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Preface 
 

The combination of different intelligent methods is a very active research area in Artificial 

Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each 

of their components. It is generally believed that complex problems can be easier solved 

with such integrated or hybrid methods. 

Some of the existing efforts combine what are called soft computing methods (fuzzy 

logic, neural networks and genetic algorithms) either among themselves or with more 

traditional AI methods such as logic and rules. Another stream of efforts integrates case-

based reasoning or machine learning with soft-computing or traditional AI methods. Some 

of the combinations have been quite important and more extensively used, like neuro-

symbolic methods, neuro-fuzzy methods and methods combining rule-based and case-

based reasoning. However, there are other combinations that are still under investigation. 

In some cases, combinations are based on first principles, whereas in other cases they 

are created in the context of specific applications. 

The Workshop is intended to become a forum for exchanging experience and ideas 

among researchers and practitioners who are dealing with combining intelligent methods 

either based on first principles or in the context of specific applications.  

There were totally 20 papers submitted to the Workshop. Each paper was reviewed by 

at least two members of the PC. We finally accepted 12 papers (10 full and 2 short). 

Revised versions of the accepted papers (based on the comments of the reviewers) are 

included in these proceedings in alphabetic order (based on first author). 

Five of the accepted papers deal with combinations of Genetic Programming or 

Genetic Algorithms with either non-symbolic methods, like Neural Networks (NNs) and/or 

Kalman Filters (Georgopoulos etal, Spanoudakis etal), or symbolic ones, like Decision 

Trees (Kalles etal) and Temporal Logic (Bennett and Magee). Another four papers deal 

with combinations of Case-Based Reasoning (CBR). One of them presents a short survey 

of CBR combinations (Prentzas and Hatzilygeroudis) and another one a combination with 

Agents (Teodorescu and Petridis). The rest two of them present CBR combinations with a 

Neuro-Fuzzy (Cocea and Magoulas) and a Neuro-Symbolic (Prentzas etal) approach 

respectively, leading to multi-combinations. Also, another two papers concern 

combinations of Fuzzy Logic with either NNs (Anastassopoulos and Iliadis) or Bayesian 



 

 iv

Nets (Fogelberg etal). Finally, one of the papers combines a NN-based approach with a 

Natural Language Processing one (Foster etal). 

Four of the above papers present combinations developed in the context of an 

application. Applications involve Medicine (Anastassopoulos and Iliadis), Education 

(Cocea and Magoulas, Kalles etal) and Economy (Spanoudakis etal).  

We hope that this collection of papers will be useful to both researchers and 

developers. 

Given the success of this first Workshop on combinations of intelligent methods, we 

intend to continue our effort in the coming years. 

 

Ioannis Hatzilygeroudis 

Constantinos Koutsojannis 

Vasile Palade 

 



ANN for prognosis of abdominal pain 
in childhood: use of fuzzy modelling 

for convergence estimation  
 

George C. Anastassopoulos, Lazaros S. Iliadis 

 

Abstract.  This paper focuses in two parallel objectives. First it 
aims in presenting a series of Artificial Neural Network models 
that are capable of performing prognosis of abdominal pain in 
childhood. Clinical medical data records have been gathered and 
used towards this direction. Its second target is the presentation and 
application of an innovative fuzzy algebraic model capable of 
evaluating Artificial Neural Networks’ performance [1]. This 
model offers a flexible approach that uses fuzzy numbers, fuzzy 
sets and various fuzzy intensification and dilution techniques to 
perform assessment of neural models under different perspectives. 
It also produces partial and overall evaluation indices. The 
produced ANN models have proven to perform the classification 
with significant success in the testing phase with first time seen 
data.  

1 INTRODUCTION 
The wide range of problems in which Artificial Neural 

Networks can be used with promising results, is the reason of their 
growth [2, 3]. Some of the fields that ANNs are used are: medical 
systems [4-6], robotics [7], industry [8 – 11], image processing 
[12], applied mathematics [13], financial analysis [14], 
environmental risk modelling [15] and others.  

Prognosis is a medical term denoting an attempt of physician to 
accurately estimate how a patient's disease will progress, and 
whether there is chance of recovery, based on an objective set of 
factors that represent that situation. The inference about prognosis 
of a patient when presented with complex clinical and prognostic 
information is a common problem, in clinical medicine. The 
diagnosis of a disease is the outcome of combination of clinical 
and laboratorial examinations through medical techniques.  

In this paper various ANN architectures using different learning 
rules, transfer functions and optimization algorithms have been 
tried. This research effort was motivated form the fact that reliable 
and seasonable detection of abdomen pain constitute attainments in 
effective treatment of disease and avoidance of relapses. That is 
why the development of such an intelligent model that can 
collaborate with the doctors will be very useful towards successful 
treatment of potential patients. 

2 DIAGNOSTIC FACTORS OF ABDOMINAL 
PAIN 
Several reports have described clinical scoring systems 
incorporating specific elements of the history, physical 
examination, and laboratory studies designed to improve diagnostic 
accuracy of abdominal pain [16]. Nothing is guaranteed, but 
Democritus University of Thrace, Hellenic Open University 
anasta@med.duth.gr, liliadis@fmenr.duth.gr 

decision rules can predict which children are at risk for 
appendicitis (appendicitis is the most common surgical condition 
of the abdomen). One such numerically based  system is based  on 
a 6-part scoring  system: nausea (6 point), history of local RLQ 
pain (2 point), migration of pain (1 point), difficulty walking  (1 
point), rebound tenderness / pain with percussion (2 point), and 
absolute neutrophil count of >6.75 x 10`3/μL (6 point). A score <5 
had a sensitivity of 96.3% with a negative predictive value of 
95.6% for AA. 

To date, all efforts to find clinical features or laboratory tests, 
either alone or in combination, that are able to diagnose 
appendicitis with 100% sensitivity or specificity have proven 
futile. Also, there is only one research work [4] in bibliography 
based on ANN that deals with the abdominal pain prognosis in 
childhood. 

The incidence of Acute Appendicitis (AA) is 4 cases per 1000 
children. However appendicitis despite pediatric surgeons’ best 
efforts remains the most commonly misdiagnosed surgical 
condition. Although diagnosis and treatment have improved, 
appendicitis continues to cause significant morbidity and still 
remains, although rarely, a cause of death. Appendicitis has a 
male-to-female ratio of 3:2 with a peak incidence between ages 12 
and 18 years. The mean age in the pediatric population is 6-10 
years. The lifetime risk is 8.6% for boys and 6.7% for girls.  

The 15 factors that are used in the routine clinical practice for 
the assessment of AA in childhood are: Sex, Age, Religion, 
Demographic data, Duration of Pain, Vomitus, Diarrhea, Anorexia, 
Tenderness, Rebound, Leucocytosis, Neutrophilia, Urinalysis, 
Temperature, Constipation. The sex (males), the age (peak of 
appearance of A.A in children aged 9 to 13 years), and the religion 
(hygiene condition, feeding attitudes, genetic predisposition) were 
in relation with a higher frequency for AA. Anorexia, vomitus, 
diarrhea or constipation and a slight elevation of the temperature 
(370 C - 380 C) were common manifestation of AA. Additionally, 
abdominal tenderness principally in the RLQ of the abdomen and 
the existence of the rebound sign, are strongly related with AA. 
Leucocytosis (>10.800 K/μl) with neutrophilia (neutrophil count > 
75%) is considered to be a significant clue for AA. Urinalysis is 
useful for detecting urinary tract disease, normal findings on 
urinalysis are of limited diagnostic value for appendicitis. 

The role of race, ethnicity, health insurance, education, access to 
healthcare, and economic status on the development and treatment 
of appendicitis are widely debated. Cogent arguments have been 
made on both sides for and against the significance of each 
socioeconomic or racial condition. A genetic predisposition 
appears operative in some cases, particularly in children in whom 
appendicitis develops before age 6 years. Although the disorder is 
uncommon in infants and elderly, these groups have a 
disproportionate number of compilations because of delays in 
diagnosis and the presence of comorbid conditions. 
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As diagnosis, there are four stages of appendicitis, including 
acute focal appendicitis, acute supurative appendicitis, gangrenous 
appendicitis and perforated appendicitis. These distinctions are 
vague, and only the clinically relevant distinction of perforated 
(gangrenous appendicitis includes into this entity as dead intestine 
functionally acts as a perforation) versus non-perforated 
appendicitis (acute focal and supurative appendicitis) should be 
made.  

The present study is based on data set that is obtained from the 
Pediatric Surgery Clinical Information System of the University 
Hospital of Alexandroupolis, Greece. It consisted of 516 children’s 
medical records. Some of these children had different stages of 
appendicitis and, therefore, underwent operative treatment. This 
data set was divided into a set of 422 records and another set of 94 
records. The former was used for training of the ANN, while the 
latter for testing. A small number of data records were used as a 
validation set during training to avoid overfitting. Table 1 
represents the stages of appendicitis as well as the corresponding 
cases for each one. The 3rd column of Table 1 depicts the coding 
of possible diagnosis, as they used for ANN training and testing 
stages. 
 

