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Abstract

In this paper a technique that enables the dialog-
based construction and refinement of operational-
ized ontologies is proposed. An agent learns classi-
fication knowledge through a dialog with a teacher.
In this dialog the agent is forced to provide log-
ical explanations of why it classifies (or fails to
classify) an instance to various ontology concepts.
The teacher is able to give immediate and very fo-
cused feedback through these dialogs. This en-
ables the agent to be taught classification knowl-
edge through the treatment of only a handful of
examples. And the teacher’s feedback is through
conversational point, click, and field-filling interac-
tions.
What differentiates this approach is that this work
leverages off of, and builds on previous work in
which a complete system of concept equations
may be solved over a practical subset of relational
schemas. The ability to syntactically compute
query differenceenables the calculation of concept
intersections and differences, and the determina-
tion of concept subsumption and disjointness. The
knowledge repair algorithms outlined in this paper
require this capability.

Keywords: Knowledge Acquisition, Query Difference Op-
erator, Explanation, Universal Relation.

1 Introduction
Unfortunately real world data does not usually come with
class membership data attached. Much real world data sim-
ply describes low-level situations or events. To employ
similarity-based learning techniques, a large, representative
sample of the data must first be manually labeled by an ex-
pert. Moreover, if the target concepts are subjective (e.g.
GoodRestaurant or BadCreditRisk ), then this label-
ing phase will need to be performed by multiple individuals
to suit their own unique purposes.

Though the idea is not new, it still stands that usingprior
knowledgeis helpful in the task of acquiring concrete clas-
sification knowledge. Throughoperationalizingsuch back-
ground knowledge, it is possible to teach an agent how to

classify events and situations using just a handful of exam-
ples.

This is especially pertinent when we consider thaton-
tologieswill capture more and more high-level background
knowledge, but will often capture such knowledge in gen-
eral forms that will need to be mapped down to the actual
databases available in practice.

The notion of an ontology in this paper, is that of a lattice of
general and domain concepts and their relationships. These
concepts may have logical definitions connecting them to the
extensional schema in which instances (facts) are represented.
Alternatively the ontology may not have operationalized def-
initions. In the later case the techniques here attempt to aid in
theconstructionof an operationalized ontology. In the former
case, these techniques may be employed torefinean existing,
operationalized ontology.

Let us start this paper out with a very simple example of
an agent trying to build the concept of speeding1. Assume
a simple schema orrecord , along with a target concept
speeding :
report(vin, speed, color, type, date)
speeding(vin, date)

This schema also comes annotated, informing us thatvin
(vehicle identification number) anddate are the keys, and
that vin , color , andtype are no-orders, anddate and
speed are total orders.

Aside from access to this input information, let us assume
that the agent is a virtual tableau rosa. There is no knowledge
of what speeding is - except for the fact that it is assigned to
specific vehicles on specific dates.
report(001, 78 mph, white, mazda, 01-01)

(1) Agent:This is not speeding.
(2) Teacher:Wrong classification.
(3) Agent: OK - This is speeding because the speed is 78 mph, color is white, and the
type is mazda.
(4) Teacher:The color and type are not relevant to why this car was judged to be
speeding.
(5) Agent:This is speeding because the speed is 78 mph
(6) Teacher:Correct.

report(002, 74 mph, black, BMW, 01-02)

(7) Agent:This is not speeding because the speed is not 78 mph.
(8) Teacher:Wrong classification
(9) Agent:OK - This is speeding because the speed is less than or equal to 78 mph.

1More complex examples will be discussed below, but this ex-
ample illustrates the basic approach being proposed here.



(10) Teacher:No - Wrong condition.
(11)Agent:OK - This is speeding because the speed is greater than or equal to 74 mph.
(12)Teacher:Correct.

report(003, 60 mph, brown, Ford, 01-03)

(13) Agent:This is not speeding because the speed is less than 74 mph.
(14) Teacher:Correct - but you mean 65 mph

report(004, 90 mph, white, Police, 01-03)

(15) Agent:This is speeding because the speed is greater than 65 mph.
(16) Teacher:Wrong classification
(17) Agent: OK - This is not speeding because the the color is white, and the type is
Police Car and Speed is 90 mph.
(18) Teacher:The color and the speed are not relevant to why this car was judged not
to be speeding.
(19) Agent:OK - This is not speeding because the type is Police.
(20) Teacher:correct.

