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Abstract

Hierarchies are an important means to categorize
data stored in OLAP systems. OLAP queries fol-
low the drill/slice/dice-paradigm and therefore
exhibit navigation patterns that follow the hierar-
chy of a dimension. In real-world applications,
hierarchies are often unbalanced and share levels,
resulting in complex hierarchy structures. So far,
encoding methods for simple structured hierar-
chies have been introduced to handle hierarchies
efficiently for query processing. In this paper we
propose the HINTA agorithm to compute the
clustering order for complex hierarchies by lin-
earization. The physical clustering of OLAP data
computed by HINTA significantly improves the
performance of OLAP queries. HINTA enables
clustering of complex hierarchies that can share
hierarchy levels in severa classifications over
one dimension.

1 Introduction

A data warehouse (DW) is a physical database with an
integrated view onto arbitrary data. A multidimensional
(MD) view enables complex interactive, explorative data
analysis (OLAP, i.e. OnLine Analytical Processing).
Conceptually, the data of a DW is stored in data cubes. A
data cube consists of a set of dimensions and a set of
measures. Dimensions provide categorical (qualitative)
data (e.g., products, customers, time), which determine the
context of the measures (e.g., items sold, cost, turnover).
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The set of base values forming a dimension generally is
classified according to a set of hierarchies. For instance,
the time dimension may have a hierarchy all-year-month-
day or all-year-week-day. In this paper we will discuss
and further detail how the set of hierarchies can be repre-
sented and efficiently utilized for query processing.
Multidimensional clustering indexes (e.g., UB-Tree, R-
Tree) handle multiple dimensions for multidimensional
range queries ([Mar99])] Encoding methods prepare hier-
archical classification for the use of clustering B-Trees for
one hierarchy ([ZSL98[JIMRB99]). This encoding, how-
ever, is only useful for a special case of hierarchies, i.e.,
hierarchy trees or simple hierarchies. In reality, hierar-
chies are more complex, e.g., hierarchies are unbalanced,
have aternative paths and shared levels. To solve this
severe problem and make encoding techniques useful for
real world scenarios, we propose HINTA, an agorithm
that transforms an instantiation of a complex hierarchy to
a hierarchy tree. In combination with the above mentioned
encoding schemes, the resulting hierarchy can be used for
clustering.

In this paper, we present aformal hierarchy model, that is
based on graph algorithms and is introduced by the instan-
tiation of the hierarchies.

The rest of the paper is organized as follows. Section 2
lists related work. Section 3 gives a motivating example
how to use hierarchy encoding and to make use of
HINTA. In Section 4| we present the hierarchy model.
Section $tlescribes HINTA, atransformation algorithm of
complex hierarchies to simple hierarchies. Section 6
summarizes this paper and gives an outlook to future
work.

2 Related Work

In the DW community, some forma models of DW, di-
mensions, hierarchies etc. aready have been worked out.
Some approaches do not explicitly include hierarchical
classification in their data model ([AGSS7TJIBPTY7])] In

hierarchical classification, defining hierarchy schemata
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Figure 3-1: Hierarchy with Encoding

with classify-relationships. In mga MD model is
discussed, based on relational elements.

Many publications propose first to establish the concep-
tual model and then to do the actual implementation

((WB97T] [€T98,][GMR98]). [HLVOO] show how to
systematically derive a conceptual warehouse schema

from a generalized multidimensional normal form.
mtroduce a conceptual data model, that allows
descriptions of the structure of aggregated enti-
ties and multiply hierarchically organized dimensions.
[VS99] presents an overview of the understanding of

commercial and scientific concepts of DW modeling.
For single hierarchies, [ZSL.98 Biscusses the linearization

and presents the physical representation within DBMS.
tend the linearization to multiple dimensions
and hierarchies and discuss query processing of hierarchi-
cally organized multidimensional data.

In this paper, we further present a linearization method for
complex hierarchies by transforming complex hierarchies
to smple hiaarchiaﬁgu;'j\g the linearization method
already published in [

discuss a transformation algorithm to achieve
summarizability on unbalanced hierarchies.

Dimension

3 Moaotivation

In a star schema ([, dimension tables are con-
nected to a large fact table via dimension attributes (join
attributes). The dimension table usually contains the hier-
archies of the dimension, where for every path through the
hierarchy an artificial unique id (dimID) is used as join
attribute. This dimlD can be a computed number with
respect to the encoding of the hierarchy for hierarchical
clustering: dimID=surr(Vp, V1, ..., Vieg)- The function
surr computes a surrogate id for the path of the dimension
tuple. The schema of a dimension table usually includes
the hierarchy attributes of all simple hierarchies.

Conventional approaches to process queries in DW sche-
mata in relational DBMS are star join algorithms, where
restrictions on the dimension tables result in a number of
dimension values that are joined with the fact table. Que-
ries that restrict dimensions, have predicates on hierarchy
levels. Th redicates usually are point or interval re-
strictions ([ and result in large point sets on base
granularity (i.e., the leaf level of the hierarchy). Such
point sets can be replaced by a smaller set of interval re-
strictions depending on the predicate. The predicate
“Germany” of the hierarchy in Figure 3-1 would result in
the leaf members {“A1", “A2", “S1", “S2”, “A3"}, and

Segment
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every such member isajoin predicate to the fact table.
Figure 3-1 shows a hierarchy schema (on the left) and one
hierarchy instance (on the right). The hierarchy is a com-
plex hierarchy with the paths Dimension-Country-Region-
MicroMarket-Outlet (solid arrows) or aternatively Di-
mension-Country-TurnoverClass-Outlet (dashed arrows).

