
Generating Loops with the Inverse Property
John Slaney, Asif Ali

Australian National University, Australia

Abstract

This is an investigation in the tradition of Fujita et al (IJCAI 1993), Zhang et al (JSC 1996),
Dubois and Dequen (CP 2001) in which CP or SAT techniques are used to answer existence questions
concerning small algebras. In this paper, we open the attack on IP loops, an interesting and under-
investigated variety intermediate between loops and groups.

1 Introduction

Automated reasoning techniques, particularly those of propositional satisfiability (SAT) and finite do-
main (FD) constraint satisfaction, are obviously applicable to the problem of enumerating small alge-
braic structures, and so should standardly be used to answer existence questions at least concerning very
small cases. In this paper, we report on an investigation of IP loops, a variety intermediate between loops
and groups which has been known for many years but to our knowledge never explored in much detail.
We used FINDER [Sla94] to enumerate all IP loops up to order 13, and the commutative ones of order
14, and obtained a number of new results prompted by observation of these algebras. The numbers of
algebras were reported in a recent note [AS08] and the full list of small IP loops is freely available online
[SA07].

1.1 Algebraic background

A quasigroup is a groupoid with left and right division operators / and \. That is, it satisfies the laws:

x(x\y) = y
(x/y)y = x
x\xy = y
xy/y = x

In the finite case, this amounts simply to satisfying the left and right cancellation laws:

xy = xz ⇒ y = z
xz = yz ⇒ x = y

That is, its “multiplication table” is a Latin square, each row and each column being a permutation of the
elements. A quasigroup is a loop iff it has a (right and left) identity: an element e such that

ex = x = xe

for all x. Loops in general are so numerous that almost all work on them has concerned special cases. One
of the earliest classes of loops to be investigated was that of Steiner loops, which satisfy the additional
postulates

(xy)y = x
x(xy) = y

Clearly, in any loop, each element x has a left inverse—an element y such that yx = e—and a right inverse

Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM 2008, pp. 55-66

55

Generating Loops with the Inverse Property Slaney, Ali

z such that xz = e. In the case of Steiner loops, both y and z are just x. A weaker condition, also satisfied
by groups, is that the left and right inverse operations coincide, meaning that for every x there is an
element x−1 such that

xx−1 = e = x−1x

Note that (x−1)−1 = x.
A loop is said to have the inverse property, and is called an IP loop, iff it is a loop with inverse such

that for all elements x and y

x−1(xy) = y = (yx)x−1

It is not hard to see that IP loops also satisfy the principle (xy)−1 = y−1x−1. A Steiner loop is an IP loop
of exponent 2 (i.e. such that x2 = e for all x) and a group is simply an associative IP loop. Moufang loops,
which have been studied intensively, are IP loops satisfying the identity

x(z(yz)) = ((xz)y)z

IP loops are of interest as a strong and natural generalisation of both groups and Steiner loops. More-
over, they correspond exactly to semiassociative relation algebras [Mad82] in the same sense that groups
correspond to (associative) relation algebras.1 It is therefore a little surprising that they have attracted
comparatively slight attention from algebraists.

The smallest IP loop that is not a group is of order 7:

∗ 1 2 3 4 5 6 7
e = 1 1 2 3 4 5 6 7

2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

x x−1

1 1
2 3
3 2
4 5
5 4
6 7
7 6

This structure has proper subalgebras {1,2,3}, {1,4,5} and {1,6,7}. Note that the order of these
subloops does not divide the order of the loop, marking a significant difference between IP loops and
groups.2 Associativity fails in that, for instance, (2∗2)∗4 = 3∗4 = 7 while 2∗ (2∗4) = 2∗6 = 5.

2 Generating IP loops

It is frequently useful to enumerate small examples of a class of algebraic structures, so that by examining
what exists, and observing places where no such structures exist, the mathematician can gain a “feel” for
the objects in question. At the simplest, the spectrum (the set of numbers n for which such algebras of
order n exist) can have its initial segment settled by enumeration. In some cases, this suffices to allow
the entire spectrum to be determined; in others, it merely dispposes of some awkward questions and
suggests a conjecture concerning the rest. In many cases, “off the shelf” reasoning systems suffice for
the enumeration, making this an attractive application domain for automated reasoning.