Table 1. Possible diagnosis and corresponding cases. 
Diagnosis Coding Cases 

Discharge -2 236 Normal 
Observation -1 186 
No findings 0 15 
Focal appendicitis 1 34 
Phlegmonous or 

Supurative appendicitis 2 29 

Gangrenous appendicitis 3 8 O
pe

ra
tiv

e 
tre

at
m

en
t 

Peritonitis 4 8 

3 NEURAL NETWORK DESIGN  
Data were divided into two groups, the training cases (TRAC) and 
the testing cases (TESC). The TRAC consisted of 417 concrete 
medical data records and the TESC consisted of 101. Each input 
record was organised in a format of fifteen fields, namely sex, age, 
religion, area of residence, pain time period, vomit symptoms, 
diarrhoea, anorexia, located sensitivity, rebound, wbc, poly, 
general analysis of urine, body temperature, constipation. The 
output record contained a single field which corresponded to the 
potential outcome of each case.   

The determination if the TRAC and TESC data sets was 
performed in a rather random manner. The training and testing 
sample size which would be sufficient for a good generalization 
was determined by using the Widrow’s rule of thumb for the LMS 
algorithm which is a distribution free, worst case formula [2] and it 
is shown in the following equation 1. W is the total number of free 
parameters in the network (synaptic weights and biases) and ε 
denotes the fraction of the classification errors permitted during 
testing. The O notation shows the order of quantity enclosed within 

[2].   ⎟
⎠
⎞

⎜
⎝
⎛=
ε
WON             (1) 

In the case examined here with 417 training examples used, the 
classification error that could be tolerated would be about 4%.  

3.1 Description of the experiments performed 
During experimentations, numerous ANN architectures, 

learning algorithms and transfer functions were combined in an 
effort to obtain the optimal network. For the Tangent Hyperbolic 

(TanH) transfer function the input data were normalized (divided 
properly) in order to be included in the acceptable range of [-3, 3] 
to avoid problems such as saturation, where an element’s 
summation value (the sum of the inputs times the weights) exceeds 
the acceptable network range [17]. Standard back-propagation 
optimization algorithms using TanH, or Sigmoid or Digital Neural 
Network Architecture (DNNA) transfer functions, combined with 
the Extended Delta Bar Delta (ExtDBD) or with the Quick Prop 
learning rules [18, 19] were employed. The ExtDBD is a heuristic 
technique reinforcing good general trends and damping oscillations 
[20].  

Modular and radial basis function (RBF) ANN applying the 
ExtDBD learning rule and the TanH transfer function were also 
used in an effort to determine the optimal networks. RBFs have an 
internal representation of hidden neurons which are radially 
symmetric, and the hidden layer consists of pattern units fully 
connected to a linear output layer [21, 22].  

3.2 ANN evaluation metrics applied 
Traditional ANN evaluation measures like the Root Mean Square 
Error (RMS error), R2 and the confusion matrix were used to 
validate the ensuing neural network models. It is well known that 
the RMS error adds up the squares of the errors for each neuron in 
the output layer, divides by the number of neurons in the output 
layer to obtain an average, and then takes the square root of that 
average. The confusion matrix is a graphical way of measuring the 
network’s performance during the “training” and “testing” phases. 
It also facilitates the correlation of the network output to the actual 
observed values that belong to the testing set in a visual display 
[17], and therefore provides a visual indication of the network’s 
performance. A network with the optimal configuration should 
have the “bins” (the cells in each matrix) on the diagonal from the 
lower left to the upper right of the output. An important aspect of 
the matrix is that the value of the vertical axis in the generated 
histogram is the Common Mean Correlation (CMC) coefficient of 
the desired (d), and the actual (predicted) output (y) across the 
Epoch.  

Finally, the FUSETRESYS (Fuzzy Set Transformer Evaluation 
System) that constitutes an innovative ANN evaluation system has 
been applied offering a more flexible approach [1].  

3.3 Technical description of the FUSETRESYS 
ANN evaluation model 
Fuzzy logic enables the performance of calculations with 
mathematically defined words called “Linguistics” [1, 23-25]. 
FUSETRESYS faces each training/testing example as a Fuzzy Set. 
It applies triangular or trapezoidal membership functions in order 
to determine the partial degree of convergence (PADECOV) of the 
ANN for each training/testing example separately. The following 
equations 2 and 3 represent a triangular and a trapezoidal 
membership functions respectively [1]. 

μs(x;a,b,c)=max{min{
bc
xc

ab
ax

−
−

−
− , },0} a<b<c      (2) 

μs(x;a,b,c,d)= max{min{
cd
xd

ab
ax

−
−

−
− ,1, },0}a<b<c<d  (3) 

The model can produce various overall degrees of convergence 
(OVDECOV) for all of the training examples by applying either 
fuzzy T-Norm or fuzzy S-Norm conjunction operations, depending 
on the optimistic or pessimistic point of view of the developer. T-
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Norms tend to produce lower aggregation indices so in the case of 
ANN evaluation they can be considered as a pessimistic approach, 
whereas the opposite happens with S-Norms [26]. In fact, each 
distinct Norm evaluates the performance of an ANN under a 
different perspective. For example the drastic product assigns the 
ANN a high OVDECOV only if it does not have extreme 
deviations between the desired and the produced classifications 
during the training/testing process [1] whereas the Einstein T-
Norm acts in a more average mode. The following equations 4 and 
5 present the drastic product and the Einstein product T-Norms. 
More details on fuzzy conjunction operators can be found in [26-
28]. 

