
Applications of a Global Workspace Framework
to Mathematical Discovery

John Charnley and Simon Colton
Combined Reasoning Group, Department of Computing

Imperial College, United Kingdom

Abstract

Systems which combine various forms of reasoning such as deductive inference and symbolic
manipulation have repeatedly been shown to be more effective than stand-alone systems. In general,
however, the combined systems are ad-hoc and designed for a single task. We present a generic
framework for combining reasoning processes which is based on the theory of the Global Workspace
Architecture. Within this blackboard-style framework, processes attached to a workspace propose
information to be broadcast, along with a rating of the importance of the information, and only the
most important is broadcast to all the processes, which react accordingly. To begin to demonstrate
the value of the framework, we show that the tasks undertaken by previous ad-hoc systems can be
performed by a configuration of the framework. To this end, we describe configurations for theorem
discovery and conjecture making respectively, which produce comparable results to the previous
ICARUS and HOMER systems. We further describe a novel application where we use a configuration
of the framework to identify potentially interesting specialisations of finite algebras.
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1 Introduction

Stand-alone Artificial Intelligence systems for performing specific types of reasoning – such as deduc-
tion in theorem provers, symbolic manipulation in computer algebra systems or induction in machine
learning systems – have steadily become more powerful. It is therefore no surprise that researchers
have investigated how one might fruitfully combine such reasoning systems so that the whole is more
than a sum of the parts. In general, such combinations have been ad-hoc in nature and designed with
a specific task in mind. For the field of combining reasoning system to progress, we believe it is im-
perative for more generic frameworks to be developed and experimented with. As described below,
the cognitive science theory of a Global Workspace Architecture has been proposed as a model which
captures the massively-parallel reasoning capabilities of mammalian brains. It could therefore provide
a basis for a generic computational framework within which reasoning systems can be combined. We
describe here such a generic framework and its implementation. We demonstrate two applications of
it, namely to theorem discovery and conjecture making in domains of pure mathematics, which have
been performed previously by bespoke combined systems. We also give details of a new application to
finite algebra, where we use a configuration of the framework to automatically identify specialisations of
algebra classes which could be fruitful areas for mathematical investigation.

As described in §2, our framework allows for multiple processes to reason about information in
disparate ways and communicate via a blackboard-style global workspace. In each round of a session,
a single piece of information is broadcast to each process attached to the workspace. Each process may
or may not reason about the broadcast information in order to produce novel information. For instance,
if a conjecture is broadcast, a deductive process may try to prove the conjecture, whereas a model-
generation process may seek a counterexample. Any process which does produce novel information will
propose it for broadcast, along with a numerical rating of its value, which the process itself determines.
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The framework then broadcasts only the highest rated proposal at the start of the next round, and the
session progresses. Developers of combined reasoning systems can configure the framework to perform
particular tasks by specifying how certain processes will reason about certain types of information; what
novel information they will output; and how proposals should be ranked.

Automated theory formation, as performed by the HR system [6], has been at the heart of a number
of ad-hoc combined reasoning systems. In particular, the TM system [9] used HR, the Otter theorem
prover [19] and the MACE model generator [20] to discover and prove alternative true theorems to a
given false conjecture. In the ICARUS system [5], HR was used in combination with Otter and the
CLPFD constraint solver inside Sicstus Prolog [4] to reformulate constraint satisfaction problems. In the
HOMER system [7], HR was used in conjunction with Otter and the Maple computer algebra package
[24] in order to make conjectures about computer algebra functions. Also, HR is part of the system
developed by Sorge et al. [8] which integrates computer algebra routines, theorem proving, SAT-solving
and machine learning, and has been used to discover and prove novel classification theorems in algebraic
domains of pure mathematics. As an initial test of our implemented framework, it seemed sensible to
see whether it could be configured to perform similar tasks to those performed by some of these ad-hoc
systems.

As described in §3 and §4 respectively, we have managed to configure the framework to perform au-
tomated theorem discovery in quasigroup theory (as previously undertaken by HR as part of the ICARUS
system) and to perform automated conjecture making in number theory (as previously undertaken by the
HOMER system). For each configuration, we describe the processes, the types of information which are
broadcast, and how this information is rated. We also provide qualitative and quantitative comparisons
with ICARUS and HOMER respectively. In §5, we describe a new application for combined reason-
ing systems in the domain of finite algebra. In this application, we seek to identify specialisations of
finite algebras which are simple in definition yet have mathematical properties to suggest they may be
interesting areas for mathematical investigation in their own right. The configuration we developed for
this task is a modified version of the one we used in §3 for automated theorem discovery in quasigroup
theory. We applied this to three different classes of finite algebra and, in each case, the system identified
an interesting specialisation.

A Global Workspace Architecture is essentially a model of combined serial and parallel information
flow, wherein specialist sub-processes compete and co-operate for access to a global workspace [1]. A
specialist sub-process can perform any cognitive process such as perception, planning, problem solving,
etc. If allowed access to the global workspace, the information generated by such a specialist is broadcast
to the entire set of specialists, thereby updating their knowledge of the current situation. In recent years,
a substantial body of evidence has been gathered to support the hypothesis that the mammalian brain is
organised via such global workspaces [2]. Moreover, this theory can be used to explain aspects of human
cognition such as conscious and unconscious information processing, and can be applied to challenges
such as the frame problem [23]. From an engineering point of view, the global workspace architecture has
aspects in common with Newell’s blackboard architectures for problem solving [21]. AI software agents
based on the Global Workspace Architecture have been successfully implemented [15, 16], and in some
cases applied to problem solving, e.g., constraint solving [17]. Another framework which combines
disparate reasoning systems is the OANTS [3] architecture of Benzmüller et al. That framework has
much overlap with the GWA, as proactive software agents which determine they are relevant to a central
proof object are allocated resources to investigate, and they bid to amend the current state based upon
their findings. Also, in [12], Fisher describes a concurrent approach to theorem proving using broadcasts,
where agents each hold a subset of clauses to a given proof task. In that approach, agents respond to
clausal broadcasts by updating their set of clauses and broadcasting any new information to all, or sub-
groups of, other processes. This has been adapted to problem-solving applications, such as negotiation
[13] and planning [14]. What distinguishes the GWA framework from other approaches is the simplicity
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of the architecture and the restrictions it places upon communication. Our framework effectively limits
processes to one broadcast message for each processing result and this message is not guaranteed to be
received by any other process. Such messages represent only a tiny fraction of the current state of the
overall system and so the workspace has a much reduced scope in comparison to the blackboard in a
traditional blackboard architecture. We are interested in addressing whether – despite these simplifying
restrictions – we are able to construct useful combined reasoning systems using this framework, or indeed
whether the framework actually simplifies the often difficult process of integrating disparate AI systems.

