
Detecting Fake Content with Relative Entropy Scoring1

Thomas Lavergne2 and Tanguy Urvoy3 and François Yvon4

Abstract. How to distinguish natural texts from artificially gener-
ated ones ? Fake content is commonly encountered on the Internet,
ranging from web scraping to random word salads. Most of this fake
content is generated for spam purpose. In this paper, we present two
methods to deal with this problem. The first one uses classical lan-
guage models, while the second one is a novel approach using short
range information between words.

1 INTRODUCTION

Fake content is flourishing on the Internet. The motivations to build
fake content are various, for example:

• many spam e-mails and spam blog comments are completed with
random texts to avoid being detected by conventional methods
such as hashing;

• many spam Web sites are designed to automatically generate thou-
sands of interconnected web pages on a selected topic, in order to
reach the top of search engines response lists [7];

• many fake friends generators are available to boost one’s popular-
ity in social networks [9].

The textual content of this production ranges from random
“word salads” to complete plagiarism. Plagiarism, even when it in-
cludes some alterations, is well detected by semi-duplicate signature
schemes [2, 10]. On the other hand, natural texts and sentences have
many simple statistical properties that are not matched by typical
word salads, such as the average sentence length, the type/token ra-
tio, the distribution of grammatical words, etc [1]. Based on such
attributes, it is fairly straightforward to build robust, genre indepen-
dent, classification systems that can sort salads from natural texts
with a pretty high accuracy [5, 13, 11].

Some spammers use templates, scripts, or grammar based gener-
ators like the “Dada-engine” [3] to mimic efficiently natural texts.
The main weakness of these generators is their low productivity and
their tendency to always generate the same patterns. The productivity
is low because a good generator requires a lot of rules, hence a lot of
human work, to generate semantically consistent texts. On the other
hand, a generator with too many rules will be hard to maintain and
will tend to generate incorrect patterns.

As a consequence, the “writing style” of a computer program is
often less subtle and therefore more easy to characterize than a hu-
man writer’s. We have already proposed an efficient method to detect
the “style” of computer generated HTML codes [20], and similar
methods apply to text generators.

1 Work supported by MADSPAM 2.0 ANR project.
2 Orange Labs / ENST Paris, email: name.surname@orange-ftgroup.com
3 Orange Labs, email: name.surname@orange-ftgroup.com
4 Univ Paris Sud 11 & LIMSI/CNRS, email:surname@limsi.fr

To keep on with this example, the “Dada-engine” is able to gen-
erate thousands of essays about postmodernism that may fool a tired
human reader. Yet, a classifier trained on stylistic features immedi-
ately detects reliable profiling behaviours like these ones:

• this generator never generates sentences of less than five words;
• it never uses more than 2500 word types (this bounded vocabulary

is a consequence of the bounded size of the grammar);
• it tends to repeatedly use phrases such as “the postcapital-

ist paradigm of”.

To ensure, at low cost, a good quality of the generated text and
the diversity of the generated patterns, most fake contents are built
by copying and blending pieces of real texts collected from crawled
web sites or RSS-feeds: this technique is called web scraping. There
are many tools like RSSGM5 or RSS2SPAM6 available to generate
fake content by web scraping. However, as long as the generated con-
tent is a patchwork of relatively large pieces of texts (sentences or
paragraphs), semi-duplicate detection techniques can accurately rec-
ognize it as fake [6, 16]

Figure 1. A typical web page generated by a Markovian generator. This
page was hidden in www.med.univ-rennes1.fr web site

(2008-04-08).

The text generators that perform the best trade-off between patch-
works and word salads are the ones that use statistical language mod-
els to generate natural texts. A language model, trained on a large
dataset collected on the Web can indeed be used to produce com-
pletely original, yet relatively coherent texts. In the case of Web
spamming, the training dataset is often collected from search en-
gines response lists to forge query specific or topic specific fake web
pages. Figure 1 gives a nice example of this kind of fake web pages.
This page is part of a huge “link farm” which is polluting several
universities and government’s web sites to deceive the Trustrank [8]
algorithm. Here is a sample of text from this web page:

5 The “Really Simple Site Generator Modified” (RSSGM) is a good example
of a freely available web scraping tool which combines texts patchworks
and Markovian random text generators.

6 See web site rss2spam.com

Example 1 The necklace tree is being buttonholed to play cellos and
the burgundian premeditation in the Vinogradoff, or Wonalancet am
being provincialised to connect. Were difference viagra levitra cialis
then the batsman’s dampish ridiculousnesses without Matamoras did
hear to liken, or existing and tuneful difference viagra levitra cialis
devotes them. Our firm stigmasterol with national monument if amid
the microscopic field was reboiling a concession notwithstanding
whisks.

