
Automatic Construction and Re�nement of a Class Hierarchy over
Semistructured Data

Nathalie Pernelle, Marie-Christine Rousset, Veronique Ventos
L.R.I., C.N.R.S. & University of Paris-Sud

Building 490, 91405, Orsay Cedex, France

Email: fpernelle, mcr,ventosg@lri.fr

1 Introduction
In many applications, it becomes crucial to help users to
access to a huge amount of data by clustering them in a
small number of classes described at an appropriate level
of abstraction. In this paper, we present an approach
based on the use of two languages of description of classes
for the automatic clustering of semistructured data. The
�rst language of classes has a high power of abstraction
and guides the construction of a lattice of classes cover-
ing the whole set of the data. The second language of
classes, more expressive and more precise, is the basis for
the re�nement of a part of the lattice that the user wants
to focus on. Our approach has been implemented and
experimented on real data in the setting of the GAEL
project 1 which aims at building
exible electronic cata-
logs organized as a hierarchy of classes of products. Our
experiments have been conducted on real data coming
from the C/Net (http://www.cnet.com) electronic cata-
log of computer products.

2 Languages of instances and classes
In this section, we de�ne the language of instances, L1,
in which we describe semistructured data, and the two
languages of classes L2 and L3 that we use to describe
classes over those data, at two levels of abstraction.
First, we provide some notations and preliminaries.

2.1 Preliminaries and notations

Given a language of instances, a language of classes L
de�nes the expressions that are allowed as class descrip-
tions. A class description is intended to represent in an
abstract and concise way the properties that are com-
mon to the set of its instances. A membership relation,
denoted by isaL, establishes the necessary connection
between a given language of instances and an associated
language of classes L.

De�nition 1 (Extension of a class description)
Let I be a set of instances, and C a L class description.
The extension of C w.r.t I is the following set:

extI (C) = fi 2 I j i isaL Cg

1GAEL is funded by the French Ministry of Industry ; it is
a joint project with the Verso database group of INRIA and
a startup, MatchVision, specialized in Electronic Commerce

The subsumption relation is a preorder relation be-
tween class descriptions, induced by the inclusion rela-
tion between class extensions.

De�nition 2 (Subsumption between classes)
Let C1 and C2 be two L class descriptions. C1 is
subsumed by C2, denoted C1 �L C2, i� for every set I
of instances, extI(C1) � extI(C2).

In sections 2.3, and 2.4, we will provide a constructive
characterization of subsumption for the two languages of
classes that we consider.
The notion of abstraction of an instance in a language

of classes L corresponds, when it exists, to the most
speci�c class description in L which it is an instance of.

De�nition 3 (Abstraction of an instance) Let i be
an instance, the L class description C is an abstraction
of i in L (for short C = absL(i)) i�

1. i isaL C, and

2. if D is a class description such that i isaL D, then
C �L D.

The notion of least common subsumer (a.k.a msg) will
be the basis for gathering classes in our clustering algo-
rithm.

De�nition 4 (Least Common Subsumer) Let
C1; : : : ; Cn be class descriptions in L. The L class de-
scription C is a least common subsumer of C1; : : : ; Cn

in L (for short C = lcsL(C1; : : : ; Cn)) i�

1. Ci �L C for all 1 � i � n, and

2. if D is a class description satisfying Ci �L D for
all 1 � i � n, then C �L D

2.2 The language of instances

The data that serve as instances of the classes that we
build are semistructured data in the following sense:
each data is described by a set of pairs (Attribute, Val-
ues) but the attributes used for describing the data may
vary from an item to another. In addition, each data is
typed (i.e., labelled by the name of a basic type).

De�nition 5 (Terms of L1) Let B be a �nite set of
basic types, A a �nite set of attributes, and V a set of
values. A term of L1 is of the form:

fc; att1 = V1; : : : ; attn = Vng

where c 2 B, 8i 2 [1::n], atti 2 A and Vi � V.

The description of an instance is a term of L1. For
example, we can �nd a product in the C/Net catalog,
whose L1 description is:

fRemovableDiskDrive,
CD=DV D=Type=fCDRWg,
StorageRemovableType=fSuperDiskg,
Compatibility=fMAC;PCgg

In the following, we will consider that the type c of a
L1 description is a boolean attribute.