(21) Agent:Is it always the case that it is not speeding when speed is less than 65 mph?
(22) Teacher:Yes.
(23) Agent:Is it never the case that it is speeding when car type is police?
(24) Teacher:Yes.
(25) Agent:Is it always the case that it is speeding when car type is not police and the
speed is greater than 65 mph?
(26) Teacher:Yes.

(27) Agent:I fully understand the concept of speeding.

1.1 Organization of this paper
Section 2 illustrates the basic approach through showing the
workings of the agent over the example dialog above. Section
3 discusses scale up to larger domains. Section 4 discusses
the formal under-pining of this work - theQuery Difference
Operator. Section 5 discusses this work in relation to some
prior and ongoing work in knowledge acquisition and ontol-
ogy learning. Section 6 proposes the further plans for the
development and refinement of this system.

2 The Approach
2.1 The Conversational Flow
There is a semi-rigid protocol that is observed between the
teacher and the agent. Teacher input is constrained to be in
a very simple form. This obviates the need for sophisticated
front-end interpretors over the teachers input and feedback. In
addition all expressions that the agent produces are in natural
language. This is possible because the representations within
the agent are forms from which it is relatively easy to generate
lucid, non-ambiguous natural language.

Figure 1 shows the conversational flow between the agent
and the teacher. There are three distinct phases of the conver-
sation. The first phase is theobservation phaseand it always
occurs. In this phase an example instance and target concept
are presented to the agent. The agent calculates whether the
example is a member of the target concept and then provides a
positive (or negative) minimal explanation of its classification
back to the teacher. If the teacher agrees with the classifica-
tion decision and also finds the explanation adequate, then the
process concludes and the agent will await the next trial.

If the teacher disagrees with the classification, then the
agent is informed of this with a disagreement indication. This
opens thecorrection phaseof the conversation. In this phase
the teacher directs the agent to repair its knowledge structures
and to then provide a new (correct) classification and expla-
nation based on the repaired knowledge structure. This, when
the teacher has been less than consistent in prior training, may
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Figure 1: Conversational Flow

generate a (set of) clarifying question(s) from the agent. After
this phase the agent will be classifying the example properly2

and therefinement phaseis entered.
Upon entering the refinement phase, the agent will be prop-

erly classifying the example but it may be relying on irrel-
evant conditions in the example to perform the deduction.
The explanation provided from the observation or correction
phase starts out the interaction. The teacher may identify
conditions in the explanation which are irrelevant or incor-
rect. The teacher may provide repairs to incorrect conditions
or simply let the agent search out an alternative condition.
Alternatively the teacher may request that a deeper explana-
tion, with more conditions, be provided. During the refine-
ment phase the agent may also ask general questions about
the domain. These true/false questions, if answered by the
teacher, enable the agent to further constrain the hypothesis
space. At the end of the refinement phase the agent will still
be able to account for the example (and past examples) but
will, through, interaction with the teacher, have more specific,
closer to the truth, knowledge structures. This type of confi-
dence building through dialog takes us a step toward more
complete and consistent ontologies[3].

2.2 Hypothesis Space Representation
The approach here is a mix of version-spaces[8], explanation-
based learning[9][10], and description logics[1] inspired rela-
tional systems[7]. Let us illustrate the basic representations
and processing by treating the example above.

As mentioned in the introduction, the knowledge in-
put to the system is a schema, and a set of target con-
cepts that should be learned. In this case the relation
report(vin, speed, color, type, date) plus
the conceptspeeding(vin, date) is provided. In ad-
dition we know whether an attributes domain is either atotal-
order or ano-order. Finally we have functional dependency
knowledge thatvin anddate , together, functionally deter-
mine all the other attributes.

2Unless, in the face of the clarifying questions, the teacher de-
cides to abort the trial.



We associate the target conceptci to be learned with three
expressions:C?i ,C>i , andCi. As is customary,C?i indicates
the logically most specific possible version ofci,C>i the most
general possible version of the concept, andCi the current,
best guess, as to whatci is.

Note that all of these expressions are in the form that will
be defined in section 4. The important point to note here is
that these expressions resemble relational algebra (over a uni-
versal relation[2]) and are closed under a difference operator.
From this it follows that we are able to compute conceptual
differences, intersections, and compliments. In addition we
are able to compute subsumption, disjointness, and concept
equivalence. The operations of the agent, sketched in section
2.4, require these capabilities.

The following tables report the contents of the agent’s
knowledge-base after each step in the dialog3. Note that the
j-th instance added istj .

