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Abstract. We use decision trees and genetic algorithms to 
analyze the academic performance of students and the 
homogeneity of tutoring teams in the undergraduate program on 
Informatics at the Hellenic Open University (HOU). Based on 
the accuracy of the generated rules, we examine the applicability 
of the techniques at large and reflect on how one can deploy 
such techniques in academic performance alert systems. 

1 INTRODUCTION 
Student success is a natural performance indicator in 
universities. However, if that success is used as a criterion for 
tutor assessment (and subsequent possible contract renewal), and 
if students must evaluate their own teachers, then tutors may tend 
to lax their standards. This paper is about dealing with this issue 
in the context of the Hellenic Open University (HOU); we focus 
on the undergraduate Informatics program (about 2,500 
students). We ask whether we can detect regularities in distance 
tutoring, then, we try to associate them with measures of 
students’ success in an objective way and, subsequently, reflect 
on how to effectively disseminate this information to all 
interested parties. 

The measurement strategy we have developed to-date in HOU 
has been progressively refined to deal with two closely linked 
problems: that of predicting student success in the final exams 
and that of analyzing whether some specific tutoring practices 
have any effect on the performance of students. Each problem 
gives rise to the emergence of a different type of user model. A 
student model allows us, in principle, to explain and maybe 
predict why some students fail in the exams while others 
succeed. A tutor model allows us to infer the extent to which a 
group of tutors diffuses its collective capacity effectively into the 
student population they advise. However, both types of models 
can be subsequently interpreted in terms of the effectiveness of 
the educational system that the university implements. 

The rest of this paper is organised in five sections. The next 
section presents the educational background. Section 3 then 
reviews the fundamental features of the AI techniques that we 
have used. Following that we report the experimental results for 
the undergraduate programme that we have analysed, as well as a 
short evaluation of the individual module results that seem to 
signify an interesting deviation. Section 5 presents a discussion 
from the point of view of how one can generalise our approach 
as well as how one can substitute other intelligent techniques for 
data analysis; finally we conclude and describe directions for 
future development. 

2 THE EDUCATIONAL BACKGROUND 
A module is the basic educational unit at HOU. It runs for 
about ten months and is the equivalent of about 3-4 
conventional university semester courses. A student may 
register with up to three modules per year. For each module, 
a student is expected to attend five plenary class meetings 
throughout the academic year. A typical class contains about 
thirty students and is assigned to a tutor (tutors of classes of 
the same module collaborate on various course aspects). 
Class face-to-face meetings are about four hours long and are 
structured along tutor presentations, group-work and review 
of homework. Furthermore, each student must turn in some 
written assignments (typically four or six), which contribute 
towards the final grade, before sitting a written exam. That 
exam is delivered in two stages: you only need sit the second 
if you fail or miss the first. 

Students fail a module and may not sit the written exam if 
they do not achieve a pass grade in the assignments they turn 
in; these students must repeat that module afresh. A student 
who only fails the written exam may sit it on the following 
academic year (without having to turn in assignments); such 
“virtual” students are also assigned to student groups but the 
tutor is only responsible for marking their exam papers. 

3 GENETIC ALGORITHMS AND 
DECISION TREES FOR PREDICTION 

In our work we have relied on decision trees to produce 
performance models. Decision trees can be considered as rule 
representations that, besides being accurate, can produce 
comprehensible output, which can be also evaluated from a 
qualitative point of view [1, 2]. In a decision tree nodes 
contain test attributes and leaves contain class descriptors. 

A decision tree for the (student) exam success analysis 
problem could look like the one in Figure 1 and tells us that a 
mediocre grade at the second assignment (root) is an 
indicator of possible failure (left branch) at the exams, 
whereas a non-mediocre grade refers the alert to the fourth 
(last) assignment. 

Decision trees are usually produced by analyzing the 
structure of examples (training instances), which are given in 
a tabular form. An excerpt of a training set that could have 
produced such a tree is shown in Table 1. Note that the three 
examples shown are consistent with the decision tree. As this 
may not always be the case, there rises the need to measure 
accuracy, even on the training set, in order to compare the 
quality of two decision trees which offer competing 
explanations for the same data set. 
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Figure 1. A sample decision tree [3]. 

