
A Metamodel Transformation Framework for
the Migration of WebML models to MDA

Marco Brambilla1, Piero Fraternali1, Massimo Tisi1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{marco.brambilla, piero.fraternali, massimo.tisi}@polimi.it

Abstract. Traditional methodologies in Model Driven Web Engineer-
ing, like WebML, are based on domain specific modeling languages. A
Web application is usually designed using several Domain Specific Mod-
els (DSM), often based on different formalisms and abstraction levels. In
this paper we propose a model-driven procedure for integrating pre-MDA
DSMs within the MDA framework. The DSMs, originally expressed in
different formalisms, are translated into a unified representation that
conforms to a MDA metamodel. The procedure, given the definition of
suitable model transformations, is completely automatic. The proposed
framework is fully implemented for the WebML metamodel and can be
generalized to other Web engineering approaches.

1 Introduction

Trends toward MDA/MDD put at risk of obsolescence the existing Web engineer-
ing approaches based on domain specific languages (DSL) and models (DSM).
Such pre-existing development methodologies require a complex transformation
process to fully benefit from MDA tools. On the other hand, the need of mod-
ernizing these languages can be taken as opportunity for homogenizing different
models within a unified notation. In this paper, we consider the WebML [9] DSM
language for designing Web applications and we propose a transformation frame-
work towards a MDA-compliant architecture. We propose an extension of the
currently available WebML metamodels, to include the Derivation modeling, an
additional model of the language that allows to specify calculated and derived
data within the data models. Upon this metamodel, we propose a multi-step
transformation approach based on Higher Order Transformations (HOT). We
offer a migration path from a legacy technical space to MDA, based on a set of
transformations that can be reused to:

1. transform any DSL defined in the legacy technical space to a corresponding
MOF metamodel (metamodel transformation, M2T);

2. map every model defined by means of the legacy DSL to a MDA model
(model transformation, M1T);

3. guarantee that the generated model is an instance of the corresponding
metamodel. This can be achieved by enforcing the coherence between the

two previous tasks. To this purpose, we use a Higher Order Transformation
(HOT) for automatically generating the M1T transformation from the M2T
transformation.

Once the framework is in place, the developer can optionally implement a
final refinement transformation (M1Tr) to address particular issues of the specific
DSL or specific structures that require ad hoc domain knowledge and cannot be
automatically inferred.

Thanks to our approach, only one higher order transformation and one meta-
model transformation are needed for each technical space. The model transfor-
mations for any DSL in that technical space can be automatically generated.
Moreover, any change in the DSL does not require to modify the transforma-
tions, because the manually written ones (M2T and HOT) depend only on the
technical space, while the model transformation (M1T), the only one that de-
pends on the DSL, can be automatically regenerated.

The implementation of our research uses the ATL transformation language,
focusing on the migration from the XML/DTD space to Ecore, and is based on
the Eclipse Modeling Framework, that provides a mature implementation for
several MDA standards.

The paper is organized as follows: Section 2 discusses the related works; Sec-
tion 3 presents the WebML approach, the metamodel proposed for this language,
and some novel evolutions and additions to the metamodel. Section 4 presents
the concrete transformation designed for the translation from WebML to MDA;
and Section 5 concludes the paper.

2 Related work

The issue of defining a bridge between legacy modeling languages and MDA has
been addressed in several works, such as [7], [6] and [15]. The issue is also anal-
ogous to the co-adaptation of models compliant to an evolving metamodel ([11],
[19], [13]). With respect to these works our framework is the first to use higher
order transformations to directly synchronize the model level transformation
with the meta level transformation.

More specifically, large efforts have been spent for defining MDA-compliant
metamodels of existing Web engineering languages. Some works concentrate on
the specific issue of manually mapping WebML to MDA: [16] remodels WebML
using MOF and [17] proposes a WebML UML 2.0 profile to facilitate the inter-
operability between the WebML IDEs (e.g. WebRatio [5]) and UML modelling
tools. Our proposal extends these works, as it provides some significant exten-
sions to the WebML metamodel and partially automate the production of both
models and metamodels.