31

The identifier of the paths must be unique. Thus, a number
can be used to represent the corresponding path in the
hierarchy. We establish an encoding schema on the hier-
archy, that numbers (surrogate number) the children of
every level. The resulting identifier, caled compound
surrogate, are the concatenated surrogates of the path, one
for each level. It is shownin Figure 3-1 i rectangles.
With this encoding (thSIia%ﬂJ ﬁégg—gﬁ hierarchical
point sets can be replaced by intervals. The predicate
“Germany”, is mapped to the interval [000; 0100]. This
new interval predicate speeds up query execution on the
fact table, when using corresponding clustering indexes
(because a local interval predicate can be performed on
the fact table instead of a join). Such an encoding is
known for simple hierarchies. But predicates on a com-
plex hierarchy often result in point restrictions on the leaf
members. The predicate “TG2” specifies the leaf members
{*A2",“S2", “A3"}, that cannot be expressed by an inter-
val when encoding the hierarchy with respect to the previ-
0ous case.

A solution to speed up queries for DW applications with
complex hierarchies is to transform the complex hierarchy
into a ssimple hierarchy while leaving hierarchical depend-
encies. With this transformation and the mentioned encod-
ing, a predicate on the dimension hierarchy can be
mapped to a relatively small number of intervals on the
fact table. Thus, a query with a number of intervals on the
fact table is performed instead of a complex join operation
between dimension and fact table.

HINTA changes the hierarchy from a complex to asimple
hierarchy, where aternative paths are concatenated by
preserving hierarchical dependencies. Figure 3-2 shows,
the result of HINTA for the complex hierarchy of Figure
3-1 (the detailed transformation algorithm is discussed in
Section §) ]

Hierarchy Encoding

3.2 HINTA for Star Schemata

The advantage of using HINTA in combination with hier-
archy encoding is, that the dimension is left unchanged for
the members of the hierarchy. Only the artificial key has
to be recomputed. A dimension table D for Figure 3-1
may have the schema D(country, region, micromarket,
turnoverclass, outlet, dimID). For the geographical hierar-
chy, dimlD=surrge(country, region, micromarket, outlet),
for the transformed hierarchy, dimlD=surrge(country,
region, micromarket, turnoverclass, outlet), where surrisa
function that computes the encoding for the corresponding
hierarchy path.

These physical properties do not affect the schema. If the
optimizer is able to handle hierarchy encoding, another
hierarchy schema and therefore encoding even is transpar-
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ent to the SQL statements (i.e., the optimizer recognizes,
that a predicate on the dimension table with a correspond-
ing join to the fact table can be replaced by a number of
local interval predicates on the fact table). In such a case,
the generated operator tree avoids expensive join opera-
tions. However, for the so called residua join, i.e, the
join for the result set of the fact table to the dimension
table in order to perform grouping, sorting, feature evalua-
tion, postfiltering etc., the join cannot be prevented. Com-
pared to the first pass of query evauation, this residual
join will be performed on a relatively small number of
tuples and thus usually will not be critical for query execu-
tion.

4 A Hierarchy Mode

Graphs represent relationships between vertices. Mem-
bers in hierarchies are classified by relationships (usually
1:n relationships), which we in the following call hierar-
chical relationships. These hierarchical relationships can
be represented in a directed graph. A hierarchy instance is
the actual instantiation of the hierarchical relationship. A
special case of a hierarchy instance is a hierarchy tree. In
this paper, we extend the simple structure of a hierarchy
tree to a more complex hierarchy graph. We use equiva-
lence classes defined on the graph to describe hierarchy
instances.

In the first part of this section, we work out properties of
directed acyclic graphs (DAG) as model to describe hier-
archies. The second part introduces hierarchy instances
and schemata. We define some special hierarchies and
describe typical hierarchies of data warehouses.

Basically, a hierarchy instance H corresponds to a graph
G = (V, E) with vertices v; O V and typed edges g O E. V
is afinite set and E is a subset of VAV/xN: € 0 E = (vy,
V2,)', where vi, v, 0 V and t O N is a type determinator
(type) specifying the type of the edge. We define a func-
tion T: VXV N 2N that returns the type of an edge e:

T(e) = T((va, o)) = t.

4.1 Typed Directed Acyclic Graphs

We concentrate on DAGs ([ICLR90])| with typed edges,
abbreviated by tDAG. In a DAG, avertex v is adjacent to
u,ifu-=vor (u,v) OE.

Example 4-1 (Graph):

Figure 4-1 illustrates a sample graph. This graph is a
tDAG (the direction of the edges is denoted by arrows, the
type of the edges is denoted by the edge style, a solid ar-
row denotes type 1, a dashed arrow denotes type 2). The
vertices v; are { Germany, Austria, North, South, East,
West, ..., 6 }, the edges are: E={A1->Aldiy, Aldiy>
North, North->Germany, ..., West DAustria} or equiva
lently a set of pairs E={(A1, Aldiy)*, (Aldiy, North), ...,
(TG2, Germany)?, ..., (West, Austria)’}.

Definition 4-1 (Path @, Typed Path ¢, Pathlength):

A path ¢from uto v is a sequence of adjacent vertices (v,
Vo, .. Vo), Wherev, 2 vy, i=1, .., n-landv; = uandv,
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= v. Wesay, visreachablefromuviag@ U I v.we
say, gcontainsthe verticesvy, Vy, ..., Vi,

A typed path ¢ is a path with atypet, the function T: (Ex
.. XE) 2 N returns the type:

tif O,V 0P TV, V)=t (1=1...n-])
0 otherwise

@ ={

Two paths @ = (V'y, V%5, ..., Vi) and @ = (VP Vo, ..., VAY)
have the same type t, if the types of all edges of @ and @
arethesame: T(@) = T(g) = t.

