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Abstract 

Hierarchies are an important means to categorize 
data stored in OLAP systems. OLAP queries fol-
low the drill/slice/dice-paradigm and therefore 
exhibit navigation patterns that follow the hierar-
chy of a dimension. In real-world applications, 
hierarchies are often unbalanced and share levels, 
resulting in complex hierarchy structures. So far, 
encoding methods for simple structured hierar-
chies have been introduced to handle hierarchies 
efficiently for query processing. In this paper we 
propose the HINTA algorithm to compute the 
clustering order for complex hierarchies by lin-
earization. The physical clustering of OLAP data 
computed by HINTA significantly improves the 
performance of OLAP queries. HINTA enables 
clustering of complex hierarchies that can share 
hierarchy levels in several classifications over 
one dimension. 

1 Introduction 
A data warehouse (DW) is a physical database with an 
integrated view onto arbitrary data. A multidimensional 
(MD) view enables complex interactive, explorative data 
analysis (OLAP, i.e. OnLine Analytical Processing). 
Conceptually, the data of a DW is stored in data cubes. A 
data cube consists of a set of dimensions and a set of 
measures. Dimensions provide categorical (qualitative) 
data (e.g., products, customers, time), which determine the 
context of the measures (e.g., items sold, cost, turnover).  

The set of base values forming a dimension generally is 
classified according to a set of hierarchies. For instance, 
the time dimension may have a hierarchy all-year-month-
day or all-year-week-day. In this paper we will discuss 
and further detail how the set of hierarchies can be repre-
sented and efficiently utilized for query processing. 
Multidimensional clustering indexes (e.g., UB-Tree, R-
Tree) handle multiple dimensions for multidimensional 
range queries ([Mar99]). Encoding methods prepare hier-
archical classification for the use of clustering B-Trees for 
one hierarchy ([ZSL98], [MRB99]). This encoding, how-
ever, is only useful for a special case of hierarchies, i.e., 
hierarchy trees or simple hierarchies. In reality, hierar-
chies are more complex, e.g., hierarchies are unbalanced, 
have alternative paths and shared levels. To solve this 
severe problem and make encoding techniques useful for 
real world scenarios, we propose HINTA, an algorithm 
that transforms an instantiation of a complex hierarchy to 
a hierarchy tree. In combination with the above mentioned 
encoding schemes, the resulting hierarchy can be used for 
clustering. 
In this paper, we present a formal hierarchy model, that is 
based on graph algorithms and is introduced by the instan-
tiation of the hierarchies. 
The rest of the paper is organized as follows. Section 2 
lists related work. Section 3 gives a motivating example 
how to use hierarchy encoding and to make use of 
HINTA. In Section 4, we present the hierarchy model. 
Section 5 describes HINTA, a transformation algorithm of 
complex hierarchies to simple hierarchies. Section 6 
summarizes this paper and gives an outlook to future 
work. 

2 Related Work 
In the DW community, some formal models of DW, di-
mensions, hierarchies etc. already have been worked out. 
Some approaches do not explicitly include hierarchical 
classification in their data model ([AGS97], [BPT97]). In 
[Sap01], [Leh98a] and [Alb01], the authors work out a 
hierarchical classification, defining hierarchy schemata 
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with classify-relationships. In [LW96], a MD model is 
discussed, based on relational elements.  
Many publications propose first to establish the concep-
tual model and then to do the actual implementation 
([WB97], [CT98], [GMR98]). [HLV00] show how to 
systematically derive a conceptual warehouse schema 
from a generalized multidimensional normal form. 
[FS99] introduce a conceptual data model, that allows 
complex descriptions of the structure of aggregated enti-
ties and multiply hierarchically organized dimensions. 
[VS99] presents an overview of the understanding of 
commercial and scientific concepts of DW modeling. 
For single hierarchies, [ZSL98] discusses the linearization 
and presents the physical representation within DBMS. 
[MRB99] extend the linearization to multiple dimensions 
and hierarchies and discuss query processing of hierarchi-
cally organized multidimensional data. 
In this paper, we further present a linearization method for 
complex hierarchies by transforming complex hierarchies 
to simple hierarchies and using the linearization method 
already published in [MRB99]. 
[PJD99] discuss a transformation algorithm to achieve 
summarizability on unbalanced hierarchies. 

3 Motivation 
In a star schema ([Kim96]), dimension tables are con-
nected to a large fact table via dimension attributes (join 
attributes). The dimension table usually contains the hier-
archies of the dimension, where for every path through the 
hierarchy an artificial unique id (dimID) is used as join 
attribute. This dimID can be a computed number with 
respect to the encoding of the hierarchy for hierarchical 
clustering: dimID=surr(vm, vm-1, …, vleaf). The function 
surr computes a surrogate id for the path of the dimension 
tuple. The schema of a dimension table usually includes 
the hierarchy attributes of all simple hierarchies. 
Conventional approaches to process queries in DW sche-
mata in relational DBMS are star join algorithms, where 
restrictions on the dimension tables result in a number of 
dimension values that are joined with the fact table. Que-
ries that restrict dimensions, have predicates on hierarchy 
levels. These predicates usually are point or interval re-
strictions ([Sar97]) and result in large point sets on base 
granularity (i.e., the leaf level of the hierarchy). Such 
point sets can be replaced by a smaller set of interval re-
strictions depending on the predicate. The predicate 
“Germany” of the hierarchy in Figure 3-1 would result in 
the leaf members {“A1”, “A2”, “S1”, “S2”, “A3”}, and 
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Figure 3-1: Hierarchy with Encoding 
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every such member is a join predicate to the fact table. 
Figure 3-1 shows a hierarchy schema (on the left) and one 
hierarchy instance (on the right). The hierarchy is a com-
plex hierarchy with the paths Dimension-Country-Region-
MicroMarket-Outlet (solid arrows) or alternatively Di-
mension-Country-TurnoverClass-Outlet (dashed arrows). 