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩

~~
BA

μ 1)}(μ(Χ),{μ )}(μ(Χ),{μMin ~~~~
BABA

=ΧΧ Maxif

0

 else  

~~ =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩BA

μ  (4)
)](){)(){[2

)(){

~~~~

~~
~

~

XXXX

XX

BABA

BA

μμμμ

μμ
μ

−+−
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Β∩Α

 (5) 

The fact that the FUSETRESYS evaluates each training/testing 
example separately, offers a more clear view of the ANN’s 
performance. In this way the developers know if the network 
operates extremely bad or well in specific cases.  

Also when there are several neurons in the output layer, the 
traditional approaches produce separate evaluation results for each 
one whereas the FUSETRESYS can produce an additive 
performance index (ADPERI) of the ANN. This could be done 
under different perspectives and under different degrees of 
optimism [1].  

Finally the application of fuzzy set hedges offers the “dilution” 
and the “intensification” options. In this way by using the dilution 
approach the developer softens the membership function over the 
fuzzy set and weakens the membership constraints so that a point 
of the Universe of discourse is “truer” than it would be before [1, 
27]. On the contrary the intensification hardens the MF over the FS 
and strengthens the membership constraints so that a point on the 
domain is “less true” than it used to be [1, 27]. The following 
equations 6 and 7 correspond to the intensification and dilution 
functions respectively.  

( ) ( i
n
AiAensify XX μμ =)(int ) (6) ( ) ( )i

n
AiAdilute XX
1

)( μμ =     (7) 

In this way the ANN can be evaluated strictly by using a “very 
well fit” evaluation option, or in a more relaxed way by using the 
“somewhat fit” option. Of course it is in the developer’s hand to 
decide the potential type of the ANN’s evaluation and the degree 
of dilution or intensification. For a more detailed description of 
FUSETRESYS please see [1]. 

4 RESULTS AND DISCUSSION 

4.1 ANN analysis 
Several experiments were performed. The following table 2 
presents the structure of the four most effective Back Propagation 
(BP) multilayer (ML) neural networks. In all cases of ANN 
models, the classical approach for overcoming the overfitting 
problem has been followed. More specifically, a set of validation 
data have been provided to the algorithm in addition to the training 
data. The algorithm has monitored the error with respect to this 
validation set, while using the training set to drive the gradient 
descent search. The number of weight tuning iterations performed 
by the system, were determined in each case based on the criterion 
of lowest error over the validation set. Two copies of the best 

performing weights are kept: one copy for training and another one 
of the best performing weights thus far.  
 

Table 2. Structure of the four most successful ML ANN 

Optimization 
algorithm 

Input 
Layer 

Hidden 
sub-
layer 

neurons 

Second 
Hidden 

sub-
layer 

Learning 
Rule/Transfer 

Function 

ANN ML#1. 
Reinforcement 

ANN using 
BackPropagation 

15 7 7 
Genetic 

Algorithm 
/TanH 

ANN ML#2. 
Multilayer 

Backpropagation 
15 9 0 

Norm-
Cum_Delta/ 

TanH 

ANN ML#3. 
Multilayer 

Backpropagation 
15 9 9 

Norm-
Cum_Delta/ 

TanH 

ANN ML#4. 
Multilayer 

Backpropagation 
15 7 0 ExtDBD/ 

TanH 

 
Table 3 shows the architecture and structure of the four most 
successful radial basis function (RBF) ANN. 
 

Table 3. Structure of the two most successful RBF ANN 

Optimization 
algorithm 

Input 
Layer Proto 

Number 
of 

neurons 
Hidden 
layer 

Output 
Layer 

Learning 
Rule/Transfer 

function 

Norm 
Cum_Delta / 

ANN 5. 
ANN6 Radial 

Basis 
Function 

15 30 2 1 
Sigmoid or 

TanH 

 
    The following Table 4 presents the training and testing results 
for the most successful ML and RBF ANN using R2.  Also for the 
three most successful networks, namely 2,3,4 the FUSETRESYS 
model was applied to determine the average degree of 
convergence. According to the results, the most suitable network 
was ML#3. The structure and the architecture of this successful 
network have been described in the above Table 2.  

Table 4.  Evaluation of the most successful ML and RBF ANN 

ANN 
code R2  in Training R2  in 

Testing 

Average Degree 
of success in 
Testing using 

FUSETRESYS 
for the three 

best ANN 
1 0.8258 0.8247  
2 0.9615 0.9471 0.9699 
3 0.9721 0.9489 0.9716 
4 0.9352 0.9588 0.9799 
5 0.9114 0.9000  
6 0.9346 0.9400  

 
The following figure 1 is a graphical representation of the all the 

PADECOV of the ML#2, for each testing example. The absolute 
degree of convergence has the value of one. A serious effort was 
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made towards the development of modular ANN (MODANN) for 
the classification problem solution. The term MODANN refers to 
the “adaptive” mixtures of local experts (LOCEXP) as proposed 
by [29]. 

They consist of a group of BP ANN referred to as local experts 
competing to learn different aspects of a problem. A “gating ANN” 
controls the competition and learns to assign different parts of the 
data space to different networks. 
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Figure 1. Representation of all the PADECOV of the network ML# 2 

 
The LOCEXP have the same architecture but they can apply 
distinct learning rules or transfer functions. Also the number of the 
output processing elements of the gating network is equal to the 
number of LOCEXP used. The number of the neurons in the 
hidden layer of the gating network should be larger than the 
number of the output processing elements [17].  
 

Table 5. Refereed Back Propagation using Gating Networks with two 
Competing local experts   

Refereed #1 REF ANN using Gating ANN with 2 Local Experts 

Learning 
rule Transfer Error Output Noise 

Local Expert's #1 functions 

ExtDBD TanH standard Direct Uniform 

Local Expert's #2 functions 
Norm-
Cum 
Delta 

TanH standard Direct Uniform 

Local Expert's  Architecture 

Output Input 
neurons 

15   

Hidden 
neurons 

6   
 neurons 

1 

Gating ANN functions 

Learning 
rule Transfer Error Output Noise 

ExtDBD Linear Standard SoftMax Uniform 
 
The above table 5 presents the structure and the architecture of the 
optimal MODANN that was developed for the medical 
classification problem examined here. The performance of the 
developed modular network is very satisfying, having an R2 value 
of 0.9434 and a FUSETRESYS produced average PADECOV 
equal to 0.9733 (using the Triangular membership function) in the 
testing process using the first time seen testing data set. 

The following figure 2 depicts the gating probabilities for the 
optimal MODANN.. 
 

 
Figure 2. Gating Probabilities of the MODANN with code #1Ref. 

 
Table 6. Small sample of the  PADECOV indices  

PADECOV by FUSETRESYS 
ML#2 ML#3 #1REF 

0.83333 0.83333 1 
0.83333 0.83333 0.833 

1 1 1 
0.83333 0.83333 1 

1 1 1 
0.83333 0.83333 1 

0.833333 0.833333 1 

   

OVDECOV Einstein 

0.98299 0.97784 0.971 
 
The above Table 6 presents a small sample of the 101 distinct 
PADECOV values produced by the FUSTRESYS.  

Also the Einstein T-Norm was applied for the determination of 
the overall degree of convergence of the ANN. The ML#2 ANN 
had a very high OVEDECOV index with a value of 0.98299 
whereas the other ML#3 ANN and the MODANN #REF1 had 
OVEDECOV indices as high as 0.97. The Drastic Product T-Norm 
was not applied in this research effort because it was proven 
unnecessary from the data in table 5 where there were no serious 
indications of extreme bad ANN performance in any of the testing 
examples. 

 
Table 7. OVDECOV values when intensification and dilution of first order 

was applied using Einstein product and Triangular membership function 
 OVDECOV of  

ML #2  
OVDECOV of  

#1REF   
OVDECOV of  

ML # 3  
Dilution 

“Partly fit” 0.99972 0.99934 0.99957 

Intensification 
“Very well fit” 0.75932 0.64887 0.71033 

5 CONCLUSIONS 
The above research has obtained six ANNs with good level of 
convergence and it has proven that there exist at least four ANNs 
that have high performance indices, in the case of abdominal pain 
classification. Namely the best ANNs are two ML BP ANN, a RBF 
ANN and a MODANN using a referee gating network and two 
local experts. All of them have been described in the previous 
sections.   

A very interesting part of the whole research effort is the 
application of an innovative ANN evaluation model called 
FUSETRESYS that uses fuzzy logic and fuzzy algebra proposed in 
[11]. 

The new evaluation scheme has performed individual 
convergence indices namely PADECOV, for the output of each 
single data record used in the testing phase. The worst PADECOV 
value equals to 0.6666 which actually is the degree of membership 
of each data record to the FS “Actual output value equal to the 
desired value”.  This worst case appears three times exactly in the 
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same cases of data records, for the ML#2, ML#3, #1REF ANN and 
it shows that the classification capacity of the developed networks 
is not bad even in the worst cases. This conclusion becomes 
stronger by considering the fact that the second worst PADECOV 
index has a value of 0.833.  

If an overall ANN validation is performed the traditional 
evaluation instruments agree with the FUSETRESYS that the most 
suitable ANN is the ML BP with code# 4 whereas all of the other 
developed ANN have almost an equally good performance. The 
Einstein T-Norm produces a higher “good performance index” for 
the MODANN than the traditional methods.   

As it can be seen in table 7, the OVDECOV indices have very 
high values for ML#2 and for REF#1 and ML#3 networks when a 
“Partly fit” validation is performed. There is significant 
differentiation when a very strict evaluation is done under the 
linguistic “Very well fit”.  The OVDECOV indices fall from 0.99 
to 0.75 for ML#2, from 0.99 to 0.65 for #REF and from 0.99 to 
0.71 for ML#3 respectively. This is a very useful approach and it 
shows the actual power of FUSETRESYS due to the fact that it 
shows the differentiation of the average convergence degree of the 
three ANN when more strict validation methods are applied. So 
ANN fed with the same data records in testing and appearing to 
have more or less the same performance, they are very seriously 
differentiated when more strict convergence validation methods are 
performed.  

The proposed ANN architecture faces the appendicitis prediction 
quite satisfactory, based on both the above presented results, and 
the pediatric surgeon’s opinion that used these ANNs in their 
everyday routine clinical practice.  

The innovative ANN evaluation model that was applied 
successfully in this research effort will be used extensively in the 
future, in an integrated effort to check its validity under various 
perspectives. 
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Using Genetic Programming to Learn Models Containing
Temporal Relations from Spatio-Temporal Data

Andrew Bennett and Derek Magee 1

Abstract. In this paper we describe a novel technique for learning
predictive models from non-deterministic spatio-temporal data. Our
