
Oclets – scenario-based modeling with Petri nets

Dirk Fahland?

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany,

fahland@informatik.hu-berlin.de

Abstract. Scenario-based specifications are used for modeling highly-
complex, distributed systems in terms of partial runs (scenarios) the
system shall have. But it is difficult to derive an implementing, oper-
ational model from a given set of scenarios, especially if concepts like
anti-scenarios which must not occur are used. In this paper, we present
a novel model for scenario-based specifications with Petri nets including
anti-scenarios; we provide an operational semantics for our model.

1 Operational semantics for scenario-based specifications

The paradigm of scenarios is widely accepted in protocol specifications using
message-sequence charts (MSCs); behavior of highly-complex distributed sys-
tems is decomposed into reasonably sized artifacts called scenarios. Some classes
of MSC specifications can be transformed into Petri nets [7], but usually an
implementation has to be checked against an MSC specification. Life-sequence
charts (LSCs) [5] extend the MSC paradigm by adding behavioral precondi-
tions, anti-scenarios, and annotations to scenarios and single actions for enforc-
ing their occurrence in the system. LSCs have a trace-based semantics (a set of
charts accepts or rejects an execution trace) but, to our knowledge, there exists
no complete operational semantics for the entire LSC language. Like for MSCs,
subclasses of LSCs can be transformed into automata [4].

In this paper, we present an extension of Petri nets that with the key concepts
of LSCs. Our model has operational semantics: For every set of scenarios, we can
compute the branching process that implements the specification, extending the
formal approach of [1]. Due to the very nature of Petri nets, we also introduce
the notion of a local resource to LSC-style scenario-based specifications. Com-
pared to other approaches for scenario-based specifications with Petri nets [6],
we contribute the anti-scenario which explicitly forbids certain behavior in the
system. In [3], we explained how our approach can be used for modeling adaptive
processes in disaster management.

We will first sketch the key concepts of our approach in Sect. 2. We then
explain our ideas related to a formal semantics for our model in Sect. 3 which we
close with an outlook on future work. We assume the reader to be familiar with
Petri nets and their branching time semantics in terms of branching processes;
Esparza et al give a good introduction to these concepts in [2].
? The author’s work is funded by the DFG-Graduiertenkolleg 1324 “METRIK”.

2 Oclets - scenario-based specifications with Petri nets

A scenario specifies a possible course of (future) actions and the therein in-
volved resources in the context of a larger system. Whether a scenario suits a
given situation can be subject to further conditions. In our case, we conceive
and formalize a scenario as a partial, partially ordered run (a labeled causal net)
with a behavioral precondition. We define a system model as a set of scenarios de-
scribing sequentially connected, concurrent, mutually exclusive, and overlapping
behavior. The system behavior shall be computed by composing its scenarios.

We formalize scenarios in our Petri net class of oclets. Let Names = Actions]
Resources denote a set of labels.

Definition 1 (Oclet). An oclet o = 〈P, T, F, `, pre, type〉 is a labeled, safe,
elementary causal net 〈P, T, F, `〉 that labels places with resources and transitions
with actions; o has a non-empty, precondition pre ⊆ (P ∪T), that is causally
closed (∀x ∈ pre :: •x ⊆ pre), and a type ∈ {normal , anti}. The set (P ∪T) \ pre
is the contribution of o.

A normal oclet describes a partial run that may occur in the system. An anti-
oclet describes a partial run that may not be completed in the system; therefore
an anti-oclet contributes exactly one place or transition (that must not occur).
Figure 1 shows some (technical) example oclets. The system {o1, . . . , o5} shall
yield the behavior that is formalized in the occurrence net β5. The behavior
of a set of oclets is constructed by repeatedly composing the oclets with a la-
beled occurrence net. An ‘initial’ occurrence net β0 represents the initial state;
composing βi with an oclet o yields an occurrence net βi+1.

Roughly, a normal oclet o is composed with a labeled occurrence net β, β⊕ o
by building the union of the nets, and merging two transitions (places) if they
are labeled equally and have equally labeled predecessors. This is only allowed
if o’s precondition is found in β; all nodes of o’s precondition are merged with
nodes of β. To compose an anti-oclet o with β, βª o, first compose o like for

o
1 a

U

b

o
3 c

W

d

o
2 a

U

c

V

d

o
4 b

X

e

d

f

Y

g

o
5

b

X

d

f

W

anti

o
6

b

X

d

f

W

anti

Y

¯
0 a

U

c

¯
3

d

b

a

V

d

W

U
c

¯
5

d

b

a

X

fe

Y

g

fe

Y

g

V

d

W

X

Fig. 1. Some example oclets o1, . . . , o6 and three labeled occurrence nets β0, β3, β5.

normal oclets, then remove the contribution of o and all successor nodes. Anti-
oclets have priority: a node that was removed by an anti-oclet o− is not added
again by some other oclet o+ as it is immediately removed by o− again.