First we consider the knowledge the agent has aboutC>1
andC?1 through the dialog.

C>
1

C?
1

0 �vin;date ;

1 �vin;date 	 �vin;dateft1g ;

3 �vin;date �vin;dateft1g

7 �vin;date 	 �vin;dateft2g �vin;dateft1g

9 �vin;date �vin;dateft1; t2g

13 �vin;date	 �vin;dateft1; t2g	

�vin;dateft3g �vin;dateft3g

15 �vin;date	 �vin;dateft1; t2; t4g	

�vin;dateft3g �vin;dateft3g

17 �vin;date	 �vin;dateft1; t2g	

�vin;dateft3; t4g �vin;dateft3; t4g

22 �vin;date	 �vin;dateft1; t2g	

�vin;date�speed<65	 �vin;date�speed<65	

�vin;dateft4g �vin;dateft4g

24 �vin;date	 �vin;dateft1; t2g	

�vin;date�speed<65	 �vin;date�speed<65	

�vin;date�type=Police �vin;date�type=Police
26 �vin;date	 �vin;date�speed�65	

�vin;date�speed<65	 �vin;date�type=Police
�vin;date�type=Police

As we can see, until the agent issues the general ques-
tions to the teacher, there is little, other than the actual in-
stances themselves, that constrain the hypothesis space. The
equivalence ofC>1 andC?1 is established by verifying that
C>1 	 C?1 = ; andC?1 	 C>1 = ;. Section 4 discusses how
this is achieved. The equivalence ofC?1 andC>1 at step 26
licenses the agent to make the statement at step 27.

Next we show the calculated guess that the agent has about
the actual conceptC1. We will discuss below how the system
arrives at these guesses below. Note that these guesses are
always legal. That isC1 � C?1 andC>1 � C1.

C1
0 ;

1 ;

2 �vin;dateft1g

3 �vin;date�speed=78^color=white^type=mazda

4 �vin;date�speed=78
8 �vin;date�speed=78 � �vin;dateft2g

9 �vin;date�speed�78
10 �vin;date�speed�74
13 �vin;date�speed�74
14 �vin;date�speed>65

15 �vin;date�speed>65

16 �vin;date�speed>65 	 �vin;dateft4g

17 �vin;date�speed>65 	 �vin;date�color=white^:::
18 �vin;date�speed>65 	 �vin;date�type=0Police0

3Operations are applied from left to right.A	B 	 C � (A	
B)	 C

2.3 Relevance Representation
There is an additional data structureRi associated with each
concept. This structure records the relevance feedback that
has been gathered on the concept. This structure consists of
a set of relevant attribute sets paired with query expressions.
This indicates that the variables within the set are relevant to
determining the conceptci when the instance falls under the
associated query expression. The following table shows the
contents ofR1 for the example in the introduction.

R1

0 ;

4 fspeedg : �color=white;type=mazda;speed=78

12 fspeedg : �color=white;type=mazda;speed=78�

�color=black;type=BMW;speed=74

14 fspeedg : �color=white;type=mazda;speed=78�

�color=black;type=BMW;speed=74�

�color=brown;type=Ford;speed=60
17 fspeedg : �color=white;type=mazda;speed=78�

�color=black;type=BMW;speed=74�

�color=brown;type=Ford;speed=60	

�color=white;type=Police;speed=90
18 fspeedg : �color=white;type=mazda;speed=78�

�color=black;type=BMW;speed=74�

�color=brown;type=Ford;speed=60	

�color=white;type=Police;speed=90
ftypeg :

�speed=90;color=white;type=Police

Note that this structure is a logical consequence of the op-
erations carried out by the teacher.

2.4 Operations
The teacher, who guides the sessions, is able to apply opera-
tions. The structuresCi, C>i , C?i , andRi are accessed and
altered during these operations.

Operations of the Observation Phase
The Classify operation simply tests whether the
instance meets the current definition of theconcept . If
it does then the minimal set of attribute values that make it
so are reported. This is thepositive explanationfor why the
instance is a member of the concept. If the instance is not a
member of the concept then the minimal set of attribute val-
ues, which, if changed, would make it a member of the con-
cept, are reported. This is thenegative explanationfor why
the instance is not a member of the concept. These techniques
are described in[6]. Explanation services for general descrip-
tion logic systems are discussed in[5]. The results from this
operation are shown in every agent utterance before step 21
in the introductory dialog.

