model causes several difficult issues, 
such as losing the simplicity of the star schema 
structure, increasing complexity in forming 
queries, and degrading query performance by 
adding more joins.  Therefore, it is desirable to 
represent the many-to-many relationships with 
correct semantics while still keeping the structure 
of the star schema. 

In this paper, we analyze many-to-many 
relationships between a dimension table and a fact 
table in dimensional modeling.  We illustrate six 
different approaches and show the advantages and 
disadvantages of each.  We propose two ad-hoc 
methods that maintain a star schema structure by 
denormalizing the dimensions to avoid many-to-
many relationships.  This method allows quick 
query processing by using a concatenated attribute 
with minimal overhead.  Other issues addressed 
are data redundancy, weighting factors, storage 
requirements, and performance concerns. 

1. Introduction  
The data warehouse (DW) is an integrated repository of 

data, generated and used by an entire organization. The 
data warehouse employs a suite of tools that transforms 
raw data into meaningful business information. This 
information depicts a view of a distinct business process to 
identify trends and patterns and serves as a foundation for 
decision-making. 

 
The dimensional model is a logical representation of a 

business process whose significant features are user 
understandability, query performance, and resilience to 
change. Dimensional modeling is widely accepted as the 
viable technique for delivering data to end users in a data 
warehouse [KRRT98, AM97, AV98, AS97, DSHB98, 
MC98]. The main components of a dimensional model are 
fact tables and dimension tables.  A fact table contains 
measurements of the business or records events.  A 
dimension table contains attributes used to constrain, 
group, or browse the fact data.  There are two primary 
advantages of using a dimensional model in data 
warehouse environments.  First, a dimensional model 
provides a multidimensional analysis space in relational 
database environments; we are analyzing factual data using 
dimensions.  Second, a typical denormalized dimensional 
model has a simple schema structure, which simplifies end-
user query processing and improves performance. 

 
The dimension tables contain a large number of 

attributes, reflecting the details of the business processes.  
Browsing is a user activity that explores the relationships 
between attributes in a dimension table. The attributes will 
serve as row headers and constraints for these views. It is 
common to have more than one hundred attributes in a real 
world application. Dimension tables are considered wide 
for this reason. Denormalization of dimension tables is an 
acceptable practice in data warehousing. A dimensional 
model with highly normalized dimension structure is called 

William Rowen 
College of Information Science and Technology 

Drexel University 
Philadelphia, PA 19104 

msis@drexel.edu 

Il -Yeol Song 
College of Information Science and Technology 

Drexel University 
Philadelphia, PA 19104 

 songiy@drexel.edu

Carl Medsker 
Arynth, Inc. 

Cinnaminson, NJ 08077 
cmedsker@arynth.com 

Edward Ewen, M.D 
Christiana Care Health System 

Wilmington, DE 19899 
eewen@christianacare.org

The copyright of this paper belongs to the paper’s authors. Permission to copy 
without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage. 
Proceedings of the International Workshop on Design and 
Management of Data Warehouses (DMDW'2001) 
Interlaken, Switzerland, June 4, 2001 
(D. Theodoratos, J. Hammer, M. Jeusfeld, M. Staudt, eds.) 

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-39/ 



 

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-2

a snowflake schema [KRRT98].  Any attempts to 
normalize a dimension table into a series of tables could 
reduce the browsing capabilities of the user, resulting in 
more complex queries and increased retrieval time.  Our 
experiences with real-world data warehouse development 
shows that browsing and group-by queries are the two 
salient issues that drive the design of data warehouses. 

 
The fact table is where the numerical measurements of 

the business processes are stored. These measurements or 
events are related to each dimension table by foreign keys.  
The fact table contains thousands, or even millions of rows 
of records. A typical query will compress or extract a large 
number of records into a handful of rows using 
aggregation.  Therefore, the most useful facts are numeric, 
continuously valued, and additive; Kimball calls this 
premise the holy grail of dimensional database design 
[Kimb96].  

 
The grain of the fact table is a very important 

characteristic.  The grain is the level of detail at which 
measurements or events are stored. It determines the 
dimensionality of the data warehouse and dramatically 
impacts the size and conversely the performance. 

 
The goal in designing the data warehouse model is to 

keep it simple to understand, simple to load with 
operational data, and as fast as possible to query [Kimb96, 
Kimb97, KRRT98, AM97, AV98].  We would like to have 
neophyte and experienced business analysts creating 
reports, so the logical model needs to be easy to 
comprehend. Most business analysts frequently have a 
difficult time finding data in both highly normalized 
designs and abstract object designs. The flatter the 
dimensional model, the better for end-users. The more 
complex the model, the more complex will be the 
extract/transform/load  (ETL) routines to create and run.  

 
Finally, queries against the database will run faster if a 

minimal number of one-to-many relationships and joins are 
present. To provide users with the views they need for 
analysis, the one-to-many relationships between facts and 
dimensions should be flattened into a series of views or 
derived tables. For instance, the statistician may want to 
create a regression model against diagnoses with the grain 
of the analysis being a single visit to the hospital. 
Therefore, each row must completely define a visit with 
columns for specific diagnoses or columns that represent 
groups of diagnoses. To meet the fundamental goal of 
empowering end users to perform their own queries and 
analyses, the design must balance elegance in conceptual 
design with understandability, usability, and performance. 

 
Design principles dictate that one should identify any 

dimensional attribute that has a single value for an 
individual fact table record.  The designer can build 
outward from the grain of the fact table and relate as many 
dimensions as the business process demands. Therefore, 

dimension tables are typically joined to the fact table with 
a one-to-many relationship.  When all the dimensions are 
related by one-to-many relationships with the fact table, the 
schema is called a star schema.  However, real-world DW 
schema frequently includes many-to-many relationships 
between a dimension and a fact table [KRRT98, AS97].  
Having those relationships in a dimensional model causes 
several difficult issues, such as losing the star schema 
structure, increasing complexity in forming queries, and 
degrading query performance by adding more joins.  
Therefore, it is desirable that we handle the many-to-many 
relationships while still keeping the structure of the star 
schema. 