2 A Framework for Combining Reasoning Systems

The architecture defined by our framework is inspired by the Global Workspace Architecture [1]. Each
of the processes attached to the global workspace performs either some type of reasoning (e.g., by encap-
sulating a theorem prover or a computer algebra system) or a useful administrative task such as checking
for redundancy in outputs. The framework defines how processing takes place on a round-by-round basis.
In addition, it outlines rules which all attached processes must follow. A round starts with the broadcast
of some reasoning artefact (e.g., a conjecture, proof, example, etc.) which each attached process may
ignore or may react to in various ways. Specifically, a process may do one or more of the following:

• Construct a proposal for broadcast, consisting of a reasoning artefact and a numerical (heuristic)
value of importance that the process ascribes to that artefact.

• Detach itself from the framework.

• Attach new processes to the framework.

At the end of each round, various processes will have been added to and removed from the global
workspace, and a set of broadcast proposals will have been submitted to the framework. At the start
of the next round, the framework chooses the proposal with the highest importance value, and broadcasts
the reasoning artefact from that proposal. In the case where multiple proposals have equal heuristic value,
one is chosen from them randomly. All non-broadcast proposals are discarded and will not be considered
for broadcast later unless they are re-proposed. Currently, all reasoning artefacts are broadcast as string
arrays, examples of which are presented in the next two sections.

To create a combined system, a developer must create a configuration of the framework, by defining:

• The reasoning artefacts that may be broadcast on the workspace.

• The processes that may be attached to the workspace and their behaviour, which must conform
to the framework rules. In particular, how each process reacts to broadcasts, the processing or
reasoning they perform, the proposals they can make and the method they use in determining the
heuristic rating of importance.

• The starting state, i.e. the initially attached processes.

We have developed the GC toolkit, which enables developers to easily configure combinations of reason-
ing systems for particular tasks within the framework. GC, which takes its name from global-workspace
and combining, allows users to develop their configurations into full system implementations. It includes
the core code for the round-by-round processing and a number of pre-coded processes which encapsu-
late specific reasoning tasks. For example, the toolkit currently provides a process which appeals to the
Prover9 theorem prover [18] in attempts to prove broadcast conjectures. Users can choose and adapt
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processes from GC’s pre-coded selection for use in their configurations or they can develop their own
processes with the aid of libraries provided in the toolkit.

The GC toolkit is implemented in Java. Developers who wish to create new processes do so by
extending the toolkit’s WorkspaceProcess class. This class defines an abstract method react which the
developer must override with the behaviour they want for their process. The react method must im-
plement how the process behaves in response to different broadcasts and the processing that should be
performed. The react method should return whatever proposals the developer wishes the process to
make, and the developer must also define how the process should rate the importance of its proposals.
The developer can also define parameters for the process. For example, a process to read and broad-
cast the contents of a file benefits from a parameter to indicate the file path. If a developer wishes to
encapsulate an external reasoning system then the react method should be a wrapper for that system,
making appropriate external calls. The toolkit includes a graphical interface for creating configurations
of the framework. It allows users to drag and drop processes into configurations, set their parameters and
run the resulting configurations. The code that runs the workspace simply calls the react method for all
currently attached processes, collates their returned proposals and selects the highest rated.

Our framework is quite straightforward and we have only deviated from the underlying GWA theory
by allowing the termination and spawning of processes. We believe that maintaining this low complexity
has several benefits for clarity of design and extensibility, and we are investigating how capable this
simple framework can be. However, there are many areas of the framework where we see potential
for future development. For example, currently, all processing is performed on a single processor in a
serial fashion. Moreover, processing is synchronous, because all processes are given the chance to react
before a new round is begun, and it may be that parallel or asynchronous variants of the framework
could be more effective. Further, once started, the behaviour of the system will be determined by three
factors: the configuration chosen by the user, the values of parameters they have set and the randomness
in choosing between equal proposals in a given round. Currently, once processing has begun, the user
cannot intervene in any way other than to pause or stop the system. We have introduced control processes
and control broadcasts, in response to which some processes detach from the workspace. This allows us
to terminate some aspects of processing when a specific processing goal has been reached. However, we
have not yet considered any more sophisticated intervention schemes. As yet, we have only considered
relatively simple importance rating schemes. In general, processes will assign the same importance to
all broadcasts of the same type. We have enhanced this slightly in some applications where we enable
processes to determine the importance of their proposals based upon the specifics of their proposal. For
example, in §3.4, the importance rating is based partly upon the number of predicates and variables
included in a concept defintion. These, and other, aspects of the framework, where we see the potential
for future development are discussed in §6.

In the next sections, we present configurations of the framework to demonstrate its potential for
combining reasoning systems. In the first configuration, we develop the core automated theory formation
processes which achieves similar behaviour to the concept production rules, conjecture making routines
and third-party interactions which drive the HR system. These processes appeal to both the Yap Prolog
system [11] and Prover9. In the second configuration, we improve the theory formation processes, and
enable an interaction with the Maple computer algebra system [24]. In §5, we discuss a novel application
of the theory formation configuration to investigating interesting specialisation classes of finite algebras.

3 Configuration 1: Quasigroup Theorem Discovery

Constraint solving is a very successful area of Artificial Intelligence research, and constraint solvers
are regularly used for solving industrial-strength problems in, for example, scheduling or bin-packing.
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The way in which a constraint satisfaction problem (CSP) is specified is crucial to the success of the
solver, as different specifications can lead to radically quicker solving times. For this reason, there
has been much research into reformulating constraint satisfaction problems. Our contribution has been
to introduce a combined-reasoning system for finding additional constraints which are implied by the
CSP specification. With the ICARUS system [5], using the QG-quasigroup standard CSP benchmark
set, we showed that it was possible to substantially increase efficiency when solving CSP problems
by automatically discovering implied constraints. ICARUS is an ad-hoc system which employs the
HR program to make conjectures empirically about the solutions to a CSP, then Otter to show that the
conjectures are true, and finally uses the CLPFD constraint solver [4] in Sicstus Prolog to determine
which proved theorems increase the solver efficiency when added as implied constraints.