Operations of the Correction Phase
The operationWrongClassification starts the correc-
tion phase in which the agent’s conceptual structures are re-
paired. If the disagreement is with a positive explanation,
then the initial repair is to subtract the instance from all three
Ci, C>i , andC?i structures (e.g. step 16). If the disagree-
ment is with a negative explanation then the initial repair is
to add the instance to the three structures (e.g. steps 2 and
8). In either case for theCi expression the agent immedi-
ately adopts a value-oriented view of the instance, expressing
the instance as a conjunction of conditions, one for eachrel-
evantattribute. The relevance of an attribute is decided by
consulting the relevance structureRi. Seeheuristic #2below
to see how relevant attributes are decided. This produces an



immediate generalized repair to the structure. However this
repair will be generalized only enough to apply to the current
instance, so re-testing prior instances is not necessary.

Note that contradictions are possible when the teacher has
given inconsistent responses. However this is only the case
when the agent has issued a set of general questions to the
teacher to constrainC>i andC?i . When a correction violates
the boundaries of theC>i orC?i the agent will issue a (set of)
clarifying question(s) to re-extend the boundary.

Operations of the Refinement Phase
In all the operations of the refinement phase, the structureCi

is altered. If it is generalized then it is necessary to re-test
all of the prior negative examples. If it is specialized then all
prior positive examples need to be re-tested. By reasoning
over the concept and relevance expressions one does not, in
practice, need to do this full calculation at each step. Still,
logically, the new structure must account for all past exam-
ples. In the case of a conflict the operation is disallowed,
along with an explanation of why. Refinements that carry
Ci outside the boundary determined byC>i andC?i generate
clarifying questions to the teacher to ask if the boundary may
be extended.

The operationIrrelevant identifies when and where
an explanation is using an irrelevantcondition . In the
case of a positive explanation, the condition is removed (e.g.
step 4) fromCi. In the case of a negative explanation,
Irrelevant , we remove conditions in a way similar to the
case for positive explanations, but in this case for terms which
are being subtracted withinCi (e.g. step 18).

The operationWrong identifies a condition that has been
generalized improperly (e.g. step 10). This then precipitates
an alternative generalization strategy to be applied to the con-
dition. Seeheuristic #3below. The operationChange lets
the teacher directly alter a constant value within a condition
in the knowledge structure (e.g. step 14).

The operationMoreReasons is a call for more specificity
around why the instance was (or was not) classified to the
concept. In either case this leads to the full (i.e. all condi-
tions) value-oriented version of the instance to be either added
to or subtracted fromCi.

After the new version ofCi is confirmed consistent with all
the prior examples, theClassify(instance) operation
is re-run and the correct classification and its explanation are
reported to the teacher. This may in turn result in another
round of refinement.

Heuristics
The above operations employ the following heuristics:

Heuristic #1: The values of keys are not relevant to clas-
sifying the instances.Though this heuristic could easily be
discarded, it seems to hold for many potential domains.

Heuristic #2: A relevant attribute of an instance is an at-
tribute whose query expression inRi does not preclude the
instance. If no relevant attributes may be determined, then
all of the non-key attributes are deemed relevant. The intu-
ition here is that the repairs in the correction phase must only
apply to the current instance, yet should be generalized, and
should exploit prior determinations of relevant attributes. Us-
ing this the agent concludes that all the non-key attributes are

relevant in step 2, only speed after step 8, and again all non-
key attributes after step 16.

Heuristic #3: For total orders, if more than one value is
true (or false) the agent will attempt to generalize the condi-
tion over the entire domain of the total order.Currently the
agent (arbitrarily) decides to generalize by assuming that the
attribute is� to the highest element in the set of known values
(e.g. step 9). If this fails the agent generalizes by assuming
that the attribute is� to the lowest element in the set (e.g.
step 11). Next the agent attempts to generalize over the range
from the lowest to the highest. If all these generalizations fail,
then the agent falls back to just known values.

3 Scale-up
3.1 Multiple concepts and Hierarchical Knowledge
In the presence of already known concepts we convert the
concept values to boolean attributes on new instances. The
system will then neglect the attributes that were deemed rele-
vant to decide the known concept. Of course the teacher may
force a more specific analysis that include the concept vari-
ables. Still this initial treatment helps promote the building
of hierarchical knowledge structures in the agent. Note that
this makes the order of the concepts presented to the agent
very important - where each concept builds on the subsequent
ones. Techniques from concept exploration[11] may be the
key to managing this complexity.

