
Language Design for a Personal Learning Environment Design Language 5 

 

Language Design for a Personal Learning Environment 
Design Language 

Felix Mödritscher, Fridolin Wild, Steinn Sigurdarson 

Institute for Information Systems and New Media, 
Vienna University of Economics and Business Administration, 

Augasse 2-6, 1090 Vienna, Austria 
{felix.moedritscher,fridolin.wild,steinn.sigurdarson}@wu-wien.ac.at 

Abstract: Approaching technology-enhanced learning from the perspective of a 
learner, we foster the idea of learning environment design, learner interactions, 
and tool interoperability. In this paper, we shortly summarize the motivation for 
our personal learning environment approach and describe the development of a 
domain-specific language for this purpose as well as its realization in practice. 
Consequently, we examine our learning environment design language 
according to its lexis and syntax, the semantics behind it, and pragmatical 
aspects within a first prototypic implementation. Finally, we discuss strengths, 
problematic aspects, and open issues of our approach. 

Keywords: Personal Learning Environments, Language Design, Learner 
Interactions, End-User Development 

1 Introduction 

New economic-technological trends, subsumed under the term Web 2.0, have started 
to influence the understanding for and approach to technology-enhanced learning. 
Additionally current research and development is focus on extending the classical 
didactic learning management systems by emphasizing functionality supporting the 
learner, e.g. by dealing with the design of personal learning environments, coping 
with social networking functions and recommendation services, or examining 
collaboration and community-boosting features in learning networks. In sum, 
networked communities are expected to be beneficial for lifelong learning [1]. 

Also heading into this direction, we summarized shortcomings of instructional 
design theories and adaptive educational technologies in [2] and came up with our 
approach; Mash-UP Personal Learning Environments (MUPPLE). Hereby, we 
build upon three important concepts of learning environment design: 
− First, we prefer the idea of ‘learning to learn’ in connection with learning content, 

to ‘transferring’ domain-specific knowledge. Thus we a apply a simple and 
domain-independent model of learning activities which consists of a set of 
(learner) actions bound to objects (artifacts or outcomes) and tools. Furthermore, 
we emphasize the acquisition of transcompetences (i.e. social, self, and 
methodological competence) in addition to content competence. 



6 Felix Mödritscher, Fridolin Wild, Steinn Sigurdarson 

 

− Second and consequently, we consider the learning environment an important part 
of the learning outcome as opposed to an instructional condition. Therefore, a 
learner designs her learning environment by establishing a network of people, 
artifacts, and tools (manually or with the support of personalization services) and 
interacting with that environment. 

− Third and finally, we consider emergence of behavior as an unavoidable and 
natural phenomena of complex socio-technical systems. By emergent behavior we 
mean that the observable dynamics show unanticipated activity, surprising in so far 
as the participating systems have not been designed for it specifically (they may 
even not have intended it). Designing for emergence is, in our view, more powerful 
than rule-based personalization, as the models involved are simpler while 
achieving the same effect. 

As a consequence of the application of these three concepts, we decided to follow a 
learner-centered approach to personal learning environments. In accordance with the 
paradigm of end-user development depicted in [3], we have been developing a 
domain-specific language for learning environment design which we named learner 
interaction scripting language (LISL). In the following section we briefly 
summarize the principles of language design. In section 3 we describe LISL, a first 
prototypic implementation, and it’s utility, before our approach is discussed. 

2 Principles for Language Design 

In order to achieve end-user developed emergence of learning behavior (MUPPLE), 
the scripting language (LISL) needs to take into account not only traditional software 
engineering issues, but also those of end-user development. We consider LISL to be 
the underlying model for the success of the MUPPLE approach. 