3.1 Hierarchy Encoding 
The identifier of the paths must be unique. Thus, a number 
can be used to represent the corresponding path in the 
hierarchy. We establish an encoding schema on the hier-
archy, that numbers (surrogate number) the children of 
every level. The resulting identifier, called compound 
surrogate, are the concatenated surrogates of the path, one 
for each level. It is shown in Figure 3-1 in the rectangles. 
With this encoding ([ZSL98], [MRB99]), hierarchical 
point sets can be replaced by intervals. The predicate 
“Germany”, is mapped to the interval [000; 0100]. This 
new interval predicate speeds up query execution on the 
fact table, when using corresponding clustering indexes 
(because a local interval predicate can be performed on 
the fact table instead of a join). Such an encoding is 
known for simple hierarchies. But predicates on a com-
plex hierarchy often result in point restrictions on the leaf 
members. The predicate “TG2” specifies the leaf members 
{“A2”, “S2”, “A3”}, that cannot be expressed by an inter-
val when encoding the hierarchy with respect to the previ-
ous case.  
A solution to speed up queries for DW applications with 
complex hierarchies is to transform the complex hierarchy 
into a simple hierarchy while leaving hierarchical depend-
encies. With this transformation and the mentioned encod-
ing, a predicate on the dimension hierarchy can be 
mapped to a relatively small number of intervals on the 
fact table. Thus, a query with a number of intervals on the 
fact table is performed instead of a complex join operation 
between dimension and fact table. 
HINTA changes the hierarchy from a complex to a simple 
hierarchy, where alternative paths are concatenated by 
preserving hierarchical dependencies. Figure 3-2 shows, 
the result of HINTA for the complex hierarchy of Figure 
3-1 (the detailed transformation algorithm is discussed in 
Section 5).  

3.2 HINTA for Star Schemata 
The advantage of using HINTA in combination with hier-
archy encoding is, that the dimension is left unchanged for 
the members of the hierarchy. Only the artificial key has 
to be recomputed. A dimension table D for Figure 3-1 
may have the schema D(country, region, micromarket, 
turnoverclass, outlet, dimID). For the geographical hierar-
chy, dimID=surrgeo(country, region, micromarket, outlet), 
for the transformed hierarchy, dimID=surrgeotc(country, 
region, micromarket, turnoverclass, outlet), where surr is a 
function that computes the encoding for the corresponding 
hierarchy path. 
These physical properties do not affect the schema. If the 
optimizer is able to handle hierarchy encoding, another 
hierarchy schema and therefore encoding even is transpar-

ent to the SQL statements (i.e., the optimizer recognizes, 
that a predicate on the dimension table with a correspond-
ing join to the fact table can be replaced by a number of 
local interval predicates on the fact table). In such a case, 
the generated operator tree avoids expensive join opera-
tions. However, for the so called residual join, i.e., the 
join for the result set of the fact table to the dimension 
table in order to perform grouping, sorting, feature evalua-
tion, postfiltering etc., the join cannot be prevented. Com-
pared to the first pass of query evaluation, this residual 
join will be performed on a relatively small number of 
tuples and thus usually will not be critical for query execu-
tion. 

4 A Hierarchy Model 
Graphs represent relationships between vertices. Mem-
bers in hierarchies are classified by relationships (usually 
1:n relationships), which we in the following call hierar-
chical relationships. These hierarchical relationships can 
be represented in a directed graph. A hierarchy instance is 
the actual instantiation of the hierarchical relationship. A 
special case of a hierarchy instance is a hierarchy tree. In 
this paper, we extend the simple structure of a hierarchy 
tree to a more complex hierarchy graph. We use equiva-
lence classes defined on the graph to describe hierarchy 
instances. 
In the first part of this section, we work out properties of 
directed acyclic graphs (DAG) as model to describe hier-
archies. The second part introduces hierarchy instances 
and schemata. We define some special hierarchies and 
describe typical hierarchies of data warehouses. 
Basically, a hierarchy instance H corresponds to a graph 
G = (V, E) with vertices vi ∈  V and typed edges ej ∈  E. V 
is a finite set and E is a subset of V×V×N: et ∈  E = (v1, 
v2,)t, where v1, v2 ∈  V and t ∈  N is a type determinator 
(type) specifying the type of the edge. We define a func-
tion T: V×V×N!N that returns the type of an edge e:  
T(e) = T((v1, v2)t) = t. 

4.1 Typed Directed Acyclic Graphs 
We concentrate on DAGs ([CLR90]) with typed edges, 
abbreviated by tDAG. In a DAG, a vertex v is adjacent to 
u, if u ! v or (u, v) ∈ E. 

Example 4-1 (Graph): 
Figure 4-1 illustrates a sample graph. This graph is a 
tDAG (the direction of the edges is denoted by arrows, the 
type of the edges is denoted by the edge style, a solid ar-
row denotes type 1, a dashed arrow denotes type 2). The 
vertices vi are { Germany, Austria, North, South, East, 
West, …, S6 }, the edges are: E={A1!AldiN, AldiN! 
North, North!Germany, …, West!Austria} or equiva-
lently a set of pairs E={(A1, AldiN)1, (AldiN, North)1, …, 
(TG2, Germany) 2, …, (West, Austria)1}. 

Definition 4-1 (Path φφφφ, Typed Path φφφφt, Pathlength): 
A path φ from u to v is a sequence of adjacent vertices (v1, 
v2, …, vn), where vi ! vi+1, i = 1, …, n-1 and v1 = u and vn 



= v. We say, v is reachable from u via φ: vu → Φ . We 
say, φ contains the vertices v1, v2, …, vn. 
A typed path φt is a path with a type t, the function T: (E× 
.. ×E)! N returns the type:  
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2, …, v1

n) and φ2 = (v2
1, v2

2, …, v2
n) 

have the same type t, if the types of all edges of φ1 and φ2 
are the same: T(φ1) = T(φ2) = t. 
The pathlength is the number of edges in path φ.  