The pathlength is the number of edges in path @

Segment

Definition 4-3 (Outdegree, Indegree):

The out-degree of a vertex u (outdegree(u)) is the number
of edges leaving u, outdegree'(u) is the number of edges
with typet, leaving u.

The in-degree of u (indegree(u)) is the number of edges
entering u, indegree'(u) is the number of edges with typet
entering u, correspondingly.

The degree of u is the sum of indegree(u) and outde-
gree(u).

A rooted tDAG has a number of vertices v; with inde-
gree(v;) = 0. These vertices are called leaf vertices v (Or
leaves). In the graph of Figure 4-1, the leaf vertices are
{Al, A2, 31, 2, A3, H1, H2, $4, H3, H4, S5, $6}. A root

N e T

-~

Figure 4-1: Rooted Directed Acyclic Graph

Aldiy Saturny Aldig }/ i

AL A2 51 A3
pathlength( = pathlength(path(u, Vv)),

if p= U V and path(u,v) is the path gfromuto v.

The type of a path is only defined, if all edges in the path
have the same type.

Example 4-2 (Path, Pathlength):

We use Figure 4-1 as example graph. There are two paths
from “Al” to “Segment” @=(“Al", “Aldiy", “North”,
“Germany”, “ Segment”) and @=(“Al", “TG1", “ Ger-
many”, “Segment”’). pathlength(@@) = 4 and path-
length(g) = 3, where T(@)=1 and T(@) = 2.

Definition 4-2 (Rooted tDAG):

A rooted tDAG is a tDAG that has one vertex r that is
reachable from all vertices v; O V \{r}. Thus, there is a
path from al vOV to r, vi#r. Vertex r is called root vertex
(or root).

If the union of two tDAGs G,=(V4, E;) and Go=(V, E)) is
not rooted (i.e., G=G.[/G=(V1/[N,, E.[JE,) is not a
rooted tDAG), but G, and G, are rooted tDAGSs, we can
construct a rooted tDAG G of G,//G, by adding a new
vertex r and two edges e, = (fgy, 1) and & = (re, 1),
where rg; isroot of Gy and rg, isroot of G,: G=(V, 7V,
v, By TE, [ (rgy, 1) L (rey, 1)).
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vertex (root) r has an out-degree of 0.

We further consider graphs, where every leaf vertex has at
least one typed path to the root. We additionally require,
that for every vertex v outdegree'(v)=1.

Example 4-3 (Indegr ee, Outdegree, Degree):

In Figure 4-1, the vertex Saturny has the following de-
grees: indegree(Saturny) = indegree'(Saturny) = 2,
outdegree(Saturny)=1, degree(Saturny)=3.

Definition 4-4 (Subgraph):

A subgraph G’ of graph G=(V,E) is a graph, whose verti-
cesV' and edges E’ are subsets of vertices V and edges E
of G:G'=(V,FE), V0OV, EUE

Definition 4-5 (Simple tDAG):

A simple tDAG (StDAG) T°=(V°, EY) is a subgraph of G
with edges of one typet. The vertices of T° are the vertices
contained in all paths ¢ from leaves of G to the root, and
pathlength(¢)= pathlength(¢), i.e., al paths from leaves
to root with same type and length.

Theorem 4-1:
A simpletDAG T is abalanced tree.
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Proof:

1. AstDAGisatree
According to the definition of trees ([K]Mh
T has the following properties:
T=(V, E), where v;/ N arethe verticesand e L E are
directed edges, where g = (root(T;), root(T)) and 1 <j
<m. T isaspecial case of aDAG, where outde-
gree(v)=1for al viaOV \{root(T)}. For every vi(1V
\{root(T)}, thereis apath fromv; to r = root(T):
OviiM{root(T)} Og VI .
A stDAG 1(V’ E) isarooted DAG with edges of t.
outdegree(vi)=1 = outdegree(v;) (see Dgfinition 4-5)]
for v 0 V\{r}, wherer isthe root. For evm
of the StDAG, thereis a path fromv; to root: /7vi/N
\r} Op vIOID r.
Thus, astDAG isatree.

2. A stDAGisabalanced tree:
In abalanced tree, the height (i.e., the maximum path-
length of the path from leaves to the root) of the sub-
treesisequal or has adifference of at most 1.
In astDAG, the pathlength of all paths from the
leaves to the root is equal.
Thus, astDAG isabalanced tree.

g.ed.

Definition 4-6 (Equivalence Class):

An equivalence class is a set of vertices with the follow-
mg properﬂes Two vertices u, v of a simple tDAG
T°=(V5 E9), u, v O V° are elements of equivalence classc,
if pathlength(path(u, root)) = pathlength(path(v, root)),
i.e., if the path length of the path from the vertices of c to
theroot isidentical (same distance).

Example 4-4 (Smple tDAG, Equivalence Class):

In the graph of Figure 4-1, two simple tDAGs T* and T?
are defined:

T = (V4 EY, where V! = {Al, A2, S1, 2, A3, H1, H2, 4,
H3, H4, S, 6, Aldiy, Saturny, Aldis, Hoferg, Saturng,
Hofery, Saturny, North, South, East, West, Germany,
Austria, Segment}

T2 = (V% E%), where V2 = {Al, A2, S1, 2, A3, H1, H2, 4,
H3, H4, 5, $6, TG, TG2, TG5, TA1l, TA2, Germany,
Austria, Segment}

Equivalence classes of T" are ¢,'={A1, A2, S1, 2, A3, H1,
H2, $4, H3, H4, S5, 6 }, czlz{AIdiN, Saturny, Aldig,
Hoferg, SaturnE, Hofery, Saturny}, Cs —{North South,
East, West}, c,'={Germany, Auarla} and cs'={Segment}.
Equivalence classes of T2 arecl ’={Al, A2, S1, 2, A3, H1,
H2, $4, H3, H4, S5, S8}, cz—{TGl TG2, TGS5, TAL,
TA2}, cs?>={Germany, Austria} and c,’={Segment}.