Hoare meant a programming language to support three tasks within the software 
development process [4]: (1) program design, (2) programming documentation, and 
(3) program debugging reasons. Therefore, he made up five language design 
principles to achieve these task-specific requirements: First, simplicity of a language 
is critical for reducing the complexity of programming tasks. Second, security 
features should not be removed when going into production, so that programming 
errors are not hidden away from the end-user for reliability reasons. Third, fast 
translation of program code is of particular interest for prototyping or debugging, 
which already reminds of younger trends like scripting of command-line interpreters. 
Fourth, efficient object code is required, particularly if following the design for 
emergence paradigm for end-users developing and optimizing their learning 
environments. Fifth, compiling and processing programs should increase readability, 
e.g. by automated intention, understandable commands, filling in defaults, etc. 

Additionally to these historical principles, younger trends focus on derivations of 
programming languages. For instance, Paige and his colleagues address modeling 
language design and divide them into four task-related classes [5]: (1) architectural 
description, (2) behavioral description, (3) system documentation, and (4) forward 
and backward generation. For these kinds of modeling languages the following design 
principles are recommended: First, a language should be simple to have it small and 



Language Design for a Personal Learning Environment Design Language 7 

 

memorable. Second, it should satisfy the principle of uniqueness (orthogonality) 
which means that every concept of interest can be expressed in exactly one way and, 
thus, the language is defined by a small number of powerful features. Third, the 
principle of consistency refers to a purpose to the design of the language, so that the 
features included or to be added to the language must further this purpose. Fourth, 
seamlessness contributes to producing maintainable software, i.e. through generating 
code from models by allowing the mapping of abstractions in the problem space to 
implementations in the solution space without changing the notation. 

Fifth, the principle of reversibility requires that changes made during one stage of 
the development lifecycle can be automatically reflected back to earlier stages. Sixth, 
scalability ensures that a language should be useful to model systems with a few 
components and inter-relations, and systems with thousands of components and inter-
relations, which is achievable by providing a concise mechanism for describing the 
fundamental abstractions for their problem domain. Seventh, supportability demands 
that a language can be easily produced by hand, so that it can be used, by humans, for 
writing or drawing models. Eight, a modeling language must support the production 
of reliable programs which meets its specification and reacts appropriately whenever 
unexpected or erroneous input is given. Ninth, the principle of space economy states 
that models should take up as little space on a printed page as possible but without 
scarifying the understandability of the language, which empowers the production of 
concise models and decreases the maintenance efforts. 

Concerning language design methodologies, Van Deursen et al report about a 
design approach to domain-specific languages. Basically, a domain-specific language 
is defined as “a programming language or executable specification that builds on 
appropriate notations and abstractions, offering expressive power focused on, and 
usually restricted to, a particular domain” [6]. Thus, such a language is expected to 
be based in an application domain. They suggest building an algebraic model behind 
the language, consisting of normalization, variability, and satisfaction rules. This 
algebraic model should be derived from an analysis of the domain by applying feature 
descriptions, i.e. with feature diagrams or a textual notation. 

All in all, this short inspection of literature already indicates that the design of a 
new language is a complex task. Considering the basic principles noted by Hoare 
nearly four decades ago is, however, a solid first step to designing a usable 
programming language. Moreover, design guidelines for modeling languages are of 
interest for our learning environment design approach. In addition, we consider our 
scripting approach to be highly related to a domain-specific language and, thus, a 
methodological approach like the one by Van Deursen et al is relevant. Finally, 
human-computer interaction research started to influence software engineering, which 
lead to the concept of end-user development and evolves software engineering from 
making systems that are “easy to use” to making systems that are “easy to develop” 
[3]. Again, this new way of user-driven development of the working environment 
which is used for interactions in shared spaces and networked communities requires 
special design guidelines, which amongst others, are elaborated by [7]. We consider 
end-user development as well as these guidelines to be of importance to our MUPPLE 
approach and explain them in the upcoming section when describing the development 
process of our learner interaction scripting language (LISL). 