Definition 4-3 (Outdegree, Indegree): 
The out-degree of a vertex u (outdegree(u)) is the number 
of edges leaving u, outdegreet(u) is the number of edges 
with type t, leaving u.  
The in-degree of u (indegree(u)) is the number of edges 
entering u, indegreet(u) is the number of edges with type t 
entering u, correspondingly.  
The degree of u is the sum of indegree(u) and outde-
gree(u). 
A rooted tDAG has a number of vertices vi with inde-
gree(vi) = 0. These vertices are called leaf vertices vleaf (or 
leaves). In the graph of Figure 4-1, the leaf vertices are 
{A1, A2, S1, S2, A3, H1, H2, S4, H3, H4, S5, S6}. A root 
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Figure 4-1: Rooted Directed Acyclic Graph 
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pathlength(φ) = pathlength(path(u, v)),  
if φ = vu → Φ  and path(u,v) is the path φ from u to v. 
The type of a path is only defined, if all edges in the path 
have the same type. 

Example 4-2 (Path, Pathlength): 
We use Figure 4-1 as example graph. There are two paths 
from “A1” to “Segment” φ1=(“A1”, “AldiN”, “North”, 
“Germany”, “Segment”) and φ2=(“A1”, “TG1”, “Ger-
many”, “Segment”). pathlength(φ1) = 4 and path-
length(φ2) = 3, where T(φ1)=1 and T(φ2) = 2. 

Definition 4-2 (Rooted tDAG): 
A rooted tDAG is a tDAG that has one vertex r that is 
reachable from all vertices vi ∈  V \{r}. Thus, there is a 
path from all vi∈ V to r, vi≠r. Vertex r is called root vertex 
(or root).  
If the union of two tDAGs G1=(V1, E1) and G2=(V2, E2) is 
not rooted (i.e., G=G1∪ G2=(V1∪ V2, E1∪ E2) is not a 
rooted tDAG), but G1 and G2 are rooted tDAGs, we can 
construct a rooted tDAG G of G1∪ G2 by adding a new 
vertex r and two edges e1 = (rG1, r) and e2 = (rG2, r), 
where rG1 is root of G1 and rG2 is root of G2: G=( V1 ∪  V2 
∪  r, E1 ∪  E2 ∪  (rG1, r) ∪  (rG1, r)). 

 

vertex (root) r has an out-degree of 0. 
We further consider graphs, where every leaf vertex has at 
least one typed path to the root. We additionally require, 
that for every vertex v outdegreet(v)=1. 

Example 4-3 (Indegree, Outdegree, Degree): 
In Figure 4-1, the vertex SaturnN has the following de-
grees: indegree(SaturnN) = indegree1(SaturnN) = 2,  
outdegree(SaturnN)=1, degree(SaturnN)=3. 

Definition 4-4 (Subgraph): 
A subgraph G’ of graph G=(V,E) is a graph, whose verti-
ces V’ and edges E’ are subsets of vertices V and edges E 
of G: G’=(V’, E’), V’⊆ V, E’⊆ E. 

Definition 4-5 (Simple tDAG): 
A simple tDAG (stDAG) Ts=(Vs, Es) is a subgraph of G 
with edges of one type t. The vertices of Ts are the vertices 
contained in all paths φt

k from leaves of G to the root, and 
pathlength(φt

i)= pathlength(φt
j), i.e., all paths from leaves 

to root with same type and length. 

Theorem 4-1: 
A simple tDAG TS is a balanced tree. 
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Proof: 
1. A stDAG is a tree: 

According to the definition of trees ([Knu99])1, a tree 
T has the following properties: 
T=(V, E), where vi∈ V are the vertices and ei∈ E are 
directed edges, where ei = (root(Tj), root(T)) and 1 ≤ j 
≤ m. T is a special case of a DAG, where outde-
gree(vi)=1 for all vi∈ V \{root(T)}. For every vi∈ V 
\{root(T)}, there is a path from vi to r = root(T):  
∀  vi∈ V\{root(T)} ∃  φ: rv → Φ . 
A stDAG (V, E) is a rooted DAG with edges of t. 
outdegreet(vi)=1 = outdegree(vi) (see Definition 4-5) 
for vi ∈  V \{r}, where r is the root. For every vertex vi 
of the stDAG, there is a path from vi to root: ∀  vi∈ V 
\{r} ∃  φ: rv → Φ . 
Thus, a stDAG is a tree. 

2. A stDAG is a balanced tree: 
In a balanced tree, the height (i.e., the maximum path-
length of the path from leaves to the root) of the sub-
trees is equal or has a difference of at most 1. 
In a stDAG, the pathlength of all paths from the 
leaves to the root is equal. 
Thus, a stDAG is a balanced tree. 

q.e.d. 

Definition 4-6 (Equivalence Class): 
An equivalence class is a set of vertices with the follow-
ing properties: Two vertices u, v of a simple tDAG 
TS=(VS, ES), u, v ∈  Vs are elements of equivalence class c, 
if pathlength(path(u, root)) = pathlength(path(v, root)), 
i.e., if the path length of the path from the vertices of c to 
the root is identical (same distance). 

Example 4-4 (Simple tDAG, Equivalence Class): 
In the graph of Figure 4-1, two simple tDAGs T1 and T2 
are defined:  
T1 = (V1, E1), where V1 = {A1, A2, S1, S2, A3, H1, H2, S4, 
H3, H4, S5, S6, AldiN, SaturnN, AldiS, HoferE, SaturnE, 
HoferW, SaturnW, North, South, East, West, Germany, 
Austria, Segment} 
T2 = (V2, E2), where V2 = {A1, A2, S1, S2, A3, H1, H2, S4, 
H3, H4, S5, S6, TG1, TG2, TG5, TA1, TA2, Germany, 
Austria, Segment} 
Equivalence classes of T1 are c1

1={A1, A2, S1, S2, A3, H1, 
H2, S4, H3, H4, S5, S6 }, c2

1={AldiN, SaturnN, AldiS, 
HoferE, SaturnE, HoferW, SaturnW}, c3

1={North, South, 
East, West}, c4

1={Germany, Austria} and c5
1={Segment}. 