2.3 The language of classes L2

De�nition 6 (Class description in L2) A L2 class
description (of size n) is a tuple of attributes
fatt1; : : : ; attng, where 8i 2 [1::n], atti 2 A.

The connection between the language of instances L1
and the language of classes L2 is based on the following
de�nition of the membership relation.

De�nition 7 (Membership relation for L2) Let i
be an instance description in L1. Let C be a L2 class
description: i is an instance of C i� every attribute ap-
pearing in C also appears in i.

The following proposition, whose proof is straight-
forward, characterizes subsumption, least common sub-
sumer and abstraction in L2.

Proposition 1 (Properties of L2) .
� Let C1 and C2 be two L2 class descriptions. C1 �L2

C2 i� every attribute of C2 is also an attribute of C1.
� Let fatt1 = V1; : : : ; attn = Vng be an instance de-

scription in L1. Its abstraction in L2 is unique: it is
fatt1; ; : : : ; attng.
� Let C1; : : : ; Cn be n L2 class descriptions. Their

least common subsumer is unique: it is made of the set
of attributes that are common to all the Ci's.

2.4 The language of classes L3

L3 is richer than L2 on di�erent aspects: it makes possi-
ble to restrict the possible values of an attribute ; it en-
ables to distinguish the number of values of an attribute
through di�erent su�xes (� ;+ ; ? ; �) whose notation is
inspired by the one used in XML for describing docu-
ment type de�nitions (DTDs), and whose formal seman-
tics corresponds to standard description logics construc-
tors. In fact, as it will become clearer in the following,
L3 is a subset of the C-CLASSIC description logic [7].

De�nition 8 (Class description in L3) A L3 class
description (of size n) is a tuple

fattsuff11 : V1; : : : ; att
suffn
n : V ng

where 8i 2 [1::n], atti 2 A, Vi � V, and suffi 2
f�;+; ?; �g

The following de�nition formalizes the membership re-
lation between an instance and a class description in L3.

De�nition 9 (Membership relation for L3) Let i
be an instance description in L1. Let C be a L3 class
description. i is an instance of C i� every attribute in
i appears in C and for every term attsuff : V appearing
in C,
- when suff = �, if there exists V 0 s.t att = V 0 2 i, then
V 0 � V ,
- when suff = +, there exists V 0 � V s.t att = V 0 2 i,
- when suff =?, if there exists V 0 s.t att = V 0 2 i, then
V 0 is a singleton and V 0 � V ,
- when suff = �, there exists V 0 singleton s.t V 0 � V
and att = V 0 2 i.

The product described in 2.2 is an instance of the L3
class description C1:

f RemovableDiskDrive� :ftrueg,
CD=DVD=ReadSpeed?:f20x; 32x; 24xg,
CD=DVD=Type� :fCDROM;CDRWg,
Compatibility+ :fMAC;PCg,
StorageRemovableType� :fSuperDisk; ZIP; JAZgg

It represents the set of products that have in their de-
scription (i) necessarily the monovalued and boolean at-
tribute RemovableDiskDrive whose value must be true,
(ii) possibly the attribute CD=DV D=ReadSpeed, and
if that is the case, this attribute is monovalued and its
value belongs to the set f20x; 32x; 24xg, (iii) necessarily
the attribute CD=DV D=Type, which is monovalued and
takes its value in the set fCDROM;CDRWg, (iv) nec-
essarily the attribute Compatibility, which can be mul-
tivalued and takes its value(s) in the set fMAC;PCg,
(v) necessarily the attribute StorageRemovableT ype,
which is monovalued and takes its value in the set
fSuperDisk; ZIP; JAZg.
The following propositions state the main properties of
L3. Their proofs follow from results in tractable descrip-
tion logics where structural subsumption is complete.

Proposition 2 (Characterization of subsumption in L3)
Let C1 and C2 be two L3 class descriptions. C1 �L3

C2

i� all the attributes appearing in C1 appear also in C2

and for every pair attsuff : V appearing in C2,

- when suff = �, if there exists attsuff
0

: V 0 2 C1, then
V 0 � V ,
- when suff = +, there exists V 0 � V s.t att+ : V 0 2 C1

or att� : V 0 2 C1

- when suff = ?, if there exists attsuff
0

: V 0 2 C1, then
suff 0 = ? or suff 0 = �, and V 0 � V ,
- when suff = �, there exists V 0 s.t V 0 � V and att� : V 0

2 C1.

The complexity of checking subsumption in L3 is
quadratic w.r.t the maximal size of class descriptions.