8 Felix Mödritscher, Fridolin Wild, Steinn Sigurdarson 

 

3 LISL and its Interpreter 

With respect to the principles outlined in the last section, we decided to build up a 
human-like language for learning environment design and, additionally, focus on 
user-related issues like learnability, efficiency, simplicity, readability, uniqueness, 
seamlessness, reversibility, and supportability. More technical issues, e.g. security, 
fast translation or efficient object code, are considered to be secondary. In this 
section, our learner interaction scripting language (LISL) is described in detail. 

The lexical and syntactical structure is kept very simple. The tokenizer splits 
each line of code into tokens separated by white spaces. Single or double-quoted 
constructs are considered to be one token. Moreover, tokens are case-sensitive, and 
identifiers are restricted to alphanumeric strings (beginning with a letter from the 
alphabet) and might be quoted. Syntactically we realized only a few constructs with 
this domain-specific language. 

 
1> define action Compose with url http://[...]?action=create
2> define action Browse 
3> define action Bookmark 
4> define object ‘self-description’ 
5> define object ‘self-descriptions of peers’ with url http://[…]/peers 
6> define object ‘selected self-descriptions’ 
7> define tool VideoWiki with url http://videowiki.icamp.eu 
8> define tool Scuttle with url http://scuttle.icamp.eu 
9> connect tool VideoWiki with tool Scuttle 
10> Compose ‘self-description’ using VideoWiki 
11> Browse ‘self-descriptions of peers’ using VideoWiki 
12> Bookmark ‘selected self-descriptions’ using VideoWiki 
13> drag tool VideoWiki

Fig. 1. Example LISL script consisting of three actions, three objects, two tools, as well as one 
connect, three action and one learner interaction statements 

As indicated with the example activity in Fig. 1, we differentiate between the 
following statement types: 
− ‘Define’ statements (cf. lines 1 to 8) are used to initialize the mash-up personal 

learning environment, i.e. to declare actions, objects, and tools available in one 
mashup page. The actor is considered to be the current user. Each defined entity 
stands for a variable in the ‘program’, whereby an action and an object can have an 
optional URL, while the tool always has one. These kinds of constructs always 
start with the command ‘define’ followed by the type of entity (‘action’, ‘object’, 
‘tool’) and a unique identifier. If a URL can be specified, the keyword ‘url’ 
followed by the URL itself is expected. Additional tokens are ignored, so that 
constructs like ‘with the url http://[...]’ are valid. 

− ‘Connect’ statements (line 9) are necessary for interoperability reasons, so that tool 
combinations can be utilized for one action. Syntactically, such a statement allows 
combining two tools with each other, so that data is sent from one to the other. 
What this exactly means and how we intend to realize this kind of interoperability, 
will be clarified when explaining the semantics of this statement. 



Language Design for a Personal Learning Environment Design Language 9 

 

− ‘Action’ statements (lines 10 to 12) comprise the actions to be performed by a 
learner and consist of three parts: (a) the action, (b) the object, and (c) the tool. 
Generally, the first token, plain or quoted, stands for the (user-definable) action, 
while the second one represents the object. The tool has to be specified right after 
the keyword ‘using’, other tokens are ignored. If one of the elements of such a 
statement can not be resolved, an error with an explanation is displayed. 

− ‘Learner interaction’ statements (line 13) materialize the user interactions with the 
learning environment, i.e. they describe if the learner navigates between two 
different learning tools or she rearranges the application on her screen. 

Referring to the end-user development guidelines (DG) highlighted in [7], we 
consider the three syntactical ones as fulfilled for LISL: (DG 3.1) Syntactical errors 
are hard to be made due to adequate error messages and visualization techniques by 
the LISL interpreter (shown later). (DG 3.2) It is even impossible to make syntactical 
errors, as incorrect statements are not executed and, thus do not halt the execution of 
the activity. (DG 3.3) We tried to use objects as language elements in the way that 
one action statement comprises a tool within the learning activity. Such a tool can be 
drag and dropped as an ‘object’ (window) within a web application mashup [8]. 