Consider the example of Fig. 1 with the initial occurrence net β0 being a
single place labeled a. Composing β0 with oclet o1, yields β1 := β0⊕ o1 which
is isomorphic to o1. β2 := β1⊕ o2 adds the post-place c to transition U and
transition V with post-place d. In β3 := β2⊕ o3, transition W is added in conflict
to V; see Fig. 1.

To compute β4 := β3⊕ o4, o4 has to be added twice because there are two
(conflicting) places d. Composing β4 with anti-oclet o5 removes f and successors
Y and g from the branch that depends on W; the resulting occurrence net β5 :=
β4ª o5 is depicted in Fig. 1. Alternatively, composing with anti-oclet o6 removes
Y and successor g, but leaves f. The runs of β5 are the runs of {o1, . . . , o5}, the
runs of β6 are the runs of {o1, . . . , o4, o6}.

This informally sketched approach for scenario-based system specifications
succeeds only if we can prove its formal consistency and show that branching
processes (or rather a certain kind of labeled occurrence nets) are closed under
our composition operations ⊕ and ª.

3 Formalizing oclets with canonically named nodes

Our oclet composition requires to ask frequently which nodes of an oclet o and
an occurrence net β describe identical actions or resources, and, hence, must
be merged. Formalizing this identity, and operations on labeled nets becomes
tedious because two isomorphic nets may have disjoint, or overlapping sets of
nodes. Identity can only be defined by relating labels of nodes to labels of neigh-
boring nodes; this leads to graph isomorphism problems. Esparza and Heljanko
use a formalization called canonically named nodes for formalizing branching
processes of (safe) Petri nets [1]. In this section, we briefly sketch their key ideas
and explain how we extend canonically named nodes for our model.

Canonically named nodes determine their identity by their labels and their
predecessor: two nodes are identical if and only if they have identical labels
and identical predecessors. The following formalization captures this canonical
identity : The set C of canonically named nodes (C-nodes) is defined inductively
as the least set that contains 〈a, ∅〉 for every a ∈ Names and if x1, . . . , xn ∈ C
and a ∈ Names then 〈a, {x1, . . . , xn}〉 ∈ C.

C-nodes can be used as the base set of transitions and places of labeled Petri
nets. A node 〈act , X〉 ∈ C, act ∈ Actions is a C-transition with label act , a node
〈res, X〉 ∈ C, res ∈ Resources is a C-place with label res. We use C-nodes to
formalize a specific class of labeled Petri nets.

Definition 2 (C-net). A labeled Petri net NC = 〈P, T, F, `〉 is a C-net iff P ⊆ C
are C-places, T ⊆ C are C-transitions, and for each x := 〈a,X〉 ∈ P ∪T holds:

1. if x is a C-place, then X is a set of C-transitions,
2. if x is a C-transition, then X is a set of C-places,

3. X ⊆ P ∪T is the preset of x: y ∈ X iff (y, x) ∈ F , and
4. a is the label of x: `(〈a,X〉) = a.

In a C-net exist no two distinct, equally labeled nodes 〈a,X〉, 〈a, Y 〉 with the
same preset X = Y , this establishes the canonical identity of C-nodes which
we described above. This is a trivial mathematical consequence, but it has an
interesting interpretation in branching processes: any two different actions (tran-
sitions) or resources (places) either have a different name, or a different causale.
Esparza and Heljanko have shown that for this reason, C-net structures are a
good candidate to formalize branching processes (BP) of (safe) net systems [1],
where the nodes of a net are labels to the nodes of the branching process.

Our oclet approach has a similar aim: construct branching-time artifacts that
describe the behavior of a system. The difference is that we do not construct
our artifacts from a net structure, but from oclets. Our construction does not
only extend a branching process by adding a single transition (and its post-
places) whenever the transition is enabled as in classical branching processes.
The precondition of an oclet can be arbitrarily complex, and added nodes may
have to be merged with the net. This means our formalization has to consider
the causal structure of a labeled occurrence net and of an oclet together. To this
end, we extend the C-node approach of [1] as follows.