1Let G = 〈S,∗〉 be a groupoid. The field of sets consisting of the power set of L, with ∗ raised to sets in the obvious pointwise
manner, is a relation algebra iff G is a group, and a semiassociative relation algebra iff G is an IP loop.
2A loop in which the order of every subloop divides the order of the loop is said to have the weak Lagrange property. It has the
strong Lagrange property if every subloop has the weak property.

56

Generating Loops with the Inverse Property Slaney, Ali

solve satisfy;
int N;
type element = 1..N;

array[element,element] of var element: star;

constraint
forall (x,y in element) (star[star[star[y,x],y],y] = x);

N = 3;

Figure 1: Zinc encoding of quasigroup existence problem QG5(3)

2.1 History

Fujita et al [FSB93] used the ICOT group’s ‘Model Generation Theorem Prover’, a propositional rea-
soner in the style of SATCHMO [MB88], and other tools including FINDER to solve open problems
in the theory of quasigroups by proving the existence or nonexistence of quasigroup models of certain
equations. During the 1990s, this work was taken up and extended, notably by Hantao Zhang and his
collaborators through the SATO system [ZBH96] and by McCune, Stickel and others [McC, ZS00]. In
the constraint programming community, there were interesting developments concerning efficient encod-
ings [DD01] and in the SAT community concerning symmetry avoidance [Zha96, AH01]. Recently, it
has been shown [APSS05] that preprocessing of SAT encodings using restricted variants of resolution
can simplify some of the quasigroup existence problems to the point that stochastic local search (SLS)
solvers can successfully prove existence (though not nonexistence, of course). Meanwhile, the related
problem of quasigroup completion [GS97] has become a well-established benchmark constraint satisfac-
tion problem, offering as it does a nice balance between the highly structured and the random. Benchmark
collections of SAT, CSP and SMT problems now routinely contain problems about quasigroups.

2.2 Problem representation

The simplest way to represent existence problems about quasigroups, loops, groups or other groupoids
for automated reasoning purposes is to cast them as finite domain CSPs where each entry 〈x,y〉 in the
“multiplication table” of the groupoid is a CSP variable whose domain consists of the elements of the
algebra. Take for example the problem QG5(3). This requires the matrix

* 1 2 3
1
2
3

to be filled with nine entries chosen from the values 1 . . .3, in such a way that they form a Latin square
and that the equation (yx.y)y = x holds for all x and y. In fact, if they satisfy the equation, the cancel-
lation properties follow. In the CSP modelling language Zinc [dlBMRW06] for instance, this is directly
expressible (see Figure 1). Other such languages for constraint programming make it similarly easy to
state the problem.

The equation flattens to ∀x∀y∀w∀z((yx = w ∧ wy = z) ⇒ zy = x) which has 4 variables and there-
fore 34 = 81 domain-grounded instances obtained by substituting the three possible values 1, 2, 3 for
the variables. Each of those instances relates a triple (possibly with repetition) of entries in the table,

57

Generating Loops with the Inverse Property Slaney, Ali

and correspondingly imposes a constraint of cardinality at most 3 on the variables of the CSP. In the
straightforward SAT recension, each possible value assignment a ∗ b = c is represented by a proposi-
tional variable pabc, and each domain-grounded instance of the flattened equation becomes a 3-clause
on these variables. Other encodings are possible, of course, but the suggested one is standard. Once the
problem is so encoded, any FD or SAT solver can be used to solve it. Theorem provers, whether based
on resolution and its variants or on term rewriting, can also be used to make inferences on either the first
order or propositional levels.