With the configuration described here, we intended to show that the framework could combine ma-
chine learning and theorem proving processes to discover implied constraints about QG-quasigroups
similar to those found by ICARUS. In future, we also plan to attach constraint solving processes, so
that the framework will be able to determine – like ICARUS – which implied constraints reduce solv-
ing time. As described in §3.1 to §3.4 below, to configure the framework for this task, we specified
five different types of broadcastable artefacts, some concept forming, conjecture making and explanation
finding processes and a fairly straightforward scheme for ascribing importance values to bids for artefacts
to be broadcast. In §3.5, we show that the configured framework does indeed produce similar results to
ICARUS.

In overview, the configured framework was required to invent new concepts (initially built from a
set of user-supplied background concepts), by manipulating and combining existing concept definitions.
Concept defintions are first order logic statements in a Prolog-readable format. Each concept definition
partitions the example set into two; those for which the definition holds and those for which it does not.
By comparing the sets of examples for which definitions hold, the system makes empirical conjectures
which relate the concepts. Some of these conjectures can be proven to follow from the axioms of the do-
main of investigation. In simple outline, the system starts with Definition broadcasts for the background
concept definitions. The DefinitionReviewer acts as a filter, so that only unique Definitions become Con-
cepts. The ExampleFinder process finds examples for Concepts and the EquivalenceReviewer process
filters out those Concepts that are equivalent to previous Concepts. When a Concept has passed this filter,
a NewConcept is broadcast. DefinitionCreator processes react to NewConcept broadcasts by manipulat-
ing their definitions to create new Definitions. NewConcept broadcasts also feed into conjecture making.
In particular, ImplicationMaker processes compare the example sets of NewConcepts and propose Con-
jectures, which may be proved by the Prover process, creating an Explanation proposal. Full details of
broadcastable artefacts and the processes are given below.

3.1 Broadcast Artefacts

To represent the concepts, conjectures and proofs, we specified five main types of broadcast artefacts,
below. As noted in §2, broadcasts take the form of string arrays, and we use the notation [e0 : e1 : . . . : en]
to represent such an array of strings. In general, the first element of a broadcast string array indicates the
type of broadcast. The remaining elements are the specifics of that broadcast.

1. Definition, in the form [def:D], where D is a Prolog-readable definition of a concept.

2. Concept, in the form [conc:D:E], with D as above and E being a list of examples which satisfy that
concept definition.

3. NewConcept, in the form [new:D:E], with D and E as above. The distinction between Concept and
NewConcept facilitates equivalence reviewing as described below.

4. Conjecture, in the form [conj:D1:D2:K], where D1 and D2 are concept definitions and K is a keyword
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indicating the type of conjecture. In this configuration, K is limited to being either im, which denotes
that D1 is conjectured to imply D2; or eq, denoting D1 is conjectured to be equivalent to D2.

5. Explanation, in the form [exp:D1:D2:K:R:P], where D1, D2 and K represent a conjecture, as above. R
is a keyword indicating the type of explanation; either true, which indicates that the conjecture has been
proved, for example by a prover process; or false, where the conjecture has been refuted, for instance a
model generator has found a counter-example. P gives details of the proof or refutation, as appropriate.

An example Definition from quasigroup theory is [def:m(Q,A,A,B),m(Q,B,B,A)], which describes ele-
ments of quasigroups satisfying the equation A∗A = B∧B∗B = A. The m/4 predicate defines the mul-
tiplication table for a quasigroup; e.g. m(Q0,0,1,2) states that 0∗1 = 2 for quasigroup instance Q0. The
NewConcept artefact would be [new:m(Q,A,A,B),m(Q,B,B,A):((Q0,0,1),(Q0,1,0),(Q1,2,1),. . . )], with an
associated example set. These are tuples of valid bindings for the definition variables; {Q0,Q1} are
identifiers for different quasigroups and {0,1,2} are the elements of those quasigroups. The conjecture
∀AB(A∗B = B∗A↔ A = B) would be represented as [conj:m(Q,A,B, C),m(Q,B,A, C):e(Q,A,B):eq], in
a Conjecture artefact where the e/3 predicate, e(Q,A,B) is the equality of two elements within a particular
algebra instance (A = B in quasigroup Q). A proof of this conjecture in an Explanation artefact would
be as follows; [exp:m(Q,A,B, C),m(Q,B,A, C):e(Q,A,B):eq:true:proof text].

We make use of flags attached to broadcast artefacts to control the workspace. In particular, Def-
inition and Concept artefacts have an attached complexity flag indicating the number of definitions,
including itself, that have been used in creating that definition. This allows us to place an upper limit
upon processing. For example, the definition m(Q,A,A,B),m(Q,B,B,A) would have a complexity of 3; in
addition to itself, this definition has used the background definition of multiplication m(Q,A,B,C), and
the concept of squaring an element m(Q,A,A,B). For clarity, we have omitted these flags from the formal
definitions of the broadcasts, above.

3.2 Processes

We developed the following types of processes for use in the Quasigroup Theorem Discovery configura-
tion:

1. DefinitionCreator processes propose new Definitions. They each encapsulate a different concept
formation method, akin to production rules in HR. They react to NewConcept broadcasts, [new:D:E].
Some formation methods involve modifying a single concept definition, where they attempt to create a
new definition from D. Others combine two definitions, in which case they remember D, by spawning
a clone process that reacts to NewConcept broadcasts, [new:D’:E’:C’], by attempting to combine D and
D’.

2. DefinitionReviewer, reacts to Definition broadcasts, [def:D], and removes redundancy by checking
whether D has been seen before. If not, it proposes for broadcast [conc:D: /0], i.e. a concept with definition
D and an empty example set.

3. ExampleFinder, encapsulates a Prolog database containing examples for the initial background con-
cepts. All concept definitions are Prolog terms and ExampleFinder can generate example sets for new
concepts by querying Prolog with the definition. ExampleFinder reacts to Concept broadcasts with empty
example sets, [conc:D: /0], by generating an example set E. If E is non-empty, it proposes [conc:D:E].