 
In this paper, we analyze many-to-many relationships 

between a dimension table and a fact table in dimensional 
modeling.  Even though there are some previous studies on 
how to represent a data warehouse conceptual schema 
[GR98, SBHD98, TBC99] or how to derive/design a data 
warehouse schema [AM97, KS97, TS98, LAW98, PJ99, 
MK00, HLB00], the specific method of handling many-to-
many relationships is rarely addressed.  Two sources we 
found are books by Kimball et al. [KRRT98] and 
Giovinazzo [Giov00].  Not being satisfied by those 
approaches for our real-world project, we have performed 
a thorough study on how to handle many-to-many 
relationships.  In this paper, we illustrate six different 
approaches and show the advantages and disadvantages of 
each.  We propose two ad-hoc methods that maintain a star 
schema structure by denormalizing the dimension to avoid 
many-to-many relationships.  These methods allow us to 
quickly process queries. Other issues that will be addressed 
include data redundancy, weighting factors, storage 
requirements, and performance concerns. 

 
The remainder of this paper is organized as follows: 

Section 2 presents a motivation example.  Section 3 
presents six approaches and discusses the advantages and 
disadvantages.  Sections 4 presents a summary table and 
Section 5 concludes our paper. 

2. Motivational Example 
In the healthcare billing process, there are usually 

multiple diagnoses for each patient visit. A design problem 
arises in modeling a diagnosis dimension that has a many-
to-many relationship with a fact table as shown in Figure 1. 
We will explore specific data warehousing structures to 
analyze this predicament. We will use, as an illustrated 
example, the patient-billing situation throughout this paper 
to compare and contrast the different solutions. 

 
In Figure 1, the relationship between the diagnosis 

dimension and the billable patient encounter fact table is 
illustrated as a many-to-many.  This considers the situation 
where a patient has more than one diagnosis for each 
billable encounter.  



 

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-3

 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are inherent problems with many-to-many 

relationships between a fact table and a dimension. 
Querying for records to find a particular combination of 
diagnoses requires multiple correlated subqueries. 
Consider the query for retrieving 'billed to payer amount' 
and 'patient key' for patients who have a combination of 
diagnoses named 'heart' and 'cancer’ (for the remainder of 
the discussion we will refer to the diagnosis dimension as 
DD and the billable patient encounter fact table as BPE). 

 
SELECT patient_key, billedtopayer_amount 
FROM BPE 
WHERE patient_key IN  

(SELECT patient_key 
 FROM  DD, BPE 
 WHERE  diag_name = 'cancer'  

AND  DD.diagnosis_key = 
BPE.diagnosis_key 

 INTERSECT 
   SELECT patient_key 
   FROM  DD, BPE 

WHERE  diag_name = 'heart' 
AND  DD.diagnosis_key = 

BPE.diagnosis_key); 
 

The subquery will select all patient numbers that have 
both heart and cancer diagnosis names. Queries for finding 
patients with N different diagnoses will need N-level 
subqueries.  Therefore, report generation is very complex 
and slow; you must search a large number of records with 
multiple correlated subqueries, increasing both the 
processing time and the number of joins. 

When one requests additive measurements through the 
relationship, the user may receive incorrect results. It is 
necessary to implement a weighting factor to give each 
separate diagnosis its appropriate contribution to the total 
bill [AV98]. 

An additional problem with this design is frequently a 
user may not want all of the diagnoses.  When an end-user 
retrieves fewer than all the diagnoses then the weighting 

factor will not directly add up (see Section 3.1.1 for the 
issues of weighting factors in a many-to-many 
relationship).  You must guarantee by some other means 
that the correct weight is applied for any subset of 
diagnoses.  Users must be protected from retrieving a 
subset of data that aggregates incorrectly, which will occur 
if no precautions are taken. 

3. Methods for Handling Many-to-Many 
Relationships 

3.0. Assumptions 
Based on our experience of building a real-world data 

warehouse in a patient-billing domain, we have assumed 
the following data for our analysis.  The fact table contains 
patient billing information and each bill is assigned one 
primary diagnosis and one to many secondary diagnoses. 
Although it is theoretically possible to have hundreds of 
diagnoses, the maximum in practice is twenty or less. 
Frequency distributions on an existing operational database 
show that most bills have fewer than five secondary 
diagnoses, with very few bills having more than 10. These 
are entered into the operational system in no particular 
order. There is no qualitative difference between secondary 
1 and secondary 20. In addition, government and insurance 
claim forms typically provide space for a maximum four or 
eight secondary diagnoses, so the practical limit is fixed. 
All have equal potential importance, depending on the 
context of use or the type of information that is compiled. 

Making a few assumptions can approximate the 
estimated size of the dimension and fact tables. 

 
• Fact table contains 1,000,000 records 
• There are maximum 20 billable diagnoses for each 

encounter. 
• There are maximum 500 billable diagnoses.    
• There are on the average five separate diagnoses for 

each encounter 
• All numerical field widths are an average four 

bytes, names are eight bytes, and descriptions are 
15 bytes. 

3.1. Method A: The Bridge Table 
Figure 2 depicts Kimball’s use of the bridge table to 

connect multiple diagnoses to a fact table [KRRT98]. The 
bridge table is an intersection table between a diagnosis 
dimension table and the fact table.  This table is similar to 
an intersection table that is created for a many-to-many 
relationship between two entities.  However, what 
distinguishes this bridge table in data warehouse modeling 
from an intersection table in data modeling is the use of 
weighting factors and a diagnosis group key.  A diagnosis 
group key is assigned to clusters of diagnosis codes and the 
combinations are inserted into the bridge table.