To generate IP loops, we need another array of decision variables representing the inverse function,
and of course the appropriate equations. It is useful to add a few redundant constraints, to strengthen
propagation. We added the fact that inverse is of period 2 and the duality equation (xy)−1 = y−1x−1. Since
we wish to enumerate isomorphism classes, it is important to avoid generating too many isomorphic
copies of the solutions, which means we need to break symmetries. In order to break some of the many
symmetries in a simple way, we required the identity e to be the lowest-valued element and x−1 to be in
the range x−1 . . .x+1, with self-inverse elements coming first in the order.

2.3 FINDER is good enough

For our work, we used FINDER, which stands somewhere between the FD and SAT solver families. It
represents the problem in the FD manner rather than explicitly rendering it into SAT, so for example its
variable selection heuristic looks at the FD variables, not at specific values for them—typically it looks
for the smallest available domain—but it reasons somewhat like a SAT solver rather than in typical FD
style. In particular, it uses unit resolution on the ground constraints together with forward-checking as
its notion of local consistency, and it learns nogoods.

FINDER is far from representing the state of the art in finite model building: we expect that similar
results could be produced faster using more recent technology such as Paradox, which is based on the
much more efficient SAT solver Minisat. It suffices for our purpose, however, as it can find the solutions
faster than they can be checked for isomorphism and has completed the order 13 search in reasonable
time.

To count the isomorphism classes, it is necessary either to reason in a sophisticated way about sym-
metries during the search3 or to remove redundant solutions from the output in a postprocessing phase.
We chose the latter: our postprocessor takes each generated IP loop in turn and tries to generate from it
an isomorphic copy that comes earlier in the (row-major) lexicographic order. If it succeeds, the gen-
erated loop is discarded; if it fails, the loop in question is the canonical one of its class and is output.
This isomorphism removal method is rather slow, but requires little memory. Indicated future research
includes incorporating isomorphism detection into the search.

Generating the IP loops of orders up to 11 is easy. We confirmed our results by obtaining the same
numbers with MACE [McC]. Order 12 caused more difficulties, taking unreasonably long for both
FINDER and MACE with their default settings. With a small change to make FINDER more aggressive
about deleting old nogoods, however, we were able to solve the order 12 problem in a matter of hours.

Order 13 was more challenging. Our first partially successful run took over a week without exhaust-
ing the search space. On closer examination, we found that almost all of this time was taken up by
the postprocessor eliminating isomorphic copies. We therefore somewhat strengthened the symmetry-
breaking constraints, in order to reduce the number of copies to be treated, and rewrote the postprocessor
to search less naı̈vely for dominating copies. The result is that the order 13 problem can now be com-
pleted in less than a day on a fairly ordinary desktop machine.

3The GAP-ECLiPSe hybrid of Gent et al [GHKL03] does this, and, given a suitably efficient underlying solver, may be the
preferred method if the present investigations are to be pressed beyond order 13.

58

Generating Loops with the Inverse Property Slaney, Ali

Basic Enhanced
size time (sec) solutions time (sec) solutions

7 0.00 10 0.00 4
8 0.03 128 0.01 50
9 0.11 488 0.01 64

10 2.51 8856 0.50 1294
11 39.30 128488 1.25 5008
12 3026.31 8956032 231.38 626888

Figure 2: Basic versus enhanced symmetry breaking: FINDER runtimes and numbers of solutions before
postprocessing. The fewer (redundant) solutions the better.

The most signficant part of the speedup was that due to the extra symmetry breaking constraints
added by hand to the encoding. These reduced the domains of possible values for the cells in the second
row of the table of the loop operation—the first row is fixed as it lists the elements of the form e ∗ x,
which of course is x in every case. The canonical representative of each isomorphism class is first
in the lexicographic order in which this second row is most significant, so clearly we lose nothing by
constraining the numbers early in the row to be as low as possible. Since e is the first (lowest-numbered)
element, we can conveniently represent all elements as (e+x) where x is an integer in the range 0 . . .N−
1.4 We are concerned to add constraints limiting the values of elements of the form (e + 1) ∗ (e + x)
where 0 < x < N.