Proposition 3 (Characterization of abstraction in L3)
Let fatt1 = V1; : : : ; attn = Vng be an instance de-
scription in L1. Its abstraction in L3 is unique:
absL3

= fattsuff11 : V1; : : : ; att
suffn
n : Vng, where

8i 2 [1::n], if j Vi j� 2 then suffi = + else suffi = �.

Proposition 4 (Characterization of lcs in L3) Let
C1; : : : ; Cn be n L3 class descriptions. Let A be the set
of attributes belonging to at least one description Ci.
C1; : : : ; Cn have a unique least common subsumer in
L3, whose description is characterized as follows:

� for every attribute att 2 A, let V be the union of
the sets of values associated with att in the class
descriptions Ci's: V =

Sn

1fv 2 Vi j attsuff : Vi 2
Cig.

{ att�:V 2 lcs(C1; : : : ; Cn) i� att�:Vi 2 Ci 8i 2
[1::n].

{ att?:V 2 lcs(C1; : : : ; Cn) i�
(8i 2 [1::n] att�:Vi 62 Ci and att+:Vi 62 Ci),and

� either 9i 2 [1::n] s.t. att?:Vi 2 Ci,
� or 9i 2 [1::n] s.t. atts:V 0 62 Ci for any s.

{ att�:V 2 lcs(C1; : : : ; Cn) i�

� either 9i 2 [1::n] s.t. att�:Vi 2 Ci,
� or 9i 2 [1::n] s.t. att+:Vi 2 Ci, and 9j 2

[1::n] s.t. att?:Vj 2 Cj or atts
0

:V 0 62 Cj for
any su�x s0.

{ att+:V 2 lcs(C1; : : : ; Cn) i�
9i 2 [1::n] s.t. att+:Vi 2 Ci and 8j 2 [1::n],
att+:Vj 2 Cj or att�:Vj 2 Cj

For example, if C2 is the L3 description:

fCompatibility� :fPC;Unixg,
StorageRemovableType� :fDATg,
CompressedCapacity� : f8; 24; 32; 70gg

lcs(C1; C2)=
fRemovableDiskDrive? : ftrueg,
CD=DVD=ReadSpeed?:f20x; 32x; 24xg,
CD=DVD=Type? :fCDROM;CDRWg,
Compatibility�:fMAC;PC;Unixg,
StorageRemovableType� :fSuperDisk; ZIP; JAZ;DATg,
CompressedCapacity?:f8; 24; 32;70gg

Computing the lcs of L3 descriptions is linear in the
number of descriptions and quadratic in their size.

3 Construction of a lattice of L2 classes

The goal is to structure a set of data described in L1
into clusters labelled by L2 descriptions, and organized
in a lattice providing a browsable semantic interface fa-
cilitating the access to the data for end-users.
We proceed to a two-step clustering:

1. In the �rst step, the data are partitioned according
to their type: for each type c, we create a basic class
named c. Its set of instances, denoted inst(c), is the
set of data of type c. Its L2 description, desc(c), is
obtained by computing the least common subsumer
of the abstractions of its instances. The result of
this step is a set C of basic classes and a set A
of attributes supporting the L2 descriptions of the
classes of C. For each attribute a, the set classes(a)
of basic classes having a in their description is com-
puted. This preliminary clustering step has a linear
data complexity.

2. In the second step, a lattice of clusters is constructed
by gathering basic classes according to similarities
of their L2 descriptions. In this step, clusters are
unions of basic classes. The computational com-
plexity of this step does not depend on the number
of initial data but only on the size of the L2 descrip-
tions of basic classes.