Note that the sample decision tree does not utilize data neither 
on the first nor the third assignments, but such data is shown in 
the associated table. Such dimensionality reduction information 
is typical of why decision trees are useful; if we consistently 
derive trees on some problem that seem to not use some data 
column, we feel quite safe to not collect measurements for that 
data column. Of course, simple correlation could also deliver 
such information, however it is the visual representation 
advantages of decision trees that have rendered them as very 
popular data analysis tools. 

Table 1. A sample decision tree training set (adapted from [3]). 
Assgn1 Assgn2 Assgn3 Assgn4 Exam 

... ... ... ... ... 

4.6 7.1 3.8 9.1 PASS 

9.1 5.1 4.6 3.8 FAIL 

7.6 7.1 5.8 6.1 PASS 
 

Analyzing the performance of high-risk students is a goal 
towards achieving tutoring excellence. It is, thus, reasonable to 
assert that predicting a student’s performance can enable a tutor 
to take early remedial measures by providing more focused 
coaching, especially in issues such as priority setting and time 
management. 

Initial experimentation at HOU [4] consisted of using several 
machine learning techniques to predict student performance with 
reference to the final examination. The scope of the 
experimentation was to investigate the effectiveness and 
efficiency of machine learning techniques in such a context. The 
WEKA toolkit [5] was used because it supports a diverse 
collection of techniques. The key result was that learning 
algorithms could enable tutors to predict student performance 
with satisfying accuracy long before final examination. The key 
finding that lead to that result was that success in the initial 
written assignments is a strong indicator of success in the 
examination. Furthermore, our tutoring experience corroborates 
that finding. 

We then employed the GATREE system [6] as the tool of 
choice for our experiments, to progressively set and test 
hypotheses of increasing complexity based on the data sets that 
were available from the university registry. The formation and 
development of these tests is the core content of this chapter and 
is presented and discussed in detail in the following sections. 
GATREE is a decision tree builder that employs genetic 
algorithms to evolve populations of decision trees; it was 
eventually used because it produces short comprehensible trees. 

Of course, GATREE was first used [3] to confirm the 
qualitative validity of the original findings experiments [4], 
also serving as result replication, before advancing to more 
elaborate experiments [7, 8, 9]. 

GATREE [6] evolves populations of trees according to a 
fitness function that allows for fine-tuning decision tree size 
vs. accuracy on the training set. At each generation, a certain 
population of decision trees is generated and sorted 
according to fitness. Based on that ordering, certain genetic 
operators are performed on some members of the population 
to produce a new population. For example, a mutation may 
modify the test attribute at a node or the class label at a leaf, 
while a cross-over may exchange parts between decision 
trees. 

The fitness function is fitnessi=Correcti
2*x/(sizei

2+x), for 
tree i. The first part of the product is the actual number of 
training instances that i classifies correctly. The second part 
of the product (the size factor) includes a factor x which 
regulates the relative contribution of the tree size into the 
overall fitness; thus, the payoff is greater for smaller trees 

When using GATREE, we used the default settings for the 
genetic algorithm operations and set cross-over probability at 
0.99 and mutation probability at 0.01. Moreover, all but the 
simplest experiments (explicitly so identified in the following 
sections) were carried out using 10-fold cross-validation, on 
which all averages are based (i.e. one-tenth of the training set 
was reserved for testing purposes and the model was built by 
training on the remaining nine-tenths; furthermore, ten such 
stages were carried out by rotating the testing one-tenth. 

4 DATA ANALYSIS AT A PROGRAMME 
LEVEL 

Before advancing, we first review some aggregate statistics of 
the undergraduate informatics programme at HOU.  

First, Table 2 presents the success rates for the modules 
that we have analysed. 

Table 2. Success (percentage) rates of modules. 
 2004-5 2005-6 2006-7 

INF10 35% 38% 33% 

INF11 55% 52% 55% 

INF12 39% 34% 35% 

INF20 56% 44% 44% 

INF21 37% 44% 37% 

INF22 71% 61% 55% 

INF23 N/A 83% 97% 

INF24 70% 64% 58% 

INF30 81% 85% 84% 

INF31 93% 92% 85% 

INF35 N/A 98% 93% 

INF37 N/A 98% 98% 

INF42 N/A N/A 100% 
 

Next, Table 3 presents the enrolment numbers for these 
modules. Note that, as we advance from junior to senior 
years, the overall enrolment is dramatically reduced and the 
success rates increase. 