Where N is odd, this is simple. There are no fixed points for the inverse operation, so (e + 1)−1 =
(e + 2), so there are two possibilities for the value of (e + 1)∗ (e + 1): it could be (e + 2) or it could be
something else, where “something else” might as well be (e + 3) since all choices are symmetric. By
similar reasoning, for x > 1, the canonical member of each isomorphism class has (e + 1) ∗ (e + x) <
(e+2x).

Where N is even, there is an additional complication. It is possible that some elements other than e
are fixed points for inverse, and it can happen that for all of these fixed points a, the element (e + 1)∗a
is not a fixed point. In that case, the usual upper bound does not apply, but instead the values of such
(e + 1) ∗ a can be assigned arbitrarily. We choose to assign them in ascending order. We introduce a
boolean flag (another decision variable) which will be set just in case the first 6 elements are all fixed
points for inverse and (e+1)∗(e+2) is not a fixed point. Provided the flag is not set, a constraint similar
to that for odd values of N applies. That is, using f(ϕ) to abbreviate (e+1)∗ (e+ϕ):

Basic symmetry breakers:

e≤ x
x−1 < (x+2)
(x−1 = x ∧ y < x) ⇒ y−1 = y

For odd values of N:

x−1 < x+2
x−1 = x ⇔ x = e
f(1) < (e+4)
(x > 1 ∧ 2x < N) ⇒ f(x) < (e+2x)

4Naturally, we could let the elements be the integers 0 . . .N− 1 or 1 . . .N, as in the Zinc encoding suggested in Figure 1, in
which case the notation would be simplified. FINDER, however, is picky about types and complains if we confuse “element”
with “int”, so we keep the long-winded version for present purposes.

59

Generating Loops with the Inverse Property Slaney, Ali

size quasigroups loops IPloops groups
1 1 1 1 1
2 1 1 1 1
3 5 1 1 1
4 35 2 2 2
5 1411 6 1 1
6 1130531 109 2 2
7 1.21×1010 23746 2 1
8 2.70×1015 1.06×108 8 5
9 1.52×1022 9.37×1012 7 2

10 2.75×1030 2.09×1019 47 2
11 — ? — — ? — 49 1
12 — ? — — ? — 2684 5
13 — ? — — ? — 10342 1

Table 1: Numbers of algebras of given order

For even values of N:

f(1) = e
(¬FLAG ∧ 0 < x < N/2) ⇒ f(x) < (e+2x+1)
FLAG ⇒ (e+5)−1 = (e+5)
(FLAG ∧ x > 1 ∧ (e+ x)−1 = (e+ x)) ⇒ (f(x))−1 6= f(x)
(FLAG ∧ 1 < x < y ∧ (e+ y)−1 = (e+ y)) ⇒ f(x) < f(y)

The enhanced symmetry breaking pays handsomely, as shown in Figure 2 where the runtimes and num-
bers of solutions (before postprocessing) with and without the extra symmetry breakers are compared.
It is worth noting that in generating 626,888 solutions to the order 12 problem, for example, FINDER
backtracks only 202,549 times. That means that three quarters of the branches in the search tree end in
solutions, so it is unlikely that significant improvement to the efficiency of the search is possible. Any
future advance will need to involve better symmetry removal, to cut down still further the number of
solutions generated.

2.4 The numbers

Table 1 shows the count of all IP loops of small orders. For comparison, the number of these which are
associative (i.e. groups) is also shown, as are the numbers of quasigroups and loops.5 Clearly, at very
small sizes, associativity has no room to fail given the loop and inverse postulates. Up to order 4, indeed,
the existence of an identity element alone is enough to force a quasigroup to be an abelian group. It
seems from the table, however, that IP loops will resemble loops rather than groups in that, once clear of
the initial noise, the numbers of such algebras will show a monotonic exponential increase with size. At
the same time, it can be seen that the existence of a two-sided inverse is in some intuitive sense a “strong”
property: of the 1030 quasigroups of order 10, one in every hundred billion is a loop, but of these loops
only one in every 40 million trillion has an inverse.

