
25

Distributing education services to personal and
institutional systems using Widgets

Scott Wilson, Paul Sharples, and Dai Griffiths

University of Bolton

Abstract. One of the issues for the Personal Learning Environment is the
integration of personal tools with institution-centric information and services
such as timetable information, and the coordination of cohort-specific group
activities. One potential solution is the use of widgets – small, single-function
applications that can be used in different applications, including personal
technologies. One of the challenges facing the use of widgets is the diversity of
platforms, and the issues around security, privacy and control. This paper
describes an approach developed as part of the EU-funded TenCompetence
project to develop a system based on open standards for enabling widgets to be
used in a range of personal and institutional systems.

Introduction

One of the key issues in distributed e-learning is how to enable coordination to take
place across a diverse range of personal as well as institutionally-managed
applications in the context of formal learning. One of the key mechanisms that has
been used to date has been the sharing of RSS feeds; another approach has been the
use of widgets such as Facebook applications to provide institutional information in
learner-managed spaces. Widgets are useful where it makes sense to offer a user
interface for a service rather than a feed, or where making such a user interface
available in addition to a machine-useable web API can lower the barrier to use.
Examples of useful widgets within a distributed learning context include access to
institutional services such as timetabling, support services, and libraries, and also
widgets that enable access to shared activities with a cohort focus, such as shared
chats, voting, and forums. Examples to date include the use of Facebook applications
by the Open University (Hirst, 2008) and the use of OpenSocial at the University of
Cambridge (Boston, 2008).

Currently, many applications provide their own plugin mechanisms to enable third-
party widgets to be incorporated by users; these include learning management systems
(Moodle, Blackboard), personal blogging systems (Wordpress), social networking
sites (Facebook, Elgg, Ning), and the operating system itself (Apple Dashboard,
Windows Sidebar). However, each system has a different API, and widgets must be
developed for each one using the native programming platform of the system.

To overcome this issue a number of initiatives to standardize widget platforms
have emerged. Google Gadgets and OpenSocial is one effort to create a single widget
platform. The Google Gadget platform consists of a very wide range of

26 Scott Wilson, Paul Sharples, and Dai Griffiths

interconnected javascript APIs coupled with REST services to manage and deploy
widgets on different social network platforms. However, the actual implementation of
the platform is very complex with a lot of internal dependencies, and so an open
source server solution has been created, Apache Shindig1, to lower the barrier to
entry. Although it has many good features, the Google solution remains a proprietary
solution, and there has been little engagement by Google in open standards in this
area.

Another initiative is the W3C’s Widget specification initiative2. This is an open-
standards approach being developed to harmonize widgets between the Apple,
Microsoft, Yahoo, Nokia and Opera platforms. While focused primarily on desktop-
style widget engines, the specifications cover many of the core concerns of widget
development for the web, including packaging, deployment, description, and access to
APIs.

In either case, a widget is typically defined as a portable application, typically
packaged in a Zip archive, and implemented using HTML, Javascript and CSS, with
some deployment metadata for use by the container such as height, width, title and
author information. The widget’s Javascript code needs to be written to make calls to
a set of standard APIs for making use of the services offered by the container.
However, the two approaches differ in the package, metadata, and most importantly
the API specification.

This created a dilemma for our development team, which was primarily tasked
with solving issues of including tools in learning activities for the TenCompetence
project3. In the end we decided to adopt the W3C approach, and extend the W3C
specification to handle web-deployed widgets with collaboration features, rather than
adopt the proprietary Google Gadgets platform. We created an open-source engine for
these widgets and reference plugins for several container platforms.

For the future we hope to see some convergence between Google and W3C;
alternatively we may work to mitigate the division between the approaches by
working with the Apache Shindig project to support W3C specifications.

Architecture

The W3C model for widgets requires the use of a widget engine to provide the
services for widgets such as persistence and external web access; in the case of web
applications this engine needs also to communicate with the web application that is
acting as the widget container. The components of the architecture we designed for
our solution are shown in Figure 1.

1 http://incubator.apache.org/shindig/
2 http://www.w3.org/TR/widgets/
3 http://www.tencompetence.org

27

Fig. 1. Architecture of the system

Container Application

The architecture supports a wide range of potential container applications. Each
container application must support the Widget Configuration API, and be capable of
rendering a view that loads the resulting URL in a container (such as an IFrame),
preferably one conforming to the dimension hints supplied in the getWidget()
response.

The widget plugin enables a widget to be placed within the context of the container
application, and is responsible for implementing the widget configuration API. The
widget plugin collects the relevant configuration information via the container
application’s authoring system, and instantiates a widget using the getWidget()
method.