Going on with the semantics behind LISL, we build up a simple, comprehensible 
model of learning activities, as shown in Fig. 2. Precisely, a learning activity consists 
of a set of (learner) actions which are bound to one object and involve at least one 
tool. These actions specify typical learner interactions within the activity, whereby 
they can be defined by learners. The ones with a specific URL are useful to perform a 
standard operation within a learning tool, e.g. creating a new Wiki page. An action 
without an URL delegates the initialization of the web application to the object or, if 
it does not have an URL, to the URL of the first tool after the ‘using’ keyword. 

 

 
Fig. 2. LISL’s semantic model of learning activities consisting of actions-object-tool triples 

In analogy to variable declarations, an object can, but must not be defined with a 
specific URL. An initialized object means that the outcome has a pre-defined pointer 
to a specific artifact within a tool. An object without a URL, however, is indicating 
that the ‘value’ is assigned dynamically as a learner goes through the actions, e.g. by 
creating a digital artifact using an action with a URL. In our example described in the 
last two figures, for instance, the very first action creates a VideoWiki recording 



10 Felix Mödritscher, Fridolin Wild, Steinn Sigurdarson 

 

which is assigned to the ‘self-description’ object after finalizing the action. Binding a 
tool combination to one action requires a certain degree of interoperability of the 
learning tools. As a precondition for our MUPPLE approach, we build upon 
distributed feed networks and an API we have been developing within the iCamp 
research project [9]. If this kind of interoperability is not supported, an error is given. 

We view the semantic guidelines for end-user development [7], as an affirmation 
of our scripting language approach. First, LISL is a domain-specific language for end-
user development, comprised of human-like, understandable constructs like the action 
statements (DG 4.1). Second, LISL also includes meta-domain orientation for general 
end-user development, i.e. by having neutral, domain-independent statements, like 
‘define’ or ‘drag’, wherever abstraction from the TEL domain is possible (DG 4.2). 
Finally, the LISL runtime, MUPPLE supports semantic annotations (DG 4.3) in two 
different ways. On the one hand, a graphical user interface encapsulates the scripting 
activity itself, so that learners can use web-based widgets to ‘program’ their personal 
learning environment. On the other hand, semantic annotations can be realized by 
recommending action-object-tool bindings of peers. 

From the point of view of pragmatics, we implemented an interpreter as well as a 
web-based interface for LISL. Technologically, this prototype is realized as part of 
the OpenACS framework, an open source toolkit for building scalable, community-
oriented web applications (cf. http://openacs.org). The LISL interpreter is written in 
the programming language Tcl, precisely the object-oriented extension named XoTcl 
(http://media.wu-wien.ac.at), and is part of the Mupple package which itself is based 
on the XoWiki module (http://openacs.org/xowiki). The Mupple package, including 
the source files, can be retrieved from the iCamp code repository at Sourceforge 
(http://sourceforge.net/projects/icamp). 

 

 
Fig. 3. Functional diagram of the LISL interpreter including a tokenizer, interpreter units for 
each statement type, and a multiplexer controlling different APIs 

Fig. 3 visualizes how the LISL interpreter works beneath the surface. Going through 
the script line by line, the input is tokenized and, according to the first token, 
processed by the adequate interpreter unit. Each of these units is representing one 
specific statement type and produces output for different purposes. Our current 
implementation differentiates between two output channels, one for creating the 
learning activity model on the client-side, the other one for creating and updating the 
mashup of the web-based learning tool. Hereby, the interpreter calculates the latest 
version of the model and the mashup space, before this information is transferred via 
a JS-based API to the browser. Updates are made incrementally, so that learners 
(facilitators and peers!) can execute single lines of code at any time. 