An important subvariety of any variety of groupoid is that obtained by imposing a postulate of com-
mutativity. The numbers of commutative IP loops are shown in Table 2. It was something of a surprise

5The numbers of quasigroups and loops are taken from the paper of McKay et al [MMM07] which also contains an account of
the many errors making up the history of counting these objects.

60

Generating Loops with the Inverse Property Slaney, Ali

size groups non−groups total
1 1 1
2 1 1
3 1 1
4 2 2
5 1 1
6 1 1
7 1 1
8 3 3
9 2 2

10 1 5 6
11 1 1 2
12 2 12 14
13 1 7 8
14 1 179 180

Table 2: Numbers of Commutative IP loops of given order

to observe that the smallest such loop which is not a group is of order 10. It seems that commutativity
tends to enforce associativity, at least at small sizes: only one of the 48 non-associative IP loops of order
11, for instance, is commutative.

3 New results

In abstract algebra, the effect of generating the structures of small sizes is often to provide a supply of data
rather than a supply of theorems. This means that model searches function more like experiments in an
empirical science than like proof searches in mathematics as standardly conceived. The rôle of diagrams
in traditional geometry is somewhat similar: a diagram is not a proof, but it can supply a disproof, and
inspection of diagrams can suggest conjectures to the mathematician with an eye for regularities. In
the same way, identifying patterns in the numbers or distribution of small structures is a good way of
formulating conjectures in abstract algebra.

In the present case, we have been able to use the “data” provided by FINDER to arrive at several new
results concerning IP loops. These are not necessarily very deep mathematics, and their proofs, once the
regularities have been observed, are not especially hard. The trick is to formulate the conjecture in the
first place, and for this purpose access to the quasi-empirical data is invaluable.

3.1 Order of subloops

Steiner loops satisfy the condition ∀x(x2 = e) or equivalently ∀x(x−1 = x). We wondered whether there
was anything to say about the distribution of elements satisfying the self-inverse condition in IP loops
which are not Steiner loops in general. Fortunately, in generating the algebras, as explained in §2 above,
part of our technique was to set the inverse operation before generating the loop operation. Thus we were
presented immediately with the numbers of IP loops of each order with each possible choice of inverse,
where the difference between two inverse operations is just in the number of self-inverse elements. Hence
our generation method itself resulted in a study of the distribution of self-inverse elements among IP
loops of each size. To our initial surprise, there appeared to be no such elements at all (other than the

61

Generating Loops with the Inverse Property Slaney, Ali

size k = 2 k = 3 k = 4 k = 5
2 1 1
3 1
4 1 2
5 1
6
7 1
8 1 4
9 2

10 1 10
11
12
13 64 10

Table 3: Numbers of IP loops satisfying xk = e

identity) in IP loops of odd order. We knew, of course, that Steiner loops are always of even order, but
expected that IP loops of any cardinality would typically contain at least some fixed points for inverse.

They do not, however, as can be shown by a simple counting argument:

Theorem 1. Let L = 〈S,∗〉 be a finite IP loop. Then the cardinality of S is even iff L has an element of
order 2—that is, an element a such that a 6= e but a2 = e.

Proof. Left to right, the result is trivial: since the inverse operation is of period 2, the set of elements of
L which are not fixed points for it must be of even cardinality. If the order of L is even, therefore, there
must also be an even number of self-inverse elements, so e cannot be the only such element.

For the converse, suppose a is self-inverse and distinct from e. Let the operation La be defined on
S by the equation La(x) = a ∗ x. Then La is of period 2, as La(La(x)) = a ∗ (a ∗ x) = a−1 ∗ (a ∗ x) = x.
Moreover, La has no fixed point, as if La(x) = x then a∗ x = x so a = e contrary to the supposition of the
theorem. Therefore La partitions S into pairs, so |S| is even.

Corollary 2. No IP loop of odd order has a subloop of even order.