We now detail this second step. A cluster ci1 : : : cik
will appear in the lattice if the L2 descriptions of the
classes ci1 : : : cik are judged similar enough to gather
their instances. The similarity between class descrip-
tions is stated by attributes in common. However, we
take into account only attributes that do not occur in
too many (or all the) classes. For instance, the attribute
pricemay appear in all the instances of a catalog describ-
ing products, and is therefore not useful to discriminate
product descriptions. Among the set A of attributes,
we select meaningful attributes as being the attributes

a 2 A such that jclasses(a)j
jclassesj � s where s is a certain

threshold (e.g., s = 0:8). Let A0 be the set of mean-
ingful attributes. We redescribe all the basic classes in
terms of the attributes of A0 only: for a basic class c, we
call its short description, denoted shortdesc(c), the L2
description of c restricted to the meaningful attributes:
shortdesc(c) = desc(c) \A0.
Our clustering algorithm, L2-Cluster, is described in

Algorithm 1. It is adapted from a frequent item set
algorithm ([2]). It iteratively builds levels of clusters,
starting with building the level of the coarsest clusters
corresponding to unions of classes having atleast one at-
tribute in common. Each iteration k is guided by at-
tribute sets of increasing size k which, being common to
some class descriptions, are the support of the creation of
a potential node gathering those classes. Among those
potential nodes, we e�ectively add to the lattice those
whose L2 short description is equal to their k-support:
the k-support of a node generated at iteration k is the
k-itemset supporting the generation of that node. By
doing so, we guarantee that the description of the nodes
added to the lattice is strictly subsumed by those of their
fathers.
Notation: We call a k-itemset a set of attributes of size
k. We assume that attributes in itemsets are kept sorted
in their lexicographic order. We use the notation p[i] to
represent the i-th attribute of the k-itemset p consisting
of the attributes p[1]; : : : ; p[k] where p[1] < : : : < p[k].
Figure 1 shows the lattice returned by L2-Cluster

when it is applied on C = fc1; c2; c3; c4; c5g and A =
fa1; a2; a3; a4g such that:
shortdesc(c1) = fa1; a2; a3g shortdesc(c2) = fa2g
shortdesc(c3) = fa1; a3g shortdesc(c4) = fa3; a4g

shortdesc(c5) = fa1; a3g
The following proposition summarizes the properties

of the algorithm L2-Cluster.

Proposition 5 (Properties of L2-Cluster) Let H be
the lattice returned by L2-Cluster.

� For each node n 2 H, let shortdesc(n) and
classes(n) be respectively the description and the set

Require: a set A0 of meaningful attributes: for each
a 2 A0, classes(a) is the set of basic classes of C
whose L2 short description contains a.

Ensure: return a lattice organized in levels of nodes.
Each node n is characterized by classes(n): the basic
classes it gathers, and shortdesc(n): the least com-
mon subsumer of the short description of the basic
classes of the cluster.

1: (* Initialization step gathering the biggest unions of
classes having atleast one attribute in common:*)

2: A1 A0, level(1) ;; : : : ; level(j C j) ;
3: for every a 2 A1 do
4: let classes(a) = fca1; : : : ; c

a
jg

5: let desc = lcsL2
(desc(ca1); : : : ; desc(c

a
j))

6: if desc \A0 = fag then
7: add to level(j) a node n such that:

classes(n) = fca1; : : : ; c
a
jg ;

shortdesc(n) = desc \A0;
node(fag) = n

8: k 1
9: (* Generation of new nodes supported by

k + 1-itemsets : *)
10: repeat
11: for every pair (p; q) 2 Ak do
12: if p[1] = q[1]; : : :; p[k� 1] = q[k� 1]; p[k]< q[k]

then
13: let newp = p [fq[k]g, and let Sk be the set

of k-subsets of newp.
14: if Sk � Ak and classes(node(p)) \

classes(q[k]) 6= ; then
15: add newp to Ak+1

16: let fci1; : : : ; cijg be classes(node(p)) \
classes(q[k])

17: let desc = lcsL2
(desc(ci1); : : : ; desc(cij))

18: if desc = newp then
19: add to level(j) a node n such that:

classes(n) = fci1; : : : ; cijg ;
shortdesc(n) = desc;
node(newp) = n

20: k k + 1
21: until Ak = ;
22: (* Creation of the lattice. For every node n,

Fathers(n) group the fathers of n among the nodes
of greater levels:*)

23: Initialize Fathers(n) and AncNotFathers(n) to ;
for every generated node n.