4.2

With the definitions of graphs, we now can define hierar-
chies. We draw a parallel from the concepts of rooted

Hierarchies

L A treeisafinite set T of one or more vertices such that there is
one specially designated node called the root of the tree, root(T),
and the remaining nodes (excluding the root) are partitioned into
m=>0 digoint sets Ty, ..., Tm and each of these setsin turn is a
tree. Thetrees Ty, ..., Tm are caled the subtrees of the root.

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

tDAGs to hierarchies. This section describes hierarchies
and their properties.

Definition 4-7 (Hierar chy Instance):

A hierarchy instance H is a rooted tDAG H=(V, E) with
members mOV and directed, typed edges g[JE. The edges
are called hierarchical relationships. We call a member m
hierarchically dependent on my, if my->m (or equivalently
(m, m) O E). We call amember m; indirect hierarchically
dependent on my, if my is reachable from my via a path @
m; (T2 m, also denoted by m; > m.

We additionally define sub-hierarchies, called simple
hierarchies H=(V®E®) that correspond to simple graphs.
All simple hierarchies H;° of a hierarchy instance H are
partitions of H. The union of the simple hierarchies is the

hierarchy instance H: U H .S =H . This follows from
i
the definition of simple graphs.

Definition 4-8 (Hierar chy Level):

A hierarchy level or level is an equivalence class of a
simple hierarchy containing members with the same dis-
tance from the root. We call the level, consisting of
leaves, leaf level and the level, consisting of the root, root
level. A simple hierarchy is a balanced hierarchy tree
with a depth egqual to the pathlength of the path from the
leaves to the root.

Example 4-5 (Hierar chy Instance, Simple Hierar chy,
Hierarchy Level):

The graph illustrated in Figure 4-1, is a hierarchy instance
with two simple hierarchies H; and H,.

The levels of H,=(V,, E;) are Vy={h,}, hy', hs', hy!, hsb),
wherehlz{Al A2, S1, 2, A3, H1, H2, 4, H3, H4, S5,
5}, h,t —{Alle, Saturny, Aldis, Hoferg, SaturnE, Hofery,
Saturny}, hs* —{1North South, East, West}, h,'={Germany,
Austria} and hs={Segment}.

Definition 4-9 (Hierar chically Dependent Levels):

A level h; is hierarchically dependent on h;, if al mem-
bers mUh; are hierarchically dependent on members
mpOh, i.e., Om\Ohy Oy Oh: (mfy, my) CE. The function
HD: (V, VxV)2(VxV) computes the hierarchical relation-
ships {(h;, h))} of the levels of a hierarchy instance H=(V,
E), where h;, h; are levels of H and h; is hierarchically de-
pendent on h;.

A level hyisindirect hierarchically dependent on h;, if all
members m\ 0 h; are indirect hierarchically dependent on
members m, O h.

The order of dependencies often intuitively is misunder-
stood. A simple example illustrates the correct hierarchi-
cal dependencies: In a geographic hierarchy with levels
country, state and town, the level state is hierarchically
dependent on town, because state is determined by the
towns. The level country also is hierarchically dependent
on town, however indirect (vialevel state).
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Example 4-6 (Hierar chically Dependent Levels):
HD(H,) returns the following hierarchical dependencies:
HD(H,) = {(A1, Aldiy), (A2, Aldiy), (S1, Saturny), (S2,
Saturny), (A3, Aldig), ..., (Germany, Segment), (Austria,
Segment)}, i.e., all edges of the graph representing H;.

Definition 4-10 (Shared Level):

Two levels h)={m'} and h,={m?} are shared levels, if the
intersection of h; and h, is not empty. Otherwise the levels
h, and h, are not shared. We call such levels h; and h,
digoint levels.

Definition 4-11 (Distinct Operator):

The distinct operator L-2L returns a subset of levels
L'={h} of a set of levels L={h}: distinct(L)={hg}=L",
where Ohy, h, O L’: he# h,. There are no equal levelsin
L.

If there are several paths from a member to the root (usu-
ally true for shared levels), we call these paths alternative
Example 4-7 (

paths.

Distinct Operator):
According to m shared levels are: hy'=h?
hy'=hs? hs'=h%.
For the hierarchy instance H = H;//H,, the distinct opera-
tor returns the following levels:
distinct(H) ={ h,%, h,!, hat, hyt, het, hy?).
The distinct operator generally is not deterministic. How-
ever, the members of the levels specified by the difti nct
op;rator, are deterministic (e.g., the members of h;™ and
h;~ are the same).

Definition 4-12 (Balanced Hierar chy):

A balanced hierarchy is a hierarchy, whose leaf members
are contained in one (shared) level h.. Simple hierarchies
are always balanced hierarchies, because they have only
one leaf level (balanced tree).

Definition 4-13 (Hierachy Schema):

The hierarchy schema HSis a rooted tDAG specified by
HS=(LS, ES), where L isaset of levelsh;, and E¥is a set of
hierarchical relationships E3=(h;, hj) between the levels,
i.e., hy ishierarchically dependent on h.