Higher order transformations have already been used to perform various tasks
in model driven development [7], [10], [12]. To our knowledge this work is the
first to address a HOT that translates an ATL transformation at the meta-level
to the associated transformation at model level.

Several approaches have focused on the transformation between XML schema
languages and metamodels: [20] surveys 13 proposals, classified according to
the direction of the transformation (i.e. forward, backward or both) and the
concrete formalisms used as source/target of the transformation (i.e. on the
XML side either DTD or XML Schema and on the model side either MOF,
UML or ER). To the best of our knowledge the only approach conducting a
forward transformation from DTD to MOF is [18], which focuses on the same
case study, the WebML DSL. With respect to this work, our framework provides,
on the basis of the transformations defined at the meta-level, the generation of
coherent transformations at the model level, and thus allows the immediate reuse
of existing WebML models in MDA.

3 WebML method and metamodel

WebML [9] is a DSM language for data-, service-, and process- centric Web
applications. In this work we consider the existing definition of the WebML
metamodel, we extend it to cover some missing aspects (namely, the derivation
model), and we provide a transformation framework toward MDA.

WebML allows specifying the conceptual model of Web applications built on
top of a data schema and composed of one or more hypertexts used to publish or
manipulate data. The specification consists of several sub-models: the data model
represents the data schema; the hypertext model represents the content of pages,
the navigation paths, and the parameters that flow among the components; and
the presentation model describes the visual aspects of pages.

The data model is the standard Entity-Relationship (E-R) model. Upon the
same data model, different hypertext models (site views) can be defined (e.g., for
different types of users or for different publishing devices). A site view is a graph
of pages, consisting of connected units, representing data publishing components:
a unit displays instances of an entity, possibly restricted by a selector. Units are
related to each other through links, representing navigational paths and carrying
parameters. WebML allows specifying also update operations on the underlying
data (e.g., the creation, modification and deletion of instances of entities or
relationships) or operations performing arbitrary actions (e.g. sending an e-mail,
invoking a remote service, and so on).

Figure 1 shows a simple hypertext, containing two pages. Page Recent Movies
List contains an index unit defined over the Movie entity, which shows the list of
movies produced after year 2008 (selector [Year > 2008]) , and a data unit also
defined over the Movie entity, which displays the details of the movie selected
from the index. The link between the two units carries the parameter CurrMovie,
used by the selector [OID=CurrMovie] of the data unit. Another link connects
Recent Movies List page to Search Movies page, without carrying any parameter.
Page Search Movies contains an entry unit for inserting the movie title to be
searched, a scroller unit, and a multidata unit displaying a block of search results.
Through the scroller unit it is possible to move to the first, previous, next, and
last block of results.

Fig. 1. Example of WebML hypertext model.

Fig. 2. Overview of the WebML metamodel.

The WebML language is supported by the WebRatio CASE tool [5], a de-
velopment environment for the visual specification of Web applications and the
automatic generation of code for the J2EE platform. The design environment is
equipped with a code generator that deploys the specified application and Web
Services, by automatically generating all the necessary pieces of code.

Some proposals of WebML metamodels already exist ([8] and [18]). We have
extended the metamodel presented in [16] and defined the metamodel summa-
rized in Figure 2: the classes sketched in the figure are further refined for de-
scribing all the details of the DSL.

3.1 The derivation syntax and metamodel

Data specification in WebML can be enriched by means of the Derivation meta-
model. This metamodel allows to specify entities, attributes, and relationships
that are calculated starting from other data. For instance, the price after taxes
of an article may be computed as the product of the price before taxes and the
VAT.