Equivalence classes of T2 are c1
2={A1, A2, S1, S2, A3, H1, 

H2, S4, H3, H4, S5, S6}, c2
2={TG1, TG2, TG5, TA1, 

TA2}, c3
2={Germany, Austria} and c4

2={Segment}. 

4.2 Hierarchies 
With the definitions of graphs, we now can define hierar-
chies. We draw a parallel from the concepts of rooted 

                                                           
1 A tree is a finite set T of one or more vertices such that there is 
one specially designated node called the root of the tree, root(T), 
and the remaining nodes (excluding the root) are partitioned into 
m≥0 disjoint sets T1, …, Tm and each of these sets in turn is a 
tree. The trees T1, …, Tm are called the subtrees of the root. 

tDAGs to hierarchies. This section describes hierarchies 
and their properties. 

Definition 4-7 (Hierarchy Instance): 
A hierarchy instance H is a rooted tDAG H=(V, E) with 
members mi∈ V and directed, typed edges ej∈ E. The edges 
are called hierarchical relationships. We call a member mi 
hierarchically dependent on mj, if mj!mi (or equivalently 
(mj, mi) ∈  E). We call a member mi indirect hierarchically 
dependent on mj, if mi is reachable from mj via a path φ: 

ij mm → Φ , also denoted by ij mm → * . 

We additionally define sub-hierarchies, called simple 
hierarchies HS=(VS,ES) that correspond to simple graphs. 
All simple hierarchies Hi

S of a hierarchy instance H are 
partitions of H. The union of the simple hierarchies is the 
hierarchy instance H: HH

i

S
i =U . This follows from 

the definition of simple graphs. 

Definition 4-8 (Hierarchy Level): 
A hierarchy level or level is an equivalence class of a 
simple hierarchy containing members with the same dis-
tance from the root. We call the level, consisting of 
leaves, leaf level and the level, consisting of the root, root 
level. A simple hierarchy is a balanced hierarchy tree 
with a depth equal to the pathlength of the path from the 
leaves to the root. 

Example 4-5 (Hierarchy Instance, Simple Hierarchy, 
Hierarchy Level): 
The graph illustrated in Figure 4-1, is a hierarchy instance 
with two simple hierarchies H1 and H2.  
The levels of H1=(V1, E1) are V1={h1

1, h2
1, h3

1, h4
1, h5

1), 
where h1

1={A1, A2, S1, S2, A3, H1, H2, S4, H3, H4, S5, 
S6}, h2

1={AldiN, SaturnN, AldiS, HoferE, SaturnE, HoferW, 
SaturnW}, h3

1={North, South, East, West}, h4
1={Germany, 

Austria} and h5
1={Segment}. 

Definition 4-9 (Hierarchically Dependent Levels): 
A level hj is hierarchically dependent on hi, if all mem-
bers mj

k∈ hj are hierarchically dependent on members 
mi

h∈ hi, i.e., ∀ mj
k∈ hj ∃ mi

h∈ hi: (mi
h, mj

k) ∈ E. The function 
HD: (V, V×V)!(V×V) computes the hierarchical relation-
ships {(hi, hj)} of the levels of a hierarchy instance H=(V, 
E), where hi, hj are levels of H and hi is hierarchically de-
pendent on hj. 
A level hj is indirect hierarchically dependent on hi, if all 
members mj

k∈  hj are indirect hierarchically dependent on 
members mi

h∈  hi. 
 
The order of dependencies often intuitively is misunder-
stood. A simple example illustrates the correct hierarchi-
cal dependencies: In a geographic hierarchy with levels 
country, state and town, the level state is hierarchically 
dependent on town, because state is determined by the 
towns. The level country also is hierarchically dependent 
on town, however indirect (via level state). 
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Example 4-6 (Hierarchically Dependent Levels): 
HD(H1) returns the following hierarchical dependencies: 
HD(H1) = {(A1, AldiN), (A2, AldiN), (S1, SaturnN), (S2, 
SaturnN), (A3, AldiS), …, (Germany, Segment), (Austria, 
Segment)}, i.e., all edges of the graph representing H1. 

Definition 4-10 (Shared Level): 
Two levels h1={mk

1} and h2={mj
2} are shared levels, if the 

intersection of h1 and h2 is not empty. Otherwise the levels 
h1 and h2 are not shared. We call such levels h1 and h2 
disjoint levels. 

Definition 4-11 (Distinct Operator): 
The distinct operator L!L returns a subset of levels 
L’={hk} of a set of levels L={hi}: distinct(L)={hk}=L’, 
where ∀ hk, hh ∈  L’: hk ≠ hh. There are no equal levels in 
L’. 
If there are several paths from a member to the root (usu-
ally true for shared levels), we call these paths alternative 
paths. 

Example 4-7 (Shared Level, Distinct Operator): 
According to Example 4-5, shared levels are: h1

1=h1
2, 

h4
1=h3

2, h5
1=h4

2. 
For the hierarchy instance H = H1∪ H2, the distinct opera-
tor returns the following levels: 
distinct(H) ={ h1

1, h2
1, h3

1, h4
1, h5

1, h2
2}.  

The distinct operator generally is not deterministic. How-
ever, the members of the levels specified by the distinct 
operator, are deterministic (e.g., the members of h1

1 and 
h1

2 are the same). 