24: for i =j C j �1 downto 1 do
25: for every node n 2 level(i) do
26: for j = i + 1 to j C j do
27: for every node m 2 level(j) do
28: if classes(n) � classes(m)

and m 62 AncNotFathers(n) then
29: add m to Fathers(n)
30: add Fathers(m) [AncNotFathers(m)

to AncNotFathers(n)

Algorithm 1: L2-Cluster

c1 c3 c4 c5

c1 c2

c1 c3 c5

c4

{a3}

{a2}

{a1 a2 a3} {a3 a 4}

{a1 a3}

c1

Figure 1: Example of a lattice constructed by L2-Cluster

of basic classes returned by L2-Cluster:

shortdesc(n) = lcsL2
(abstL2

(i1); : : : ; abstL2
(ik))

where fi1; : : : ; ikg =
S

c2classes(n) inst(c).

� H is a Galois lattice, i.e. for every node n, the pair
(classes(n); shortdesc(n)) is maximal in the follow-
ing sense: there is no m 2 H such that classes(n) �
classes(m) and shortdesc(n) = shortdesc(m), or
shortdesc(n) � shortdesc(m) and classes(n) =
classes(m).

� The worst time complexity of L2-Cluster is expo-
nential in the maximal size of the basic classes L2
descriptions.

4 Re�nement in L3

The goal of this step is to re�ne a part of the lattice H
computed by L2-Cluster based on the more expressive
language L3. This step is achieved after a user chooses
one node Fatn and one of its descendants Sonn in H.
Algorithm 2 describes how new nodes are possibly added
between Sonn and Fatn. Those new nodes correspond
to clusters whose descriptions in L2 did not distinguish
from those of Fatn or Sonn, while having distinct de-
scriptions in L3. A closure operation on those nodes is
necessary in order to make their L3 descriptions maxi-
mal w.r.t the union of basic classes which they gather.
L3-Cluster applies after the descriptions in L3 (denoted
desc3 in Algorithm 2) have been computed for Sonn and
Fatn. Those computations are least common subsumer
calculations whose overall time cost is polynomial w.r.t
to the size and the number of the instances of the basic
classes involved in Fatn.
Let us illustrate the application of L3-Cluster on the

nodes c1 c3 c5 and c1 of Figure 1, assuming that the L3
descriptions of the involved basic classes are:
desc(c1)=fatt

+
1 :fv1; v3g; att

+
2 :fv2; v4g; att

�
3:fv6gg

desc(c3)=fatt�1:fv3g; att
?
2:fv4g; att

�
3:fv7gg

desc(c5)=fatt
�
1:fv5g; att

�
3:fv7; v8gg.

LRes-Cl and L-Cl are initialized to ffc1; c3; c5g; fc1gg.
� Gathering c3 with c1 is considered �rst:
desc3=fatt+1 :fv1; v3g; att

�
2:fv2; v4g; att

�
3:fv6; v7gg,

classes=fc1; c3g
Since desc3(c5) is not subsumed by desc3, the node c1c3
is added. LRes-Cl becomes ffc1,c3,c5g,fc1g,fc1,c3gg.

Require: Two nodes Fatn and Sonn such that
classes(Sonn) � classes(Fatn).

Ensure: return a lattice between Fatn and Sonn
1: L-Cl fclasses(Fatn); classes(Sonn)g
2: LRes-Cl L-Cl
3: Nodes fSonng
4: for every node n 2 Nodes do
5: for every class c 2 classes(Fatn) n classes(n) do
6: Change false
7: classes classes(n) [fcg
8: if classes 62 L-Cl then
9: L-Cl L-Cl [fclassesg
10: desc3 lcsL3

(desc3(n); desc3(c))
11: (* Closure operation: *)
12: for every class Cl 2 classes(Fatn) n classes

do
13: if desc3(Cl) �L3

desc3 then
14: add Cl to classes
15: Change true
16: if classes 62 LRes-Cl then
17: add a new node p to Nodes such that

classes(p) = classes and desc3(p) = desc3
18: LRes-Cl LRes-Cl [fclasses(p)g
19: if Change = true then
20: L-Cl L-Cl [classes(p)
21: Suppress n from Nodes

Algorithm 2: L3-Cluster

� Gathering c5 with c1 is now considered:
desc3=fatt+1 :fv1; v3; v5g; att

�
2:fv2; v4g; att

�
3:fv6; v7; v8gg,

classes = fc1; c5g
Since desc3(c3) is subsumed by desc3, c3 is added to
classes, which is updated to fc1; c3; c5g. The node
corresponding to c1 c5 is not added since it is not closed,
the node corrresponding to its closure c1 c3 c5 is not
added either because fc1; c3; c5g is already in LRes-Cl.
The following proposition summarizes the main prop-

erties of the algorithm L3-Cluster.