Figure 1: Healthcare Billable Encounter Schema 
[KRRT98] 

diagnosis_key (PK)
diag_name
diag_description

Diagnosis Dimension
time_key (FK)
patient_key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact  Table

Note: only diagnosis dimension
is illustrated
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Figure 2: Solving Multiple Diagnoses with a Bridge 

Table [KRRT98] 

3.1.1. Weighting Factor 
Observe the weighting factor attribute in Figure 2. The 

weighting factor is a percentage that identifies the 
contribution of the diagnosis to the specific encounter. 
Within a diagnosis group, the sum of all the weighting 
factors must equal one. The weighting factor is multiplied 
by fact values, through the joining of the two tables with 
the diagnosis group key. In this manner, the involvement of 
each diagnosis in the diagnosis group is correctly 
calculated. Conversely, the user can request an impact 
analysis, ignoring the weighting factors [KRRT98]. Such 
impact reports will erroneously aggregate the amounts. It 
will produce a summation based on the impact each 
diagnosis has in relation to total amounts associated with 
that diagnosis. Consider the following example, which 
shows only necessary attributes: 
 

 
DD (Diagnosis Dimension) 
diagnosis_key diag_name 
DK1 Cancer 
DK2 Heart 
DK3 Lung 

 
Query: Given Tables 1, 2, and 3, find the ‘billed to payer 
amount’ contributed by each diagnosis. 
 
Situation 1 Impact Report: 
 
SELECT        diag_name, SUM (billedtopayer_amount) 
FROM         DD,DGB,BPE 
WHERE        DD.diagnosis_key = DGB.diagnosis_key 
AND             DGB.diagnosis_group_key =  
         BPE.diagnosis_group_key 
GROUP BY   diag_name; 

 
Results: 
diag_name billed_to_payer_amount 
Cancer  $ 3,000 
Heart  $ 3,000 
Lung  $ 2,000 
 

The results clearly indicate the inherent problem in a 
many-to-many situation where the aggregation is counted 
for the total amount for each occurrence of a diagnosis in 
the records (total amount billed is $8,000). Cancer 
occurred in diagnosis group one and two, thus it was 
counted twice ($1,000 from diagnosis group one and $ 
2,000 from diagnosis group two returning an impact total 
of $ 3,000). 
 
Situation 2 Weighting Factor Report: 

 
SELECT diag_name,  

SUM (billedtopayer_amount *weighting_factor) 
FROM  DD, DGB, BPE 
WHERE     DD.diagnosis_key = DGB.diagnosis_key 
 AND DGB.diagnosis_group_key = 

BPE.diagnosis_group_key 
GROUP BY diag_name; 

 
Results: 
diag_name billed_to_payer_amount 
Cancer  $ 2,000   
Heart  $    800 
Lung  $    200 
 
 

 
DGB  
(Diagnosis Group Bridge) 
Diagnosis 
key 

Diagnosis 
group_key 

Weighting 
factor 

DK1 DG1 0.8 
DK2 DG1 0.2 
DK1 DG2 0.6 
DK2 DG2 0.3 
DK3 DG2 0.1 

Table 1:Diagnosis Dimension 

Table 2: Diagnosis Group Bridge Table

diagnosis_key (PK)
diag_name
diag_description

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_group_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact  Table

diagnosis_key (PK)
diagnosis_group_key (PK)
weighting_factor

Diagnosis Group
Bridge Table

Note: only diagnosis dimension is illustrated
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BPE  
(Billable Patient Encounter) 
Patient 
key 

Diagnosis 
group_key 

billedtopayer 
amount 

P1 DG1 $ 1,000 
P2 DG2 $ 2,000 

 
The weighting factors produce a correct totaled report 

($3,000). During the summation, the weighting factor for 
each diagnosis key will be related to each bill through the 
foreign key (diagnosis group key) found in the billable 
patient encounter table. 

 
The weighting factor is necessary when using a bridge 

implementation to produce correct reports [KRRT98, 
AV98]. However, it is not always possible to rationalize 
the weighting factors for each diagnosis.  In that case, it 
would be possible to count the total diagnoses and produce 
an average cost through additional design measures. One 
method would be to add an additional attribute to the 
bridge, call it number_of_diagnosis; thus, you could divide 
your impact total by this value to produce an average cost 
per diagnosis. This brute force method takes away from the 
usefulness of your decision support based reports.  Thus, it 
is recommended to use this method only when the correct 
calculation of the weighting factors is not necessary. 

 
A major benefit of this design is there is no fixed upper 

limit, other than total possible diagnoses. Although in this 
study, we have set an upper limit of twenty diagnoses, to 
meet the user requirements. The bridge method, as you can 
observe, implements a compound primary key for the 
bridge table comprised of diagnosis group key and 
diagnosis key. It is possible to find a group of related 
diagnoses because the diagnosis group value is repeated for 
every member row in a set of diagnoses.  

 
There may be other such many-to-many dimensions 

related to the same fact table, and the load times and query 
times can be expected to be lengthy. For instance, there are 
many procedure codes and Diagnosis Related Group 
(DRG) codes assigned to a single visit or patient bill. A 
DRG is a classification of a hospital stay in terms of what 
was wrong with and what was done for a patient.  There are 
approximately 500 DRG codes, which are determined by a 
program based on diagnoses and procedures coded in a 
standard International Classification of Disease (ICD-9) 
format and on patient attributes such as age, sex, and 
duration of treatment. The DRG frequently determines the 
amount of reimbursements, regardless of the actually costs 
incurred. A hospital visit is often coded by multiple 
systems, such as Systematized Nomenclature of Medicine 
(SNOMED), Current Procedural Terminology (CPT4), and 
others, all of which share a many-to-many relationship with 
the billable patient encounter fact table.  Considering the 
complexity of the healthcare billing system, the design and 
performance using bridge tables will get quite complex. 