Definition 4-12 (Balanced Hierarchy): 
A balanced hierarchy is a hierarchy, whose leaf members 
are contained in one (shared) level hl. Simple hierarchies 
are always balanced hierarchies, because they have only 
one leaf level (balanced tree). 

Definition 4-13 (Hierachy Schema):  
The hierarchy schema HS is a rooted tDAG specified by 
HS=(LS, ES), where L is a set of levels hi, and ES is a set of 
hierarchical relationships ES=(hi, hj) between the levels, 
i.e., hj is hierarchically dependent on hi. 

Definition 4-14 (Schema-Instance Conformity): 
A hierarchy schema HS=(LS, ES) conforms to a hierarchy 
instance H=(VH, EH), if the number of levels of HS and H 
is equal, and the hierarchical dependencies of these levels 
are equal: 
∀  (hi

S, hj
S) ∈  ES: ∃ ( hi

H, hj
H) ∈  HD(H) ∧  ∀ ( hi

H, hj
H) ∈  

HD(H): ∃ (hi
S, hj

S) ∈  ES 

Example 4-8 (Hierarchy Schema and Instance): 
On the left side of Figure 3-1, a hierarchy schema is illus-
trated: HS=(L, ES), where L={Outlet, MicroMarket, Re-
gion, TurnoverClass, Country, Dimension} and 
ES={(Outlet, MicroMarket), (MicroMarket, Region), (Re-
gion, Country), (Outlet, TurnoverClass), (TurnoverClass, 
Country), (Country, Dimension)}.  
As hierarchy instance H, we use Example 4-5. H = H1∪ H2 
= (V, EH), where the levels are LH={h1

1, h2
1, h3

1, h4
1, h5

1, 
h1

2, h2
2, h3

2, h4
2}. The distinct levels are distinct(LH) = 

{h1
1, h2

1, h3
1, h4

1, h5
1, h2

2} and the hierarchical dependen-
cies are HD(H) = {(h1

1, h2
1), (h2

1, h3
1), (h3

1, h4
1), (h4

1, h5
1), 

(h1
1, h2

2), (h2
2, h4

1)}. If we map Outlet to h1
1, MicroMarket 

to h2
1, Region to h3

1, Country to h4
1, Dimension to h5

1 and 
TurnoverClass to h2

2, the hierarchy schema HS conforms 
to hierarchy instance H of Figure 4-1. 

4.3 Hierarchies in Data Warehouses 
Hierarchies are used to classify the dimensions of a DW. 
DW model complex business contexts. Additional attrib-
utes are used to provide additional classification informa-
tion, e.g., the screen size of TV sets. For this reason, the 
members can be augmented by classification features. 
Therefore, a member v in a hierarchy graph is a pair 
v=(id, {fi}), where id is a unique identifier of the vertex, 
called member label (or label), and {fi} is a set of addi-
tional attributes, called feature attributes. We call such a 
graph an attributed tDAG. 
Feature attributes are assigned to hierarchy members. 
Generally, a member can have an arbitrary number of fea-
tures. In many DW hierarchies, however, the hierarchy 
members of one hierarchy level have the same number of 
feature attributes2. In this case, features are assigned to 
hierarchy levels. 
In a DW, hierarchies are assigned to dimensions. One 
dimension can contain several hierarchies. We combine 
all hierarchies of one dimension to one hierarchy instance 
corresponding to a rooted tDAG, where the root is the 
“All” level. Such a hierarchy instance is called DW-
hierarchy. Usually, facts have a base granularity with re-
spect to every dimension. This base granularity corre-
sponds to one leaf level of the DW hierarchy. Thus, a 
DW-hierarchy only has one (shared) leaf level. 
If facts are classified with respect to different 
granularities3 (leaf hierarchy levels), new aggregation and 
grouping semantics have to be introduced ([Leh98a]). The 
hierarchy model, however, supports such degenerated 
hierarchies. 

5 Transforming Hierarchy Instances to 
Simple Hierarchies 

First, we discuss some algorithms, that are used by 
HINTA. Then we discuss HINTA in detail and show a 
complete example of HINTA for the hierarchy instance of 
Figure 3-1. 

5.1 Primitive Hierarchy Instances (phi) 
We use the term primitive hierarchy instance, phi, for 
hierarchy instances, that consist of two simple hierarchies 
with one shared leaf level - the remaining levels are dis-
joint. Such a phi can be transformed to one simple hierar-
chy instance. A phi is some kind of sub-hierarchy of a 

                                                           
2 Hierarchy members of one hierarchy level usually categorize 
the same information, e.g., the level “country“ may have feature 
attributes like number of inhabitants, gross national product, etc. 
for every country stored in the hierarchy. 
3 unbalanced hierarchies 
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conventional hierarchy instance consisting of two simple 
hierarchies.  
A phi H consists of a number of hierarchically dependent 
disjoint levels and one shared leaf level. Figure 5-1 illus-
trates all possible hierarchy schemata of phi (phi1, phi2, 
phi3).  
phi1 only contains one shared level, i.e., the leaf level of 
H. Such a phi can be constructed, if a hierarchy has sev-
eral hierarchically dependent shared levels. This sequence 
of levels is split into phi’s of type phi1 for every level. 
Usually, edges of both simple hierarchies “leave” phi1 
(illustrated by dotted arrows). Thus, the original hierarchy 
has a level hierarchically dependent on hi, if hi is not the 
root level. 
phi2 is the general case for a phi. Two simple hierarchies 
H1 and H2 have one shared leaf level hi and a number of 
hierarchically dependent levels hk, …, hh for H1 and hj, …, 
hl for H2. Usually, a level hx (shared level) is hierarchi-
cally dependent on hh and hl. The dotted arrows denote 
these hierarchical relationships. 
phi3 is a special case of phi2, where H1 only consists of the 
shared leaf level hi, and H2 consists of additional hierar-
chically dependent levels hj, …, hl.  
In Figure 5-1, a splitting of a hierarchy schema of hierar-
chy H with the two simple hierarchies HS

1 and HS
2 into 

phi’s is illustrated. HS
1 consists of the levels {A, B, D, E, 

G, J}, HS
2 consists of the levels {A, B, E, F, G, I, J}. 