WebML derivation metamodel permits to derive entities, attributes, and re-
lationships according to calculation rules. WebML provides a specific grammar
for this language, that allows to specify the following aspects:

– an entity whose instances are defined as a subset of instances of a superentity
in a IS-A hierarchy, according to a condition on attributes or relationships;

– an attribute, whose value is calculated as an aritmetic formula on other at-
tributes, or as an imported or aggregated attribute starting from of connected
entities.

– a relationship, that is defined as a subset of another relatioship, or as a
concatenation of interconnected relatioships.

Two examples of derived attributes can be seen below:

PriceAfterTax = (Price* VAT)

NumberOfItems = Count(Trolley.TrolleyToProduct)

The PriceAfterTax is calculated as Price by VAT. The number of items in
the trolley is calculated as counting of the instances of the relationship Trolley-
ToProduct. An example of derived relatioship is:

Artist.Published-Tracks=Artist.ArtistToAlbum.AlbumToTrack.

The relationship Published-Tracks is defined as a concatenation of the exist-
ing relationships that connect the Artist to its Album and each Album to the
respective Tracks.

The full definition of the WebML derivation grammar is stated below as a
set of grammar rules in the JavaCC [4] syntax:

<Query : (EntityQuery | RelationshipQuery | AttributeQuery) >
<EntityQuery : Step <WHERE> Condition (";" | <EOF>)>
<RelationshipQuery : (<SELF> <TO> Step | PathExpression) (<WHERE>

Condition)? (";" | <EOF>)>
<AttributeQuery : AttributeValue (<WHERE> Condition)? (";" | <EOF>)>
<Step : <IDENTIFIER> (<LEFTBRACKET> <AS> <IDENTIFIER> <RIGHTBRACKET>)?>
<PathExpression : (<SELF> | <IDENTIFIER>) (<DOT> Step)*>
<AttributeValue : (AttributeExpression | <LEFTBRACKET> AttributeValue

<RIGHTBRACKET>) (<OPERATOR> (AttributeExpression | <LEFTBRACKET>
AttributeValue <RIGHTBRACKET>))*>

<AttributeExpression : (<STRING> | <NUMBER> | PathExpression |
<AGGRFUNCTION> <LEFTBRACKET> PathExpression <RIGHTBRACKET>)>

<Member : (<NOT>)? <IN> PathExpression>
<IsNull : <IS> (<NOT>)? <NULL>>
<WhereExpression : ((<IDENTIFIER> | <SELF>) <ISA> <IDENTIFIER> |

AttributeExpression (Member | IsNull | <COMPARATOR> (
AttributeExpression | <TRUE> | <FALSE>)) | (<LEFTBRACKET>
Condition <RIGHTBRACKET>))>

<LogicalTerm : WhereExpression (<AND> WhereExpression)*>
<Condition : LogicalTerm (<OR> LogicalTerm)*>

The derivation syntax has been integrated into the WebML metamodel. The
diagram in Figure 3 shows the general metamodel of a WebML derivation query.
A new Class of the metamodel, DerivableElement, is the connection point be-
tween the Structure metamodel and the Derivation metamodel. The bidirectional
references between the Structure model and the Derivation model are managed
in the following way: 1) Entities, Roles and Attributes are all DerivableElements
(in the Structure metamodel) and they contain a Query (in the Derivation meta-
model); 2) the Query (in the Derivation metamodel) in turn contains one or more
instances of PathStep, a class that represents a reference to a DerivableElement
(in the Strucutre metamodel).

Three kinds of Query are provided and they all contain a ConditionExpres-
sion that filters the instances on which the derivation Query is applied, plus
other ad hoc constructs: 1) AttributeQuery contains an AttributeExpression to
specify the calculation rules for the attribute value; 2) EntityQuery contains a
single PathStep, i.e. a reference to the source entity of the derivation; 3) Role-
Query can contain the PathStep to reference a source relationship (analogously
to EntityQuery) or a complete ReferencePath that specifies a chain of source
relationships in the structural model.