The size of the bridge table would increase considerably 
if one encounter has many related diagnoses. We used an 
average of five diagnoses per encounter for this example; 
this parameter produced a bridge table comparable to the 
size of the fact table, as we will now demonstrate.  

3.1.2. Database Sizing for the Bridge      
Method. 

Base fact: 1,000,000 records 
Key fields = 7; Fact fields = 2; Total Fields = 9 
Fact table size = 1,000,000 records * 9 fields * 4 bytes = 
              36 MB 
Diagnosis dimension: 500 records 
Key fields = 1; Name field =1; Description field =1 
Record size = 4+8+15 =27 bytes 
Dimension table size = 500 records * 27 bytes =  

    13,500 Bytes 
 
Bridge table: 1,000,000 facts joined to 5 distinct diagnoses 
in a diagnosis group = 5,000,000 records 
Key fields = 2; Weighting factor = 1; Total fields = 3 
Bridge table size=5,000,000 records * 3 fields * 4 bytes=  

60 MB 
Notice, if the average number of diagnosis is increased to 
ten, our bridge table size will grow to 120 MB,  nearly four 
times the size of our fact table 

Total disk space = 96.1MB  
 

In summary, the bridge method can be considered a 
logical solution for a many-to-many relationship with less 
redundancy. There are, however, various disadvantages to 
this method. Assigning weighting factors could prove to be 
difficult or cumbersome in a real-world environment; 
additionally, adding a new diagnosis requires recalculating 
of the weighting factors. The logical structure would lose 
the simplicity and understandability of the star schema. 
More joins increase the overhead and query time. As 
pointed out the size of the bridge table could increase 
considerably based on the number of diagnosis assigned to 
each diagnosis group. 

 

3.2. Method B: Denormalizing the 
Dimension Table by Positional-Flag 
Attributes 

Figure 3 illustrates denormalizing the diagnosis 
dimension using the positional-attribute approach. By 
positional we mean that the location of each attribute is 
fixed. For example, the first attribute is cancer; the second 
attribute is heart, etc. Thus, the same disease is always 
indicated in the same column.  In this method, each 
diagnosis becomes a Boolean attribute being set to either 
‘TRUE’ or ‘FALSE’.  For brevity and clarity, only five 
attributes have been included in Figure 3.    

Table 3: Billable Patient Encounter Schema
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This technique requires a very large diagnosis 

dimension table. N diagnoses require 2N records; for this 
trivial example of five diagnoses, the table size is 32 
records.  Consider Table 4 that lists all the unique 
diagnosis patterns. 

 
If we were to extend our model to include 10 diagnoses, 

the table would be 1024 records in length; 20 diagnoses 
would require 1,048,576 records; 40 diagnoses would 
require about one trillion records.  

 
 
Additional disadvantages of this method include: 
 

• adding a new diagnosis value would require to rebuild 
the dimension table and the fact table.  We need to use 
Data Definition Language (DDL) to add a column and 
reload the diagnosis dimension by adding (2N+1 - 2N) 
rows and updating the diagnosis_key in the fact table; 

  

• there are no approaches to handle a weighting 
factor. 

 
 However, a bitmap index scheme [OG95] can be 

implemented on each positional attribute, which would 
improve the query performance in this approach.  It is clear 
that this method would only be applicable when the 
number of positional-attributes is limited and fixed. 

 

3.2.1. Database Sizing for the Positional-Flag 
Attribute Method 

Number of base fact records: 1,000,000 records 
Key fields = 7; Fact fields = 2; Total Fields = 9 
Fact table size = 1,000,000 records * 9 fields *4 bytes = 

 36MB 
Consider the total size of the dimension for 40 diagnoses: 
Diagnosis dimension:  240 records ≈ 1126.4 * 109 records 
Number of key fields = 1; Number of attribute fields = 40; 
Assuming 1 bit for each flag 
Record size = 4+(1*40)/8= 9Bytes 
Dimension table size ≈ 1126.4 * 109 records * 9 bytes ≈ 

 10.1TB 
 

Total disk space = 10.1TB 
(for 40 diagnoses) 

 

3.3. Method C: Denormalizing the 
Dimension Table by Non-Positional-
attributes & a Concatenated Field 

In this approach, each attribute in the dimension will 
store a different diagnosis value.  By non-positional we 
mean that each attribute can have a different value in 
different records. Other than the primary diagnosis, there is 
no difference between secondary 1 and secondary 20. 

 

 
 
 

Table 4:  Diagnosis Dimension with Five Positional-attributes 

Figure 3: Denormalizing the Dimension Table 
by Positional Flag attributes 

diagnosis_key  CancerFlag HeartFlag LungFlag LiverFlag KidneyFlag 
001 FALSE FALSE FALSE FALSE FALSE 
002 FALSE FALSE FALSE FALSE TRUE 
003 FALSE FALSE FALSE TRUE FALSE 
004 FALSE FALSE FALSE TRUE TRUE 
005 FALSE FALSE TRUE FALSE FALSE 
… … … … … … 
031 TRUE TRUE TRUE TRUE FALSE 
032 TRUE TRUE TRUE TRUE TRUE 

diagnosis_key (PK) INT
CancerFlag BOOL
HeartFlag BOOL
LungFlag BOOL
LiverFlag BOOL
KidneyFlag BOOL

Diagnosis Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact Table

Note: data types are displayed
in the diagnosis dimension to
illustate positional-attribute
concept in this example
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An example of this method is illustrated in Table 5. A 

primary diagnosis and multiple secondary diagnoses can be 
assigned.  Here, we introduce the notion of a concatenated 
field to support query processing. A concatenated field is 
used to store the primary and all the secondary values of 
the diagnoses using the variable character data type. For 
example, VARCHAR2 type in Oracle would be able to 
store 4,000 characters. The LIKE clause of SQL could be 
employed to search for constrained information. The 
concatenated value attributes will store diagnosis values in 
a sorted order. One drawback is most bills have 
approximately five diagnoses; therefore, there will be many 
null values in secondary diagnoses. While queries across 
diagnosis fields can be accomplished with multiple OR 
clauses, the LIKE clause to the concatenated field will 
simplify the search query.   