Browser

Within the browser, the view rendered by the container application will typically
be an IFrame that displays the widget content. The widget content is loaded from the
Widget Server with the URL supplied to the plugin.

The widget is typically a small HTML file with a number of included JavaScript
libraries; these include common JavaScript libraries offered by the widget server to
enable widgets to communicate with the Widget API. Each instance of a widget (that
is, a specific widget instantiated by the plugin and then displayed for a particular user)
has its own unique key used in conjunction with the Widget API to store and retrieve

28 Scott Wilson, Paul Sharples, and Dai Griffiths

user preference information, and to access data shared across multiple instances (for
example, across all chat widgets within a single course context). Widgets often
require access to external services, for example to make AJAX requests for RSS feeds
or to access external content; this needs to be routed via the Widget Server’s Proxy
API to avoid violating the same origin policy of the browser.

Widget Server

The Widget Server is a standalone server application that can support multiple
container applications by managing and distributing widgets and offering supporting
services including persistence and a URL proxy for cross-site requests.

The Widget Factory is responsible for instantiating and managing instances of
Widgets. The Widget Factory offers the Widget Configuration API; this is used by
Container Applications to instantiate widgets and to obtain configuration information
including the title, URL, height and width of a widget instance.

The Widget Repository is responsible for managing and distributing the assets of
widgets, including their HTML, CSS, images and JavaScript files. The Widget
Repository offers the Widget Management API, which is used to upload and install
new Widgets, and the Widget Resources API, which is simply enabling access to
assets using HTTP GET.

The Common JavaScript Libraries are a standard set of support libraries that
Widgets use to communicate with the Widget API and to enable callbacks on events.
These are accessed using the Widget Resources API for access using HTTP GET.

The Shared Data Service persists and returns information that is shared across
multiple widget instances. For example, the content of a chat conducted between
several chat widget instances. The Shared Data Services is exposed using the Widget
API and typically accessed via a common JavaScript library included in each widget.
As well as conventional access, the Shared Data Service is configured to support
Reverse AJAX, also known as Comet4; in this model, updates are pushed to
subscribing widget instances using rapid polling. This supports widget applications
such as instant messaging or online voting without the need to set up externally
hosted services.

The User Preference Service persists and returns information persisted for a
single widget instance, such as user preference settings and any other data that is
unique to an individual instance of a widget. The User Preference Service is exposed
using the Widget API and typically accessed via a common JavaScript library
included in each widget.

The Proxy Service executes AJAX requests on behalf of widgets. This
circumvents Same Origin Policy restrictions in the browser environment. The Proxy
Service can be configured using whitelist or blacklists and should be secured for
access only via widgets served by the Widget Server.

The Widget Configuration API is invoked by container applications to
instantiate, stop, and resume widgets. The main method offered by the API is
getWidget() which is called by the container with context information for the widget,

4 see e.g. http://en.wikipedia.org/wiki/Comet_(programming)

29

and returns a URL generated by the server for the container to render, and the height
and width in pixels of the widget instance.

The container context consists of the application identifier, the context identifier
(for example, a course id) and a user handle. The latter needs to be unique, but can be
entirely opaque to the widget server rather than an externally-referenced user
identifier. The service then uses a nonce and MD5 hashing algorithm to return an
opaque widget reference number to prevent unauthorised access to widget instances.

For example, a call to getWidget() may return a response such as:

<widgetdata>

<url>http://localhost:8080/wookie/wservices/www.tencomp
etence.org/widgets/WP3/natter/chat.htm?idkey=xR8OG1IFX5
8z/YVvlz910PQVtv8.eq.&url=http://localhost:8080/woo
kie/dwr/interface/widget.js&proxy=http://localhost:
8080/wookie/proxy</url>

<height>383</height>

<width>255</width>

<maximize>false</maximize>

</widgetdata>

The Widget Resources API enables access to the repository of widget assets, and
can be implemented as standard web resource access.

The Widget API is the service that is invoked by widgets via the interface offered
by a javascript Widget object called from within the Widget javascript code. The API
provides methods for accessing the user preference service and shared data service.
This API is based upon the W3C Widget Services and Events specification.

The Proxy API provides a mechanism for widgets to request external URLs
without breaking the Same Origin Policy. For example, a typical AJAX request for an
external API or RSS feed needs to be routed through the widget server Proxy API to
prevent potential cross-site scripting vulnerabilities.

Implementation

Wookie server

We created an implementation of the widget server, which we call Wookie. Wookie is
implemented as a standalone Java servlet application with a MySQL backend
database. The application provides all the services identified in the architecture as
simple REST-style calls, and provides an administration interface for uploading,
tagging and deploying widgets. It also implements a whitelist function for the Proxy

30

API, which the administrator can configure. For the implementation of Comet
functionality we used the Direct Web Remoting (DWR) open-source Java libraries5.