Assgn2  in [3..6] 

FAIL 

Assgn4  < 3 FAIL 

PASS 
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Table 3. Enrollment numbers at modules. 
 2004-5 2005-6 2006-7 

INF10 987 1.247 1.353 

INF11 492 517 642 

INF12 717 818 925 

INF20 362 389 420 

INF21 322 363 383 

INF22 321 291 321 

INF23 N/A 52 73 

INF24 157 167 221 

INF30 156 198 199 

INF31 149 200 144 

INF35 N/A 101 58 

INF37 N/A 106 132 

INF42 N/A N/A 109 
 
The above statistics are all drawn from the university registry 

and none is subject to any further processing. However, all 
results presented from now on, refer to experiments carried out 
totally using the GATREE system, with the occasional help of 
some post-processing automation scripts. 

4.1 Detecting a shift in exam grades 
There is a straightforward way to attempt to answer this 
question. One can build a model that attempts to answer the 
success question for the first stage of the final exam. Then, one 
can build a model that attempts to answer the success question 
for the overall student grade. A gross disparity in these numbers 
should be indicative of an issue that merits investigation. 

The simplest data to consider as input for this problem 
consists of exercise and exam grades, as in Table 1, omitting any 
other information (for example, which tutor was responsible for 
a student). The results reported are based on re-classification (we 
reserve a cross-validation like mechanism for the more detailed 
experiments later on) and are shown in Table 4. 

What does a difference signify? To answer that, one can take 
a step backwards and try to answer a simpler question: what does 
a large difference signify? We have elected to brand a difference 
as large when the re-classification accuracy of the same module 
for the same year differs by at least 20 percentage points when 
we compare the model predicting the pass/fail result of the first 
stage of the final exam and the corresponding model after a 
possible second stage (which is the actual pass/fail grade for the 
module). In Table 4 such differences are shown in bold. 

There are two issues that become apparent when one views 
Table 4. The first is that whenever we observe an increase in the 
model accuracy when switching from the first exam (E) to the 
final grade (F), this is associated with senior modules where 
eventual success rates (see Table 2) are substantial. The only 
decrease is observed in a junior year module where success rates 
are considerably reduced compared to senior year modules. 

Table 4. Model accuracies omitting tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 83 84 84 82 83 82 

INF11 75 76 76 78 75 80 

INF12 74 76 86 74 78 74 

INF20 76 70 76 59 87 60 
INF21 83 78 76 72 77 73 

INF22 68 80 68 76 63 70 

INF23 N/A 46 78 89 99 

INF24 67 67 68 66 69 70 

INF30 77 82 64 85 71 94 
INF31 65 95 86 93 68 91 
INF35 N/A 72 97 80 92 

INF37 N/A 95 100 95 98 

INF42 N/A N/A 96 100 
 

It is straightforward to attribute the increase in senior year 
modules to the fact that, eventually, students have to focus on 
their exam and pass the test, regardless of how well they did 
along the year. The large discrepancy, however, suggests that 
the exercises do not serve well their goal, which is to keep the 
students engaged in the learning process. One could say that 
exercises are less of learning opportunities and more of 
necessary evils. 

The dramatic decrease in the 2006-7 year results of the 
INF20 module are quite interesting. They reflect, basically, a 
huge fail rate in the first stage of the exam, which is well 
served by a small model that predicts failure all around. 

When seen from that viewpoint, however, the relatively 
narrow margins of the junior year modules seem quite 
impressive, since they are also associated with low overall 
pass rates. The difference, however, is that the junior modules 
also report significant dropout rates which skews 
pessimistically the rates reported in Table 2. 

4.2 Detecting tutor influence 
If we take the data sets that were used in section 4.1 and put 
back in the information on which tutor was responsible for 
each student group, we can run the same experiments and try 
to see whether the tutor attribute will surface in some models 
(sample data are shown in Table 5). 

In principle, observing models where the tutor attribute 
appears near the decision tree root would not be a good thing, 
suggesting that a crucial factor in student success is not the 
educational system itself but the tutor. As a matter of fact we 
can opt to not look for this information at all in the resulting 
trees; comparing the accuracies to the ones reported in Table 
4 should suffice. These results are now shown in Table 6. 
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Table 5. An expanded sample training set (see Group). 
Assgn1 Assgn2 Assgn3 Assgn4 Group Exam 

... ... ... ... ... ... 