The metamodel of a ConditionExpression and of an AttributeExpression is
detailed in Figures 4 and 5.

Fig. 3. Metamodel of a derivation query

In Figure 4, the several different kinds of ConditionExpression contain one
or more ReferencePath to reference operands in the Structure metamodel and
AttributeAtoms to reference atomic values in AttributeExpressions.

In Figure 5, AttributeExpression can contain as operands one or more ele-
ments of the Constant hierarchy and one or more ReferencePaths to attribute
values in the Structure metamodel.

Fig. 4. Metamodel of an OQL condition expression

Fig. 5. Metamodel of an OQL attribute expression

4 Transformation of WebML models to MDA

The migration of any DSM from a legacy space to MDA is a task that involves
three related mappings:

1. the legacy DSM language must be mapped to an ad-hoc MOF metamodel;
2. the DSMs must be transformed into models in the MDA technical space;
3. the conforms to relationship that connects models to their language must

be mapped from the legacy technical space to the MDA technical space.

These correspondences are not independent. Normally, mapping (1) and (2)
are designed independently, in such a way to implicitly satisfy mapping (3).
Maintaining coherence manually is a time-consuming and error-prone activity.
The framework proposed in this paper allows the automatic synchronization of
the transformations. In particular, we formally define two of these correspon-
dences for the WebML case, namely (1) and (3), and we automatically generate
the other, i.e. (2), by means of HOTs (higher order transformations).

As shown in Figure 6, the translation framework consists of three phases,
followed by a final optional step:

1. The metamodel generation phase addresses mapping (1), by performing the
automatic translation of the WebML DSL to a MDA metamodel. The trans-
lation involves a first step of injection and a second step of metamodel trans-
formation (M2T). These steps require the availability of the metametamodel
(MMM) of the involved technical spaces, i.e. the legacy metametamodel and
Ecore. The legacy MMM needs to be expressed as an MDA metamodel (i.e.,
conforming to Ecore).
The DSL injector parses the concrete syntax in which the DSL is expressed
and derives a representation of the DSL abstract syntax as an instance of the
legacy MMM. Subsequently the transformation M2T is defined as a set of
transformation rules that map the syntactical constructs of the legacy MMM
to Ecore. The application of the M2T transformation translates any meta-
model in the legacy technical space into a correspondent Ecore metamodel.
Notice that the M2T transformation relies only on a mapping between the
two MMMs, i.e. the two technical spaces. Once this transformation has been
specified, it can be reused for the migration of any DSL between the ad-
dressed technical spaces.

2. The model generation phase addresses mapping (2), by automatically trans-
lating the legacy DSMs into models compliant with the new metamodel.
This phase is analogous to the previous one, but applied at a lower level in
the MDA stack: it again involves an injection step followed by a transfor-
mation step. The injection step performs the parsing of the concrete syntax
of the DSM, and generates an instance of the metamodel associated with
the DSM syntax. Subsequently, the model transformation step (M1T) com-
putes the final MDA model as an instance of the metamodel produced by
the metamodel generation.

3. The higher order transformation phase addresses mapping (3), guarantee-
ing the coherence between the conforms to relationship of the two technical
spaces. This task is performed in two sub-tasks: 1) a promotion transfor-
mation obtains the DSL metamodel by promoting the model M1 resulting
from the model generation phase to metamodel (M2); 2) a HOT derives the
M1T transformation by translating the M2T transformation. The HOT has
to be defined manually and encapsulates the translation of the conforms to
relationship to the new technical space.

4. Finally, the refinement model transformation can be optionally applied to
adapt the resulting model to some manually introduced variations of the
DSL metamodel. This phase typically affects marginal aspects of the auto-
matically generated models, and will not be treated in detail in the rest of
the paper.