Shared hierarchy paths (levels A and B) are from type 
phi1, the alternative paths for levels G!D!C and 
G!F!E are from type phi2, and the alternative paths J 
and J!I are from type phi3. 
No other phi are possible for two simple hierarchies, be-
cause by concatenating phi’s, all hierarchy instances for 

t
A
f

D
T
s

ES
1) and HS

2=(VS
2, ES

2) is a hierarchy instance Hphi=(Vphi, 
Ephi): 
Vphi = {h1

m, h1
m-1, …, h1

k, h2
n, h2

n-1, …, h2
h}, where h1

m 
resp. h2

n are root levels of HS
1 resp. HS

2 and h1
k and h2

h are 
shared levels and ∀ h1

j, k<j≤m: ∀ h2
i, h<i≤n: h1

j, h2
i are 

disjoint levels. 
Ephi = {ei}, where ei = (vi, vj) ∈  (ES

1∪ ES
2): vi, vj ∈  {(Vphi ∪  

vx)}, vk!vx, vk∈ Vphi. 
Ephi contains all original edges between the members of 
Vphi and the “leaving” edges. 

Example 5-1 (Primitive Hierarchy Instance): 
This example shows the phi’s of the sample hierarchy 
instance H of Figure 4-1. H consists of three phi’s: Hp1, 
Hp2 and Hp3.  
Hp1 is of type phi1. Vp1 = {Segment}, Ep1 = ∅ , because the 
root does not have leaving edges.  
Hp2 is of type phi1 again and consists of the members Vp2 
= {Germany, Austria} and the edges Ep2 = {(Germany, 
Segment)1, (Austria, Segment)1, (Germany, Segment)2, 
(Austria, Segment)2} 
The edges are of type 1 and 2 (see Figure 4-1). 
Hp3 is of type phi2 and consists of two alternative paths 
with shared leaf level Outlet (see Figure ) 
Vp3 = {A1, A2, S1, S2, A3, H1, H2, S4, H3, H4, S5, S6, 
AldiN, SaturnN, AldiS, HoferE, SaturnE, HoferW, SaturnW, 
TG1, TG2, TG5, TA1, TA2, North, South, East, West} 
Ephi3 = {(A1, AldiN), (A2, AldiN), (S1, SaturnN), (S2, Sat-
urnN), (A3, AldiS), …, (South, Germany), (East, Austria), 
(West, Austria)} 

5.2 Transformation of Primitive Hierarchy In-
stances 

A phi can be transformed to a simple hierarchy. In this 
section, members are denoted by v. If v is in level hi, i.e., v 
∈  hi, we write vi, if v ∈  hj, we write vj etc. We write vx and 
vy for members not within the hierarchies. An edge (vh, vx) 

A phi1AA phi1

hk

hi

...

hj

hl

...

hh

hk

hi

...

hj

hl

...

hh

 
Figure 5-4: Transformation of a phi2 
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wo simple hierarchies can be constructed. 
 phi of a hierarchy instance H=H1∪ H2 formally is de-

ined in the following way: 

efinition 5-1 (Primitive Hierarchy Instance, phi): 
he primitive hierarchy instance (phi) of a hierarchy in-
tance H consisting of two simple hierarchies HS

1=(VS
1, 

is a leaving edge of vh. Depending on the type of the phi, 
the hierarchy is transformed by deleting and adding spe-
cial members and edges. A phi consists of two simple 
hierarchies. For the transformation, one hierarchy is pre-
ferred, i.e., the levels of the preferred hierarchy usually 
are more significant for the encoding than the levels of the 
other hierarchy (predicate isPreferred). The isPreferred: 

Figure 5-2: Example of phi’s  
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E!Bool predicate (i.e., isPreferred(e) = TRUE | FALSE) 
returns TRUE, if edge e is the edge of the preferred hier-
archy. Usually, a hierarchy is preferred, if it is used in 
more queries than the other hierarchy. There can be many 
preference criteria (e.g., numbers, importance or kind of 
queries etc.). 
The transformation algorithm is specified in pseudo code: 
TransformPhiToSimpleHierarchy:
if type(Hphi)=phi1, then

forall edges (vi, vx)
if not isPreferred(vi, vx) then

delete edge(vi, vx)
 

/* delete leaving edges of the non-
preferred hierarchy, leaving edges
of preferred hierarchy remain*/

if type(Hphi)=phi2, then
forall edges (vl, vx)

if not isPreferred(vl, vx) then
delete edges (vl, vx)
/* delete leaving edges of the non-

preferred hierarchy */
forall edges (vi, vk)

if not pathexists(vi!vj’!…!vl’!vk)
insertpath(vi!vj’!…!vl’!vk)

delete edges (vi, vk)

forall edges (vi,vj) delete edges (vi,vj)
/* make vk indirect hierarchically

dependent on vi (instead of direct
hierarchically dependent) by duplica-
ting vertices and edges */

if type(Hphi)=phi3, then
for all edges (vi, vx)

delete edges (vi, vx)
For phi’s of type phi1 and phi3, only “leaving” edges must 
be removed. For a phi1, all leaving edges of one of the two 
hierarchies must be removed (in this case, the non-
preferred hierarchy). For a phi3, we must remove the 
“leaving” edges of the “small” hierarchy, because the lev-
els of the other hierarchy must remain for hierarchical 
classification. 
For phi’s of type phi2, a kind of hierarchy interleaving is 
performed. The alternative paths are concatenated in the 
meaning, that the levels of the non-preferred hierarchy are 
made hierarchically dependent on the levels of the pre-
ferred hierarchy. Members of the shared leaf level hi are 
not directly hierarchically dependent on members of hk 

any more (see Figure 5-4). The operation insert-
path(path) inserts members and edges of path. This is 
necessary, because a member vj ∈  hj can be adjacent to 
several members vi ∈  hi, that do not correspond to an 
equal number of members vk ∈  hk. Thus, we have to dupli-
cate the path to preserve hierarchical dependencies. 
Instead of the discussed transformation algorithm, that 
concatenates two simple hierarchies, a hierarchy level 
interleaving also is possible. This interleaving corre-
sponds to a topological sorting of the hierarchies. Further 
research is necessary to work out the advantages of the 
transformation methods. 