3.2 Incorrect Guidance
The above system can accommodate an example where the
teacher gives incorrect or misleading instruction. The ap-
proach is simply to state the conflict to the teacher. The re-
sponse of the teacher decides how and if the knowledge struc-
ture is repaired.

3.3 More Expressive Knowledge Representations

A B C

X = (A and B) or C

X
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Figure 2: Knowledge structure of limited, though practical,
expressivity.

It may be that this approach in this paper is only possi-
ble within knowledge representations of the form described
below. Still, even within these systems, interesting and prac-
tical ontologies may be operationalized. Work is currently be



MOVIE(title, type, rating, year)

REVIEW(title, source, eval)

THEATER(theater, address, city)

SHOW(title, theater , time, price)

Table 1: The MOVIE schema.

conducted to employ these methods to teach agents structures
such as the one within figure 2.

4 The Query Difference Operator
In an earlier paper[7] it is shown that the set difference of the
queriesq1 andq2 may be computed as a syntactic manipu-
lation of the expressionsq1 andq2 for a well defined subset
of the relational algebra over a restricted class of relational
schemas. With this, one may, without materializing data, take
the expressions forq1 andq2, apply the query difference for-
mula to yieldq3, and be guaranteed thatq3 is logically equiv-
alent toq1�q2. With query set difference handled, the ability
to compute query intersection, subsumption, disjointness, and
equivalence follow.

To illustrate let us take as an example the movie schema in
table 1. Considerq1 being the query“Give the show times in
Austin for G or PG-13 movies with 4 or 5 star evaluations”
andq2 being the query“Give the show times in Austin or San
Antonio for PG-13 or R movies with 3 or 4 star evaluations.”
The logical result ofq1 � q2 is the query“Give show times
in Austin for G movies with 4 or 5 star evaluations plus show
times in Austin for PG-13 movies with 5 star evaluations.”
Similarly, q1 \ q2 is “Give show times in Austin for PG-13
movies with 4 star evaluations.”Clearly neither query sub-
sumes the other, nor are they equivalent.

4.1 Query and Schema Representation and
Restrictions

Assume a set of relationsfR1; :::; Rmg where we have, a
priori, decided on a set of equi-joins that connect these re-
lations together so that there are no cycles in the resulting
graph. In the example in table1 we pick the equi-join between
MOVIEandSHOWthrough the attributetitle , the equi-join
of SHOWandTHEATERthrough the attributeTheater , and
the equi-join ofMOVIEandREVIEWthroughtitle . When
we outer join all the relations together, we get the universal
relationR.

A query is represented as an expression of the form
�X�c1^:::^cn whereX identifies a set of sub-relations from
R. The conditionsc1; :::; cn are simple, non-join conditions.
For example�Show�city=Austin retrieves the show-times for
those movies playing in Austin.

Differences with the standard Relational Algebra
Though these queries have a similar appearance and seman-
tics to simple relational algebra, they differs in several key
ways. (1) The “relation” that these queries are applied over
is alwaysR, the outer join of all the relationsfR1; :::; Rmg
. Because this is always the case, ‘R’ is omitted from the
notation. And because of this single implied relation argu-
ment, self-join queries are precluded. (2) The projection sets

in queries here are sub-relations of the universal relationR.
In the Relation Algebra projections are over sets of attributes
– this requirement could easily be relaxed, but it helps sim-
plify some applications. (3) We extend the notion of differ-
ence and union over what in the standard relational algebra
are non-union compatible projection sets. The expression
q1� q2 indicates this extended form of union. In the standard
case�Movie�city=Austin��Movie�city=LA is equivalent to
�Movie�city=Austin [�Movie�city=LA. But in the language
here you can also express queries like�Movie�city=Austin�
�Playing at�city=Austin. The same extension occurs for
the difference operator. In Relational Algebra this again
requires that queries have equivalent projection sets. Not
so here, the operator	 expresses this extended notion
of query difference. For example�Movie�city=Austin 	
�Movie;Show�city=Austin yields the empty set. (4) Finally
there is a special negation semantics of such queries where the
query�Movie�city<>0Austin0 is not equivalent to the query
�people�:(city=0Austin0). The former query gives the Movies
which play somewhere other than Austin. The later query ex-
presses the query giving the movies that do not play anywhere
in Austin. This later query is expressing a form of universal
quantification through a not-exists constraint.