 



Language Design for a Personal Learning Environment Design Language 11 

 

 
Fig. 4. MUPPLE page for the activity ‘Getting To Know Each Other’; the tab ‘log’ shows the 
LISL script of our example executed by the interpreter (red indicates an error), while the tab 
‘preview’ (blue border) visualizes the web application mashup and provides web-based widgets 

As shown in Fig. 4, our MUPPLE prototype displays a learning activity in the form of 
a page which is the central user interface of the personal learning environment. At the 
top, the type (activity or activity pattern) and the title of the page are presented. On 
the left, all activities of a user are listed. Clicking on an activity folds out the list of its 
actions and loads it into the content area. Below there are various functions for 
creating new activities (blank or from a pre-defined pattern), deriving new patterns 
from the current activity, or starting a new action. For starting a new action MUPPLE 
supports the learner by recommending action-object-tool triples. 

Within the tab ‘log’, the content area displays the materialization of the learner 
interactions; the LISL code of the current activity page. By switching the view to the 
tab ‘preview’ (the area with blue boarder), learners see the web application mashup 
space generated from the executing LISL code. The code itself is created either by 
manual scripting or by logging the interactions with the web-based widgets and stored 
within the MUPPLE page. On executing the script, the semantic model is built up, 
and the web applications are launched in windows on the mashup space. Now, 
learners can work with the web-based control widgets, whereby their interactions are 
materialized by appending new LISL statements to the MUPPLE page. On returning 
to a page, its last state will be restored, which we consider as important for scrutable 
behavior of MUPPLE. Furthermore, any part of the learning activity is subject to 



12 Felix Mödritscher, Fridolin Wild, Steinn Sigurdarson 

 

adaptation by the user (facilitators and peers) for controllability reasons. Technically, 
LISL is similar to AppleScript (http://www.apple.com/applescript), but it does not 
limit the user to automate interactions with an application. Instead, it enables learners 
to reflect their learning process and to collaborate in learning networks. 

Again, we analyze LISL according to the guidelines for the pragmatics of an end-
user development language [7]. First, the scripting approach and the web-based 
command-line interpreter seem to be ideal for supporting incremental development of 
a personal learning environment (DG 5.1) by being able to see and modify the LISL 
script of a page (tabs ‘log’ and ‘code’). While our approach does not directly facilitate 
decomposable test units (DG 5.2), the interactive design allows learners to instantly 
see the systemic reactions to new or modified code, thus simplifying testing. As the 
underlying storage layer also supports version management, learners can even 
visualize differences between versions of a MUPPLE page and choose to go back to a 
previous version. Third, our prototype provides multiple views with incremental 
disclosure (DG 5.3) for a MUPPLE page, e.g. by switching between the different tabs. 
Fourth, our approach integrates the ‘development tool’ with web services (DG 5.4), 
which is, according to our definition, the primary goal of a mash-up personal learning 
environment. Fifth, syntonicity is encouraged (DG 5.5) particularly through the web-
based widgets (tab ‘preview’) for user-driven development of the learning 
environment. Sixth, the web-based LISL interpreter allows immersion (DG 5.6) with 
the LISL editor at the tab ‘code’ and the command-line interpreter at the tab ‘log’. In 
both cases learners can play around with the LISL source code and see the effects of 
their modifications, this also owes to our preference for ‘designing for emergence’. 
Seventh, LISL supports scaffolding typical design (DG 5.7) in the way that 
facilitators and peers can share activity patterns which other learners can use and 
adapt. For that purpose we realized the before-mentioned recommendation service as 
a support for learners. Finally, the whole MUPPLE approach aims at community 
building and tools to achieve community-based activities (DG 5.8). Overall, we think 
that LISL and the idea of mash-up personal learning environments perfectly ties in to 
end-user development and that we considered relevant guidelines of this field. 