4.6 7.1 3.8 9.1 Athens-1 PASS 

9.1 5.1 4.6 3.8 Patras-1 FAIL 

7.6 7.1 5.8 6.1 Athens-2 PASS 

Table 6. Model accuracies including tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 82 83 80 79 82 81 

INF11 75 77 76 78 75 80 

INF12 75 77 81 72 80 72 

INF20 76 72 76 62 87 61 

INF21 84 77 74 74 75 72 

INF22 66 80 68 74 62 75 

INF23 N/A 52 82 90 99 

INF24 63 69 69 69 66 74 

INF30 75 82 60 88 75 94 

INF31 67 94 85 93 89 91 
INF35 N/A 72 98 76 90 

INF37 N/A 96 100 94 98 

INF42 N/A N/A 96 100 
 

This time we observe that the relative difference between the 
models which utilise the tutor attribute and the ones that do not 
are quite small. There are some very interesting cases, however. 

For example, the INF11 module demonstrates near zero 
differences throughout. It is interesting to note that this module 
utilizes a plenary exam marking session, which means that tutors 
get to mark exam papers drawn from all groups at random. This 
places only marginal administrative overhead and, when viewed 
from the point of model consistency, seems to be well worth it. 

Another example is the INF31 module (shown in bold), 
which demonstrated a year where the tutor attribute seemed to be 
of paramount importance. In that year, the gap between the first 
exam stage and the final grade seems to be influenced by the 
tutors. It is now very narrow (89 to 91) while it was quite wide 
(68 to 91). This could suggest a relative gap in tutor 
homogeneity. 

There is one other way to view the importance of the tutor 
attribute. One can derive a model for one module group and then 
attempt to use that model as a predictor of performance for the 
other module groups (within the same module). This approach, 
while suppressing the tutor attribute, essentially tests its 
importance by specifically segmenting the module data set along 
groups. The overall accuracy is then averaged over all individual 
tests. This is the lesion comparison; its results are shown in 
Table 7. 

We highlight (in bold) the main difference from the results in 
Table 4, where it now seems that the gap has been shortened a 
while. Surprisingly, it suggests an erratic intra-group 
consistency. Note also, that this particular result in Table 4 was 
the only one not to pass the binary choice (50%) level, which it 
only just did in Table 6. 

Table 7. Lesion study model accuracies including tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 78 78 75 75 77 77 

INF11 70 74 72 75 71 74 

INF12 71 68 77 69 75 71 

INF20 70 65 72 60 82 61 

INF21 79 68 69 65 69 64 

INF22 57 74 61 68 60 65 

INF23 N/A 65 74 83 98 

INF24 62 70 66 69 63 66 

INF30 70 82 64 84 65 89 

INF31 63 91 79 91 59 83 

INF35 N/A 66 97 72 91 

INF37 N/A 95 98 91 95 

INF42 N/A N/A 93 100 
 

Furthermore, we tried to summarise the results from a 
further point of view: that of consistency between the results 
reported for the E and F columns of both tables. Essentially 
we computed the quantity (F5-E5)-(F6-E6) for each module 
for each year, where the subscript indicates which table that 
particular number was drawn from. Not surprisingly, the two 
singularities observed were module INF23 for year 2005-6 
(with a value of about 20%) and module INF31 for year 
2006-7 (with a value of about -22%). 

4.3 Observing the accuracy-size trade-off 
It is interesting to investigate whether the conventional 
wisdom on model characteristics is valid. In particular, we 
analysed the results in Table 6 and in Table 7 with respect to 
whether an increase (or decrease, accordingly) in model 
accuracy for a particular module for a year was associated 
with a reduction in model size. We say that the model 
accuracy increases if the accuracy for the E column of that 
year is less that the corresponding number in the F column. 
For the 68 pairs of numbers reported in Table 6 and in Table 
7 we observed that only in 4 of them did we see the same 
direction in model accuracy and model size. So, conventional 
wisdom was confirmed in nearly 95% of the cases. 

5 DISCUSSION 

HOU has been the first university in Greece to operate, from 
its very first year, a comprehensive assessment scheme (on 
tutoring and administrative services). Despite a rather hostile 
political environment (at least in Greece), quite a few 
academic departments have lately been moving along the 
direction of introducing such schemes, though the practice 
has yet to be adapted at a university level. Still, however, 
there is quite a mentality shift required when considering the 
subtle differences between “measuring” and “assessing”. 