4.2 Algebraic Theorems
Here follows the central theorem that we may use under the
assumptions above. The query difference formula says that
for the simple queries of the type proposed, one may solve for
query difference by manipulating query expressions directly.

Theorem 1 (Query Difference Formula)
�X�c1^:::^cn 	�Y �c0

1
^:::^c0

n0
=

�X\Y �c1^:::^cn^:c01 � :::��X\Y �c1^:::^cn^:c0
n0
�

�X�Y �c1^:::^cn

Let us consider some examples of this operator in use: First
consider,�Movie�city=Austin	�Movie;Show�city=Austin =
�Movie�city=Austin^:(city=Austin) = ;. Here we have
a non-union compatible difference that yields the an
empty expression. In the expression,�Movie�year>1950 	
�Movie�year�1960 =�Movie�year>1950^year<1960. Here we
have a simple union compatible query that yield the movies
made in the fifties.
�Movie�city=0LA0 	 �Movie�city<>0LA0 =

�Movie�city=0LA0^:(city<>0LA0) Notice that in this query
that what we obtain are the movies that are playing only in
LA. This illustrates that rules govern when conditions may
be simplified. The approach is to apply the: operator to the
conditionc (thus changing an ’=’ to ’<>’, or ’<’ to a ’>=’,
etc.) if and only if the condition’s attribute is functionally
dependent on the key of each sub-relation in the projection
set, and the attribute is not a proper subset of a candidate key.

Theorem 2 (Query Difference is distributive over compound
queries)
(q1 � q2)	 (q3 � q4) = ((q1 	 q3)	 q4)� ((q2 	 q3)	 q4)

This theorem enables us to apply the difference formula
over compound queries. This is necessary to compute inter-
sections. Intersection follows fromq1 \ q2 = q1 	 (q1 	 q2).



Note that subsumption follows fromq1 � q2 , q2 	 q1 = ;
and equivalence follows fromq1 � q2 , q2 	 q1 =
; ^ q1 	 q2 = ;. Queries are disjoint if their intersection
is empty.

The following three theorems assist in the simplification
of query expressions. In many applications queries will be
conveyed to users. No matter the method (e.g. Natural lan-
guage, graphical display, etc.), we should like to minimized
the number of terms in the expression. These three theorems
give a complete method by which to search for simpler, but
equivalent, query expressions.

Theorem 3 (Absorption)�X�C ��Y �C0 = �Y �C0

if C ) C 0 andX � Y .

Theorem 4 (Horizontal Merge) �X�C � �Y �C =
�X[Y �C

Theorem 5 (Vertical Merge) �X�C^ci � �X�C^ca =
�X�C^ck whereci _ ca may be written as the simple con-
dition ck.

5 Previous and contemporary work
The work here follows in the same spirit as propose-and-
revise systems such as SALT system[4]. Approaches such
as Expect[13] also relate - especially in the quest to facil-
itate knowledge acquisition through explanatory dialogues.
However the focus here is on acquiring knowledge of a much
simpler form than systems acquiring knowledge for expert
systems. The simplicity of knowledge representation leads,
however, toward an acquisition tool that may be efficiently
instructed on any (or many) possible domain specific ’views’
over a universal relational.

This work shares some goals with[12] in that it may
start with a simple attribute-value structure (a Universal
Relation[2] in the case here), and build an immediate prob-
lem solver, while keeping as a further goal the extraction of
a reusable ontology from the efforts. In contrast to build-
ing the problem solver from ripple down rules, the approach
here builds a structured, though not highly expressive prob-
lem solver as a by-product of only a few instances of the prob-
lem. The teacher identifies relevance information by interact-
ing with agent explanations.

6 Future plans
A prototype of this system exists, however this prototype
needs to be further developed. The current system is able
to account for dialogs such as the one described in the intro-
duction. Still there are some further heuristics that need to
be added to reduce instance order sensitivity and to properly
trigger the agent to ask general questions of the teacher. But
work continues and progress is being made. I look forward
to receiving feedback from the community to focus and guide
the scale-up of this prototype.

In addition I will be investigating how these techniques
may applied over widely used ontology representations (OIL,
F-Logic, OKBC, etc.). Once a suitable match is found
this prototype will be ported to that representation language
and larger scale experiments with ontology operationalization
will be undertaken.

7 Conclusion
In this paper proposed an approach towards the complete ac-
quisition of conceptual knowledge from a teacher. At its heart
the approach relies on the query difference operator to solve
concept equations.
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