 
However, we note that most commercial database 

systems do not employ B-tree type index for searching 
when LIKE clause begins with a wild character.  Thus, an 
efficient string indexing or string search mechanism will 
enhance the query performance.  

 
 In order to resolve the problem of LIKE clause, we can 

enhance the non-positional model by incorporating the 
benefits of positional flag attributes. Additional Boolean 
attributes can be created for common or frequent 
diagnoses. See Table 6 for an example.  Bitmap indexes 
[OG95, CI98] can be created for these Boolean attributes 
to facilitate searching based on these common diagnoses.  
Unusual or intriguing diagnoses could also be included for 
specific business intelligence purposes. The hybrid method 
allows both pattern matching with the LIKE command and 
an index search through a limited number of Boolean 
fields. The main advantage here would be to constrain the 
size of the dimension while allowing fast and efficient 
queries by maintaining the star schema. Consider Table 6 
to observe the usefulness of this approach. Most users are 
interested in a disease category or combination of 
categories, not a single disease billing code. Multiple codes 
can be assigned that all indicate the presence of a disease. 
There may be as many as 20 codes that all indicate the 
patient has some form of diabetes. The analyst, for 
reporting or regression purposes, simply needs a field for 
diabetes that contains "TRUE" or "FALSE". In On-line 
Analytical Processing (OLAP) designs users can combine 
(Boolean "AND") diseases by simply selecting "Yes" 
across a series of OLAP categories. Pre-calculating and 
storing these clusters makes it simpler for users to query 
the database and for developers to create OLAP cubes. 

 
 
 
 
 
 
 

 

 

 
Note: secondary diagnosis 4 - 19 omitted for brevity 
 
 
 
Observe the field concatenated_diagnoses (CD), which 

is a concatenation of the primary and all the secondary 
diagnoses related to a patient fact record.  The primary 
diagnosis is included in the concatenated diagnosis to 
enable the user to search for all assigned diagnoses for a 
specific medical condition.  

 
Although we normally avoid fields with patterns or lists, 

an exception in this case is useful. There is no order or 
weighting to the secondary diagnoses, except the order in 
which they come to mind of the evaluating physician or the 
order in which lab tests results become available, so when 
this diagnosis dimension table is loaded, all the diagnoses 
in a group are first sorted ascending and inserted across as 
many diagnosis fields as required. This permits the use of a 
“wild card” query rather than multiple OR statements, to 
test whether a specific diagnosis was assigned to a patient 
bill, regardless of its ordinal position.  When searching for 
a certain disease state, it usually does not matter if the 
diagnosis is primary or secondary; the physician just wants 
to ascertain if “any” diagnosis is for example “heart”. 

 
 

Referring to Table 6:   
 
SELECT  Patient_key, BPE. billedtopayer_amount  
FROM   DD,BPE 
WHERE  DD.diagnosis_key = BPE.diagnosis_key 
AND  DD.concatenated_diagnoses  
LIKE   ‘%heart%’; 

Table 5 Denormalized Non-Positional Diagnosis 
Dimensional Table 

Diagnosis Dimension 

diagnosis_key (PK) 
primary_diagnosis 
secondary_diagnosis1 
secondary_diagnosis2 
secondary_diagnosis3 
 
secondary_diagnosis20 
concatenated_ diagnoses (CD) 
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Diagnosis Dimension 

DK PD SD1 SD2 … SD20 CD AsthmaFlag 
(BOOL) 

DiabetesFlag (BOOL) 

1 heart lung asthma … null "asthma,heart,lung" TRUE FALSE 

2 cancer diabetics null … null "cancer,diabetics" FALSE TRUE 

3 liver heart null … null "heart,liver" FALSE FALSE 

4 heart lung asthma … null "asthma,heart,lung" TRUE FALSE 

…         

 
Note: secondary diagnosis 3 - 19 omitted for brevity 

 

The query is less difficult to write than a query with 
multiple OR clauses.  Adding flag columns for disease 
groups can further enhance the design.  For instance, 
columns for diabetes and asthma can be used to tag all 
rows having specific diagnosis codes.  Columns for certain 
DRG codes can be included, since the dimension can be as 
wide as the designer desires to increase the usefulness to 
the end user. Note that there is a one-to-many relationship 
between a flag field and diagnosis codes.  That is, the 
presence of any one or more of a set of diagnosis codes 
may indicate an overall condition of diabetes.  Flag fields 
are an elegant way for users to create simple queries that 
ask broad disease questions, but the determination and 
loading of these fields during the ETL process is complex 
and usually requires a mapping table created by medical 
experts.  They can be simple TRUE/FALSE flags that 
allow rapid queries such as: 

 
SELECT  * 
FROM  DD 
WHERE  Asthma = 'TRUE' 
AND  Diabetes  = 'TRUE'; 

 
Note tuples one and four in Table 6.  Both tuples have 

the same primary and secondary diagnoses but have 
different diagnosis keys. The designer must make a 
decision, is this type of redundancy acceptable or should 
measures be taken to search for existing diagnosis patterns 
before issuing a new diagnosis key? It will be a trade-off 
between more required memory space, or develop ad-hoc 
stored procedures to handle this situation.  