Definition 4-14 (Schema-I nstance Confor mity):

A hierarchy schema HS=(L®, ES) conforms to a hierarchy
instance H=(V", E™), if the number of levels of HSand H
is equal, and the hierarchical dependencies of these levels
areequal:

0 (h° hS 0 E> O h", h™ 0O HDMH) DO K", K O
HD(H): Oh® h® OE®

Example 4-8 (Hierar chy Schema and I nstance):

On the left side of Figure 3-1, a hierarchy schemaisillus-
trated: HS=(L, E®), where L={Outlet, MicroMarket, Re-
gion, TurnoverClass, Country, Dimension} and
E"={(Outlet, MicroMarket), (MicroMarket, Region), (Re-
gion, Country), (Outlet, TurnoverClass), (TurnoverClass,
Country), (Country, Dimension)}.
As hierarchy instance H, we use Ekample 4-5. H = H,[0H,
= (V, E"), where the levels are L"={h,", h,", hg", h,, hs',
h%, h,2, h?, h%. The distinct levels are distinct(L"™) =

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

{h%, hyt, het, het, het, hy?} and the hierarchical dependen-
cies are HD(H) = {(hy", h!), (h", h"), (hs", ha?), (ha', hs?),
(ht, hyd), (h2 hah)}. If we map Outlet to hy*, MicroMarket
to h,", Region to hs!, Country to h,*, Dimension to hs" and
TurnoverClass to h,% the hierarchy schema HS conforms
to hierarchy instance H of Figure 4-1.

4.3

Hierarchies are used to classify the dimensions of a DW.
DW model complex business contexts. Additional attrib-
utes are used to provide additional classification informa-
tion, e.g., the screen size of TV sets. For this reason, the
members can be augmented by classification features.
Therefore, a member v in a hierarchy graph is a pair
v=(id, {f;}), where id is a unique identifier of the vertex,
called member label (or label), and {f} is a set of addi-
tional attributes, called feature attributes. We call such a
graph an attributed tDAG.

Feature attributes are assigned to hierarchy members.
Generally, a member can have an arbitrary number of fea-
tures. In many DW hierarchies, however, the hierarchy
members of one hierarchy level have the same number of
feature attributes™ In this case, features are assigned to
hierarchy levels.

In a DW, hierarchies are assigned to dimensions. One
dimension can contain several hierarchies. We combine
all hierarchies of one dimension to one hierarchy instance
corresponding to a rooted tDAG, where the root is the
“All” level. Such a hierarchy instance is called DW-
hierarchy. Usually, facts have a base granularity with re-
spect to every dimension. This base granularity corre-
sponds to one leaf level of the DW hierarchy. Thus, a
DW-hierarchy only has one (shared) leaf level.

If facts are classified with respect to different
granularitie$Yleaf hierarchy levels), new aggregation and
grouping semantics have to be introduced ([ The
hierarchy model, however, supports such degenerated
hierarchies.

Hierarchiesin Data War ehouses

5 Transforming Hierarchy Instancesto
Simple Hierarchies

First, we discuss some algorithms, that are used by
HINTA. Then we discuss HINTA in detail and show a
complete example of HINTA for the hierarchy instance of
Figure 3-1.

51

We use the term primitive hierarchy instance, phi, for
hierarchy instances, that consist of two simple hierarchies
with one shared leaf level - the remaining levels are dis-
joint. Such a phi can be transformed to one simple hierar-
chy instance. A phi is some kind of sub-hierarchy of a

Primitive Hierarchy Instances (phi)

2 Hierarchy members of one hierarchy level usually categorize
the same information, e.g., the level “country* may have feature
attributes like number of inhabitants, gross national product, etc.
for every country stored in the hierarchy.

3 unbalanced hierarchies

11-6



conventional hierarchy instance consisting of two simple
hierarchies.

A phi H consists of a number of hierarchically dependent
digoint levels and one shared leaf level. Figure 5-1 illus-
trates all possible hierarchy schemata of phi (phi;, phiy,
phis).

phi; only contains one shared level, i.e., the leaf level of
H. Such a phi can be constructed, if a hierarchy has sev-
eral hierarchically dependent shared levels. This sequence
of levels is split into phi’s of type phi; for every level.
Usually, edges of both simple hierarchies “leave” phi
(illustrated by dotted arrows). Thus, the original hierarchy
has a level hierarchically dependent on h;, if h; is not the
root level.

phi, is the general case for a phi. Two simple hierarchies
H; and H, have one shared leaf level h; and a number of
hierarchically dependent levelshy, ..., h, for H; and h;, ...,
h, for H,. Usualy, a level h, (shared level) is hierarchi-
cally dependent on h,, and h,. The dotted arrows denote
these hierarchical relationships.

phis is a special case of phi,, where H; only consists of the
shared leaf level h;, and H, consists of additional hierar-
chically dependent levelshy, ..., h,.

In Figure 5-1, a splitting of a hierarchy schema of hierar-
chy H with the two simple hierarchies H%, and H%, into
phi’s is illustrated. H®, consists of the levels {A, B, D, E,
G, J}, H% consists of the levels {A, B, E, F, G, I, J}.
Shared hierarchy paths (levels A and B) are from type
phi;, the alternative paths for levels G2D-2>C and
G2F 2E are from type phi,, and the alternative paths J
and J-2| are from type phis.