4. EquivalenceReviewer, checks each new concept to identify and filter out those having the same ex-
ample set as a previously developed concept. This removes a great deal of duplicated effort as the further
development of each concept would give equivalent results. The process reacts to Concept broadcasts
[conc:D:E] by proposing for broadcast [new:D:E]. Also, the process reacts to broadcast [new:D1:E1] by
spawning a clone process P. For any future Concept broadcast [conc:D2:E2], if P finds that E2 = E1, it
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proposes an equivalence conjecture between them: [conj:D1:D2:eq]. A higher iportance value is allo-
cated to equivalence conjecture proposals than to concept proposals. In the case where E2 = E1, both
[conj:D1:D2:eq] and [new:D2:E2] will be proposed and the conjecture will be broadcast as it has higher
importance. [new:D2:E2] will only be broadcast in the case where no spawned process identifies equiva-
lence.

5. ImplicationMaker, compares the example sets of two NewConcept broadcasts. It reacts to the first
NewConcept, [new:D1:E1], (where E1 6= /0), by spawning a clone process, P, which itself reacts to future
NewConcept broadcasts [new:D2:E2]. In particular, if P finds that E1 ⊂ E2, it proposes [conj:D1:D2:im]
(or [conj:D2:D1:im] if E2 ⊂ E1).

6. Prover processes encapsulate the Prover9 theorem prover with axioms for the domain under inves-
tigation. It attempts to prove conjectures in any Conjecture broadcast, [conj:D1:D2:K], and proposes
[exp:D1:D2:K:true:P], whenever a proof, P, is found.

The definition methods embodied by the DefinitionCreator processes are either unary or binary.
Unary methods act upon one definition. An example of a unary method is called variable freeing. Given
the starting concept m(Q,A,A,B), i.e., the arity 3 concept of pairs of elements for which A ∗A = B,
freeing the variable A would result in the concept m(Q, A, A,B), which is the arity 2 concept of ele-
ments B, which are the square of some element. In addition, there are unary concept forming processes
which unify variables, for example creating m(Q,A,A,A) from m(A,B,C,D). Other methods include
grounding, which involves variable instantiation, and methods combining definitions as conjunctions
with themselves with different variable orderings. The most common binary methods involve either
creating a conjunction of two previous definitions and unifying their variables in a particular manner,
or creating a conjunction of a previous concept and the negation of another previous concept. These
methods are inspired by HR’s concept formation methods, as described in [6].

DefinitionCreator processes spawn other processes to repeat-propose the definitions they create. This
means that the definition is not forgotten if it is not immediately broadcast. Several other process types,
for example the ImplicationMaker and Prover also use such an approach. This repetition addresses the
question of residual memory, which is not really tackled by GWA theory.

3.3 Initial State

At the start of a session, a number of processes are attached to the global workspace. Several Definition-
Creator processes are attached as they each embody a different definition creation method and allow us
to develop a theory in different ways. We attach DefinitionCreator processes for each of the definition
formation methods described above. In addition, we include several parameterisations of each method,
whereby the same formation method operates upon different sub-sets of variables. In addition to the
DefinitionCreator processes, we attach one instance of each of the other processes defined above. We
also specified a process which proposes BackgroundConcept and BackgroundAxiom artefacts for the
domain, which starts the theory formation session.

3.4 Importance Rating Scheme

The framework requires that each proposal is given a numerical rating and it chooses the highest for
broadcast. However, for the experiments described below, we used a simple scheme; Definitions are
scored at 100, Concepts with no examples at 200, Concepts with examples at 250. Any NewConcept
broadcasts are given the value 300 and Conjectures 400 meaning, in particular, equivalence Conjectures
will get precedence over NewConcepts. Explanations are valued at 500. Having Explanations ranked
the most highly ensures that any proved theorems are broadcast immediately, which seemed sensible
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given the purpose of the application – to discover proved theorems about quasigroups. In addition,
we also experimented with using the complexity measure to further rank Definitions, whereby the base
importance of 100 is reduced by the definition’s complexity. This means that simpler definitions are
more likely to win the competition for broadcast. Not surprisingly, we have found that this produces
simpler theories in step-limited sessions. There are many different rating schemes we could experiment
with, and we plan to do so.

3.5 Illustrative Results

As mentioned previously, we want to compare the configured framework against the ICARUS system,
as described in [5], where the application domain was QG-quasigroups, which are Latin squares with
additional axioms, e.g., QG3-quasigroups have the additional axiom that ∀a,b((a ∗ b) ∗ (b ∗ a) = a).
In its investigation into QG3 quasigroups, as reported in [5], ICARUS discovered three theorems which
were turned into efficiency-gaining implied constraints: (i) ∀ab(a∗a = b ↔ b∗b = a) (ii) ∀ab((a∗b =
b ∗ a)→ a = b) (iii) ∀ab((a ∗ a = b ∗ b)→ a = b). Using the configuration described above, in a run
of 777 broadcast rounds, lasting 61.3 seconds on a 3.2GHz Intel Pentium IV with 1GB of RAM, our
configuration generated 24 Concept broadcasts, after equivalence checking, and created and proved 159
conjectures, including the three above found by ICARUS. These results mean that if our configuration
were used to replace the HR system in the ICARUS system, then we would certainly achieve the same
results. We have similarly ran the configured framework with QG4 and QG5 quasigroups, and found that
it also produced comparable results to ICARUS, although we omit details here.

As an illustrative example, we will describe how our system discovered and proved result (i) above.
The background concepts we supplied were the multiplication operator m(Q,A,B,C) which states that
A*B=C for A,B,C ∈ Q; and equality e(Q,A,A) :- m(Q,A, , ), which states that all elements of Q are equal
to themselves. The workspace was configured according to the initial state described above. Examples
for the background concepts were given to the ExampleFinder and axioms for QG3 quasigroups to the
Prover process. For clarity, by propose below, we mean that a process made and repeatedly proposed a
proposal for broadcast. We also omit complexity information.