3.2 IP loops of exponent k

Following on from this theorem, we examined the spectra of the equations xk = e for small values of k.
The observations up to order 13 are summarised in Table 3.6

The spectrum of Steiner loops (the column k = 2 in the table) is well known to consist of 1 and
all integers congruent to 2 or 4 (mod 6). The argument that all Steiner loops fall into that spectrum is
nice enough to be worth rehearsing here. First note that Steiner loops are commutative, because for any
elements x and y, (x.xy)(yx) = y(yx) = x = (x.xy)(xy) so xy = yx. Next, if xy = z then xz = x(xy) = y,
so such loops are “fully commutative” in that for any triple x, y and z, the six equations obtained by
permuting the variables in “xy = z” are all equivalent. Steiner loops thus correspond directly to Steiner
triple systems, or sets of triples of elements from a set such that every pair of elements from the set occurs
in exactly one triple. The identity of the loop is added to allow for the case where x and y are the same.
Evidently, there are three pairs in every triple, so the number of triples in a Steiner triple system is one

6As usual, we assume association to the left, defining x0 = e and xk+1 = xk ∗ x.

62

Generating Loops with the Inverse Property Slaney, Ali

third of the number of pairs of elements in the set. Thus, where the set has n elements, n2− n must be
divisible by 6. Expressing n as 6k + i for some i in 0..5, we see immediately that i2− i must be divisible
by 6, requiring i to be either 0, 1, 3 or 4. Hence n + 1, the order of the Steiner loop, must be congruent
to 1, 2, 4 or 5 (mod 6). But odd orders greater than 1 are impossible by Theorem 1, so except for the
degenerate case n = 1 the order of the loop must be congruent to 2 or 4 (mod 6).

The core of this argument, divisibility by 6, can be generalised.

Theorem 3. Let L be an IP loop of order 3n. Then L contains an element x distinct from e such that
x2 = x−1.

Proof. Consider any elements a, b and c, all distinct from e, such that ab = c in L. Then the following
all hold:

ab = c
cb−1 = a
a−1c = b
b−1a−1 = c−1

bc−1 = a−1

c−1a = b−1

Moreover, the six table entries represented by these equations are all distinct unless one of them is of the
form xx = x−1. If L contains no such x, therefore, the table entries not involving e are partitioned into
blocks of 6. There are (3n−1)2− (3n−1) such entries, so (3n−1)2− (3n−1) is a multiple of 6. That
is, 9n2− 9n + 2 is a multiple of 6. Let 3n = 6k + i where 0 ≤ i < 6. Then 9(6k + i)2− 9(6k + i)+ 2 is
divisible by 6, so 9(36k+12ki+ i2)−56k−9i+2 is divisible by 6, so 9(i2− i)+2 is divisible by 6. But
it is not.

Theorem 4. Let L be an IP loop of exponent 5. Let n be the order of L. Then either n ≡ 1 (mod 12) or
n≡ 5 (mod 12).

Proof. For any element x of L, x4 = x−1 and it is not hard to show that x3 = (x2)−1. It is left as a satisfying
exercise to show that for all x, i and j, xi ∗ x j = xi+ j (mod 5). It follows that L is composed of a number
of subloops of order 5, each of course of the form {e,x,x2,x3,x4}. That is, they are disjoint except for e.
Therefore n≡ 1 (mod 4).

Clearly, L contains no element x distinct from e such that x2 = x−1, so by Theorem 3 its order is not
a multiple of 3 and therefore n 6≡ 9 (mod 12).

Theorem 5. Let L be an IP loop of exponent 3. Let n be the order of L. Then either n ≡ 1 (mod 6) or
n≡ 3 (mod 6).

Proof. For every element x of L, x3 = e or equivalently x2 = x−1. It follows that n is odd, and also
that Theorem 3 is not directly useful. We can adapt the argument, however. If we ignore the first row
and column of the table, we are left with (n− 1)2 entries. Each row contains two “anomalous” entries:
e in the x−1 column and x−1 on the diagonal. Removing those two entries from each row, that leaves
(n− 1)2− 2(n− 1) to be filled with blocks of 6 as before. Thus (n− 1)2− 2(n− 1) is divisible by 6.
Expressing n as 6k + i, we find that i2−4i+3 is divisible by 6, which is to say i = 1 or i = 3.