technique learns a set of sub-models that model different, typically
independent, aspects of the data. By using temporal relations, and
implicit feature selection, based on the use of 1st order logic expres-
sions, we make the sub-models general, and robust to irrelevant vari-
ations in the data. We use Allen’s intervals [1], plus a set offour novel
temporal state relations, which relate temporal intervalsto the current
time. These are added to the system as background knowledge in the
form of functions. To combine the sub-models into a single model a
context chooser is used. This probabilistically picks the most appro-
priate set of sub-models to predict in a certain context, andallows
the system to predict in non-deterministic situations. Themodels are
learnt using an evolutionary technique called Genetic Programming.
The method has been applied to learning the rules of snap, anduno
by observation; and predicting a person’s course through a network
of CCTV cameras.

1 Introduction

Learning predictive models from spatial-temporal data is,in general,
a hard problem. Events and activities can have variations intheir spa-
tial, and temporal scope; include multiple (variable numbers of) ob-
jects; can overlap temporally with other events, and activities; and
happen in a non-deterministic manner. A model for predicting spatio-
temporal events must support this complexity. Our novel technique
learns a set of sub-models that model different, typically indepen-
dent, aspects of data. The sub-models can, in addition to object prop-
erties, use temporal relations to describe the scene, and implicit fea-
ture selection, based on the use of 1st order logic expressions, to
make them robust to irrelevant variations in the data. To combine the
sub-models into a single model a context chooser is used. This picks
the most appropriate set of sub-models to predict in a certain con-
text, and allows the system to predict in non-deterministicsituations.
Using the combination of sub-models and the context chooseralso
reduces the complexity of the model search space, and allowsthe
system to learn a global sub-model that matches most of the dataset,
and then learn simple sub-models to cover the cases where theglobal
sub-model does not work.

This approach extends our previous work [2], by allowing a quali-
tative, as well as a markovian representation of time. This is done by
replacing the step-wise markovian view with temporal relations like
Allen’s intervals [1], and a set of four additional relations to relate
the temporal state of objects to the current time. We use Genetic Pro-
gramming to learn the models, and present an improved fitnessfunc-
tion. The system has been successfully tested on handcrafted snap,

1 University of Leeds, UK, email:{andrewb,drm}@comp.leeds.ac.uk

and uno datasets, along with learning from video the structure of a
set of mock CCTV cameras.

There has been much previous work on learning from spatio-
temporal domains. Traditional methods usually require a fixed di-
mensionality vector, existing with canonical ordering / constant
meaning, to represent the world. To construct this vector often re-
quires knowledge of the domain, making these methods hard touse
in a problem domain where the structure of the domain is variable,
and not known a priori. One approach to modelling data of variable
dimensionality is to take statistics of a variable size set [8]. This pro-
duces a fixed set description, however spatial relationshipinforma-
tion is lost in this process. If this information is important within a
domain this leads to a poor model. Feature selection can be used to
find the most relevant subset of the data, which then allows for a more
general model to be built. However, the relevant subset may change
from one context to another.

Temporal modelling approaches such as Markov chains, Hid-
den Markov Models (HMMs) and Variable Length Markov Mod-
els (VLMMs) [7] use a description based on graphs to model state
transitions. These methods also usually need a fixed dimensional-
ity vector with canonical ordering for each observation. There does
not have to be a fixed dimensionality for every observation vector,
as theoretically each observation vector can have a different number
of dimensions. It is possible to optimise their structure byusing local
optimisation approaches based on information theory [3]. In VLMMs
this optimisation acts as kind of temporal feature selection, but as the
input variables stay in the same fixed order spatial feature selection
is not performed.

Bayesian networks are a generalisation of probabilistic graph
based reasoning methods like HMMs and VLMMs. Again these net-
works require a fixed input vector, but again their relational struc-
ture can be optimised by local search [12], genetic algorithms [5], or
MCMC [6] usually based on information theoretic criteria.

An alternative to using graph based methods is to use (1st order)
logical expressions. Feature selection is implicit in the formalism
of these expressions. Logical expressions also make no assumptions
about the ordering of variables, so there is no need to have a have
them in a fixed ordering. Progol [14] and HR [4] are Inductive Logic
Programming (ILP) methods. In general ILP takes data and generates
a set of logical expressions describing the structure of thedata. Pro-
gol does this by iterative subsumption using a deterministic search
with the goal of data compression. HR does this by using a stochastic
search using a number of specialist operators. This is similar to Ge-
netic Programming which is described below. These approaches suf-
fer from a number of disadvantages. Firstly, logical expressions are
deterministic, so it is hard for then to model non-deterministic situa-
tions. However, there has been much work on combining (1st order)

7



logic and probability to solve this problem [16] and [9]. Secondly
Progol’s search is depth bounded, which limits the size of problems
it can work on, as explained in [15]. Thirdly Progol’s fitnessfunction
is only based on how well the model compresses the data, and not
how well the model predicts the data. This can cause incorrect, or
invalid models to be produced.

Genetic Programming (GP) [10] is a evolutionary method, similar
to genetic algorithms, for creating a program that model a dataset. In
a similar way to HR, it takes a dataset data, a set of terminals, and a
set of functions; and using a set of operators generates a binary tree
that models the data.

Qualitative representations can be used to describe spatio-
temporal data in an abstract manner. [1] describes a set of seven tem-
poral relations to represent temporal interactions between objects.

There has been previous work in learning of spatio-temporalmod-
els from video by [15] who produced a system that could learn basic
card games. It had three parts: an attention mechanism, unsupervised
low-level learning, and high-level protocol learning. Theattention
mechanism uses a generic blob tracker, that locates the position of
the moving objects. From this a set of features including: colour, po-
sition and texture are extracted. The data is clustered intogroups. Us-
ing these clusters new input data is assigned its closest cluster proto-
type. A symbolic data stream is then created by combining together
the clustered data, with time information. The symbolic stream is
passed to Progol, which builds a model of the data. Once the model
has been learnt it can be applied to new data. This allows the system
to interact in the world.

[17] looked at learning event definitions from video. A raw video
of a scene is converted into a polygon representation. This is then
transformed into a force-dynamic model which shows how the ob-
jects in the scene are in contact with one another. Using thisdata and-
meets-and (AMA) logic formulae describing the events are learnt us-
ing a specific-to-general ILP approach. Work in the area of learning
from spatial-temporal data, such as the previous two approaches have
inspired our work.

The reminder of this paper will take the following form. The sec-
ond section looks at previous work about the architecture for the
models. The subsequent section looks at an extension to thiswork to
incorporate temporal relations into the sub-models. The subsequent
section describes how these models are learnt by Genetic Program-
ming. The subsequent section presents an evaluation of our system,
and the final section shows the conclusions of the work and thefur-
ther work.

2 Architecture for Models of Spatio-Temporal
Data

? Context chooser

Data OutputSub−models Overall output

Figure 1. This figure shows the architecture of our model. It has two parts:
a set of sub-models, and a context chooser to decide how to usethe

sub-models in different situations.

An architecture to represent a model of spatio-temporal data, along
with associated learning methods is described in our previous work
[2]. We use this architecture as shown in Figure 1. It is broken down
into two parts: the sub-models, and the context chooser. Thesub-
models each model a separate part of the underlying process gener-
ating the data. Each sub-model contains two sections: a search sec-
tion, and an output section. The search section looks for a particular
pattern in the dataset. A query language, created by ourselves, hav-
ing some similarity to SQL and Prolog, is used to describe theactual
search, and a binary tree is used to represent it. The output section
describes what is implied if the search returns true. This will be a set
of entities and relations, and their properties the sub-model predicts.
Figure 2 shows an example of a sub-model.

&

C1

= ==

Light2.colour(t−1)Light1.colour(t−1) Light3.colour(t) C2C0

Search Output

Figure 2. This shows a sub-model matching a traffic light with colour c1,
and a different light having a colour c0 both at current time -1. If the

expression evaluates true it will output a new light which has a colour c2, at
the current time.

The context chooser is used to decide how to combine the sub-
models in different situations. It takes as its input a boolean vector de-
scribing which sub-models have evaluated true, and returned outputs,
and using a probability distribution decides which ones will form the
overall output. A contextSn is defined as a set of sub-modelsM

producing an output in a given context, for exampleSn = M1, M2

represents thatM1, andM2 have search sections that have evalu-
ated true at the same time. For each context a probability distribu-
tion over the possible combinations of model outputs for that con-
text is defined, for examplePn(M1), Pn(M2), Pn(M1, M2), where∑

j
Pn(j) = 1. This distribution is formed from the frequency of

occurrence of each situation in the training data in the given context.
This can be implemented as a sparse hash table.

3 Incorporating Temporal Relations into
Sub-models

To evaluate the sub-models history data from the world is required.
The search section of the sub-model uses data pointers to reference
particular data items in the history. The search section of the sub-
model is then evaluated with respect to this data. If the search sec-