This method of using non-positional attributes can be 
implemented in two different ways: by one-to-one or one-
to-many relationship between the diagnosis dimension and 
the fact table, depending on the allowance of redundant 
tuples.  

This scheme described in this section allows the users to 
only be concerned with a single join between the fact table 
and dimension table.   

3.3.1 Method C-1: One-to-One Relationship 
between Dimension and Fact Tables  

When each record in the diagnosis dimension can be 
related to one fact record, there exists a one-to-one 
relationship between the tables (Figure 4).  That is, we are 
creating one dimension record for each new billing 
encounter.  The drawbacks in this design are three. First, 
most bills have fewer than 5 secondary diagnoses, so there 
will be many null values.  Second, queries across 
secondary diagnosis fields will require multiple OR 
clauses, which are complex to write and slow to run.  
However, this disadvantage can be solved using the 
concatenated attribute and LIKE clause as we explained in 
the previous section.  Third, it will take more storage.  
However, the most significant advantage of this approach 
is to maintain the simple star schema structure.  Here, 
design is simpler in most ways and easier for analysts not 
trained in data modeling to understand at the expense of 
significant storage.  

A weighting factor could be added to the diagnosis 
dimension, but will create a complexity in the actual usage 
and is not recommended in this approach.   

3.3.1.1. Database Sizing for Denormalized 
Dimension Method C-1 

Number of base fact: 1,000,000 records 
Key fields =7; Number of fact fields =2; Total Fields = 9 
Fact table size = 1,000,000 records * 9 fields * 4 bytes = 

 36 MB 
Diagnosis dimension: 1,000,000 records 
Key fields =1; Primary diagnosis size = 8 +15 = 23 bytes 
Average secondary diagnoses size = 5 * (8+15)= 115 bytes 
Average Concatenated field size = 5*8 = 40 bytes 
Number of Boolean Flag fields = 3 bits (1 bit each) 
Record size = 4 + 23 + 115 + 40 + 1 = 183 bytes 
Dimension table size = 1,000,000 records * 183 bytes = 

 183 MB 
Total disk space = 219 MB 

Table 6: Denormalized (non-positional) Diagnosis Dimension Table with Positional-attributes
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In our project, we adopted this C-2 method. Many 

medical centers will purchase or download all necessary 
diagnosis codes and descriptions as flat files, then load this 
data into a database table.  We were able to create the 
initial diagnosis dimension using historic legacy data.  For 
each billable encounter, a lookup is performed for the 
diagnosis description in a lookup table, the results are 
sorted, and a new record is inserted. For future claims 
records, a maintenance function will query the diagnosis 
dimension to see if the pattern already exists.  If the pattern 
does not exist, the lookup table is accessed for a 
description and will update the dimension accordingly. 

 

3.3.2.1. Database Sizing for Denormalized 
Dimension Method C-2. 

Number of base fact: 1,000,000 records 
Key fields = 7; Fact fields = 2; Total Fields = 9 

diagnosis_key (PK)
primary_diagnosis
primary_diagnosis_desc
secondary_diagnosis1
secondary_diagnosis1_desc
secondary_diagnosis2
secondary_diagnosis2_desc
secondary_diagnosis3
secondary_diagnosis3_desc
...
secondary_diagnosis20
secondary_ diagnosis20_desc
concatenated_diagnoses
SickleCellFlag
AsthmaFlag
DiabetesFlag

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter fact  table

Note: secondary attributes 3 - 19
 omitted for brevity.
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Figure 4 Denormalized Non-Positional Diagnosis 
Dimension Table with Flag Attributes: One-to-One
Relationship between Dimension and Fact Tables
.2. Method C-2: One-to-Many 
Relationship between Dimension and 
Fact Tables 

he diagnosis dimension can be related to the fact table 
 one-to-many relationship (Figure 5). Thus, the same 
nosis pattern is associated with multiple encounters. 
his method introduces many null values similar to 

hod C-1, but the redundancy is largely reduced. A 
ing/concatenation procedure similar to the one used to 
te the dimension table explained in section 3.3 can be 
loyed to search for the same diagnosis pattern from 
ting records, however the insertion process will tend to 
complex and slow.  Due to the one-to-many 

tionship, weighting factors cannot be exploited. 

Fact table size =1,000,000 records * 9 fields * 4 bytes =  
36 MB 

Diagnosis dimension records: 200,000 records 
(Assumed on the average one pattern is associated with 
five encounters.) 
Key fields =1;  
Primary diagnosis size = 8 +15 = 23 bytes 
Average secondary diagnoses size = 5 * (8+15)= 115 bytes 
Average Concatenated field size = 5*8 = 40 bytes 
Number of Boolean Flag fields = 3 bits (1 bit each) 
Record size = 4 + 23 + 115 + 40 + 1 = 183 bytes 
Dimension table size = 200,000 records * 183 bytes =  

36.6 MB 
 

Total disk space = 72.6 MB 

3.4. Method D: Lowering the Grain of the 
Fact Table 

Method D will lower the grain of the fact table to the 
dimension grain level (Figure 6).  This method is briefly 
discussed By Giovinazzo [Giov00].  For each event there 
will be multiple fact records relating to that specific event. 
An option is to add a diagnosis_group_key in the fact table 
to group the multiple fact records.  There is no need to 
compute a weighting factor; each diagnosis can be directly 
billed (see table 7). The star schema is retained in this 
approach, giving the user a concise, clear logical view of 
the business process, at the expense of increasing the size 
of a fact table. 