Even if it is a complete nonsense, this text shares many statistical
properties with natural texts (except for the high frequency of stuffed
keywords like “viagra” or “cialis”). It also presents the great advan-
tage of being completely unique. The local syntactic and semantic
consistency of short word sequences in this text suggests that it was
probably generated with a second order (i.e. based on 2-gram statis-
tics) Markovian model.

The aim of this paper is to propose a robust and genre independent
technique to detect computer generated texts. Our method comple-
ments existing spam filtering systems, and shows to perform well on
text generated with statistical language models.

In Section 2, we discuss the intrinsic relation between the two
problems of plagiarism detection and fake content detection, and we
propose a game paradigm to describe the combination of these two
problems. In Section 3, we present the datasets that we have used
in our experiments. In Section 4, we evaluate the ability of standard
n-gram models to detect fake texts, and conversely, of different text
generators to fool these models. In Section 5, we introduce and eval-
uate a new approach: relative entropy scoring, whose efficiency is
boosted by the huge Google’s n-gram dataset (see Section 6).

2 ADVERSARIAL LANGUAGE MODELS

2.1 A fake text detection game

The problem of fake texts detection is well-defined as a two player
variant of the Turing game: each player is using a dataset of “hu-
man” texts and a language model. Player A (the spammer) gener-
ates fake texts and Player B (the tester) tries to detect them amongst
other texts. We may assume, especially if Player B is a search engine,
that Player A’s dataset is included into Player B’s dataset, but even
in this situation, Player B is not supposed to know which part it is.
The ability of Player B to filter generated texts among real texts will
determine the winner (See Figure 2). Each element of the game is
crucial: the relative sizes of the datasets induces the expressiveness
of the language model required to avoid overfitting, which in turn
determines the quality and quantity of text that may be produced or
detected. The length of the texts submitted to the Tester is also an
important factor.

Figure 2. Adversarial language models game rules.

The answer to the question “Who will win this game ?” is not
trivial. Player A should generate a text “as real as possible”, but he
should not replicate too long pieces of the originals texts, by copying
them directly or by using a generator that overfits its training set.
Indeed, this kind of plagiarism may be detected by the other player. If
his dataset is too small, he will not be able to learn anything from rare
events (3-gram or more) without running the risk of being detected
as a plagiarist.

2.2 Fair Use Abuses
Wikipedia is frequently used as a source for web scraping. To illus-
trate this point, we performed an experiment to find the most typical
Wikipedia phrases.

We first sorted and counted all 2-grams, 3-grams and 4-grams ap-
pearing at last two times in a dump of the English Wikipedia. From
these n-grams, we selected the ones that do not appear in Google
1 Tera 5-grams collection [19]. If we except the unavoidable prepro-
cessing divergence errors related in Section 3.2, our computation re-
veals that respectively 26%, 29%, and 44% of Wikipedia 2-grams,3-
grams and 4-grams are out of Google collection: all these n-grams
are likely to be markers of Wikipedia content. This means that even
small pieces of text may be reliable markers of plagiarism.

The most frequent markers that we found are side effects of
Wikipedia internal system: for example “appprpriate” and “the main-
tenance tags or” are typical outputs of Smackbot, a robot used by
Wikipedia to cleanup tags’ dates. We also found many “natural”
markers like “16 species worldwide” or “historical records the vil-
lage”. When searching for “16 species worldwide” on Google search
engine, we found respectively two pages from Wikipedia, two sites
about species and two spam sites (See Figure 3). The same test with
“historical records the village” yielded two Wikipedia pages and
many “fair use” sites such as answer.com or locr.com.

Figure 3. The 6th answer of Google for the query “16 species worldwide”
is a casino web scraping page hidden in worldmassageforum.com web

site (2008-04-14)

To conclude this small experiment, even if it is “fair use” to
pick some phrases from a renowned web site like Wikipedia, a web
scraper should avoid using pieces of texts that are too rare or too
large if he wants to avoid being considered with too much attention
by anti-spam teams.

3 DATASETS AND EXPERIMENTAL
PROTOCOL

3.1 Datasets
For our experiments, we have used 3 natural texts corpora and the
Google n-grams collection:

• newsp : articles from the French newspaper “Le Monde”;
• euro : English EU parliament proceedings;
• wiki : Wikipedia dumps in English;
• google1T : a collection of English n-grams from Google [19].