Operations on C-nets and sets of C-nodes The structure of a C-net NC =
〈P, T, F, `〉 is completely encoded in its nodes, the information in its arcs F is
redundant. Thus, the nodes XC

N =df P ∪T of a C-net NC are sufficient to recon-
struct F and, hence, NC . Because any two isomorphic C-nets are identical, each
(normal) Petri net N has a unique, isomorphic C-net NC which is completely
encoded in XC

N .
This greatly simplifies our composition operation: the union of two sets

of C-nodes ‘merges’ canonically identical nodes by their identity. If we con-
sider the sets XC

o1
and XC

o2
of C-nodes of o1 and o2 in Fig. 1, the composition

βC2 := (βC0 ⊕ oC1)⊕ oC2 can be rephrased as the union XC
β2

= XC
β0
∪XC

o1
∪XC

o2
. For

instance, 〈a, ∅〉 and 〈U, {〈a, ∅〉}〉 occur both in oC1 and oC2 . But this approach does
not work for o3; oC3 contains 〈c, ∅〉, while βC2 contains 〈c, {〈U, {〈a, ∅〉}〉}〉.

Our proposed solution is to introduce variables into nodes with empty pre-
set, e.g. 〈c, v〉 such that the minimal nodes of an oclet which constitute the
begin of a scenario can be assigned to other ‘compatible’ nodes ‘further down’
the occurrence net during the composition.

Let Var denote an (infinite) set of variables. The set A of canonically named
abstract nodes (A-nodes) differs to C in its induction base: For every a ∈ Names
and every v ∈ Var , 〈a, v〉 is an A-node, and if x1, . . . , xn ∈ A and a ∈ Names
then 〈a, {x1, . . . , xn}〉 ∈ A. Correspondingly, the class of A-nets can be defined;
the variable takes the role of the empty pre-set, that is, a node 〈a, v〉 of an A-net
NA has no predecessor in NA. Wlog. for all 〈a1, v1〉, 〈a2, v2〉 ∈ XA

N holds that
v1 = v2 implies a1 = a2.

With this convention in mind, we transfer the pre-set notation •(.) from C-
nodes (or Petri nets) to A-nodes; we set •〈a, v〉 =df v. This canonically lifts

all other notions like causal relation ≤, conflict], and concurrency || from
Petri nets and C-nodes to A-nodes. As a consequence, any two distinct nodes
〈a1, v1〉, 〈a2, v2〉, v1, v2 ∈ Var are concurrent.

We introduce variables as place-holders for the pre-set of a C-node. Thus an
assignment α maps each variable v to a (possibly empty) set α(v) of C-nodes,
α : Var → 2C . If xA ∈ A, then xA [α] denotes the C-node that is obtained from
xA by simultaneously replacing every occurrence of each variable v ∈ Var with
α(v). This notion canonically lifts to sets XA ⊆ A.

There is an important technical detail, that we have to consider: Let N be
a safe, causal, labeled, elementary Petri net and let XA

N be the corresponding
set of A-nodes of N . An assignment α is feasible on XA

N iff for any two distinct
minimal nodes 〈a1, v1〉, 〈a2, v2〉 ∈ XA

N holds: 〈a1, α(v1)〉 || 〈a2, α(v2)〉. A feasible
assignment guarantees that two concurrent nodes (like b and d of o4 in Fig. 1)
remain concurrent under the assignment.

We may now formalize our oclet composition operations.

Definition 3 (Enabling assignment). Let βC be a labeled C-occurrence net,
let oA be an A-oclet with precondition preA. An α is enabling for oA in βC iff α
is feasible and preA [α] ⊆ XC

β . Let enabled(oA, βC) denote the set of all enabling
assignments for oA in βC.

Wlog. the set enabled(oA, βC) contains no two assignments α that differ only on
variables which do not occur in oA.

As an example consider o1 and β0 of Fig. 1: preAo1
= {〈a, v1〉}, XC

β0
= {〈a, ∅〉}.

The assignment that maps v1 to ∅ is enabling for o1 in β0. Oclet o4 has two
qualitatively different enabling assignments in β3.

A further notion which we need for the composition is the causal past bxc of
a C-node x with bxc =df {y ∈ C | y ≤ x}; this notion also lifts to sets of C-nodes.