tion evaluates true, then the output section is implied. In our previous
work [2] each data pointer could only reference fixed quantified time
points in the history, as shown in Figure 2. The use of this qualitative
markovian representation of time implies an exact orderingof the
events. When multiple independent events are happening simultane-
ously this representation will fail, and an alternative method of repre-
senting temporal ordering is necessary. In order to quantify temporal
ordering in the data we use a combination of Allen’s intervals [1], and
four novel temporal state relations. Allen’s intervals describe tempo-
ral relations between objects. There are seven relations which are:
meets, starts, finishes, during, before, overlaps, and equal to. Along
with describing temporal relations between objects in the history, we
need to describe how the objects relate to the current time. An object
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goes through a series of temporal states, based on how its start and
end time relates to current time, these are described Figure3. Firstly
the object is entering the world, its end time is unknown, butits start
time is the same as the current time. Secondly the object exists in the
world, again the end time is unknown, but its start time is less than
the current time. Thirdly the object is leaving the world andits end
time is equal to the current time. Finally the object has leftthe world,
where both its start, and end times are less than the current time.

Current_time = start

Current_time = end AND Current_time > start

Entering

Leaving
Current_time > start
Existing

Current_time > end AND Current_time > start
Left

Current Time

Figure 3. This shows the four temporal states, with respect to currenttime,
an object can be in: entering, existing, leaving, and left. The dotted lines

represent that we don’t know when the object will leave the world.

Both the Allen’s intervals, and our additional temporal state re-
lations, are represented in the system as functions of the data, that
appear in the search section of the sub-models. These relations do
not appear in the data; only the temporal range of individualobjects
occurs in the data. As the data pointers can be used over the entire
history, it is quite likely that a sub-model will evaluate onmany dif-
ferent parts of the history. To resolve this issue we just usethe result
which includes the most recent data. The justification for this is the
sub-model will have already output this information at a previous
time in other situations.

4 Learning the Models from Data

Previously in our previous work [2] it has been shown that it was in-
tractable to find the set of optimal sub-models by exhaustivesearch,
for all but the simplest problems. The search space is complex, so a
stochastic search method was chosen as an alternative. We use Ge-
netic Programming [10], which has already been successfully used
for pattern recognition tasks [11].

Genetic Programming (GP) [10] evolves a population of programs
until a program with the desired behaviour is found. It is a type of
genetic algorithm, but the programs are stored as binary trees, and
not as fixed length strings. Functions are used for the nodes,and ter-
minals (for example constants, and variables) are used for the leaf
nodes. In order for the population to evolve a fitness function (in our
case a predictive accuracy score) must be defined. This scorewill
be used by the GP system to decide which programs in the current
generation to use to produce the next generation, and which ones
to throw away. To initialise the system, a set of randomly generated
programs must be created. Each then receive a score using thefitness
function. Algorithms including crossover, mutation and reproduction
use the programs from the current generation to create a new gener-
ation. Crossover takes two programs and randomly picks a sub-tree
on each program, these two trees are swapped over, creating two new
programs. Mutation takes one program, randomly picks a sub-tree on

it, and replaces it with a randomly generated sub-tree. Reproduction
copies a program exactly as it is into the new generation. Thepro-
grams in the new generation are then scored based on how well data
is predicted, and the process is repeated. The GP system willstop
when a certain fitness score is reached, or a certain number ofgener-
ations has passed.

In our implementation of GP we assume that a program is a
model containing a context chooser, and a set of sub-models.To ini-
tialise the population we generate a set of models just containing
one randomly generated sub-model. The sub-model is produced us-
ing Koza’s ramped half and half method [10]. We apply a hierarchical
structure to our sub-models in a similar manner to [13], to try and cut
down the search space, and to make finding a solution more efficient.

A set of operators is then used to evolve the population. There are
two kinds of operators. Firstly there are operators that tryto optimise
sub-models which are used in the model, and secondly there are op-
erators that optimise the sub-models themselves. A technique called
tournament selection [10] is used to pick a model from the popula-
tion. Tournament selection picksn models at random from the popu-
lation, and returns the one with the lowest score, for our experiments
we setn to be 5. The operators used to optimise sub-models which
are used in the model are shown below:

Reproduction A set number of models are picked via tournament
selection and copied directly into the new population.

Adding in a sub-model from another model Two models are
picked by tournament selection. A sub-model from the first
picked model is randomly selected, and added to the second
chosen model.

Replacing a sub-model Again two models are picked by tourna-
ment selection, and a sub-model from the first chosen model is
then replaced by a sub-model randomly selected from the second
chosen model.

Removing a sub-model A sub-model is picked by tournament se-
lection, and a randomly selected sub-model is removed.

The only operator used to optimise the sub-models themselves is
crossover. In crossover two models are picked using tournament se-
lection. A sub-model from each model is then randomly selected, and
standard crossover [10] is performed on these sub-models.

To score the models a fixed length window is randomly moved
over the dataset. At each generation two random locations are picked:
one for training, and one for testing. In the training phase the prob-
ability distribution used in the context chooser is calculated. In the
testing phase the fitness of a model (m) is evaluated over a win-
dowed section of the dataset (w). For each position in the window the
model is given a set of history data (h), calculated from the window,
and is queried to produce a prediction. This produces a set ofpos-
sible corresponding outputs (o), and a set of possible corresponding
output likelihoods (ol). The similarity (C) of each output with the ac-
tual output (r), is computed using theFindBestMatch function, as
shown in Equation 1. This function takes the set of actual output, and
the set of model output, and firstly pads out them out with blank data
so that they are the same size. Then for each item in the actualoutput
set, a unique match in the model output set is found. For each of the
matches a comparison is done between the two objects. The compari-
son looks at how similar each of the properties in the two objects are.
Each of the comparisons are summed together to produce a score that
shows how good that set of matches is. An exhaustive search isthen
performed over all the possible combination of matches to find the
best (maximal) matching score. The result is then multiplied by its
output likelihood. From this the best (maximal) output is found. This
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is then repeated over the rest of window, and the results summed and
then normalised to produce (S), as shown in Equation 2. This fitness
function is an improved version to the one described in our previous
work [2], as it can be applied to non-deterministic datasets.

C(o, r) = FindBestMatch(o, r) (1)

S(m, w) =
1

|w|
∗

∑

i

Maxn(oln ∗ C(on, ri)) (2)

The system runs in two stages, and will stop running once it ex-
ceeds a maximum number of generations. Firstly the system isini-
tialised in the manner described above, and then for five generations
it works out the best set of sub-models to use in the models. Todo
this the system uses reproduction (10%), removing (10%), adding
(40%), and replacement (40%). Next the system will optimisethese
models to find the best solution. It uses crossover (60%), reproduc-
tion (10%), removing (10%), adding (10%), and replacement (10%).

5 Evaluation

Our method was evaluated on three different datasets, whichwere:
handcrafted uno data, handcrafted snap data, and data from people
walking through a network of mock CCTV cameras. More detail
about these datasets is presented in the following section.

5.1 CCTV Data of a Path

A 10 minute video of people walking along a path containing a junc-
tion was filmed. This was then used to mock up a network of CCTV
cameras. Figure 4 shows a frame from the video. Virtual motion
detectors, representing CCTV cameras, were hand placed over the
video has shown in Figure 4. Using frame differencing, and morpho-
logical operations, the video was processed to determine the location
of the motion. If the number of moved pixels in a region exceeded
a fixed threshold then the virtual detector outputted that motion had
occurred at that location. Hysteresis on the motion detection is im-
plemented as a 2 state, state machine (where the states are motion/no
motion). The state machine requires a numbers of frames (normally
10) of stability to change state. The data produced is then placed in
a datafile with a motion event recorded per state change goingfrom
no motion to motion. This was used to create a training datafile con-
taining 84 state changes and a test file containing 46 state changes.

5.2 Snap

The snap dataset was handcrafted, but the format of it was similar
to the snap dataset used in the work of [15]. The snap sequenceis
the following: initially the computer will see a blank scene, then it
will hear the word play, next two coloured cards will be seen.Either
they will be both put down at the same time, or put down one by
one. If they are the same then the word “equals” will be heard,oth-
erwise “different” will be heard. Then the cards are removed, again
either one by one, or at the same time. We ask the computer to only
learn the sections where a human is speaking, as it would be im-
possible to accurately predict the next two cards because they are
essentially random. Again three datasets were prepared: a non-noisy,
and noisy training set, and a non-noisy test set. All the datasets con-
tained around 50 rounds of snap. The noisy data was generatedby
adding 10% noise to the non-noisy training set. The noise took the
form of removing cards, removing the play state, and changing the
output state, for example making the output not equal when itshould
be equal.

5.3 Uno

The handcrafted uno dataset has a similar sequence to the snap