We chose newsp and euro corpora for testing on small but homo-
geneous data and wiki to validate our experiments on more realistic
data. Sizes and n-gram counts of these corpora are summarized in
Table 1.

Table 1. Number of words and n-grams in our datasets. There is no low
frequency cut-off except for google1T en collection, where it was set to 200

for 1-grams and 40 for others n-grams.
tokens 1gms 2gms 3gms 4gms

newsp 76M 194K 2M 7M 10M
euro 55M 76K 868K 3M 4M
wiki 1433M 2M 27M 92M 154M

google1T 1024B 13M 314M 977M 1313M

3.2 Text preprocessing

We used our own tools to extract textual content from XML and
HTML datasets. For sentence segmentation, we used a conserva-
tive script, which splits text at every sentence final punctuation mark,
with the help of a list of known abbreviations. For tokenization, we
used the Penn-TreeBank tokenization script, modified here to fit more
precisely the tokenization used for google1T en n-grams collection.

3.3 Experimental Protocol

Each corpus was evenly split into three parts as displayed in Figure 2:
one for training the detector, one for training the generator and the
last one as a natural reference. Because we focus more on text gen-
eration than on text plagiarism, we chose to separate the training set
of the detector and the training set of the generator. All the numbers
reported above are based on 3 different replications of this splitting
procedure.

In order to evaluate our detection algorithms, we test them on dif-
ferent types of text generators:

• pw5 and pw10: patchworks of sequences of 5 or 10 words;
• ws10, ws25 and ws50: natural text stuffed with 10%, 25% or 50%

of common spam keywords;
• lm2, lm3 and lm4: Markovian texts, produced using the SRILM

toolkit [18] generation tool, using 2, 3 and 4-gram language mod-
els.

Each of these generated texts as well as natural texts used as refer-
ence are split in sets of texts of 2K, 5K and 10K words, in order to
assess the detection accuracy over different text sizes. A small and
randomly chosen set of test texts is kept for tuning the classification
threshold. The remaining lot are used for evaluation; the performance
are evaluated using the F measure, which averages the system’s re-
call and precision.

We also test our algorithms against a “real” fake content set of
texts crawled on the Web from the “viagra” link-farm of Figure 1.
This spam dataset represent 766K words.

4 STANDARD N-GRAM MODELS
4.1 Perplexity-based filtering
Markovian n-gram language models are widely used for natural
language processing tasks such as machine translation and speech
recognition but also for information retrieval tasks [12].

These models represent sequences of words under the hypothesis
of a restricted order Markovian dependency, typically between 2 and
6. For instance, with a 3-gram model, the probability of a sequence
of k > 2 words is given by:

p(w1 . . . wk) = p(w1)p(w2|w1) · · · p(wk|wk−2wk−1) (1)

A language model is entirely defined by the conditional probabilities
p(w | h), where h denotes the n − 1 words long history of w. To
ensure that all terms p(w | h) are non-null, even for unknown h or
w, the model probabilities are smoothed (see [4] for a survey). In all
our experiments, we resorted to the simple Katz backoff smoothing
scheme. A conventional way to estimate how well a language model
p predicts a text T = w1 . . . wN is to compute its perplexity over T :

PP (p, T) = 2H(T,p) = 2
− 1

N

NP
i=1

log2p(wi|hi)

(2)

Our baseline filtering system uses conventional n-gram models
(with n = 3 and n = 4) to detect fake content, based on the assump-
tion texts having a high perplexity w.r.t. a given language model are
more likely to be forged than text with a low perplexity. Perplexi-
ties are computed with the SRILM Toolkit [18] and the detection is
performed by thresholding these perplexities, where the threshold is
tuned on some development data.

4.2 Experimental results
Table 2 summarizes the performance of the our classifier for different
corpora and different text lengths.