The three main transformations involve the definition of a mapping on the
higher level of abstraction:

– the M2T transformation is defined by a M3 Mapping between the elements of
the DSL syntax (i.e. the legacy metametamodel) and the elements of Ecore;

– the M1T transformation is defined by a M2 Mapping associating each con-
struct of the DSL to a corresponding pattern of elements in the output
metamodel;

– the HOT is defined by a Conformance Mapping that associates the ATL rules
of M2T with ATL rules of M1T. The mapping grants that the translated rule
maintains the conforms to semantics: given an ATL rule R2 that translates
the pattern P2a to P2b, the Conformance Mapping associates R2 to the
transformation R1 that translates the pattern P1a to P1b, such that P1a
conforms to P2a and P1b conforms to P2b.

Fig. 6. Diagram of the general framework

We now describe the transformations that compose the framework for trans-
forming WebML to a MDA-compliant representation, according the three afore-
mentioned phases: Metamodel Generation, Model Generation, and Higher Order

Transformation. The framework implementation is orchestrated by means of an
Ant script that uses the tasks provided by the AM3 project [1]. The complete
sources of the prototype framework can be downloaded from the project website
[3].

4.1 The Legacy Technical Space: WebML DTD/XML and
Derivation grammar

The WebML legacy technical space comprises two models: the WebML main
metamodel, based on XML files that conform to given Document Type Defini-
tions (DTD), plus the derivation model, expressed according to the grammar
presented in Section 3.1. For the main WebML hypertext model:

– the DSL syntax is defined by the DTD grammar (level M3),
– the DSL is specified by a DTD document (level M2),
– the DSM is an XML document (level M1),
– the conforms to relationship corresponds to the validity relationship in the

DTD/XML technical space, i.e. to the relationship that connects a valid
XML document to its associated DTD.

For the derivation model:

– the DSL syntax is defined by the JavaCC syntax for describing an EBNF
(level M3),

– the DSL is specified by a the JavaCC rules presented in Section 3.1 (level
M2),

– the DSM is a phrase generated by this grammar (e.g. a correct derivation
query) (level M1),

– the conforms to relationship corresponds to the relationship that connects a
correct phrase to its associated grammar (e.g. a correct derivation query to
the derivation grammar rules).

Moving from the DTD/XML technical space to the MDA technical space
requires the following mappings:

– M3 mapping: to map the DSL grammar (DTD+EBNF) to Ecore, associating
to each DTD construct (e.g. ELEMENT) and each EBNF construct (e.g.
NONTERMINAL) a correspondent Ecore translation (e.g. an EClass).

– M2 mapping: to map a specific DSL definition to a correspondent Ecore
metamodel, associating each DTD definition (e.g. a specific ELEMENT) and
each EBNF definition (e.g. a specific NONTERMINAL) to a correspondent
Ecore element (e.g. a specific EClass).

– Conformance mapping: to map the validity relationship to the conforms to
relationship, so that if a document is valid with respect to its associated
DTD and EBNF then its correspondent model conforms to its metamodel.

The difference in expressive power between the DTD syntax, the EBNF syn-
tax and Ecore, makes the bridging between these formalisms a non-deterministic

activity. Compared to Ecore, the DTD syntax is ambiguous in several points
and a bridging algorithm between the two technical spaces can only rely on de-
fault policies and heuristics to choose the optimal translation. Examples of lack
of expressiveness are the general CDATA attribute type, that can be mapped
on different Ecore types such as EString, EInteger, or EFloat; and the IDREF
attribute type that can be mapped as an EReference without specifying the as-
sociated eType. A comparison on the expressive power and features of DTDs
and Ecore can be found in [18].

The discussion about the optimal policies for the M3 mapping are outside the
scope of this paper. The most convenient heuristics can be different, depending
on the considered DSL, and can be refined over time. The framework we provide
assures that, upon changes on the M3 mapping (or on the DSL itself), the M2
mapping is automatically synchronized, thus mantaining the coherence between
M3 and M2.