Proposition 6 (Properties of L3-Cluster) Let C1
be the set of basic classes of the father node. Let C2
(C2 � C1) be the set of basic classes of the son node. Let
H3 be the lattice returned by L3-Cluster.

� For each node n 2 H3, let desc3(n) and classes(n)
be respectively the description and the set of basic
classes returned by L3-Cluster:

desc3(n) = lcsL3
(abstL3

(i1); : : : ; abstL3
(ik))

where fi1; : : : ; ikg =
S

c2classes(n) inst(c).

� H3 is a complete Galois lattice, i.e. for every node
n, the pair (classes(n); desc3(n)) is maximal, and
H3 contains every node verifying the maximality
criteria and whose set of classes includes C2 and
are included in C1.

� The worst time complexity of L3-Cluster is exponen-
tial w.r.t j C1 j � j C2 j.

5 Conclusion and Discussion

This paper has proposed an approach to organize into
clusters large sets of semistructured data. The scaling
up of the approach is made possible because its complex-
ity is remained in control in di�erent ways: (1) the data
are aggregated into basic classes and the clustering ap-
plies on the set of those basic classes instead of applying
on the data set (2) the two-step clustering method �rst
builds a coarse hierarchy, based on a simple language
for describing the clusters, and uses a more elaborate
language for re�ning a small subpart of the hierarchy
delimited by two nodes.
Experimental results: We have evaluated our ap-
proach using a real dataset composed of 2274 computer
products extracted from the C/Net catalog. Each prod-
uct is described using a subset of 234 attributes, possibly
multi-valued. There are 59 types of products and each
product is labelled by one and only one type. The goal
of the experiment was twofold : to assess the e�ciency
and the simplicity of the lattice for the �rst clustering
step and to show the accuracy of the re�nement of a part
of the lattice using the second clustering step.
In order to make the L2 lattice even simpler, the

number of nodes obtained with L2-Cluster may be
parametrized by a threshold n used to restrict the nodes
that appear in the lattice to gather at least n basic
classes. Figure 2 shows that, as it is mentionned in [15],
this quantitative criteria allows us to signi�cantly de-
crease the size of the lattice.

60

3 4 5

119 24 13Number of nodes

4 2 1Maximal depth

Running Times (s)

Threshold

3

2

9

1

1

12.3 10.4 2.1 1.1 1

Figure 2: Quantitative results of L2-Cluster

Figure 3 illustrates the simplicity of the L2 descrip-
tions and the signi�cance of the nodes.
L3-Cluster allows to distinguish nodes that can-

not be distinguished by L2-Cluster. For instance,
if L3-Cluster is applied when an end-user chooses
to re�ne the L2 lattice between the node (a)
and the node (b) in Figure 3, the aggregation
of all types of drivers (i.e. RemovableTapeDrive,
RemovableDiskDrive and HardDiskDrive) is part
of the L3 lattice. This new cluster appears for
the following reasons : no driver is described
using the attributes StorageController=RAIDLevel,
Networking=DataLinkProtocol or Networking=Type
(those attributes were optional in L3 description of
(a)). In addition, the value SCSI for the attribute
StorageController=Type is not possible for a driver.
Related work: Our work can be compared with exist-
ing work in machine learning based on more expressive
languages than propositional language and/or using a

Key-Entry Device
Pointing Device
Game Controller

Key-Entry Device
Pointing Device
Game Controller
Communic. Device
Handheld/PDA
Laptop

Removable Disk Drive

Hard Disk Drive
Removable Disk Drive
Network Storage
Removable Tape Drive

{Stor./Type,
 Stor. Controller/Type}

{Stor./Type,
 Stor. Controller/Type,
 Removable Stor/Type}

Removable Disk Drive
Network Storage
Removable Disk Drive

{Input Dev/Type}

{Input Dev/Type,
 Form Factor}

(a)