No other phi are possible for two simple hierarchies, be-
cause by concatenating phi’s, al hierarchy instances for

phi,

phi;

phi,

Figure 5-2: Example of phi’s

two simple hierarchies can be constructed.
A phi of a hierarchy instance H=H;//H, formally is de-
fined in the following way:

Definition 5-1 (Primitive Hierar chy Instance, phi):

The primitive hierarchy instance (phi) of a hierarchy in-
stance H consisting of two simple hierarchies H%=(V%,

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

ES%) and H%=(V5, E%) is a hierarchy instance H”"=(V*",
gPhy.-

VP = (™ h™ L b R b L hY, where hy™
resp. h," are root levels of H, resp. H®, and h;“and h," are
shared levels and [h{, k<jsm: [h,, h<i=n: h/, h,' are
digoint levels. .
E™ = {e}, where e = (v, vj) J(EXLE): v, v I{(V"
Vb, ViV, ViV,

E”hf contains all origina edges between the members of
VP and the “leaving” edges.

Example 5-1 (Primitive Hierar chy I nstance):

This example shows the phi's of the sample hierarch}/
instance H of Figure 4-1. H consists of three phi’s; H™,
HP? and H,

HP is of type phiy. VP! = {Segment}, E™ = /7, because the
root does not have leaving edges.

HP is of type phi; again and consists of the members V>
= {Germany, Austria} and the edges E™ = {(Germany,
Segment)!, (Austria, Segment)!, (Germany, Segment)?,
(Austria, Segment)?}

The edges are of type 1 and 2 (see Figure 4-1).

H" is of type phi, and consists alternative paths
with shared leaf level Outlet (seeéﬁﬁeﬁ

VPR = (A1, A2, SI, 2, A3, H1, H2, $4, H3, H4, S5, S5,
Aldiy, Saturny, Aldis, Hoferg, Saturng, Hofery, Saturny,
TG1, TG2, TG5, TAL, TA2, North, South, East, West}

EP"S = {(A1, Aldiy), (A2, Aldiy), (S1, Saturny), (2, Sat-
urny), (A3, Aldig), ..., (South, Germany), (East, Austria),
(West, Austria)}

5.2  Transformation of Primitive Hierarchy In-
stances

A phi can be transformed to a simple hierarchy. In this
section, members are denoted by v. If visinlevel h, i.e, v
O h;, we write v;, if v O h;, we write v; etc. We write v, and
v, for members not within the hierarchies. An edge (vi, Vi)

Figure 5-4: Transformation of a phi,

is aleaving edge of v,,. Depending on the type of the phi,
the hierarchy is transformed by deleting and adding spe-
cial members and edges. A phi consists of two simple
hierarchies. For the transformation, one hierarchy is pre-
ferred, i.e, the levels of the preferred hierarchy usually
are more significant for the encoding than the levels of the
other hierarchy (predicate isPreferred). The isPreferred:
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E->Bool predicate (i.e., isPreferred(e) = TRUE | FALSE)
returns TRUE, if edge e is the edge of the preferred hier-
archy. Usually, a hierarchy is preferred, if it is used in
more queries than the other hierarchy. There can be many
preference criteria (e.g., numbers, importance or kind of
gueries etc.).
The transformation algorithm is specified in pseudo code:
Transf or nPhi ToSi npl eHi er archy:
if type(H" =phii, then
forall edges (vi, Vx)
if not isPreferred(vi,
del ete edge(Vvi, Vy)
/* del ete | eaving edges of the non-
preferred hierarchy, |eaving edges
of preferred hierarchy remain*/
if type(H™ =phi, then
forall edges (vi, Vx)
if not isPreferred(v,
del ete edges (vi, Vy)
/* del ete | eaving edges of the non-
preferred hierarchy */
forall edges (vi, Vi)
i f not pathexists(vi>v;’ 2.2V’ >V
i nsertpath(vi>vj' 2.2V 2vg)
del ete edges (vi, Vi)

vyx) then

Vx) then

Hphil
thil Germany T
EEEEEEEEEEER EEEEEEEEEEEEEEEEEER llll\u‘“‘({-{‘f_
North South”
| NN
thll Aldiy Saturny

MicroMarket

Aldig

A3

any more (see Figure 5-4). The operation i nsert -
pat h( pat h) inserts members and edges of path. Thisis
necessary, because a member v; O h; can be adjacent to
several members v; O h;, that do not correspond to an
equal number of members vy [0 hy. Thus, we have to dupli-
cate the path to preserve hierarchical dependencies.
Instead of the discussed transformation algorithm, that
concatenates two simple hierarchies, a hierarchy level
interleaving also is possible. This interleaving corre-
sponds to a topological sorting of the hierarchies. Further
research is necessary to work out the advantages of the
transformation methods.

5.3  Hierarchy Instance Transformation Algorithm
(HINTA)
The Hierarchy INstance Transformation Algorithm,

HINTA, transforms a hierarchy instance H=(V, E), repre-
sented by arooted tDAG (e.g., a DW-hierarchy) into sim-
ple hierarchy H® = HINTA(H) = (V5 EY. The input of
HINTA isahierarchy instance that consists of an arbitrary
number n of simple hierarchies H%. We transform two
simple hierarchies H%, and H%, to one simple hierarchy by
splitting them into phi’s and transforming each phi with

Segment

TGl TG2 TG5 TAl1 TA2
I S S

A

Figure 5-3: Schema and Instance of phi's

forall edges (vi,vj) delete edges (vi,Vj)
/* make v indirect hierarchically
dependent on v; (instead of direct
hi erarchically dependent) by duplica-
ting vertices and edges */
if type(H™ =phis then
for all edges (vi, V)
del ete edges (Vvi, Vy)
For phi’s of type phi, and phis, only “leaving” edges must
be removed. For a phiy, al leaving edges of one of the two
hierarchies must be removed (in this case, the non-
preferred hierarchy). For a phi;, we must remove the
“leaving” edges of the “small” hierarchy, because the lev-
els of the other hierarchy must remain for hierarchical
classification.
For phi’s of type phi,, a kind of hierarchy interleaving is
performed. The alternative paths are concatenated in the
meaning, that the levels of the non-preferred hierarchy are
made hierarchically dependent on the levels of the pre-
ferred hierarchy. Members of the shared leaf level h; are
not directly hierarchically dependent on members of hy

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

Transf or mPhi ToSi npl eHi er archy into a primi-
tive simple hierarchy. The primitive ssimple hierarchies are
merged to the resulting simple hierarchy H%,. We now
transform H®), and the next simple hierarchy H%; to H 53
according to the previous described steps etc. Thus, at the
end of HINTA, we get one simple hierarchy HS03 .