Table 2. F-measure of fake content detector based on perplexity
calculation using 3 and 4 order n-gram models against corpora of fake texts

described in Section 3.3

3-gram model 4-gram model
newsp euro wiki newsp euro wiki

pw5 2k 0.70 0.76 0.26 0.70 0.78 0.28
5k 0.90 0.89 0.39 0.90 0.85 0.37

pw10 2k 0.31 0.50 0.21 0.30 0.51 0.17
5k 0.43 0.65 0.30 0.42 0.67 0.29

ws10 2k 0.85 0.94 0.44 0.81 0.95 0.51
5k 0.97 0.97 0.71 0.96 0.95 0.73

ws25 2k 1.00 0.99 0.79 1.00 0.99 0.99
5k 0.97 1.00 0.80 0.98 1.00 0.98

ws50 2k 1.00 1.00 0.90 1.00 1.00 1.00
5k 1.00 1.00 0.91 1.00 1.00 1.00

lm2 2k 0.95 0.88 0.83 0.95 0.87 0.97
5k 0.96 0.92 0.90 0.94 0.96 0.97

lm3 2k 0.39 0.25 0.20 0.45 0.27 0.29
5k 0.56 0.25 0.21 0.60 0.30 0.38

lm4 2k 0.46 0.25 0.28 0.48 0.28 0.41
5k 0.60 0.25 0.21 0.66 0.29 0.44

spam 2k 1.00 1.00

A first remark is that detection performance is steadily increasing
with the length of the evaluated texts; likewise, larger corpora are
globally helping the detector.

We note that patchwork generators of order 10 are hard to detect
with our n-gram models: only low order generators on homogeneous
corpora are detected. Nevertheless, as explained in Section 2.2, even
5-word patchworks can be accurately detected using plagiarism de-
tection techniques.

In comparison, our baseline system accurately detects fake con-
tents generated by word stuffing, even with moderate stuffing rate. It
also performs well with fake contents generated using second order
Markovian generators. 3-gram models are able to generate many nat-
ural words patterns, and are very poorly detected, even by “stronger”
4-gram models.

The last line of Table 2 displays detection results against “real”
fake contents from the link farm of Figure 1. We used models trained
and tuned on the Wikipedia corpus. Detection is 100% correct for
this approximately 10% stuffed second order Markovian text.

5 A FAKE CONTENT DETECTOR BASED ON
RELATIVE ENTROPY

5.1 Useful n-grams

The effectiveness of n-gram language models as fake content detec-
tors is a consequence of their ability to capture short-range semantic
and syntactic relations between words: fake contents generated by
word stuffing or second order models fail to respect these relations.

In order to be effective against 3-gram or higher order Marko-
vian generators, this detection technique requires to train a strictly
higher order model, whose reliable estimation requires larger vol-
umes of data. In fact, a side effect of smoothing is that the probability
of unknown n-grams is computed through “backing off” to simpler
models. Furthermore, in natural texts, many relations between words
are short range enough to be captured by 3-gram models: even if a
model is built with a huge amount of high order n-grams to mini-
mize the use of back off, most of these n-grams will be well pre-
dicted by lower order models. The few mistakes of the generator will
be flooded by an overwhelming number of natural sequences.

In natural language processing, high order language models gen-
erally yield improved performance, but these models require huge
training corpus and lots of computer power and memory. To make
these models tractable, pruning needs to be carried out to reduce the
model size. As explained above, the information conveyed by most
high order n-grams is low: these redundant n-grams can be removed
from the model without hurting the performance, as long as adequate
smoothing techniques are used.

Language model pruning can be performed using conditional
probability estimates [14] or relative entropy between n-gram distri-
butions [17]. Instead of removing n-grams from a large model, it is
also possible to start with a small model and then insert those higher
order n-grams which improve performance until a maximum size is
reached [15]. Our entropy-based detector uses a similar strategy to
score n-grams according to the semantic relation between their first
and last words. This is done by finding useful n-grams, ie. n-grams
that can help detect fake content.

Useful n-grams are the ones with a strong dependency between
the first and the last word (see Figure 4). As we will show, focusing
on these n-grams allows us to significantly improve detection per-
formance. Our method gives a high penalty to n-grams like “bed and
the” while rewarding n-grams such as “bed and breakfast”.

Let {p(·|h)} define a n-gram language model. We denote h′ the
truncated history, that is the suffix of length n − 2 of h. For each
history h, we can compute the Kullback-Leibler (KL) divergence be-

Figure 4. Examples of useful n-grams. “and” has many possible
successors, “the” being the most likely; in comparison, “ladies and” has few
plausible continuations, the most probable being “gentlemen”; likewise for
“bed and”, which is almost always followed by “breakfast”. Finding “bed

and the” in a text is thus a strong indicator of forgery.

tween the conditional distributions p(·|h) and p(·|h′) ([12]):

KL(p(·|h)||p(·|h′)) =
X
w

p(w|h)log
p(w|h)

p(w|h′)
(3)

The KL divergence reflects the information lost in the simpler model
when the first word in the history is dropped. It is always non-
negative and it is null if the first word in the history conveys no infor-
mation about any successor word i.e. if w: ∀w, p(w|h) = p(w|h′).
In our context, the interesting histories are the ones with high KL
scores.