dataset. Again the computer will initially see a blank scene. Then
play will be heard. Next two cards, each one having one of three
possible coloured shapes on them, will be placed down eitherat the
same time, or one by one. If the two card have the same coloured
shape on them the “same” is heard; or if they have shapes of the
same colour then “colour” is heard; or if they have the same shapes
on then “shape” is heard; or if the cards are different then “nothing”
is heard. The cards are then removed either together, or one by one.
Three datasets were created: a non-noisy training set, a noisy training
set, and a non-noisy test set. Each one contained around 50 rounds
of uno. Again noisy data was prepared by adding 10% of noisy data
to the non-noisy training data. The noise took the same form as the
noisy snap data.

3
0

1

2

Figure 4. This figure firstly shows a frame of the video with a person
taking a decision at the junction point, and secondly it shows where the

virtual detectors are on the video.
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Figure 5. This shows one of the sub-model results for the snap dataset.It
is predicting the equal state, by using the properties of three cards. If card3
occurs before card2; and card1 has just entered the world; and the colour of

both card1, and card2 is the same then the sub-model evaluates true, and
Equal will be returned.

6 Results

To test the system five runs were allocated to each possible combi-
nation of dataset. For each run a different random number seed was
used to initialise the system. The tests were run on a 2GHz machine
having 8GB memory.

To evaluate how well the models have been learnt they were tested
on a separate test set. Two metrics were used to evaluate the results:
coverage, and prediction accuracy. Coverage (C) scores if the sys-
tem can correctly predict the dataset (ie. the probability of correct
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prediction is greater than 0%) and is the number of correct predic-
tions (pc) divided by the dataset size (d) as shown in Equation 3.
Prediction accuracy (A) scores with what probability the correct pre-
diction is made, and is the sum of the likelihoods of each correct
prediction (pl) divided by the dataset size, as shown in Equation 4.
In non-deterministic scenarios this will not be 100%.

C =
pc

d
(3)

A =
pl

d
(4)

Both the snap datasets were tested on a population size of 4000,
and the system was run for 65 generations, taking around 5 hours
to do each run. All the runs using the non-noisy datasets weresuc-
cessful. However the models did not get 100% coverage because they
failed to produce any output at the start of the test dataset as there was
insufficient items in the history. Figure 5 shows an example of this,
as it will only evaluate once there are three cards in the history. Four
of the results did not predict the first two items in the test dataset,
and one of the results only failed to predict the first item. Two out of
the five runs using the noisy snap dataset got an exact solution. The
noise effected the models causing the sub-models to model incorrect
parts of the dataset. This was because some of the noise addedto the
noisy training set changed the outcomes for some rounds of snap,
this then causes the system to model this noise, and to incorrectly
predict the outcomes in the test set. Again, like in the non-noisy snap
models there was problems predicting the start of the test dataset.
The models themselves made use of both the Allen’s intervals, and
the temporal state relations. Figure 5 shows one of the sub-models
produced from the non-noisy snap training set. It shows the use of
Allens intervals (the before relation), and the temporal state relations
(the enter relation). Most of the models contained four sub-models in
them.

The uno datasets were run on a population of size 6000, and for
65 generations, taking around 7 hours to do each run. One out of five
runs on the non-noisy dataset managed to get the correct solution, but
it did not get 100% coverage because it did not have enough history at
the start of the test set to predict the initial items. The rest of the non-
noisy results were very close to the solution, and probably needed
more generations to find the exact solution. The models themselves
were very similar to the models produced for the snap datasets. Both
Allen’s intervals, and the temporal state relations were used. None
of the runs for the noisy dataset managed to produce an exact result,
with the noise causing the sub-models to model incorrect parts of the
dataset.

The runs using the path dataset used a population size of 2000, and
the system was run for 65 generations, taking around 3 hours to do
each run. All the runs using the non-noisy dataset predictedwell in
the main section of the test dataset, but failed to predict well at the
start of the test dataset, due to lack of history. Some of the runs also
failed to predict infrequently occurring actions in the test set. In the
runs using the noisy training set all the models learnt the frequently
occurring actions, but they all started to learn some of the noise in
the dataset, and this effected their scores on the test dataset. Both the
non-noisy and noisy models used Allen’s intervals, and the temporal
state relations.

7 Conclusions

We have extended the previous work of [2] and shown that that it is
possible, by the use of temporal relations, to use a qualitative, as well

Training Dataset Number of runs C(%) A(%)
Snap No Noise 1 99.9 99.9

4 99.8 99.8
Snap Noise 2 99.8 99.8

1 99.8 96.6
1 96.0 94.8
1 96.0 93.3

Uno No Noise 1 99.7 99.7
1 97.2 97.2
1 94.0 92.0
1 91.5 89.7
1 88.8 88.8

Uno Noise 2 96.8 88.4
1 95.1 95.1
1 94.3 90.4
1 88.5 87.1

Path No Noise 1 97.9 92.1
1 97.9 89.3
1 96.8 88.8
1 95.8 90.0
1 94.7 88.5

Path Noise 1 93.6 85.8
1 92.6 85.2
1 91.5 82.4
1 90.8 83.3
1 90.1 80.7

Figure 6. This figure shows the results for the snap, uno and path datasets.
The number of runs column shows for each training set how manyruns got

the same coverage, and accuracy scores.

as a markovian representation of time. This technique is important
for a number of reasons. Firstly it produces models that are robust to
irrelevant variations in data. Secondly, it allows the system to learn
from a dataset containing single actions, and then be able topredict
from a dataset containing multiple overlapping actions.

In future work will be looking into using spatial, as well as tempo-
ral relations in the system. We are also looking into trying out quanti-
tative relations, so that a relation will not work on objectsthat are ei-
ther too close, or too far away. We will also be looking into changing
the output from a sub-model based on what data the search section
has evaluated on. Finally we will be looking at speed improvements
to the system so that the run time can be reduced.
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Combining Intelligent Methods for Learner Modelling
in Exploratory Learning Environments

Mihaela Cocea and George D. Magoulas 1

Abstract. Most of the existing learning environments work in well-
structured domains by making use of or combining AI techniques in
order to create and update a learner model, provide individual and/or
collaboration support and perform learner diagnosis. In this paper we
present an approach that exploits the synergy of case-base reasoning
and soft-computing for learner modelling in an ill-structured domain
for exploratory learning. We present the architecture of the learner
model, the knowledge formulation in terms of cases and illustrate its
application in an exploratory learning environment for mathematical
generalisation.

1 INTRODUCTION
Several AI techniques have been proposed in intelligent learning en-
vironments, such as case-based reasoning [27], [10], bayesian net-
works [4], [6], neural networks [2], genetic and evolutionary algo-
rithms [24], neuro–fuzzy systems [26], as well as synergistic ap-
proaches, such as genetic algorithms and case-based reasoning [13],
hybrid rules integrating symbolic rules with neurocomputing [11],
and expert systems with genetic algorithms [18].

Exploratory Learning Environments (ELEs) belong to a particular
class of learning environments built on the principles of construc-
tivism paradigm for teaching and learning. ELEs place the emphasis
on the opportunity to learn through free exploration and discovery
rather than guided tutoring. This approach has proved to be bene-
ficial for learners in terms of acquiring deep conceptual and struc-
tural knowledge. However, discovery learning without guidance and
support appears to be less effective than step-by-step guiding learn-
ing environments [16]. To this end, an understanding of learner’s be-
haviour and knowledge construction is needed [22].

Most existing ELEs use simulations as a way of actively involving
learners in the learning process (e.g. [28], [14]) and exploit cog-
nitive tools [29] to support their learning. Few such systems model
learner’s knowledge/skills; for example [4] and [6] use bayesian net-
works and [26] combines neural networks with fuzzy representation
of knowledge. Another category of ELEs is closer to the construc-
tivist approach by allowing the learner to construct their own models
rather than explore a “predefined” one. Compared to conventional
learning environments (even environments that use simulations), this
type of ELE requires approaches to learner modelling that would be
able to capture and model the useful interactions that take place as
learners construct their models.

In this paper, we present an approach to learner modelling in ELEs
(suitable for both exploring simulations and constructing models)
that combines case-based reasoning with other AI techniques. The

1 The authors are with the London Knowledge Lab, Birkbeck College, Uni-
versity of London, UK; email: {mihaela;gmagoulas}@dcs.bbk.ac.uk

subsequent section briefly introduces the application domain, namely
mathematical generalisation, and the ELE used, called ShapeBuilder,
and discusses the challenges involved in performing learner mod-
elling. Section 3 presents a conceptual framework for the learner
modelling process and describes the case-based formulation. Section
4 illustrates the process with an example, while Section 5 concludes
the paper and outlines future work.

2 EXPLORATORY LEARNING FOR
MATHEMATICAL GENERALISATION

Mathematical generalisation (MG) is associated with algebra, as “al-
gebra is, in one sense, the language of generalisation of quantity. It
provides experience of, and a language for, expressing generality,
manipulating generality, and reasoning about generality” [20].

However, students do not associate algebra with generalisation as
the algebraic language is perceived as been separate from what it rep-
resents [15]. To address this problem the ShapeBuilder [8] system,
which is an ELE under development in the context of the MiGen
project 2, aims to facilitate the correspondence between the mod-
els, patterns and structures (visual representations) that the learners
build, on one hand, and their numeric, iconic and symbolic repre-