In the following, we describe the process in a more formal
manner:

Theinput hierarchy H is split into simple hierarchies HS:
H= U H.> , where HS is preferred to HS, ,.

I
HINTA: HS=HINTA(H)
According to the informal description of HINTA above,
we transform a pair of simple hierarchies into one simple
hierarchy, starting with the first two simple hierarchies in
preference order.
H, = Transforn(HS, O HS)
The resulting ssimple hierarchy H;, and the next preferred

simple hierarchy HS; are transformed:
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H123 = Transfor n‘( H12 O Hs3)

The resulting simple hierarchy Hj»3 and the next preferred

simple hierarchy H%, are transformed etc. Thus, we have

n-1 calls of Tr ansf or mfor n simple hierarchies of H.

The transformation calls also can be summed up in one

expression:

Ho = Transfor m( HOHS,)

Moz = Transfor n{ HpOH%s) = Transforn(
Transfor n{ H5.OH%) O H%)

TurnoverClass

Transf or m is arecursive function, that transforms the
first phi of H into a simple hierarchy H® and concatenates
HS with the rest of the transformed phi's by calling
Transf or magain. It terminates, when H is aready a
phi, i.e., if the last phi of the original hierarchy instance is
the input parameter.

The “00” operator means, that for H;//H, the hierarchies
H; and H, are concatenated via the existing edges of
members of H; and H,.

The“\" operator isa splitting of the hierarchiesH; and Ho,

P
N

S

. - Shrie Ng
Aldiy Saturny Aldig P ’ : \\i % Hoferg Saturng Hofery, Saturny,
Al A2 51 A3 ® ; | H1 ;-|2 s4 H3 H4 S5 6
Figure 5-5: Deleting Members and Edges
Transforn(Transforn(.... Transform i.e. H*= H; \ H, means, that H* is the hierarchy H; with-
(H10H) O H3) 0 .0 Hhg) O HY) out the members and edges of H,. Thus, H \ phi(H) is hi-

The function Tr ansf or msplits a hierarchy instance H  erarchy H without the first phi of H.

consisting of two simple hierarchies into phi’s, transforms

Dimension

Transf ormis caled n times, if H consists of n phi’s.
Segment

/\

Country Germany Austria

Region North South East West
MicroMarket K S?{N A'fi s H/‘ii SHT"TE HOfTerw SKM
Turnover Class TTP TTl TTl TTZ2 TG23 TA2! TA1l  TAZ2 K TA2 TAL¢

Outlet Al A2 Sl A3 H1 H2 A H3 H4 S5 6

Figure 5-6: Final Simple Hierarchy Instance and Schema

each phi into a simple hierarchy (Tr ansf or nPhi To-
Si npl eHi er ar chy) and concatenates the resulting
simple hierarchies to one simple hierarchy:

Transform (H):

if His phi then

Transform(H) = TransfornmPhi ToSi npl eHi er -
archy(H)
ot herwi se

Transfornm(H) = TransfornPhi ToSi npl e-
H erarchy(phi (H)) O Transforn(H phi (H))

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

Thus, Tr ansf or m terminates, because a hierarchy in-
stance H consists of afinite number n of phi’s.

54 Exampleof HINTA

To illustrate HINTA, we use the hierarchy instance
H=(V", E™) of Figure 4-1, wh ins two simple
hierarchies H,® and H,® (see mﬁ We assume,
that H,> is preferred to H,>. The resulting simple hierarchy
H%is computed by:
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H°= HI NTA(H)

The pair of simple hierarchies H; and H, is transformed
by Transforn(H/.H,), where H [ H, is not a.fhi.
(H.H,) consists of three phi, i.e., H™*, H?2 and H"™,
HP* (of type phiy) is the root level without edges, because
the root level does not have leaving edges.

HP? (of type phi,) consists of the members { Germany,
Austria} and the corresponding edges to the root (see Fig-
ure5-3and E>{ améle 5-15].

HP® =(V, E) (of type phi,) consists of two alternative paths
with shared leaf level Outlet (see Figure 5-3 and

%\/ we transform H™, H”? and H to simple hierarchies:
H°,=Tr ansf or nPhi ToSi npl eHi er ar chy( H?)
H%=Tr ansf or nPhi ToSi npl eHi er ar chy( H?)
H%=Tr ansf or nPhi ToSi npl eHi er ar chy( H®)

H®, = ({Segment}, O}, i.e. the root without edges.

H% = ({Germany, Austria}, ;(Germany, Segment), (Aus-
tria, Segment)}, because H™ is a phi of type phi,, the
edges of type 2 are deleted.