In a fairly early processing round, a Definition artefact for m(Q,A,B,C) was broadcast. DefinitionRe-
viewer reacted to this definition and confirmed that it was novel, thus proposing it in a Concept artefact
with no examples. In the next round, this was broadcast, and ExampleFinder reacted by obtaining ex-
amples of the concept from its Prolog database and proposing a Concept with these examples. Equiv-
alenceReviewer reacted to the broadcast by proposing a NewConcept with that definition and this was
subsequently broadcast as the concept was not equivalent to any previous concept. EquivalenceReviewer
reacted again to this broadcast NewConcept by spawning a clone process to review future Concepts for
equivalence with m(Q,A,B,C). In that same round, the broadcast also triggered the DefinitionCreator
process encapsulating the Unify-[0,1,1,2] method. The process unified the second and third variables
of this definition to generate, and propose, a new Definition, [def:m(Q,A,A,B)]. In a similar process to
the above, this became a NewConcept and an EquivalenceReviewer process was spawned to compare
it to future concepts. The DefinitionCreator process with the conjoin-[[0,0],[1,2],[2,1]] method then
proposed [def:m(Q,A,A,B), m(Q,B,B,A)]. In later rounds, this was elevated to a Concept and examples
were found for it. At this stage, the EquivalenceReviewer process spawned earlier identified that the
example set for this concept was identical to that of m(Q,A,A,B) and proposed the equivalence conjecture
[conj:m(Q,A,A,B):m(Q,A,A,B),m(Q,B,B,A):eq]. This was broadcast in the next round and the Prover
process reacted by proving the conjecture, using the axioms it was supplied with. The ranking scheme
favours explanation artefacts above all others so the proof of this was broadcast. The proven theorem
states ∀ab(a∗a = b↔ a∗a = b∧b∗b = a) which is logically equivalent to that above.

The configuration described above was our second major attempt at getting the framework to achieve
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results comparable to ICARUS. Our first attempt generated many repeat broadcasts and therefore per-
formed much unnecessary processing. The main reason for this was that the same concept was formed
in a number of different ways. Also, there were instances where a chain of definition creation methods
applied to a definition resulted in that same definition, creating many repetitive loops. This redundancy
meant that the first system took 25,000 rounds (during an hour of running time) to produce the three
interesting theorems above, found amongst 15,000 other conjectures. In response, we added the Defini-
tionReviewer process to stop the repetition. Later, we designed the EquivalenceReviewer and made the
distinction between Concept and NewConcept, to remove equivalent concepts. The results from the final
version of this configuration represent a vast improvement upon those early results.

4 Configuration 2: Number Theory Conjecture Making

One of the purposes of using computer algebra packages is to gain a better understanding of certain
mathematical functions, and the calculation of outputs for inputs can often lead to the formation of
conjectures about the function. With the HOMER system, we combined the HR machine learning system
with the Maple computer algebra package so that HR could automatically discover conjectures about
some user-supplied Maple functions. In [7], we applied this approach to number theory, using some
functions which included a Boolean primality test, and τ(n) and σ(n) which calculate the number and
sum of divisors of n respectively. We found that, due to the inherent connectivity between concepts in
number theory, the main problem was the production of too many conjectures which followed from the
definitions. Hence, we enabled HOMER to use the Otter theorem prover as a filter, i.e., any conjectures
proved by Otter were discarded, as they were highly likely to follow trivially from the concept definitions.

To produce equivalent results to HOMER, using the GC framework, we built a second configuration
on top of the one described above. We used the same importance rating scheme as before, but we changed
the artefacts slightly and the processes slightly more. In overview, the new configuration effectively
passes conjectures through a series of filters which halt the progress of the conjecture if it fails a test
indicating that it will be uninteresting. In addition to filtering, we also wanted to mimic the way in
which HOMER splits conjectures into smaller ones, e.g., an equivalence is split into two implication
conjectures. To achieve the filtering and splitting through the normal workspace-process mechanism,
we changed the Conjecture reasoning artefact to be of the form [conj:D1:D2:K:L]. Here, L is a number
in {0,1,2,3} which indicates the level of conjecture filter through which the conjecture has passed. The
levels are as follows: (0) indicates that the conjecture has not been split or filtered, (1) indicates that
the conjecture has been split into implicates (2) indicates that the conjecture cannot be proven trivially
from details of the background examples and function definitions (3) indicates that the conjecture still
cannot be proven after considering some of the other conjectures the user has chosen as axioms – this
rules out conjectures which are specialisations of some interesting conjectures identified by the user. All
conjectures initially proposed by the processes spawned by EquivalenceReviewer and ImplicationMaker
are assigned level 0.

When configuring the concept forming processes, we took into account the infinite nature of the
number line. That is, in order to make empirically correct conjectures which relate concepts, the example
generation must be sound, i.e., the generation of examples for two logically equivalent concepts should
always result in the same finite example set. For efficiency purposes, we restricted our consideration to
working just with the numbers 1 to 50, but this introduces some problems. For example, σ(28) = 56,
so, with no further information, the result of τ(σ(28)) cannot be calculated. We resolved this problem
by storing background function values to cover a much larger range of integers whilst restricting the
generation of examples to 1 to 50. We introduced the notion of a generator variable, which is one
from which all other variables in a definition can be generated, by being the output from a function to
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which the inputs are known or can themselves be generated. All background concepts are supplied with
relevant function input and output information, and the concept forming production rules use this to
avoid inventing ambiguous definitions.

In addition to upgrading the concept forming processes, we made a few changes to some other exist-
ing processes. In particular, using the notion of generator variables, DefinitionReviewer was improved to
also check definitions for empirical testability. In this configuration, it rejects those definitions for which
example sets cannot be soundly generated. Also, we have enabled the ExampleFinder process to use the
Maple computer algebra system to calculate examples for background concepts which represent num-
ber theory functions. Moreover, the ImplicationMaker process can now be given a minimum example
set size, and if a concept has fewer examples than this threshold, no conjectures will be made for that
concept. This stops the formation of conjectures such as τ(a) = 1↔ σ(a) = 1, as the concepts on both
the left and right hand side are only satisfied by the number 1. For this configuration, we implemented
two types of Prover process. The level 1 Prover reacts to level 1 conjectures using background examples
and function definitions in proof attempts. In contrast, the level 2 Prover reacts to level 2 conjectures
and attempts a proof using the same axioms together with axioms supplied by the user. In each case,
the prover proposes an Explanation artefact if they are successful and a Conjecture artefact of one level
higher if they fail.