5.3 Hierarchy Instance Transformation Algorithm 
(HINTA) 

The Hierarchy INstance Transformation Algorithm, 
HINTA, transforms a hierarchy instance H=(V, E), repre-
sented by a rooted tDAG (e.g., a DW-hierarchy) into sim-
ple hierarchy HS = HINTA(H) = (VS, ES). The input of 
HINTA is a hierarchy instance that consists of an arbitrary 
number n of simple hierarchies HS

k. We transform two 
simple hierarchies HS

1 and HS
2 to one simple hierarchy by 

splitting them into phi’s and transforming each phi with 

TransformPhiToSimpleHierarchy into a primi-
tive simple hierarchy. The primitive simple hierarchies are 
merged to the resulting simple hierarchy HS

12. We now 
transform HS

12 and the next simple hierarchy HS
3 to HS

123 
according to the previous described steps etc. Thus, at the 
end of HINTA, we get one simple hierarchy HS

123..n. 
In the following, we describe the process in a more formal 
manner: 

The input hierarchy H is split into simple hierarchies HS
i: 

U
i

S
iHH = , where HS

i is preferred to HS
i+1. 

HINTA: HS = HINTA(H) 
According to the informal description of HINTA above, 
we transform a pair of simple hierarchies into one simple 
hierarchy, starting with the first two simple hierarchies in 
preference order. 
H12 = Transform(HS1 ∪ HS2)
The resulting simple hierarchy H12 and the next preferred 
simple hierarchy HS

3 are transformed: 

Segment
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A1 A2 S1 A3 H1 H2S2

WestNorth South
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TurnoverClass

Figure 5-3: Schema and Instance of phi’s 



H123 = Transform(H12 ∪ HS3)
The resulting simple hierarchy H123 and the next preferred 
simple hierarchy HS

4 are transformed etc. Thus, we have 
n-1 calls of Transform for n simple hierarchies of H. 
The transformation calls also can be summed up in one 
expression:
H12 = Transform(HS1∪ HS2)
H123 = Transform(H12∪ HS3) = Transform(

Transform(HS1∪ HS2) ∪ HS3)
.....
H123..n = Transform(H12..n-1 ∪ HSn) =

Transform is a recursive function, that transforms the 
first phi of H into a simple hierarchy HS and concatenates 
HS with the rest of the transformed phi’s by calling 
Transform again. It terminates, when H is already a 
phi, i.e., if the last phi of the original hierarchy instance is 
the input parameter. 
The “∪ ” operator means, that for H1∪ H2 the hierarchies 
H1 and H2 are concatenated via the existing edges of 
members of H1 and H2.  
The “\” operator is a splitting of the hierarchies H1 and H2, 
Region
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East
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Figure 5-5: Deleting Members and Edges 
R

Transform(Transform(.... Transform
(HS1∪ HS2) ∪ HS3) ∪ … ∪ HSn-1) ∪ HSn)

The function Transform splits a hierarchy instance H 
consisting of two simple hierarchies into phi’s, transforms 

e
S
s
T
i

a
o

i.e. H*= H1 \ H2 means, that H* is the hierarchy H1 with-
out the members and edges of H2. Thus, H \ phi(H) is hi-
erarchy H without the first phi of H. 
Transform is called n times, if H consists of n phi’s. 
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Figure 5-6: Final Simple Hierarchy Instance and Schema 
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ach phi into a simple hierarchy (TransformPhiTo-
impleHierarchy) and concatenates the resulting 
imple hierarchies to one simple hierarchy: 
ransform (H):
f H is phi then

Transform(H) = TransformPhiToSimpleHier-
rchy(H)
therwise

Transform(H) = TransformPhiToSimple-
Hierarchy(phi(H)) ∪ Transform(H\phi(H))

Thus, Transform terminates, because a hierarchy in-
stance H consists of a finite number n of phi’s. 

5.4 Example of HINTA 
To illustrate HINTA, we use the hierarchy instance 
H=(VH, EH) of Figure 4-1, where H contains two simple 
hierarchies H1

S and H2
S (see Example 4-5). We assume, 

that H1
S is preferred to H2

S. The resulting simple hierarchy 
HS is computed by: 
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HS= HINTA(H)
The pair of simple hierarchies H1 and H2 is transformed 
by Transform(H1∪ H2), where H1∪ H2 is not a phi. 
(H1∪ H2) consists of three phi, i.e., Hphi1, Hphi2 and Hphi3. 
Hp1 (of type phi1) is the root level without edges, because 
the root level does not have leaving edges.  
Hp2 (of type phi1) consists of the members {Germany, 
Austria} and the corresponding edges to the root (see Fig-
ure 5-3 and Example 5-1). 
Hp3 =(V, E) (of type phi2) consists of two alternative paths 
with shared leaf level Outlet (see Figure 5-3 and Example 
5-1). 
Now we transform Hp1, Hp2 and Hp3 to simple hierarchies: 
HS1=TransformPhiToSimpleHierarchy(H

p1)
HS2=TransformPhiToSimpleHierarchy(H

p2)
HS2=TransformPhiToSimpleHierarchy(H

p3)
HS

1 = ({Segment}, ∅ }, i.e. the root without edges. 
HS

2 = ({Germany, Austria}, {(Germany, Segment), (Aus-
tria, Segment)}, because Hp2 is a phi of type phi1, the 
edges of type 2 are deleted. 
HS