sentations, on the other hand. ShapeBuilder allows the construction
of different shapes [9], e.g. rectangles, L-shapes, T-shapes and sup-
ports the three types of representations aforementioned: (a) numeric
representations that include numbers (constants or variables) and ex-
pressions with numbers; (b) iconic representations which correspond
to icon variables; (c) symbolic representations that are names or sym-
bols given by users to variables or expressions. An icon variable has
the value of a dimension of a shape (e.g. width, height) and can be
obtained by double-clicking on the corresponding edge of the shape.
It is represented as an icon of the shape with the corresponding edge
highlighted (see Figure 1a).

Constants, variables and numeric expressions lead to specific con-
structions/models, while icon variables and expressions using them
lead to general ones. Through the use of icon variables, ShapeBuilder
encourages structured algebra thinking, connecting the visual with
the abstract (algebraic) representation, as “each expression of gen-
erality expresses a way of seeing” [20] (see Figure 1b). It also uses
the “messing up” metaphor [12] that consists of asking the learner to
resize a construction and observe the consequences; the model will
“mess up” only if it is not general (see Figures 1c and d), indicating
learner’s lack of generalisation ability.

When attempting to model the learner in an ELE for such a wide
domain as MG, several challenges arise. The main and widely ac-

2 Funded by ESRC, UK, under TLRP e-Learning Phase-II (RES-139-25-
0381); http://www.tlrp.org/proj/tel/tel_noss.html.
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Figure 1. (a) A rectangular shape and its icon variable; (b) an expression
using icon variables; (c) “messing up”; (d) general solution that does not

“mess up”.

knowledged challenge is to balance freedom with control: learners
should be given enough freedom so that they can actively engage in
activities but they should be offered enough guidance in order to as-
sure that the whole process reflects constructivist learning and leads
to useful knowledge [21]. This and some other challenges are illus-
trated in Table 1 with examples from the domain of MG.

Table 1. Applying learner modelling in ELEs for mathematical
generalisation.

Challenge Example
Balance be-
tween freedom
and control

When a learner is trying to produce a general represen-
tation, for how long should he be left alone to explore
and when does guidance become necessary?

What should be
modelled?

Besides learner’s knowledge of MG concepts (e.g.
use of variables, consistency between representations,
etc.), other aspects need to be modelled in order to
support the learner during exploration: shapes con-
structed, relations between shapes, etc.

Do both correct
and incorrect
actions or be-
haviours have
value?

In exploratory learning it is difficult to categorise ac-
tions or learner’s explorations into “correct” and “in-
correct”. Moreover, actions that might lead to incor-
rect outcomes such as resizing can be more valuable
for constructivist learning than “correct” actions.

Reasoning
about abstract
knowledge

Can consistency be inferred from the fact that a learner
is checking the correspondence between various forms
of representations? If so, is that always true? Are there
any exceptions to this rule?

Underlying
strategies

As it is neither realistic nor feasible to include all pos-
sible outcomes (correct or incorrect) to model the do-
main of MG, only key information with educational
value could be stored, such as strategies in solving
a task. The challenge is how to represent and detect
them.

3 A CONCEPTUAL FRAMEWORK FOR
LEARNER MODELLING

Given the challenges mentioned in Table 1 a conventional learner
modelling approach does not fit the purposes of ELEs. Due to the ex-
ploratory nature of the activities and the diversity of possible trajec-
tories, flexibility in the representation of information and handling of
uncertainty are two important aspects for effectively supporting the

learning process. As case-based reasoning offers flexibility of infor-
mation representation and soft computing techniques handle uncer-
tainty, a combination of the two is used. Moreover, previous research
has proved the benefits of combining case-based reasoning with neu-
ral networks [23] and fuzzy quantifiers [30]. In the following sub-
sections, the architecture of the system, the AI components and their
role are described.

3.1 The Architecture
The architecture of the “Intelligent” ShapeBuilder is represented in
Figure 2. As the learner interacts with the system through the inter-
face, the actions of the learner are stored in the Learner Model (LM)
and they are passed to the Interactive Behaviour Analysis Module
(IBAM) where they are processed in cooperation with the Knowl-
edge Base (KB); the results are fed into the LM. The Feedback Mod-
ule (FM) is informed by the LM and the KB and feeds back to the
learner through the interface.

Figure 2. Schematic of an intelligent architecture for ShapeBuilder.

The KB includes two components (see Figure 2): a domain and
a task model. The domain model includes high level learning out-
comes related to the domain (e.g. using variables, structural reason-
ing, consistency, etc.) and considers that each learning outcome can
be achieved by exploring several tasks. The task model includes dif-
ferent types of information: (a) strategies of approaching the task
which could be correct, incorrect or partially correct; (b) outcomes
of the exploratory process and solutions to specific questions associ-
ated with each (sub)task; (c) landmarks, i.e. relevant aspects or criti-
cal events occurring during the exploratory process; (d) contexts, i.e.
reference to particular (sub)tasks.

The IBAM component combines case-based reasoning with soft
computing in order to identify what learners are doing and be able
to provide feedback as they explore a (sub)task. More specifically, as
they are working in a specific subtask, which specifies a certain con-
text, their actions are preprocessed, current cases are identified and
matched to the cases from the Task Model (the case base). Prior to
matching, local feature weighting [23] is applied in order to reflect
the importance of the attributes in the current context.

In the FM component, multicriteria decision making [7] will be
used to obtain priorities between several aspects that require feed-
back depending on the context.

3.2 Case-based Knowledge Representation
In case-based reasoning (CBR) [17] the knowledge is stored as cases,
typically including the description of a problem and the correspond-
ing solution. When a new problem is encountered, similar cases are
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searched and the solution is adapted from one or more of the most
similar cases.

Although CBR has been used successfully in applications for do-
mains like legal reasoning [1], stock market prediction [5], recom-
mender systems [19], and other areas, there is little research on using
CBR for e-Learning environments. For example, [10] use CBR in
the learner modelling process and call this approach case-based stu-
dent modelling; while [13] use CBR and genetic algorithms to con-
struct an optimal learning path for each learner. CBR is used also in
[27] within a case-based instruction scenario rather than a method
for learner modelling. We have not found any references in the liter-
ature to ELEs that use CBR or CBR combined with other intelligent
methods.

The advantage of CBR for learning environments and especially
for ELEs is that the system does not rely only on explicit representa-
tion of general knowledge about a domain, but it can also use specific
knowledge previously experienced [10]. It also seems promising for
improving the effectiveness of complex and unstructured decision
making [13] in combination with other computing methods.

In our research, CBR is used in the learner modelling process.
The cases contain information describing models that learners should
construct using ShapeBuilder. Different strategies in approaching a
problem (i.e. constructing a model to meet a particular learning ob-
jective) are represented as a series of cases that reflect possible ex-
ploratory trajectories of learners as they construct models during the
various (sub-)tasks.

Table 2. The set of attributes (Fi) of a case.

Category Name Label Possible Values
Shape Shape type αi1 Rectangle(/L-Shape/T-Shape)
Dimensions Width type αi2 constant (c)/variable (v)/
of shape icon variable (iv)/

numeric expression (n exp)/
expression with iv(s) (iv exp)

Height type αi3 c /v /iv /n exp /iv exp
...

...
...

Thickness type αiv c /v /iv /n exp /iv exp
Width value αiv+1 numeric value
Height value αiv+2 numeric value

...
...

...
Thickness value αiw c /v /iv /n exp /iv exp

Part of PartOfS1 αiw+1 1
Strategy PartOfS2 αiw+2 0

...
...

...
PartOfSr αiN 0

A case is defined as Ci = {Fi, RAi, RCi}, where Ci represents
the case and Fi is a set of attributes.RAi is a set of relations between
attributes and RCi is a set of relations between Ci and other cases
respectively.

The set of attributes is represented as Fi = {αi1 , αi2 , . . . , αiN }.
It includes three types of attributes: (a) numeric, (b) variables and (c)
binary. Variables refer to different string values that an attribute can
take, and binary attributes indicate whether a case can be considered
in formulating a particular strategy or not. This could be represented
as a “part of strategy” function: PartOfSu : Ci → {0, 1},

PartOfSu =

{
1 if Ci ∈ Su
0 if Ci /∈ Su,

where Su represents a strategy and is defined further on. The set of

attributes of a generic case for ShapeBuilder is presented in Table 2.
The first v attributes (αij , j = 1, v) are variables, the ones from
v + 1 to w are numeric (αij , j = v + 1, w) and the rest are binary
(αij , j = w + 1, N ).

The set of relations between attributes of the current case and at-
tributes of other cases (as well as attributes of the same case) is
represented as RAi = {RAi1 , RAi2 , . . . , RAiM }, where at least
one of the attributes in each relation RAim , ∀m = 1,M , is from
the set of attributes of the current case Fi. Two types of binary
relations are used: (a) a dependency relation (Dis ) is defined as
(αik , αjl) ∈ Dis ⇔ αik = DEP (αjl), where DEP : αik → αjl
for attributes αik and αjl that are variables of cases i and j (where
i = j or i 6= j), and means that αik depends on (is built upon)
αjl (if i = j, k 6= l is a condition as to avoid circular dependen-
cies) (e.g. the width type of a case is built upon the height type of
the same case; the width type of a case is built upon the width type
of another case, an so on); (b) a value relation (Vis ) is defined as
(αik , αjl) ∈ Vis ⇔ αik = f (αjl), where αik and αjl are numeric
attributes and f is a function and could have different forms depend-
ing on context (e.g. the height of a shape is two times its width; the
width of a shape is three times the height of another shape, etc.). The
set of relations between attributes is presented in Table 3.

Table 3. The set of relations between attributes (RAi) of cases.

Relation Label Example