We also added processes to split equivalence conjectures into two implications, and a method by
which conjectures concerning concepts with small example sets – which are likely to be uninteresting –
are avoided. In particular, we added these processes:

RightConjectureSplitter and LeftConjectureSplitter
The first of these processes reacts to level 0 Conjecture broadcasts (both im and eq) by proposing a level
1 im conjecture with the same definition list. LeftConjectureSplitter performs similarly, but reverses
the members of the definition list, and only in response to eq conjectures. This procedure increases the
overall number of conjectures but does lead to more pertinent conjectures, e.g., the non-obvious side of
an equivalence conjecture.

ConjectureApplicability
This reacts to a Concept with a small set of examples satisfying its definition. It proposes a conjecture
that the given examples are the only ones possible for that definition. For example, it would propose
[conj:sigma(A,1):e(A,1):eq] on seeing that 1 is the only number for which σ(A) = 1. These conjectures
prevent further development of these concepts in a similar manner to the EquivalenceReviewer.

4.1 Illustrative Results

As for the experiments with the HOMER system, we used the σ(n), τ(n) and isprime(n) background
functions together with the notion of equality. We ran the system to completion with a complexity limit
of 6. Under a similar experimental set up, as reported in [7], HOMER created 48 concepts, whereas
our configuration created 97, of which 38 were found in HOMER’s corpus of 48. We identified four
reasons why the extra ten concepts were not created by our system. Firstly, three were not produced
due to timing differences in the equivalence checking. Equivalence checking works in similar ways in
each system, i.e., any new concepts with the same example set as a previous one are discarded and an
equivalence conjecture is raised. Hence, the time at which equivalent concepts are proposed determines
which is discarded and which is kept. For example, both systems found the following equivalence:
∀aσ(a) = 1↔ τ(a) = 1. However, our configuration chose to explore the τ(a) = 1 branch, discarding
σ(a) = 1, whereas HOMER did the opposite.

Secondly, variable ordering accounted for some of the difference in the results. Our system consid-
ered τ(a) = b∧σ(b) = a∧ τ(b) = b to be equivalent to σ(a) = b∧ τ(a) = a. Depending on how the
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variables are ordered, the example sets of each can be written [[1,1],[2,3]] or [[1,1],[3,2]]. This ordering
difference led to HOMER treating this concept as new whereas our system discarded it (which high-
lights a deficiency in the underlying HR system). Thirdly, one concept produced by HOMER, namely
τ(a) = 2∧ isprime(2)∧σ(2) = a, would not be considered valid by the DefinitionReviewer in our sys-
tem. In this formula, a is always the result of σ(2), i.e., 3. So, this formula is essentially variable free, and
hence not really a concept definition (which again highlights a deficiency in HR). Finally, two concepts
were not produced by our configuration due to differences in its calculation of complexity – HOMER
counts re-used concepts only once towards the complexity, whereas our system counts them with mul-
tiplicity. Hence, our system counted certain concepts as complexity 7, whereas HOMER counted them
as complexity 6. When the configuration is run with a complexity limit of 7 then these concepts are
produced.

On the other hand, our system produced a number of concepts that were not produced by HOMER.
Some of these were ignored by HOMER for good reason, e.g., our system produced several concepts in
the form σ(a) = b∧ (∃c(σ(b) = c))). Here, c indicates the existence of a functional result for sigma(b).
Such formulae are uninteresting extensions to earlier concepts. However, other concepts produced by our
system and not HOMER were valid and potentially interesting. It is difficult to determine why HOMER
missed these concepts, and we are still investigating this. Looking instead at the conjectures made
by the two systems, we note that our configuration created 669 level 1 conjectures, i.e., after splitting
valid equivalence conjectures into implicates. The first filter – which excluded conjectures if they were
provable from the background definitions – removed 331 conjectures, leaving 338. By comparison, the
HOMER system created 137 conjectures, of which Otter proved 43, using the same methods, leaving
94. The main reason for the difference in these numbers is the relative number of concepts that the two
systems produced, which naturally meant that the configured framework produced more conjectures.

In a similar manner to that adopted for HOMER, we reviewed the 338 remaining conjectures. In
particular, we looked at the first 10 conjectures and added the following as axioms (after re-combining
some of the split implications):

∀ a (σ(a) = 1→ a = 1) ∀ a (σ(a) = a↔ σ(a) = 1)
∀ a (τ(a) = 1→ a = 1) ∀ a (τ(a) = a→ (a = 1|a = 2))
∀ a (τ(a) = 2↔ isprime(a))

After running the process again, our configuration filtered out all but 66 conjectures (a reduction of
around 90%). A similar kind of reduction was achieved by the users of HOMER, hence we can claim
that our configured generic framework is capable of producing comparable results to the bespoke, ad-hoc
HOMER system. Importantly, the most interesting (proved by hand) result from the HOMER experi-
ments was: isprime(σ(a))→ isprime(τ(a)), which our system re-discovered.

5 Investigating Specialisations of Finite Algebras

In addition to showing that our Global Workspace approach can be used to re-implement existing com-
binations of reasoning systems, we can also use the system for novel applications, one of which we
describe here. In finite algebra, it is common for a specialisation of an algebra to be studied in its own
right, for instance, Cyclic groups, Abelian quasigroups [22], and so on. As there are thousands of possi-
ble specialisations, it is an interesting question to try to predict which one it would be fruitful to study.1

It is naturally very difficult to predict in advance whether a domain will be worthy of study, so we restrict
ourselves to an automated reasoning setting. In particular, we say that a specialisation of an algebra is

1Note that Toby Walsh originally suggested that we perform a similar analysis, using the HR theory formation system, but this
project wasn’t undertaken.
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more interesting than another if a theory formed about the former specialisation contains theorems which
on average are more difficult to prove by an automated prover than the latter.