The act of measuring introduces some error in what is 
being measured. If indices are interpreted as assessment 
indices, then people (actually, any “assessed” subject where 
people are involved – groups of people, for example) will 
gradually skew their behaviour towards achieving good 
measurements. Such behaviour is quite predictably human, of 
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course; the problem is that it simply educates people in the ropes 
of the measurement system while sidelining the real issue of 
improving the educational service. 

By shifting measurement to quantities that are difficult to 
“tweak”, one hopes that people whose performance is assessed 
will gradually shift form fine-tuning their short-term behaviour 
toward achieving longer-term goals. Indeed, if people find out 
that the marginal gains from fine-tuning their behaviour are too 
small for the effort expended to achieve them, it will be easier to 
convince them to improve more fundamental attitudes towards 
tutoring (as far as tutors are concerned) or studying (as far as 
students are concerned). 

In our application, this is demonstrated two-fold. 
First, by disseminating tutor group homogeneity indices, one 

hopes that, regardless how we call these indices, these tutor 
groups will be motivated by peer pressure to consider their 
performance vis-a-vis other tutor groups. Even if that may not be 
really required, that introspection itself will quite likely improve 
how hat particular tutor group co-operates; at least it will focus 
their decisions with respect to why such decisions might 
influence their overall ranking. 

For students, a similar argument applies. Realising that one 
fits a model which predicts likely failure, even if one knows that 
the particular model is known to err quite some times, is 
something that will most likely motivate that person to take a 
more decisive approach to studying. For adult students, such a 
decisive approach might even mean to drop a course of studying 
or defer studying. This is not necessarily negative, however; 
knowing how to better utilise one’s resources is a key skill in life 
long learning. 

We have selected decision trees because we want to generate 
models that can be effectively communicated to tutors and 
students alike. We have also selected genetic algorithms to 
induce the decision trees because we have shown [7] that, for the 
particular application domain, we can derive small and easy to 
communicate yet accurate trees. We thus need a hybrid 
approach: rule-based output to be comprehensible and grounded 
and evolutionary computing to derive this output. 

Which other techniques should one utilise to develop the 
models? We cannot fail to note that conventional statistics can 
be cumbersome to disseminate to people with a background on 
humanities or arts, and this could have an adverse impact on the 
user acceptance of such systems. In that sense, the decision of 
whether the models are computed centrally or in a decentralized 
fashion (by devolving responsibility to the tutors, for example) is 
a key factor. In any case, deploying our measurement scheme in 
an organization-wide context would also lend support to our 
initial preference for short models. At the same time, the 
possibility of a decentralized scheme also suggests that we 
should strive to use tools that do not demand a steep learning 
curve on the part of the tutors. 

Of course, one can take an alternative course and drop the 
requirement that a model has to be communicated. If we only 
focus on the indices then any technique can be used, from neural 
networks to more conventional ones, such as naive Bayes or 
logistic regression [4]. As in all data mining application 
contexts, it is the application that must drive the techniques to 
use; for our problem, suffice to note that the comparisons 
reported (Table 4, Table 6 and Table 7) are essentially technique 
independent, yet the GATREE approach has proven to-date to be 
the best method for prototyping the measurement exercise that 
we are developing. 

6 CONCLUSION 

We have shown how we have used a combination of genetic 
algorithms and decision trees in the context of experimenting 
with how one might setup a quality control system in an 
educational context. 

Quality control should be a core aspect of any educational 
system but setting up a system for quality control entails 
managerial and administrative decisions that may also have to 
deal with political side-effects. Deciding how to best and as 
early as possible defuse the potential stand-offs that a quality 
measurement message might trigger calls for the employment 
of techniques that not only ensure a basic technical soundness 
in the actual measurement but also cater to the way the results 
are conveyed and subsequently exploited. This is particularly 
so when the application context for the large scale suggests 
that data and models will freely flow amongst thousands of 
tutors and tens of thousands of students. 

We have earlier [9] expressed the view that our approach 
is applicable to any educational setting where performance 
measurement can be cast in terms of test (and exam) 
performance. In the proposed paper we have scaled up our 
analysis to cover several modules and years and still believe 
that taking the sting out of individual performance evaluation 
but still being able to convey the full message is a key 
component of tutoring self-improvement. Scaling our 
approach to other programmes, other institutions and, even, 
obtaining the approval of our own university for official and 
consistent reporting of such indices is, however, less of a 
technical nature and more of a political exercise. After all we 
need to persuade people that some innovations are less of a 
threat and more of an opportunity. 
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