4 Conclusions and Discussions 

To sum up this paper, we believe that LISL and the way we designed it is a key step 
in realizing the three concepts of learning environment design outlined in section 1: 
(1) The semantic model of learning activities is the key to the ‘learning to learn’ 
paradigm, as we primarily focus on the learner ‘actions’ – domain-specific aspects, 
however, might be subject to the ‘objects’ (e.g. artifacts) available in the activities. (2) 
The end-user development approach itself clearly manifests that we consider the 
learning environment to be the outcome of and not another pre-requisite to learning. 
Precisely, we prefer the idea of learners developing their learning environment by 
themselves to instructional design or adaptive strategies. (3) Designing for emergence 
is important to get learners to use this way of ‘learning’ and to experience the 
systemic behavior as a natural part of their daily processes. With respect to the 



Language Design for a Personal Learning Environment Design Language 13 

 

principles for language design highlighted in this paper, we think that LISL considers 
them quite well, although we have not conducted evaluation studies yet. 

All in all, learning environment design and LISL might be a useful answer to what 
Koper calls the ‘second road education’ [1] by means of lifelong learning strategies 
beyond primary, secondary, and tertiary education. Particularly, the MUPPLE 
approach is promising for building and sustaining learning networks in which actors 
can collaborate within shared activities and on shared objects and in which they can 
share best practices with peers, e.g. through LISL-based activity patterns. However, 
we are aware of the fact that MUPPLE is at an early development stage and, for 
instance, aspects of networked collaboration are still an open issue. So far, LISL aims 
at the learner-centered perspective, namely the learning environment design and the 
interaction with the tools, but lacks typical workflow issues which occur if a learner 
group collaborates on shared objects (artifacts) and uses the same tools. Furthermore, 
MUPPLE requires regulation facilities and the considerations of social network 
issues, like privacy, to ensure a valid learning community approach. Another 
weakness comprises tool interoperability, where we built upon distributed feed 
networks. Although we realized the FeedBack API for a few systems (Moodle, 
Wordpress, Scuttle), a MUPPLE-compliant learning tool must implement this API or 
provide some kind of generic Web 2.0 API to support interoperability according to 
our needs. Finally, MUPPLE lacks of evaluation results. For the design of LISL it 
would be necessary to show that the principles for language design, especially the 
user-centered ones like simplicity, learnability, efficiency, etc., are taken into account. 

References 

1. Koper, R.: Supporting the Continuing and Lifelong Development of Individuals in Online 
Learning Networks. Invited Talk at the ED-Media Conference (2008) 

2. Wild, F., Mödritscher, F., Sigurdarson, S.E.: Designing for Change: Mash-Up Personal 
Learning Environments. In: eLearning Papers, 9 (2008) 

3. Lieberman, H., Paterno, F., Klann, M., Wulf, V.: End-User Development: An Emerging 
Paradigm. In Lieberman, H., Paterno, F., Wulf, V. (eds.): End-User Development, LNCS, 
vol. 4321, pp. 1-8. Springer, Dordrecht (2006) 

4. Hoare, C.A.R.: Hints on programming language design. Report, Stanford University (1973) 
5. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for modeling language design. In: 

Information and Software Technology, 42, pp. 665-675 (2000) 
6. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated 

bibliography. In: ACM SIGPLAN Notices, 35(6), pp. 26-36 (2000) 
7. Repenning, A., Ioannidou, A.: What Makes End-User Development Tick? 13 Design 

Guidelines. In Lieberman, H., Paterno, F., Wulf, V. (eds.): End-User Development, LNCS, 
vol. 4321, pp. 51-86. Springer, Dordrecht (2006) 

8. Mödritscher, F., Neumann, G., García-Barrios, V.M., Wild, F.: A Web Application Mashup 
Approach for eLearning. In: Proc. of the OpenACS/.LRN Conference, pp. 105-110 (2008) 

9. Wild, F., Sigurdarson, S.E.: Distributed Feed Networks for Learning. In: The European 
Journal for the Information Professional (UPGRADE), 9(3) (2008) 