Since you can have many diagnoses for a singular event, 
there is a need to calculate the aggregate of that instance. 
The approach will be straightforward; sum the amounts of 
each diagnosis for a specific date, grouping by 
diagnosis_group_key.  The size of the fact table will 
increase depending upon how many diagnoses will be 
stored in the fact table. There will also be redundant data 
stored for other billing fields. 

nosis_key (PK)
ary_diagnosis
ary_diagnosis_desc
ndary_diagnosis1
ndary_diagnosis1_desc
ndary_diagnosis2
ndary_diagnosis2_desc
ndary_diagnosis3
ndary_diagnosis3_desc

ndary_diagnosis20
ndary_ diagnosis20_desc

catenated_diagnoses
leCellFlag
maFlag

betesFlag

nosis
ension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter fact  table

Note: secondary attributes 3 - 19
 omitted for brevity.
Figure 5: Denormalized Non-Positional Diagnosis 
Dimension Table with Flag Attributes: One-to-Many 

Relationship between Dimension and Fact Tables
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BPE 

Patient 
key 

Diagnosis 
group_key 

Diagnosis 
key 

Other 
FK's 

Billed to 
payer 

amount 
P1 DG1 cancer . $ 1,000 
P1 DG1 heart . $ 2,000 
P2 DG2 cancer . $ 1,000 
P2 DG2 heart . $ 2,000 
P2 DG2 lung . $3,000 
 

3.4.1. Database Sizing for Method D: 
Modifying the Fact Table 

Number of base fact records: 5,000,000 records (assume 
five diagnoses on average). 
 
Key fields =7; Number of fact fields =3; Total Fields=10 
Fact table size =5,000,000 records * 10 fields * 4 bytes = 

 200 MB 
Diagnosis dimension: 500 records 
Key fields = 1; Name field =1; Description field =1 
Record size = 4+8+15 =27 bytes 
Dimension table size = 500 records * 27 bytes = 

13,500 Bytes 
 

Total disk space = 200.1 MB 
 
 

3.5. Method E: Lower the Grain of the Fact 
Table: Separating Diagnosis from 
Billing Data 

Method E is similar to method D, but separates the 
diagnosis data from the billing data by employing two fact 
tables (Figure 7).  Diagnosis data is recorded at individual 
diagnosis grain in the Patient Medical Record fact table, 
while a billing is recorded at each billing transaction grain.  
Using this structure, allows us to use two fact tables in 
different ways.  When we perform diagnosis-related 
analysis, the Patient Medical Record fact table can be used.  
When we perform billing–related analysis, the Billing fact 
table can be used.  When we analyze billing related to 
diagnosis, both fact tables will be used.  A billing event is 
joined to diagnosis through the billing key.  A Weighting 
factor can be used if necessary. 

In this approach, the patient medical record would 
contain redundant data about the patient due to the 
granularity of the table, which is at the diagnosis level.  
This method, however, causes less redundancy than 
Method D because billing is recorded only once per event 
in its own fact table. The size of the fact table will increase 
depending upon how many diagnoses are stored in the fact 
table. There will also be redundant data caused by the 
foreign keys of an additional fact table. 

We note that if Method E is simplified by removing all 
foreign keys except diagnosis_key and billing_key in the 
Patient Medical Record fact table, the structure is similar 
to the method used with the Bridge table. 

 

Figure 6: Method D: Lowering the Grain of the 
Fact Table 

Table 7: An Example of the Fact Table at 
Individual Grain 

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
diagnosis_group_key
billedtopatient_amount
billedtopayer_amount

Billable Patient
Encounter Fact  Table

diagnosis_key (PK)
diag_name
diagnosis_description

Diagnosis Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billing_key (FK)
WeightingFactor

Patient Medical
Record FactTable

diagnosis_key (PK)
diag_name
diag_description

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
billing_key (FK)
billedtopatient_amount
billedtopayer_amount

Billing
Fact Table

Figure 7: Method E: Lower the Grain of the Fact 
Table and Separate Diagnosis/Billing Data
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Redundancy Name Weighting Factor Queries 
Storage 

Recommendation 

Necessary  

WF assignment can be 
cumbersome 

Slight 
Ideal for dimension with no 
upper limit in Many side and 
WF can be easily calculated or 
not needed. 

Method A 
Kimball’s Bridge 

Adding new diagnoses 
require recalculation.  

Additional join 
increases query time 

96.1 MB A clean solution 

Cannot handle a weighting 
factor 

Requires many OR 
commands, slows 
processing response 
 

Dimension table 
will list all 
possible 
combination, can 
be extremely 
large 

Method B 
Denormalizing 
Dimensional 
Table with 
Positional-Flag 
attributes Can use a primary 

diagnosis flag 

Bitmap index scheme 
can speed up query 
processing 
 

10.1TB (for 40 
diagnoses) 

Because of enormous storage 
requirement, only applicable 
when the number of positional-
attributes is very small (less 
than 10) and fixed 

Can maintain star schema 
structure for ease of 
understanding and query 
forming Can be very 

large  
Use when the number of 
dimension values is small and 
query performance is important 

Method C 
Denormalizing 
Dimensional 
Table with Non-
positional-
attributes & 
Concatenated 
field 

Depends on relationship 
between dimension and 
fact table 

Use of concatenated 
attribute and LIKE 
clause. 

See C-1 and C-2 
below. Creates many null values 

LIKE command 
disables indexing.  

Can be very 
large  Method C-1 

One-to-One  

Can create a concatenated 
weighting factor, but 
cumbersome 

Can use flags and 
bitmap indexes for the 
flags 

219 MB 

Use when a dimension pattern 
appears in fact table only 1-2 
times. 

Like command 
disables indexing. 

Less redundancy 
than Method C-1 

Use when a dimension pattern 
appears in fact table many 
times. Method C-2 

One-to-Many 

Cannot use a weighting 
factor because of one-to-
many nature Can use flags and 

bitmap indexes for the 
flags 

72.6 MB 
Requires complex logic to find 
existing records before inserting 
a new code. 

No need for a WF  
 View is on single table 

Can cause 
redundancy for 
other FK's in fact 
table 

The fact table can become very 
large  

Need to calculate 
aggregation. 