Definition 4 (Oclet composition). Let βC be a labeled C-occurrence net. Let
oA be an A-oclet with enabled(oA, βC) = {α1, . . . , αk}.

If oA is a normal oclet, then the composition of βC with oA yields the C-net
βC2 =df βC ⊕ oA with XC

β2
=df XC

β ∪(XA
o [α1]∪ . . .∪XA

o [αk]).
If oA is an anti-oclet with contribution {yo} = XA

o \ preAo , then the com-
position of βC with oA yields the C-net βC2 =df βC ª oA with XC

β2
=df {x ∈

XC
β |bxc∩(yo [α1]∪ . . .∪ yo [αk]) = ∅}.

Consider oA1 and βC0 of our example; XA
o1

= {pA1 , tA1 , pA2 } with pA1 = 〈a, v1〉,
tA1 = 〈U, {pA1 }〉, pA2 = 〈b, {tA1 }〉. The enabling assignment {α} = enabled(oA1 , βC0)
yields XA

o1
[α] = {pC1 , tC1 , pC2} with pC1 = 〈a, ∅〉 etc. Thus the composition βC0 ⊕ oA1

yields exactly XA
o1

[α], merging the two places labeled a.
The composition with an anti-oclet is formally more involved, but straight

forward: All nodes of βC5 in Fig. 1 including the greyly shaded ones constitute
βC4 where oA5 has one enabling assignment {α} = enabled(oA5 , βC4) mapping the
variables of 〈b, v1〉 and 〈W, v2〉 of oA5 to {〈U, {pCa }〉} and {〈c, {tCU}〉} of βC4 , re-
spectively. The contributed node of oA5 is yo5 = 〈f, {tAX }〉; α maps yo5 to the

right-most node 〈f, {tCX,2}〉 = yo5 [α] of βC4 . All nodes of βC4 which have this node
in their causal past are to be removed, i.e. 〈f, {tCX,2}〉 itself and all nodes reachable
from it via the flow-relation. This results in βC5 .

With this formalization one can show that labeled C-occurrence nets are
closed under composition with ⊕ and ª. From the set theoretic definitions of
ª follows that (βª o1)ª o2 = (βª o2)ª o1 for any C-occurrence net β and any
two A-anti-oclets o1 and o2. (β⊕ o1)⊕ o2 = (β⊕ o2)⊕ o1 for normal oclets o1, o2

holds only if o2 does not introduce new enabling assignments for o1. The behavior
of a set of oclets is defined as its C-unfolding :

Definition 5 (C-unfolding). Let O be a set of oclets with {o1, . . . , ok} and
{ok+1, . . . , ol} being the normal oclets and the anti-oclets of O, respectively. Let
β0 be a C-occurrence net. The fixed point of the sequence 〈β0, β1, β2, . . .〉 with
βi+1 =df (βi⊕ o1⊕ . . .⊕ ok)ª ok+1ª . . .ª ol is the C-unfolding of O.

Summary and Future Work. Definition 5 concludes the presentation of our basic
model for scenario-based specifications with Petri nets. The presented expressive
means allow specifying complex behavior in terms of partial runs which may or
must not occur.

The basic model has already been implemented in the Graphical Runtime
EnvironmenT for Adaptive systems (GRETA). Next, we will introduce further
LSC features like hot and cold annotations for specifying which actions must
occur and which states are legal final states. Further, we plan to introduce the
notion of an interface to specify system composition, and system interaction.
Finally, the question which Petri net has the same behavior as a given set of
oclets shall be addressed.

References

1. J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to Model Check-
ing. Springer-Verlag, 2008.

2. J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan’s Unfolding
Algorithm. In TACAS 1996, volume 1055 of LNCS, pages 87–106. Springer-Verlag,
1996.

3. D. Fahland and H. Woith. Towards Process Models for Disaster Response. In
Proceedings of PM4HDPS 2008, co-located with BPM’08, Milan, Italy, September
2008. Accepted.

4. D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC Spec-
ifications. In CIAA 2000, volume 2088 of LNCS, pages 1–33. Springer-Verlag, 2001.

5. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag New York, Inc., 2003.

6. R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri Nets from
Finite Partial Languages. In ACSD 2007, pages 157–166. IEEE Computer Society,
2007.

7. M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Netcharts: Bridging the gap be-
tween HMSCs and executable specifications. In CONCUR 2003, volume 2761 of
LNCS, pages 296–310. Springer-Verlag, 2003.