To score n-grams according to the dependency between their first
and last words, we use the pointwise KL divergence, which measures
the individual contribution of each word to the total KL divergence:

PKL(h, w) = p(w|h)log
p(w|h)

p(w|h′)
(4)

For a given n-gram, a high PKL signals that the probability of the
word w is highly dependent from the n−1 preceding word. To detect
fake contents, ie. contents that fail to respect these “long-distance”
relationships between words, we penalize n-grams with low PKL
when there exists n-grams sharing the same history with higher PKL.

The penalty score assigned to an n-gram (h, w) is:

S(h, w) = max
v

PKL(h, v) − PKL(h, w) (5)

This score represents a progressive penalty for not respecting the
strongest relationship between the first word of the history h and a
possible successor7: argmax

v
PKL(h, v) .

The total score S(T) of a text T is computed by averaging the
scores of all its n-grams with known histories.

5.2 Experimentation
We replicated the experiments reported in section 4, using PKL
models to classify natural and fake texts. The table 3 summarizes
our main findings. These results show a clear improvement for the
detection of fake content generated with Markovian generators using
a smaller order than the one used by the detector. Models whose or-
der is equal or higher tend to respect the relationships that our model
tests and cannot be properly detected.

The drop of quality in detection of texts generated using word
stuffing can be explained by the lack of smoothing in the probability
estimates of our detector. In order to be efficient, our filtering system
needs to find a sufficient number of known histories; yet, in these
texts, a lot of n-grams contain stuffed words, and are thus unknown
by the detector. This problem can be fixed using bigger models or
larger n-gram lists. The drop in quality for patchwork detection has

7 This word is not necessary the same as argmax
v

P (v|h)

a similar explanation, and call for similar fixes. In these texts, most n-
grams are natural by construction. The only “implausible” n-grams
are the ones that span over two of the original word sequences, and
these are also often unknown to the system.

Table 3. F-measure of fake content detector based on relative entropy
scoring using 3 and 4 order n-gram models against our corpora of natural

and fake content.

3-gram model 4-gram model
newsp euro wiki newsp euro wiki

pw5 2k 0.47 0.82 0.81 0.25 0.42 0.44
5k 0.68 0.93 0.91 0.35 0.57 0.59

pw10 2k 0.28 0.48 0.47 0.16 0.27 0.31
5k 0.36 0.64 0.62 0.18 0.27 0.32

ws10 2k 0.18 0.27 0.21 0.09 0.21 0.23
5k 0.16 0.43 0.45 0.20 0.25 0.31

ws25 2k 0.50 0.67 0.66 0.30 0.29 0.33
5k 0.67 0.87 0.81 0.28 0.43 0.45

ws50 2k 0.82 0.90 0.92 0.40 0.45 0.51
5k 0.94 0.98 0.96 0.64 0.63 0.69

lm2 2k 0.99 0.99 0.99 0.72 0.78 0.82
5k 0.98 0.99 0.99 0.82 0.96 0.97

lm3 2k 0.26 0.35 0.29 0.85 0.88 0.87
5k 0.35 0.35 0.39 0.87 0.87 0.92

lm4 2k 0.32 0.35 0.34 0.59 0.58 0.58
5k 0.35 0.33 0.34 0.77 0.79 0.80

6 TRAINING WITH GOOGLE’S N-GRAMS
The previous experiments have shown that bigger corpus are re-
quired in order to efficiently detect fake-contents. To validate our
techniques, we have thus built a genre independent detector by using
Google’s n-grams corpus. This model is more generic and can be
used do detect fake contents in any corpus of English texts.

Using the same datasets as before, the use of this model yielded
the results summarized in Table 4. As one can see, improving the
coverage of rare histories payed its toll, as it allows an efficient de-
tection of almost all generators, even for the smaller texts. The only
generators that pass the test are the higher order Markovian genera-
tors.

Table 4. F-measure of fake content detector based on relative entropy
scoring using 3-gram and 4-gram models learn on Google n-grams against

our corpora of natural and fake content.