Method D  
Lower Grain of 
Fact Table to Line 
Item level Can use a primary 

diagnosis flag. Fast queries 
201.1 MB 

Use only for a limited number 
of attributes and line items per 
transaction 

View is on single table 

Must deal with two 
fact tables. 

Can use a WF  

Fast queries 

Can cause 
redundancy for 
other FK's in fact 
table 

Method E 
Lower Grain & 
Separate Facts 
into two tables 

Can use a primary 
diagnosis flag. 

Need to calculate 
aggregation 196.1 MB 

Use when two fact tables can be 
used separately. 

Table 8: Summary of Six Methods
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3.5.1 Database Sizing for the Positional-
attribute Method E 

Number of Patient Medical facts: 5,000,000 records 
(Assume five diagnoses on average). 
Key fields = 7; Fact fields = 1 
Record size = 7*4 + 4  = 32 bytes 
Fact table size = 5,000,000 records * 32 bytes =  

160 MB 
Diagnosis dimension: 500 records 
Key fields = 1; Name field =1; Description field =1 
Record size = 4+8+15 =27 bytes 
Dimension table size = 500 records * 27 bytes =  

13,500 Bytes 
Number of billing fact: 1,000,000 records  
Key fields =7; Number of fact fields =2; Total Fields =9 
Fact table size = 1,000,000 records * 9 fields * 4 bytes = 

 36 MB 

Total disk space = 196.1 MB 

4. Summary and Discussion 
In this section, we present the summary of the six 

methods discussed in the paper.  The results are 
summarized in Table 8.  

Kimball's bridge method [KRRT98] produces an elegant 
design for many situations. Redundancy is kept at a 
minimum, with the added advantage of correct weighted 
summaries. The cost is the size of the bridge table and 
added joins can deteriorate the querying process. We note 
that a weighting factor is needed when using a bridge.  It is 
not always needed when fact and dimension tables are 
flattened.  We recommend this solution as a clean and 
maintainable solution when the cardinality of many-to-
many is not limited and weighting factors can be easily 
calculated or are not needed. 

Method B, positional flag attributes, seems a likely 
solution when the number of positional-attributes is very 
limited (say less than 10 or 12) and fixed. As the number of 
attributes increases, the storage requirement becomes 
explosive. We do not recommend this approach for most 
situations. 

Methods C-1 and C-2 use non-positional attributes with 
a concatenated attribute and flags.  . By maintaining the 
star schema structure, these methods enhance 
understandability of the model by non-professional 
analysts and support easy query formation.  However, the 
designer must take into consideration the null values and 
redundancy.  In addition, Method C-2 requires an efficient 
procedure to find an existing diagnosis key for each entry 
of a fact table.  We recommend Method C-1 when a 
dimension pattern appears in the fact table only 1-2 times 
and Method C-2 when a dimension pattern appears in the 
fact table many times.  We recommend these methods only 
when the number of the dimension value is small and fixed. 

Methods D and E offer still additional approaches that 
will work well if the number of diagnoses is limited. The 

designer must consider the size of the fact table and 
redundancy in relation to the query processing times. 

There are several distinct types of users of the 
warehouse; the executive browser, the data analyst, and the 
professional OLAP analysts.  The executive browser will 
see the data through interfaces designed by the warehouse 
developers and the development will be simpler using 
Method C-1 or C-2 because there are fewer joins in the 
queries and no flattening views to create. Data analysts and 
professional OLAP analysts such as statisticians will need 
to extract data from the warehouse tables into reports 
employing statistical and data mining programs. Therefore, 
the understandability of the model becomes very important. 
Data from a flatter, horizontal dimension is easier to query 
into off-the-shelf application packages than data in a 
vertically oriented table. There is also no concern that 
analysts will forget to apply the weight factors to the facts. 

Maintenance is not appreciably different from a 
modeling and physical implementation perspective, which 
are handled using a data-modeling tool.  The extract, 
transform, and load (ETL) routines may be more complex 
and slow to run for the bridge method due to the multiple 
tables that have to be tested and the need to use cursors and 
procedural code to populate the bridge tables.  Conversely, 
the ETL plans for method C may be easier to write and 
should run faster.  It is also important to note, that some 
fact tables will have multiple many-to-many relationships 
with dimensions other than diagnosis. While theoretically, 
this poses no problem; in practice, the load times and query 
times may be excessive.   

We finally note that the storage calculation in this paper 
was based on our assumption.  When the domain and 
assumption changes, the storage requirement needs to be 
recalculated. 

5. Conclusion  
While we were building a real-world patient-billing data 

warehouse, we met a many-to-many relationship problem 
between a fact table and a dimension table.  A survey of 
literature showed us two methods (Method A and Method 
D).  After a thorough study on the subject, we have 
identified four additional methods.  In this paper, we have 
analyzed those six different approaches for handling many-
to-many relationships.  We have illustrated and shown the 
advantages and disadvantages of each solution.   

 
Our preferred methods include two ad-hoc approaches 

that maintain a star schema structure by denormalizing the 
dimension to avoid many-to-many relationships. For our 
project, we implemented Method C-2. For a new 
encounter, we query the Diagnosis dimension to see if the 
pattern already exists.  If the pattern does not exist, the 
lookup table is accessed for a description and will update 
the dimension accordingly.  We also note that Method C-2 
uses the minimum storage.  Our experience shows that the 
Method C-2 proposed in this paper were easy to use and 
efficient given our situation.  However, we recommend 
each data warehouse designer carefully evaluate each case 
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to adopt the best method considering various options.  Just 
as database designers trade off normalization for query 
response, a data warehouse designer must also resolve 
many issues to solve this many-to-many dilemma. 
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