4.2 Metamodel Generation

The Metamodel Generation phase transforms a DSL specified by means of a
DTD + EBNF into an Ecore metamodel.

The Ecore metamodel is obtained merging: 1) the DTD metamodel, 2) the
EBNF metamodel, 3) cross-reference links between the metamodels. The DTD
metamodel is a refined version of the one provided in [14]. The first class ob-
jects of this metamodel are Element, Attribute, Sequence, etc. The EBNF meta-
model has been developed ad-hoc and its first class objects are Rule, NonTer-
minal, Disjunction, etc.. A set of cross-reference links specify which constructs
of the two input technical spaces (DTD and EBNF) could be referenced by the
other technical space. In the WebML case to generate the associations PathStep-
DerivableElement and DerivableElement-Query explained in Section 3, a cross-
reference link has to be added between the Element EClass of the DTD meta-
model and the NonTerminal EClass of the EBNF metamodel.

DSL Injection. The DSL Injection step consists in parsing the concrete syntax
of the DTD specification and of the EBNF specification to derive an instance of
the defined metamodel. Developing an injector for the legacy metametamodel is
generally a simple task, because a parser of the concrete syntax of the metameta-
model is usually available in the legacy technical space and can easily be extended
with semantic actions to build the correspondent metamodel elements. In our
work, a prototype DtdEbnfInjector class has been developed using the DTD
Parser provided in [2].

M2T. The M2T transformation defines the M3 mapping, between the DSL
MM and Ecore. M2T is implemented as an ATL transformation defining the
translation policies between, e.g., the elements of a DTD and the classes of
a metamodel. M2T is defined without any domain specific knowledge: it is a

general transformation that can be reused to translate every DSL defined by
means of a DTD, an EBNF and eventual cross-references in an Ecore Metamodel.

The M2T rules translate DTD Elements, Attributes and Children to EClass,
EAttribute and EReference elements, based on several heuristic choices. For
instance:

– the Children of a DTD Element are always translated as containment refer-
ences in Ecore;

– all the DTD Attributes are translated to simple EAttributes, without con-
sidering their type. This heuristic is sufficient for simple cases, especially
when the use of IDREFs is limited and can be dealt with in the M1Tr trans-
formation.

4.3 Model Generation

The Model Generation phase transforms a WebML project specified as an XML
document into an instance of the WebML metamodel generated in the Meta-
model Generation phase. The core is an XML injection step, followed by the
generated transformation M1T. The metamodels involved in this phase are the
XML metamodel and the WebML metamodel. The former is a standard meta-
model provided by the EMF project whose first class objects are Tag, Node,
Attribute, etc.

DSM Injection. The injection of the DSM is easily performed extending the
standard XMLInjector, an injector provided by the AM3 project, to convert an
XML document to an instance of the XML metamodel. The Java injector is
extended to launch a JavaCC parser when it encounters a derivation element.

M1T. M1T is the transformation that maps an XML+EBNF model to an Ecore
model, instance of the generated DSM metamodel, i.e. the WebML metamodel.
Being an ATL transformation that has the DSL metamodel as the output meta-
model, M1T can not be independent of the DSL metamodel. For this reason,
traditional transformation-based approaches to the migration of DSMs to MDA
require one to develop a different M1T transformation for each DSL. The genera-
tive approach that we propose overcomes this problem: in our framework M1T is
still a DSL-specific transformation, but it is generated by a DSL-agnostic HOT.

M1Tr. Being generated from M2T, the M1T transformation is a DSL-specific
transformation that does not use any DSL-specific knowledge. Since M2T and
HOT are DSL-agnostic transformations, every possible DSL-specific transforma-
tion that is needed to the DSL bridging has to be specified in a subsequent step.
This step that lies outside from the generative framework is represented by the
optional M1Tr (i.e. M1T refinement) transformation.