3-gram model 4-gram model
euro wiki euro wiki

pw5 2k 0.92 0.97 0.42 0.77
pw10 2k 0.92 0.81 0.67 0.81

ws10 2k 0.90 0.79 0.90 0.92
ws25 2k 0.91 0.97 0.72 0.96
ws50 2k 0.95 0.97 0.42 0.89
lm2 2k 0.96 0.96 0.96 0.98
lm3 2k 0.68 0.32 0.88 0.98
lm4 2k 0.77 0.62 0.77 0.62

7 CONCLUSION
Even if advanced generation techniques are already used by some
spammers, most of the fake contents we found on the Internet were

word salads or patchworks of search engines response lists. Most of
the texts we found are easily detected by standard 2-grams models,
this justifies our use of “artificial” artificial texts.

We presented two approaches to fake content detection. A lan-
guage model approach, which gives fairly good results, and a novel
technique, using relative entropy scoring, which yielded improved re-
sults against advanced generators such as Markovian text generators.
We showed that it is possible to efficiently detect generated texts that
are natural enough to be undetectable with standard stylistic tests,
yet sufficiently different each others to be uncatchable with plagia-
rism detection schemes. These methods have been validated using a
domain independent model based on Google’s n-grams, yielding a
very efficient fake content detector.

We believe that robust spam detection systems should combine a
variety of techniques to effectively combat the variety of fake content
generation systems: the techniques presented in this paper seem to
bridge a gap between plagiarism detection schemes, and stylistics
detection systems. As such, they might become part of standard anti-
spam toolkits.

Our future works will include tests with higher order models build
with Google’s n-grams and detection tests against other generators
such as texts produced by automatic translators or summarizers.

REFERENCES
[1] R. H. Baayen, Word Frequency Distributions, Kluwer Academic Pub-

lishers, Amsterdam, The Netherlands, 2001.
[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, ‘Syntactic

clustering of the web’, in Computuer Networks, volume 29, pp. 1157–
116, Amsterdam, (1997). Elsevier Publishers.

[3] A. C. Bulhak. The dada engine. http://dev.null.org/dadaengine/.
[4] S. F. Chen and J. T. Goodman, ‘An empirical study of smoothing tech-

niques for language modeling’, in 34th ACL, pp. 310–318, Santa Cruz,
(1996).

[5] D. Fetterly, M. Manasse, and M. Najork, ‘Spam, damn spam, and statis-
tics: using statistical analysis to locate spam web pages’, in WebDB ’04,
pp. 1–6, New York, NY, USA, (2004).

[6] D. Fetterly, M. Manasse, and M. Najork, ‘Detecting phrase-level dupli-
cation on the world wide web’, in ACM SIGIR, Salvador, Brazil, (2005).

[7] Z. Gyöngyi and H. Garcia-Molina, ‘Web spam taxonomy’, in AIRWeb
Workshop, (2005).

[8] Z. Gyöngyi., H. Garcia-Molina, and J. Pedersen, ‘Combating Web spam
with TrustRank’, in VLDB’04, pp. 576–587, Toronto, Canada, (2004).

[9] P. Heymann, G. Koutrika, and H. Garcia-Molina, ‘Fighting spam on so-
cial web sites: A survey of approaches and future challenges’, Internet
Computing, IEEE, 11(6), 36–45, (2007).

[10] A. Kołcz and A. Chowdhury, ‘Hardening fingerprinting by context’, in
CEAS’07, Mountain View, CA, USA, (2007).

[11] T. Lavergne, ‘Taxonomie de textes peu-naturels’, in JADT’O8, vol-
ume 2, pp. 679–689, (2008). in French.

[12] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing, The MIT Press, Cambridge, MA, 1999.

[13] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, ‘Detecting spam
web pages through content analysis’, in WWW Conference, (2006).

[14] K. Seymore and R. Rosenfeld, ‘Scalable backoff language models’, in
ICSLP ’96, volume 1, pp. 232–235, Philadelphia, PA, (1996).

[15] V. Siivola and B. Pellom, ‘Growing an n-gram model’, in 9th INTER-
SPEECH, pp. 1309–1312, (2005).

[16] B. Stein, S. Meyer zu Eissen, and M. Potthast, ‘Strategies for retrieving
plagiarized documents’, in ACM SIGIR, pp. 825–826, New York, NY,
USA, (2007).

[17] A. Stolcke. Entropy-based pruning of backoff language models, 1998.
[18] A. Stolcke. Srilm – an extensible language modeling toolkit, 2002.
[19] A. Franz T. Brants. Web 1T 5-gram corpus version 1.1, 2006.

LDC ref: LDC2006T13.
[20] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne, ‘Tracking web

spam with HTML style similarities’, ACM TWeb, 2(1), 1–28, (2008).