H®; = (V, E): H” is of type phi,and

we delete the edges {(Al, Aldiy), (A2, Aldiy), (S, Sat-
urny), (82, Saturny), (A3, Aldig), (H1, Hoferg, (H2,
Hoferg), ($4, Saturng), (H3, Hofery), (H4, Hofery), (S5,
Saturny), (6, Saturny)} and the edges {(TG1, Germany),
(TG2, Germany), (TG5, Germany), (TAL, Austria), (TA2,
Austria)} (edges between leafs and the preferred hierarchy
are deleted, because now the members of the non pre-
ferred hierarchy are directly dependent on the leafs).
Figure 5-5 illustrates, which edges are del eted.

We delete members {TG1, TG2, TG5, TAl, TA2} and
insert new members {TA1', TG2', TG5', TG2? TG2®,
TA2', TA1Y, TA1?, TAL®, TAL®, TA2? TA1% and get the set
of members:

V={Al A2 Sl, 2, A3, H1, H2, $4, H3, H4, 5, S5,
Aldiy, Saturny, Aldis, Hoferg, Saturng, Hofery, Saturny,
North, South, East, West, TA1', TG2', TG5', TG2% TG2®,
TA2', TA1Y, TA1Z, TAL®, TAL3 TA2?, TA1Y

Weinsert new edges of level TurnoverClassto Micro-
market preserving hierarchical dependencies: {(Al, TG1Y),
(TG1Y, Aldiy), (A2, TG2Y), (TG2Y, Aldiy), (SL, TG5Y),

10

Figure 5-7: Complex Hierarchy

1 13 20

(TGS, Saturny), (S2, TG2?), (TG2?, Saturny), (A3,TG2%),
..., (TA1?, Saturny)}

After deleting and inserting, the edges are:

E = {(A1, TG1Y, (A2, TG2Y), (S1, TG5Y), (X, TG2?), (A3,
TG2%), (H1, TA2Y), (H2, TA1Y, (4, TA1?), (H3, TA1), ...,
(North, Germany), (South, Germany), (East, Austria),
(West, Austria)}

R. Pieringer, V. Markl, F. Ramsak, R. Bayer

The resulting simple hierarchy of HINTA is the union of
H®;, H and H%, asillustrated in Figure 5-6.

55  Effectsof HINTA

This section illustrates the benefit of HINTA in an exam-
ple. Usualy, the benefit of HINTA is as better as larger

c

T,

s ts, s
OTAB O-IZ OTZ 0/1\ OT OT 0/\ T 0T

1 0
Tn 23 T2 Tos Ta Tx

T34 T32
000 001 010 100 01 110 120 200 201 210 220

Figure 5-8: Transformed Hierarchy

020

the hierarchies are. Due to graphica illustrations, how-
ever, only small hierarchies can be drawn. In Figure 5-7
we show a complex hierarchy with the levels H;=Country-
Sate-Town and H,=Country-Category-Town, where
Category characterizes the size of the towns (large, mid-
dle, small). Hierarchy Encoding is applied to Hy, i.e, a
predicate “Category=L" would include the leaves {T11,
T13, T21, T23, T31, T34} or equivaently the dimiDs
{00, 02, 10, 12, 20, 23}, i.e., 6 intervals include one sin-
gle value. With atransformed hierarchy (asin Figure 5-8),
we get three intervals [000, 001], [100, 101] and
[200,201]. With these intervas, the query will be proc-
essed faster on the fact table.

56 Remarks

This section gives a short impact to the quality of HINTA.
We consider a hierarchy such as in Figure 3-1, where one
is the preferred hierarchy, the other is the non-preferred
hierarchy. We use an encoding of the preferred hierarchy
(EPH), an encoding of the non-preferred hierarchy
(ENPH) and an encoding of the transformed hierarchy
with HINTA (ETH).

Fiaure 6-1: Time Hierarchvy
In genera, no perfect linearization is possible for al
simple hierarchies. However, due to the transformation
agorithm, the preferred hierarchy till is encoded per-
fectly, i.e., apredicate (point restriction) on EPH resulting
in one interval also will result in one interval for ETH,
because the affected leaves are the leaves of a complete
sub-tree. Thisis due to the higher priority of the preferred
hierarchy (the levels of the preferred hierarchy usualy are
higher levels than the levels of the non-preferred hierar-
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chy). Thus, no disadvantages in query execution will re-
sult from HINTA for such predicates.

The clustering of ETH compared to ENPH, however, is
not optimal, and a predicate on a level of ENPH might
result in a number of intervalsinstead of one interval. This
number highly depends on the correlation of the two sim-
ple hierarchies: If the hierarchies are correlated in a large
extent (e.g., for the time hierarchy in Figure 6-1 with the
preferred hierarchy year — month — day), most restrictions
such as year = 1999 and week = 33 will result in an inter-
val on dimID for the transformed hierarchy year — month
—week — day.

6 Conclusionsand Future Work

In this paper, we present a concept, how to represent hier-
archies by directed acyclic typed graphs. We concentrate
on complex hierarchies and describe HINTA, a method to
linearize complex hierarchies by transforming them to
simple hierarchies and thus allow hierarchical clustering
on such hierarchies.

The quality of clustering depends on the correlation of the
simple hierarchies. For query processing, predicates on
hierarchy levels are mapped to intervals by an encoding
that preserves hierarchical clustering.

Currently, in the EDITH project ( Edi01I§,|we are inte-
grating encoding algorithms_into_the kernel of the rela-
tiona DBMS TransBase ([fra01])]and are investigating
guery processing algorithms and optimizer strategies to
efficiently support these methods. Application partners
will test the DBMS implementation. We are going to ana-
lyze HINTA by transforming complex real world hierar-
chies and compare clustering properties.

We thank Martin Zirkel and Robert Fenk for fruitful dis-
cussions for reading and correcting this paper.
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