(b)
{Stor./Type,
 Stor. Controller/Type,
 Removable Stor/Type,
 CD/DVD/Type}

Figure 3: A part of the L2 lattice for C/net (n=3)

shift of representation. Most work on expressive lan-
guages has been developped in a supervised setting (e.g.
Inductive Logic Programming), while little work exists
in an unsupervised setting. We can cite KBG [4], TIC [5]
and [11] which perform clustering in a relational setting.
The main di�erence with our approach is that they use
a distance as a numerical estimation of similarity. Al-
though the best representation of a cluster is the least
common subsumer of its instances, they approximate it
numerically by the cluster centroid (i.e., the point that
minimizes the sum of squared distances). The reason is
that, in contrast with our setting where the lcs compu-
tation in L3 is polynomial, lcs computing in their �rst-
order language may be exponential.[3] presents lcs com-
puting for a more expressive language than L3 but for
this language subsumption is exponential. KLUSTER
[10] re�nes a basic taxonomy of concepts in the setting
of a description logic for which computing lcs is poly-
nomial. In KLUSTER, the clusters are not unions but
subconcepts of primitive concepts, and the re�nement
aims at learning discriminating de�nitions of mutually
disjoint subconcepts of a same concept. As for the use
of a shift of representation, it is used in supervised learn-
ing in order to increase accuracy (i.e. the proportion of
correctly predicted concepts in a set of test examples) [8;
14] or to search e�ciently a reduced space of concepts [9;
6]. In unsupervised learning, shift of representational
bias may be used to change the point of view about the
data [12; 13]. For instance, Cluster/2 [12] provides a
user with a set of parameters about his preferences on
the concepts to be created. Finally, the two-step clus-
tering approach proposed in [1] is similar in spirit with
our clustering in L2 since it �rst identi�es basic clusters
(as high density clusters) before building more general
clusters that are unions of those basic clusters.

Perspectives: We plan to extend our current work to
take nested attributes and textual values into account in
L3 in order to fully deal with XML data.

References
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and

P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. SIG-
MOD Record, 27:94{105, 1998.

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In VLDB-94, Santiago, Chile.

[3] F. Baader, R. K�usters and R. Molitor. Comput-
ing Least CommonSubsumers in Description Logics
with Existencial Restrictions. In IJCAI-99, Stock-
holm, Sweden.

[4] G. Bisson. Conceptual clustering in a �rst order
logic representation. In ECAI-92, Vienne, Austria.

[5] H. Blockeel, L. De Raedt, and J. Ramon. Top-down
induction of clustering trees. In ICML-98, Morgan
Kaufmann, 1998.

[6] P. Br�ezellec and H. Soldano. Tabata: a learning
algorithm performing a bidirectional search in a re-
duced search space using a tabu strategy. In ECAI-
98, Brighton, Angleterre, 1998.

[7] W. W. Cohen and H. Hirsh. Learning the CLAS-
SIC description logic: Theoretical and experimental
results. In KR-94, 1994.

[8] W. Van de Velde. Learning through progres-
sive re�nement. In Pitman, editor, Proceedings of
the third European Working Session on Learning
(EWSL'98),London, 1983.

[9] J. Ganascia. Tdis: an algebraic formalization. In
IJCAI-93,Vancouver, Canada, 1993.

[10] J. U. Kietz and K. Morik. A polynomial approach to
the constructive induction of structural knowledge.
Machine Learning, 14(2):193{217, 1994.

[11] Mathias Kirsten and Stephan Wrobel. Extending
k-means clustering to �rst-order representations. In
J. Cussens and A. Frish, editors, Proc. of the 10th
International Conference on Inductive Logic Pro-
gramming, Springer Verlag, 2000.

[12] R.S. Michalski and R.E. Stepp. Learning from ob-
servation: Conceptual clustering. In Morgan Kauf-
mann, editor, Machine learning : An arti�cial in-
telligence approach, 1983.

[13] G. Stumme. Local Scaling in Conceptual data Sys-
tems. In Springer Verlag, editor, ICCS, LNAI 1115,
1996.

[14] P. E. Utgo�. Shift of bias for inductive concept
learning. In Morgan Kaufmann,ed.,Machine learn-
ing : An arti�cial intelligence approach Vol. 2, 1986.

[15] R. Wille. Restructuring lattice theory. In Sym-
posium on Ordered Sets, University of Calgary,
Boston, 1982.