Wordpress plugin

One container application we tested Wookie with is Wordpress. Wordpress already
offers its own specific PHP-based Widget API, and it was very simple to extend this
to enable Wordpress to call the Widget Configuration API and render a widget in its
sidebar. This means that the widgets served by Wookie can behave in the same
manner as native widgets from the viewpoint of a Wordpress user. An example is
shown in Figure 2.

Fig. 2. Wookie widget running in Wordpress.

Moodle plugin

The second container application we developed a plugin for was the Moodle learning
management system6. Like Wordpress, Moodle also has its own API for extensions,
which Moodle calls blocks. The implementation of Widgets for Moodle created a new
simple block type with a single configuration element for the widget type. This
enables users to add Wookie widgets that then behave in the same manner as other
Moodle blocks, and can be moved around the course layout as desired. An example is
shown in Figure 3. Note that the “moon” and “chords” blocks are Wookie widgets

5 http://directwebremoting.org/dwr/overview/dwr
6 http://www.moodle.com

31

that have been converted from Apple Dashboard format to W3C format. The “natter”
block is a Wookie widget we developed that uses the Shared Data Service.

Fig. 3. Wookie widgets running in Moodle.

Collaboration Widgets

To demonstrate the capabilities of the shared data service, we created a number of
collaboration widgets, including Chat, Forum, and Voting. These correspond to
commonly requested features for learning designs.

Discussion

In this work we have been able to demonstrate the feasibility of extending the W3C
open specification for widgets to the use of web applications, and to extend the
functionality of widgets to the implementation of collaboration tools commonly
employed in learning applications. By enabling such tools to be distributed in a range
of containers, including personal web applications such as blogs, the potential exists
to exploit this capability for offering more flexibility in the provision of e-learning.

For example, a course-cohort chat widget may be offered both through the LMS
and externally through the applications in a student’s own web-based PLE. We also
see a strong potential role for Wookie in enabling institutional services to be
embedded in both the LMS and PLE, such as timetable, support, and tutor messaging
services. We see this as a pragmatic means of enabling the co-existence of PLE and
LMS approaches, easing the transition from a provision-centric model to a
coordination-centric model while the capabilities of the LMS and PLE converge;

32

without such a convergence a shift by institutions to supporting PLE users is unlikely
due to the significant differences in functionality as defined by the dominant
applications (Wilson et al., 2007).

Widgets also offer an easier transition for some types of institutionally managed
services to be offered through personal systems; partly at least as the benefits can be
expressed in terms of institutional variety management. For example, widgets can
offer a relatively low-cost method for exposing services across different institutional
systems such as library, MIS portal, intranet, web content management system, and
LMS.

The crucial component for the future, however, will be the integration of user-
centric authorization within widget architecture. The oAuth7 protocol offers a means
for sites to establish authorization to use APIs without the transmission of user
credentials. This would enable users to authorize a widget within their PLE to access
data held by an institution without compromising the identity management of the
institution. Currently there is considerable effort underway in the oAuth community
to support widget applications, and this convergence will have a significant effect on
the range of services that can be offered using widget technologies.

Future Work

For the future we intend to continue to align the architecture and implementation with
the W3C specifications as they evolve towards final status, and to look into additional
capabilities, such as supporting Google OpenSocial in some fashion, or integration
with the Apache Shindig project, and possibly also to integrate oAuth capability. We
will also continue work on supporting the use of widgets for learning designs. In the
short term we intend to continue to trial the system in other contexts in order to
evaluate its effectiveness, performance and usability; currently we are working with
two UK-based projects involving timetable information and tutor-student messaging,
and are investigating potential collaboration with several projects in other countries.

References

Boston, Ian. (2008). Sakai and OpenSocial: A Different Approach to Distributed Learning
Applications. e-Literate. Retrieved July 4th, 2008, from http://www.mfeldstein.com/sakai-
and-opensocial-a-different-approach-to-distributed-learning-applications/

Hirst, Tony. (2008). Open University Course Profiles Facebook App. OUseful Info. Retrieved
July 4th, 2008, from http://blogs.open.ac.uk/Maths/ajh59/010855.html

Wilson, S., Liber, O., Beauvoir, P., Milligan, C., Johnson, M., & Sharples, P. (2007) Personal
Learning Environments: Challenging the dominant design of educational systems. Journal
of e-Learning and Knowledge Society (2). Giunti: Genoa.

7 http://oauth.net