M1Tr translates the generated model to an instance of a manually defined
DSL metamodel that usually will have only a limited set of differences with the

generated one. M1Tr is a DSL-specific transformation that can be used to solve
different issues, such as the different expressive power of the metametamodels,
the structural limitations of the DSL-agnostic transformations, the implementa-
tion limits of the prototype (especially with respect to the M2T syntax).

In the WebML case, M1Tr can adapt the generated models to the official
WebML metamodel, manually designed from scratch in [16] and extended in
this work with the derivation model.

4.4 Higher Order Transformation

The Higher Order Transformation phase is responsible for the translation of the
M2T transformation, that generates the new metamodel, to the M1T transfor-
mation, that generates the new models. The only metamodel involved in this
phase is the ATL metamodel that provides a representation of an ATL transfor-
mation as an instance model.

The provided prototype HOT, in its current state, is able to transform only
a very limited set of the ATL features. This translates in a set of constraints
that our prototype framework imposes on the syntax of M2T:

– only matched (declarative) rules are allowed
– the source pattern of each rule must comprise only one source pattern ele-

ment (as in ATL 2004)
– the target pattern of each rule must comprise only one simple or iterative

target pattern element
– local variable sections or imperative block sections are not allowed
– OCL declarative expressions are restricted to the basic path expressions for

accessing element features and to some basic operations on collections, such
as union.

While these restrictions did not hamper the translation of a DTD into Ecore,
in general more advanced constructs might be needed for complex technical
spaces or heuristics. In this case, the HOT transformation will need to be ex-
tended or, in the worst case scenario, to be implemented with a general purpose
language (e.g., Java).

ATL Injection/Extraction. The execution of the HOT has to be preceded
and followed respectively by an injection and an extraction of the ATL trans-
formations. M2T is injected as an instance of the ATL metamodel and, after
the HOT has been executed, M1T is extracted to its textual form. The injection
and extraction of the ATL transformations is implemented using the Injector
and Extractor provided by the AM3 project.

HOT. The following code is a simplified rule extracted from our HOT:

rule RestrictedElement {
from

matched : ATL!MatchedRule (

matched.inPattern.elements.first().type.name = ’DTDMM!RestrictedElement’)
using {

matchedElements : Sequence(OclAny) = DTDMM!Element.allInstances()->
select(e | e.oclType().toString() =

’DTDMM!’+matched.inPattern.elements.first().type.name); }
to

atl : distinct ATL!MatchedRule foreach (e in matchedElements) (
name <- e.name, inPattern <- inPat, outPattern <- outPat, isRefining <- false,
isAbstract <- false),

inPat : distinct ATL!InPattern foreach (e in matchedElements) (
elements <- elementin, filter <- oc),

elementin : distinct ATL!SimpleInPatternElement foreach (e in matchedElements) (
id <- ’tag0’, varName <- ’tag’, type <- intype),

intype : distinct ATL!OclModelElement foreach (e in matchedElements) (
name <- ’XML!Tag’),

oc : distinct ATL!OperatorCallExp foreach (e in matchedElements) (
operationName <- ’=’, source <- noac, arguments <- s),

noac : distinct ATL!NavigationOrAttributeCallExp foreach (e in matchedElements) (
name <- ’name’, source <-fv),

fv : distinct ATL!VariableExp foreach (e in matchedElements) (
name <- ’tag’, referredVariable <- elementin),

s : distinct ATL!StringExp foreach (e in matchedElements) (
stringSymbol <- e.name),

-- OutPattern
[...]

The rules of the HOT match in their source pattern the ATL elements of the
input transformation. Then the rules can make use of the DSL metamodels to
derive information on the structure of the DSL. This sample rule translates the
matched rules of M2T that are applied to a RestrictedElement in the WebML
DTD. When one of these rules is matched, the using part of the rule queries the
WebML metamodel for all the instances of RestrictedElement. These instances
were certainly matched by the rule in M2T and their result is saved in the
matchedElements variable. Finally a set of output ATL rules is generated, by
iterating on the matchedElements variable. The small excerpt alone generates a
minimal scheleton of a rule without considering any of the structural features of
the output pattern.