The GC configuration for this application was similar to that used for quasigroup theorem discovery
above, with a small number of amendments. Firstly, we introduced a MaceAxiomPopulator process,
which uses the Mace model generator to produce background concepts and examples for the domain.
The process reacts to the broadcast of a BackgroundAxiom by generating models for that axiom up to a
user defined algebra size limit. It extracts the algebra operators from the models and generates example
sets for them by interpreting the models. It then proposes these operators and examples sets together as a
BackgroundConcept artefact, which initiates theory formation as before. This new process allows us to
perform theory formation with only the axioms of the domain as a starting point. This greatly improves
efficiency as, previously, a user was required to generate examples independently and convert them into
an appropriate format. Our next amendment was to configure the system with two Prover processes; one
of which uses the axioms of the domain in attempts to prove conjectures and another which holds no
axioms. If this second prover can prove a conjecture then we know it is trivially true. This allows us
to distinguish, potentially, more interesting conjectures. If the trivial prover can prove a conjecture then
we know that the Prover with the domain axioms will also be able to prove it. Consequently, we weight
the importance rating scheme toward the trivial proofs to ensure they are broadcast. We also introduced
a MaceRefuter process which appeals to Mace to find counter-examples to broadcasts conjectures. This
refutation process has access to higher orders of algebra and so can sometimes refute conjectures that
have been generated by being empirically true for smaller orders.

Starting with a fairly unstructured algebraic domain such as quasigroup theory, we used the system to
generate 100 concepts which can be interpreted as specialisations, expressed in a Prolog style in terms of
the multiplication operator only. Then, for each specialisation, we started GC with the original axioms of
the algebraic domain, with the specialisation definition also added as an axiom. We then ran the system
until it generated and proved 100 implication theorems, and recorded the average length of the proof
produced by the Prover9 prover. In Table 1, we present the top ranked specialisations from three domains:
semigroups, quasigroups and star algebras (which have the single axiom: ∀x,y,z((x∗ y)∗ z = y∗ (z∗ x)),
see [10]). We also performed a correlation analysis over the specialisations. In particular, for each
specialisation, we calculated a crude measure of the complexity of its definition by adding the number of
existential variables to the number of multiplication predicates present (note that this value is presented
in the comp. column of Table 1. We correlated this with the rank of the specialisation in Table 1, using
the R2 goodness-of-fit measure. A high level of correlation would indicate that it is possible to predict
to some extent which algebra specialisations are going to be interesting, without having to perform
an in-depth theory for each specialisation. We found a positive correlation of 0.25, 0.03 and 0.15 in
the quasigroup, semigroup and star algebra domains respectively. While the lack of correlation with
semigroups is surprising, it was not surprising that for the other two algebras, more complex definitions
produce more complex (in terms of average proof length) theories.

Bearing in mind that the balance of syntactic simplicity and semantic complexity is often regarded as
a maxim in pure mathematics – for instance, consider Fermat’s Last Theorem, which is very easily stated,
but very difficult to prove – we looked for a specialisation of each algebra which had a high rank, yet a low
complexity for its definition. In each case, we found suitable candidates. In particular, for semigroups,
the specialisation (m(A, B, C, B)),\+(m(A, C, D, B)) has a definitional complexity of only 5 (it has
three free variables, namely B, C and D, and two occurrences of the multiplication operator), but it is
ranked 92nd out of the 100 specialisations, as it produces a theory with a proof length of 6.54 on average
(with the best achieved being 7.76). The definition describes the notion of semigroups for which an
element is the right identity of an element that does not appear on its row of the multiplication table. For
quasigroups, the specialisations ranked 94th and 100th each have short definitions with a complexity of 7.
The 100th ranked is ((m(A, B, C, C),m(A, D, D, D)),\+(m(A, E, E, B))), which alludes to the notion
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Semigroups
rank apl comp. definition
91 6.50 7 ((m(A, B, C, B)),\+(((m(A, B, D, B)),\+(m(A, D, E, D)))))
92 6.54 5 ((m(A, B, C, B)),\+(m(A, C, D, B)))
93 6.54 10 ((m(A, B, C, D)),\+(((m(A, C, E, C)),\+(((m(A, C, F, C)),\+(m(A, F, G, C)))))))
94 6.59 9 ((m(A, B, C, D)),\+(((m(A, E, F, E)),\+(m(A, G, G, F)))))
95 6.63 9 ((m(A, B, C, D)),\+(((m(A, E, D, F)),\+(m(A, G, G, E)))))
96 6.64 8 ((m(A, B, C, D)),\+(((m(A, D, E, D)),\+(m(A, E, F, E)))))
97 6.67 10 ((m(A, B, C, D)),\+(((m(A, E, E, C)),\+(((m(A, C, F, C)),\+(m(A, F, G, C)))))))
98 6.68 10 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(m(A, H, F, H)))))
99 6.80 11 ((m(A, B, C, D)),\+(((m(A, E, E, F)),\+(((m(A, F, G, F)),\+(m(A, G, H, F)))))))
100 7.76 8 ((m(A, B, C, B)),\+(m(A, D, D, C))),m(A, E, F, C)

Quasigroups
rank apl comp. definition
91 6.65 10 ((m(A, B, C, D)),\+(((m(A, E, F, F)),\+(((m(A, E, G, E)),\+(m(A, G, E, E)))))))
92 6.81 10 ((m(A, B, C, D)),\+(((m(A, E, E, E)),\+(((m(A, F, G, F)),\+(m(A, G, G, E)))))))
93 6.93 9 ((m(A, B, C, C)),\+(m(A, D, D, B))),m(A, E, E, E),m(A, F, B, F)
94 6.98 7 ((m(A, B, B, B),m(A, C, D, C)),\+(m(A, E, E, D)))
95 7.12 9 (((m(A, B, C, B)),\+(m(A, C, D, D))),\+(m(A, E, E, C))),m(A, F, F, F)
96 7.85 8 (((m(A, B, C, B)),\+(m(A, D, D, C))),\+(((m(A, E, C, E)),\+(m(A, C, E, E)))))
97 8.05 9 (((m(A, B, C, C)),\+(m(A, D, D, B))),\+(((m(A, E, E, E)),\+(m(A, F, F, B)))))
98 8.21 9 ((m(A, B, C, B)),\+(((m(A, C, D, D)),\+(((m(A, E, C, E)),\+(m(A, F, F, C)))))))
99 8.67 7 (((m(A, B, C, B)),\+(m(A, C, D, D))),\+(m(A, E, E, C)))
100 9.61 7 ((m(A, B, C, C),m(A, D, D, D)),\+(m(A, E, E, B)))