3.3 The square property

A groupoid has the square property iff (xy)2 = x2y2 for all x and y. It is well known that a group is com-
mutative iff it has the square property. This is not true of IP loops, however. The smallest counterexample

63

Generating Loops with the Inverse Property Slaney, Ali

is of order 10:

∗ 1 2 3 4 5 6 7 8 9 10
e = 1 1 2 3 4 5 6 7 8 9 10

2 2 1 4 3 6 5 9 10 7 8
3 3 4 1 2 7 8 5 6 10 9
4 4 3 2 1 9 10 8 7 5 6
5 5 6 7 9 2 1 10 3 8 4
6 6 5 8 10 1 2 3 9 4 7
7 7 9 5 8 10 3 4 1 6 2
8 8 10 6 7 3 9 1 4 2 5
9 9 7 10 5 8 4 6 2 3 1

10 10 8 9 6 4 7 2 5 1 3

x x−1

1 1
2 2
3 3
4 4
5 6
6 5
7 8
8 7
9 10

10 9

This IP loop is commutative, but lacks the square property as (3∗5)2 = 4 but 32 ∗52 = 2. The converse
is also not valid for IP loops: there are 3 non-commutative IP loops of order 12 with the square property,
and 2 more of order 13.

Another property which suffices for a group to be abelian is that it is of order p2 where p is a prime.
IP loops of such orders are not in general commutative, as for example there are 5 non-commutative
ones of order 9. However, both commutative IP loops of order 9 are groups, leading us to wonder
whether all commutative IP loops of order p2 are groups. The answer is negative: there is a commutative
non-associative IP loop of order 11, so its direct product with any IP loop also of order 11 is a non-
commutative IP loop of order 121 which is not a group.

3.4 Some rare IP loops

A loop is said to be flexible iff it satisfies

x(yx) = (xy)x

and alternative iff

x(xy) = (xx)y
(xy)y = (xy)y

Steiner loops and groups are flexible and alternative. It turns out that the smallest IP loop which is flexible
and alternative but neither a group nor a Steiner loop is of order 12, and there are, up to isomorphism,
only two such loops of order 12 and none of order 13.

Steiner loops and groups are also C-loops, meaning they satisfy

x(y(yz)) = ((xy)y)z

All C-loops are known to be IP loops and alternative. Up to order 13, there is only one non-associative,
non-Steiner C-loop. Again it is of order 12.

4 Future directions

This paper has added to the store of known “small” examples of core algebraic structures. IP loops
inhabit the space between very tightly constrained varieties (groups, Steiner loops) and very loose ones
(quasigroups). They are closely related to an interesting generalisation of relation algebras. We have
detailed the IP loops up to the orders at which the number becomes too big for a mathematician to know
them all. The most obvious extensions of our work are:

64

Generating Loops with the Inverse Property Slaney, Ali

1. Complete the account of the spectrum of IP loops of exponent k, for all k. We have the impression
that it is not very difficult, but settling this issue properly would be satisfying.

2. Extend the investigation to particular classes of IP loops. For example, enumerate the small C-
loops. Since these are comparatively rare, it will be necessary to go to larger sizes before enumer-
ation ceases to be worthwhile. Phillips and Vojtěchovský [PV06] report very small numbers of
C-loops up to order 14, for which they used MACE-4. It is possible that significantly extending
the search may raise different challenges for automated reasoning.

3. Investigate the use of GAP-ECLiPSe or a similar hybrid which brings computational group theory
to bear on the problem of symmetries in search spaces. Since this detects many symmetries and
avoids them early, it is potentially an important tool for getting further with the enumeration of IP
loops or species of them.

4. Experiment with more systematic symmetry breakers such as the “least number” heuristic of Jian
Zhang and its extensions. Dealing with symmetry, rather than with search inefficiency, is the main
bottleneck in the algebra generation process at present.