3 = (V, E): Hp3 is of type phi2 and 
we delete the edges {(A1, AldiN), (A2, AldiN), (S1, Sat-
urnN), (S2, SaturnN), (A3, AldiS), (H1, HoferE), (H2, 
HoferE), (S4, SaturnE), (H3, HoferW), (H4, HoferW), (S5, 
SaturnW), (S6, SaturnW)} and the edges {(TG1, Germany), 
(TG2, Germany), (TG5, Germany), (TA1, Austria), (TA2, 
Austria)} (edges between leafs and the preferred hierarchy 
are deleted, because now the members of the non pre-
ferred hierarchy are directly dependent on the leafs). 
Figure 5-5 illustrates, which edges are deleted. 
We delete members {TG1, TG2, TG5, TA1, TA2} and 
insert new members {TA11, TG21, TG51, TG22, TG23, 
TA21, TA11, TA12, TA13, TA13, TA22, TA14} and get the set 
of members: 
V = { A1, A2, S1, S2, A3, H1, H2, S4, H3, H4, S5, S6, 
AldiN, SaturnN, AldiS, HoferE, SaturnE, HoferW, SaturnW, 
North, South, East, West, TA11, TG21, TG51, TG22, TG23, 
TA21, TA11, TA12, TA13, TA13, TA22, TA14} 
We insert new edges of level TurnoverClass to Micro-
market preserving hierarchical dependencies: {(A1, TG11), 
(TG11, AldiN), (A2, TG21), (TG21, AldiN), (S1, TG51), 

(TG51, SaturnN), (S2, TG22), (TG22, SaturnN), (A3,TG23), 
…, (TA14, SaturnW)} 
After deleting and inserting, the edges are: 
E = {(A1, TG11), (A2, TG21), (S1, TG51), (S2, TG22), (A3, 
TG23), (H1, TA21), (H2, TA11), (S4, TA12), (H3, TA13), …,  
(North, Germany), (South, Germany), (East, Austria), 
(West, Austria)}

The resulting simple hierarchy of HINTA is the union of 
HS

1, HS
2 and HS

3, as illustrated in Figure 5-6. 

5.5 Effects of HINTA 
This section illustrates the benefit of HINTA in an exam-
ple. Usually, the benefit of HINTA is as better as larger 

the hierarchies are. Due to graphical illustrations, how-
ever, only small hierarchies can be drawn. In Figure 5-7 
we show a complex hierarchy with the levels H1=Country-
State-Town and H2=Country-Category-Town, where 
Category characterizes the size of the towns (large, mid-
dle, small). Hierarchy Encoding is applied to H1, i.e., a 
predicate “Category=L” would include the leaves {T11, 
T13, T21, T23, T31, T34} or equivalently the dimIDs 
{00, 02, 10, 12, 20, 23}, i.e., 6 intervals include one sin-
gle value. With a transformed hierarchy (as in Figure 5-8), 
we get three intervals [000, 001], [100, 101] and 
[200,201]. With these intervals, the query will be proc-
essed faster on the fact table. 

5.6 Remarks 
This section gives a short impact to the quality of HINTA. 
We consider a hierarchy such as in Figure 3-1, where one 
is the preferred hierarchy, the other is the non-preferred 
hierarchy. We use an encoding of the preferred hierarchy 
(EPH), an encoding of the non-preferred hierarchy 
(ENPH) and an encoding of the transformed hierarchy 
with HINTA (ETH). 
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simple hierarc
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in one interval 
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sub-tree. This is
hierarchy (the le
higher levels th

 

C1

S1 S2 S3

T11 T12 T13 T14 T21 T22 T23 T24 T31 T32 T33 T34

L M S

0

0 1 2 3 0 1 2 3 0 1 2 3

1 2

00 01 02 03 10 11 12 13 20 21 22 23

C1

S1 S2 S3

T11 T12 T13 T14 T21 T22 T23 T24 T31 T32 T33 T34

L M S

0

0 1 2 3 0 1 2 3 0 1 2 3

1 2

00 01 02 03 10 11 12 13 20 21 22 23  
Figure 5-7: Complex Hierarchy 
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chy). Thus, no disadvantages in query execution will re-
sult from HINTA for such predicates.  
The clustering of ETH compared to ENPH, however, is 
not optimal, and a predicate on a level of ENPH might 
result in a number of intervals instead of one interval. This 
number highly depends on the correlation of the two sim-
ple hierarchies: If the hierarchies are correlated in a large 
extent (e.g., for the time hierarchy in Figure 6-1 with the 
preferred hierarchy year – month – day), most restrictions 
such as year = 1999 and week = 33 will result in an inter-
val on dimID for the transformed hierarchy year – month 
– week – day. 

6 Conclusions and Future Work 
In this paper, we present a concept, how to represent hier-
archies by directed acyclic typed graphs. We concentrate 
on complex hierarchies and describe HINTA, a method to 
linearize complex hierarchies by transforming them to 
simple hierarchies and thus allow hierarchical clustering 
on such hierarchies. 
The quality of clustering depends on the correlation of the 
simple hierarchies. For query processing, predicates on 
hierarchy levels are mapped to intervals by an encoding 
that preserves hierarchical clustering. 
Currently, in the EDITH project ([Edi01]), we are inte-
grating encoding algorithms into the kernel of the rela-
tional DBMS TransBase ([Tra01]) and are investigating 
query processing algorithms and optimizer strategies to 
efficiently support these methods. Application partners 
will test the DBMS implementation. We are going to ana-
lyze HINTA by transforming complex real world hierar-
chies and compare clustering properties. 
We thank Martin Zirkel and Robert Fenk for fruitful dis-
cussions for reading and correcting this paper. 
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