The previous excerpt gives an idea of how an approach based on such a high
level of abstraction has a necessary drawback in terms of development cost. In
particular the complexity of the HOT grows with the expressive power of the
language in which M2T is specified. Our approach to face this issue is limiting
the ATL features supported by the HOT to a defined set.

5 Conclusions

In this paper we have discussed a MDA framework to move a set of related
legacy DSMs in the field of Web engineering to a MDA-compliant architecture.
The transformation framework covers the translation of both the metamodel and
the model levels, and grants automatic coherence of the two.

Our experience over the WebML language showed the feasability of a compre-
hensive transformation framework for a multi-language modeling approach for
Web applications. We showed how it is possible to make homogeneous different
metamodels, represented by different syntaxes, and how this can be translated
to a unified MDA-compliant metamodel.

Although this work has been developed in the context of the WebML method-
ology, the approach is more general and can be applied to any other Web engi-
neering DSM, simply by providing the appropriate transformations. The whole
Model-driven Web Engineering field can therefore benefit of this contribution,
that poses the basis of a general framework for model transformations toward
MDA.

References

1. Am3 - http://www.eclipse.org/gmt/am3/.
2. Dtdparser - http://www.wutka.com/dtdparser.html.
3. Framework implementation - http://home.dei.polimi.it/mbrambil/legacytomda.
4. Javacc - https://javacc.dev.java.net/.
5. Webratio - http://www.webratio.com/.
6. Anas Abouzahra, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric Jouault.

A practical approach to bridging domain specific languages with uml profiles. In
Best Practices for Model Driven Software Development at OOPSLA’05, San Diego.

7. J. Bezivin, G. Hillairet, F. Jouault, I. Kurtev, and W. Piers. Bridging the ms/dsl
tools and the eclipse modeling framework. International Workshop on Software
Factories at OOPSLA, 2005.

8. R. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda, and F. Velez. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 1 edition, 2000.

9. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. De-
signing Data-Intensive Web Applications. Morgan Kaufmann, December 2002.

10. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A metamodel independent ap-
proach to difference representation. TOOLS Europe, 2007.

11. M. D. Del Fabro and P. Valduriez. Semi-automatic model integration using match-
ing transformations and weaving models. ACM symposium on Applied Computing,
2007.

12. Bas Graaf and Arie van Deursen. Using mde for generic comparison of views. In
4th MoDeVVa Workshop at MODELS 2007.

13. Boris Gruschko. Towards synchronizing models with evolving metamodels. Int.
Workshop on Model-Driven Software Evolution at ECSMR, 2007.

14. Pierrick Guyard. Dtd metamodel - www.eclipse.org/gmt/am3/zoos/atlanticzoo.
15. H. Kern and S. Kuhne. Model interchange between aris and eclipse emf. 7th

OOPSLA Workshop on Domain-Specific Modeling at OOPSLA, 2007.
16. N. Moreno, P. Fraternali, and A. Vallecillo. Webml modelling in uml. Software,

IET, 1:67–80, 2007.
17. N. Moreno, P. Fraternalli, and A. Vallecillo. A uml 2.0 profile for webml modeling.

In International Conference on Web Engineering 2006, Palo Alto, California. ACM.
18. A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, and W. Retschitzeg-

ger. Bridging webml to model-driven engineering: from document type definitions
to meta object facility. Software, IET, 1:81–97, 2007.

19. Guido Wachsmuth. Metamodel adaptation and model co-adaptation. In ECOOP
2007: Object-Oriented Programming, pages 600–624. Springer, 2007.

20. M. Wimmer, A. Schauerhuber, E. Kapsammer, and G. Kramler. From document
type definitions to metamodels: The webml case study. Report for Vienna Univer-
sity of Technology, March, 2006.