5. Pick out some new benchmark problems from our work, for finite domain constraint solvers, for
SAT solvers or for SMT systems.7

References
[AH01] Gilles Audemard and Laurent Henocque. The extended least number heuristic. In Proceedings of

the International Joint Conference on Automated Reasoning (IJCAR), pages 427–442, 2001.
[APSS05] Anbulagan, Duc Nghia Pham, John K. Slaney, and Abdul Sattar. Old resolution meets modern

SLS. In Proceedings of the National Conference of the American Association for Artificial
Intelligence (AAAI), pages 354–359, 2005.

[AS08] Asif Ali and John Slaney. Counting loops with the inverse property. Quasigroups and Related
Structures, 16:13–16, 2008.

[DD01] Gilles Dequen and Olivier Dubois. The non-existence of a (3,1,2)-conjugate orthogonal Latin
square of order 10. In Principles and Practice of Constraint Programming (CP), pages 108–120,
2001.

[dlBMRW06] Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The modelling language
Zinc. In Principles and Practice of Constraint Programming (CP), pages 700–705, 2006.

[FSB93] Masayuki Fujita, John Slaney, and Frank Bennett. Automatic generation of some results in finite
algebra. In Proceedings of the thirteenth International Joint Conference on Artificial Intelligence
(IJCAI-13), pages 52–57, 1993.

[GHKL03] Ian Gent, Warwick Harvey, Tom Kelsey, and Steve Linton. Generic SBDD using computational
group theory. In Principles and Practice of Constraint Programming (CP), pages 333–347, 2003.

[GS97] Carla Gomes and Bart Selman. Problem structure in the presence of perturbation. In Proceedings
of the National Conference of the American Association for Artificial Intelligence (AAAI), pages
221–226, 1997.

[Mad82] Roger Maddux. Some varieties containing relation algebras. Transaction of the American Math
Society, 272:501–526, 1982.

[MB88] Rainer Manthey and François Bry. SATCHMO: A theorem prover implemented in Prolog. In
Proceedings of the ninth Conference on Automated Deduction (CADE-12), pages 415–434, 1988.

7This research was supported by NICTA (National ICT Australia) and by the Australian National University. NICTA is funded
through the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council.
The authors wish to acknowledge useful discussions with colleagues Tomasz Kowalski and Brendan McKay, and the construc-
tive comments of the anonymous referees.

65

Generating Loops with the Inverse Property Slaney, Ali

[McC] William McCune. Prover9 and MACE 4. http://www.cs.unm.edu/∼mccune/mace4/.
[MMM07] Brendan McKay, Alison Meynert, and Wendy Myrvold. Small latin squares, quasigroups and

loops. Journal of Combinatorial Designs, 15:98–119, 2007.
[PV06] J. D. Phillips and Petr Vojtěchovský. C-loops: An introduction. Publicationes Mathematicae

Debrecen, 68:115–137, 2006.
[SA07] John Slaney and Asif Ali. IP loops of small order, 2007.

http://users.rsise.anu.edu.au/∼jks/IPloops/.
[Sla94] John Slaney. FINDER, finite domain enumerator: System description. In Proceedings of the

twelfth Conference on Automated Deduction (CADE-12), pages 798–801, 1994.
[ZBH96] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a distributed propositional prover

and its application to quasigroup problems. Journal of Symbolic Computation, 11:1–18, 1996.
[Zha96] Jian Zhang. Constructing finite algebras with FALCON. Journal of Automated Reasoning,

17:1–22, 1996.
[ZS00] Hantao Zhang and Mark Stickel. Implementing the Davis-Putnam method. Journal of Automated

Reasoning, 24:277–296, 2000.

66

	Introduction
	Algebraic background

	Generating IP loops
	History
	Problem representation
	FINDER is good enough
	The numbers

	New results
	Order of subloops
	IP loops of exponent k
	The square property
	Some rare IP loops

	Future directions