Star algebras
rank apl comp. definition
91 6.40 10 (((m(A, B, C, D)),\+(m(A, C, E, C))),\+(((m(A, F, F, F)),\+(m(A, C, G, F)))))
92 6.42 11 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(((m(A, G, H, G)),\+(m(A, G, G, H)))))))
93 6.42 12 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(((m(A, H, I, F)),\+(m(A, I, F, F)))))))
94 6.51 9 ((m(A, B, C, D)),\+(((m(A, E, E, D)),\+(((m(A, F, D, F)),\+(m(A, F, F, D)))))))
95 6.51 10 ((m(A, B, C, D)),\+(((m(A, E, C, E)),\+(((m(A, F, F, F)),\+(m(A, C, G, F)))))))
96 6.60 9 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(m(A, F, G, G)))))
97 6.73 8 ((m(A, B, C, D)),\+(((m(A, E, F, E)),\+(m(A, E, E, F)))))
98 7.10 10 ((m(A, B, C, D)),\+(m(A, E, E, C))),((m(A, F, C, C)),\+(m(A, G, G, F)))
99 7.46 9 ((m(A, B, C, D)),\+(m(A, E, E, D))),m(A, D, D, F),m(A, F, D, F)
100 8.55 8 ((m(A, B, C, B),m(A, D, E, C)),\+(m(A, F, F, C)))

Table 1: Highest ranked specialisations for quasigroups, semigroups and star algebras. apl is the average
proof length, comp. is the sum of the variable and predicate counts.

of quasigrioups having at least one idempotent element , and an element which is the left identity of some
element but does not appear on the central diagonal of the multiplication table ,i.e. it is not the square
of some other element. This specialisation produced the theory with the highest average proof length of
9.61. Interestingly, the specialisation ranked 94th is very similar to the 100th but describing an element
that is a right identity. For star algebras, the 97th ranked specialisation is interesting. It represents a
specialisation for which an implication should hold. Namely, for all elements x and y, if x ∗ y = x then
y∗ y = x. We further investigated this specialisation by drawing a graph to indicate how it relates to the
other star algebra specialisations. In figure 1, the arrows all indicate an implication conjecture/theorem
that the algebras satisfying the definition of the first specialisation all satisfy the definition of the second
specialisation. Solid arrows are all true, i.e., can be proved from the background axioms. The arrows
with a dotted line are only empirically true, i.e., Prover9 could not prove the implications, and MACE
could not find counterexamples, even when we re-ran them for several minutes. These are therefore
interesting open conjectures and we will continue to investigate them.

6 Conclusions and Further Work

We have used the cognitive science theory of the Global Workspace Architecture (GWA) to devise and
implement a generic computational framework within which disparate reasoning systems can be fruit-
fully combined. We have shown how the framework can be configured in order to achieve similar results
to the ICARUS and HOMER combined reasoning systems which were implemented in an ad-hoc way
for specific purposes. We have also demonstrated a novel application of a configuration of our system
to investigating algebra specialisations. We applied this system to three classes of finite algebra and, in
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Figure 1: Graph showing the implication relationships between the specialisation of interest (circled)
and other specialisations of star algebras.

each case, it identified a syntactically simple, although semantically quite complex, specialisation of that
algebra that may be worthy of further mathematical investigation.

While the value of using disparate AI systems in combination has been repeatedly demonstrated, the
combined reasoning systems themselves are in general ad-hoc and purpose-specific. We believe that in
order for the field of combined reasoning to progress, there needs to be much more research into generic
frameworks within which different AI problem solving methods can be integrated. We hope that the
framework presented here will eventually become one of many that researchers can turn to when they
need to harness the power of more than one reasoning approach in combination.

While the functionality that the framework provides is fairly straightforward, we have shown that it is
possible to configure it to achieve behaviour which combines induction, deduction and calculation. Pro-
ducing similar results to those of previous ad-hoc systems has been the first milestone in the development
and testing of the framework. We intend to further demonstrate the potential of the system by adding
constraint solving processes, so that the full functionality of the ICARUS system can be achieved. We
will further add model generation, SAT-solving and planning processes so that results similar to those
from other combined reasoning systems – in particular the TM system [9] and the algebraic classification
system described in [8] – can be produced. We also want to show that using the framework can reduce
some of the development time in building combined reasoning systems, and we will do this by config-
uring the framework to apply to new problems by achieving novel reasoning combinations. In addition,
we will consider configurations of similarly skilled processes working as a portfolio.

While much of our effort to date has been spent on writing processes which achieve theory formation
like the HR system, it is important to note how differently the configured frameworks presented here
perform when compared to the very linear approach in HR. In particular, one of the potential benefits
of a framework based on the Global Workspace Architecture is the ability to distribute the reasoning it
performs over many processors. We plan to implement a distributed version of the framework, and to
determine the efficiency gains to be made.

Currently, our framework operates in a synchronous manner, where all processes are given time
to react before a new round is begun. Relaxing this requirement may yield efficiency gains as some
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processes react much faster than others. It may be possible, for instance, for the reasoning to proceed for
many rounds while a difficult theorem is proved on one processor. Furthermore, all processes are given
equal resources, and these could be adapted based upon perceived difficulty or importance of a particular
process’ task. We have only scratched the surface of the experimental possibilities that the framework
provides.

We chose quite straightforward importance rating schemes for the two configurations in order to
achieve similar results to HOMER and ICARUS. However, it is not clear that these are the best possible
schemes. In our experience with the HR system, it often pursues avenues of a theory which ultimately
lead to little of interest. It will be interesting for us to experiment with different setups of processes and
schemes to see which configurations of the framework are more fruitful, or which solve problems more
efficiently. We have only touched upon grading importance based upon the specifics of a proposal. We
could extend the sophistication of processes so that they consider other factors such as previous broad-
casts by other processes or by specialist control processes. This could also encompass such things as
information from the user or some external guiding system giving real-time feedback about the progress
of the system.

In addition to using the framework to advance the field of combining reasoning systems, we hope
to use it to shed light on the area of Global Workspace Architectures. We have already had to deviate
on two occasions from the standard theory of the GWA, in particular by allowing processes to terminate
themselves and to add new processes to the workspace. With a computational model of the GWA, we
hope to make the theory more concrete and more useful as a tool both for cognitive scientists and AI
researchers.
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