Dependency relation Di1 (RAi1 )

(
αik , αjl

)
; k, l = 2, v; ∀j

...
...

Dit (RAit )
(
αik , αjl

)
; k, l = 2, v; ∀j

Value relation Vi1 (RAit+1 )
(
αik , αjl

)
; k, l = v + 1, w;∀j

...
...

Viz (RAiM )
(
αik , αjl

)
; k, l = v + 1, w;∀j

The set of relations between cases is represented as RCi =
{RCi1 , RCi2 , . . . , RCiP }, where one of the cases in each relation
RCij , ∀j = 1, P is the current case (Ci). Two relations about or-
der in time are defined: (a) Prev relation indicates the previous case
with respect to the current case: (Ci, Cj) ∈ Prev if t (Cj) < t (Ci)
and (b) Next relation indicates the next case with respect to the cur-
rent case: (Ci, Ck) ∈ Next if t (Ci) < t (Ck). Each case includes
at most one of each of these two relations (p ≤ 2).

A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC)},
u = 1, r , where Nu(Ci) is a set of cases, Nu(RAi) is a set of re-
lation between attributes of cases and Nu(RCi) is a set of relations
between cases.

3.3 Comparing Cases, Exploiting Context and
Modelling Learning Trajectories

In this section we present three distinctive features of the proposed
framework: comparing cases, exploiting context and modelling of
learning trajectories.

Comparing cases. The most common definition of similarity is a
weighted sum of similarities of attributes of cases [17]:

SIR =

∑N
i=1 oi × sim(fIi , f

R
i )∑n

i=1 oi
,
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where oi represents the weight of each attribute, sim is a similarity
function, and I and R stand for input and retrieved cases, respec-
tively. In our case, four similarity measures are defined for compar-
ing cases:

1. Euclidean distance is used for comparing numeric attributes:
DIR =

√∑w
j=v+1 oj × (αIj − αRj )

2

2. The following metric is used for attributes that are variables:

VIR =

∑v
j=1 g(αIj

,αRj
)

v
, where g is defined as:

g(αIj , αRj ) =

{
1 if αIj = αRj

0 if αIj 6= αRj ,

3. In a similar way to [25], we define the following metric for com-
paring relations between attributes: PIR = |RAI∩RAR|

|RAI∪RAR| . PIR is
the number of relations between attributes that the input and re-
trieved case have in common divided by the total number of rela-
tions between attributes of the two cases.

4. Similarity in terms of relations between cases is defined by TIR =
|RCI∩RCR|
|RCI∪RCR| , where TIR is the number of relations between cases
that the input and retrieved case have in common divided by the
the total number of relations between cases of I and R.

In order to identify the closest strategy to the one employed by a
learner, cumulative similarity measures are used for each of the four
types of similarity:

1. Numeric attributes: (
∑z
i=1DIiRi)/z.

2. Variables: (
∑z
i=1 VIiRi)/z.

3. Relations between attributes: (
∑z
i=1 PIiRi)/z.

4. Relations between cases. (
∑z
i=1 TIiRi)/z.

where z represents the minimum number of cases among the two
compared strategies. The strength of similarity between the current
strategy and the various stored strategies is defined as the maximum
combined similarity of these four measures among the various strate-
gies compared.

Exploiting context. Attributes and relations stored in cases have
different relevance depending on the context, which in ShapeBuilder
corresponds to different stages of the constructivist learning process
that learners go through as they explore the various sub-tasks within a
learning activity. Typically, a task includes several sub-tasks, and the
activity is sequenced within the system so as to know at any time the
current context. As the environment allows the learners to explore,
they may “jump” to different stages in the activity sequence.

Context dependence can be taken into account by having differ-
ent weights for attributes and relations depending on the stage of the
learning process within a task or activity. The weights could be ob-
tained through an approach called local feature weighting [23] that
uses Neural Networks (NNs). The principle of the training algorithm
is to reduce the distance between cases of the same class and increase
the distance between cases of different classes [23], where the var-
ious classes in ShapeBuilder correspond to types of context (stages
of the learning process) of the various (sub-)tasks. Thus, a neural
network is trained in order to identify the context and several net-
works (one for each context) are used to provide the context-specific
weights. This approach appears to be more robust than other weight-
ing schemes due to the generalisation capacities of the NNs that can
produce weights even in imprecise situations [23].

Learning trajectories. A string of cases connected with relations
in time yields a knowledge structure that represents learner’s explo-
rations/learning trajectory in the ELE during a task or sub-task. Such
a learning trajectory is constructed by successively applying Prev
and Next relations to Ci in order to get cases previous in time to
Ci and cases following Ci, respectively. Comparing trajectories in
the KB to the current trajectory (this is useful to provide support and
decide on scaffolding techniques) is done in two stages: comparing
the past and evaluating the future.

Comparison of the past with respect to a reference point (e.g. a
selected case) depends on the depth of the evaluation in terms of
samples taken into account and rules than concern comparisons of
the past, e.g. IF the actual trajectory is similar to a trajectory in the
KB, indicated by a reference case representing a starting point in the
past, THEN this trajectory is a past-matching trajectory.

When it comes to evaluating the future of a trajectory, comparison
is based on the similarity between the future of a trajectory in the KB
with a desired future for the current trajectory. This is expressed by
rules of the general form: IF a piece of the future trajectory of a past-
matching trajectory resembles the reference starting from a selected
case, THEN the reference can be met by applying certain strategies.

As it is not possible to represent all learning trajectories in the
KB of an ELE, similarity is measured in terms of convex fuzzy sets,
whose width might change depending on the context and the amount
of information available, i.e. the current trajectory can be interpreted
in more vague way by increasing the width of the fuzzy set. Also if
the distance between past and future is large for certain tasks, it does
not make sense to evaluate the future carefully. Nevertheless, if the
distance to a reference (desired outcome) is small, the future needs to
be evaluated accurately. So the depth of the evaluation is measured
by a fuzzy time distance set to evaluate both short and long time
distances.

4 AN ILLUSTRATIVE EXAMPLE

To illustrate the combination of intelligent methods for learner mod-
elling we use an example from the mathematical generalisation do-
main, and a task called “pond tiling”, which is common in the En-
glish school curriculum and expects learners to produce a general
expression for finding out how many tiles are required for surround-
ing any rectangular pond [8]. The high level learning objective in the
Domain Model is to acquire the ability to perform structural reason-
ing [9]. In order to achieve this, sub-tasks can be explored in Shape-
Builder, e.g. construct a pond of fixed dimensions, surround the pond
with tiles and determine how many are required; generalise the struc-
ture using icon variables.

Knowledge representation. The Task Model for pond tiling in-
cludes: (a) strategies identified in pilot studies [9], e.g. thinking in
terms of areas (see Figure 3a) or in terms of width and height (see
Figures 3b, c, d, e and f); (b) outcomes, e.g. model built, number
of tiles for surrounding a particular pond, and solution, i.e. the gen-
eral expression (see Figure 3 for the solutions corresponding to each
strategy; for the “area strategy” the solution with icon variables is
displayed in Figure 1b); (c) landmarks, e.g. for the area strategy: cre-
ating a rectangle with height and width greater by 2 than the pond;
for the width and height strategies: using rows/column of tiles; slips:
several correct actions followed by an incorrect one (e.g. correct sur-
rounding of the pond, partially correct expression, but missing a 2 in
the formula); (d) the context of each (sub-)task.
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Figure 3. (a) “Area strategy”; (b) “H strategy”; (c) “I strategy”; (d) “Spiral
strategy”; (e) “+4 strategy”; (f) “−4 strategy”; (g) Steps and relations of

“area strategy”; (h) Steps and relations of “I strategy”.

The six strategies and their associated solutions (the general ex-
pressions for surrounding any rectangular pond) are displayed in Fig-
ures 3(a–f). Two strategies are presented in detail: the “area strategy”
(S1) and the “I strategy” (S3). The attributes of cases that are part of
these two strategies are presented in Table 4 and Table 5, respectively.
The steps and the sets of relations between attributes and between
cases are displayed in Figure 3g and Figure 3h, respectively.

A particular order between cases is presented for the “I strategy” in
Figure 3h. For the same strategy, the surrounding of the pond could
be done in several other different orders; there are 4! = 24 such
possibilities (the pond is always first).

Table 4. The set of attributes (Fi) for the cases in the “area strategy”.

Name Label C1 C2

Shape type αi1 Rectangle Rectangle
Width type αi2 c/v/n exp iv/iv exp
Height type αi3 c/v/n exp iv/iv exp
Width value αi4 5 7
Height value αi5 3 5
PartOfS1 αi6 1 1
...

...
...

...
PartOfS2 αi7 1 0
PartOfS6 αi8 1 0

There are two types of strategies depending on the degree of gen-
erality: specific and general. Specific cases refer to surroundings that
cannot be generalised and include value relations, but no dependency
relations; the general cases refer to surroundings that can be gener-
alised and are distinguished by the presence of the dependency re-
lations and by the fact that the dimension type of at least one of the
dimensions of the case is an icon variable or an expression using icon
variable(s). The presence or absence of the abovementioned aspects
apply to all cases that form the composite case with the exception of
the first case representing the pond. The “area” and the “I strategy”
presented previously fall into the category of general strategies.

The strategies displayed in Figure 3 are correct symmetrical “ele-
gant” solutions, but trials with pupils have shown that not all of them

Table 5. The set of attributes (Fi) for the cases in the “I strategy”.

Label C1 C2 C3 C4 C5

αi1 Rectangle Rectangle Rectangle Rectangle Rectangle
αi2 c/v/n exp iv /iv exp iv /iv exp c/v/n exp c/v/n exp
αi3 c/v/n exp c/v/n exp c/v/n exp iv /iv exp iv /iv exp
αi4 5 7 7 1 1
αi5 3 1 1 3 3
αi6 1 0 0 0 0
αi7 1 1 1 1 1
...

...
...

...
...

...
αi8 1 0 0 1 1

use this type of approach [8, 9]. Some pupils surround the pond in a
non–systematic manner and with variable degrees of symmetry. Such
examples are illustrated in Figure 4.

Comparing cases. To illustrate the operation of similarity mea-
sures we use two non–symmetrical examples of surrounding the
pond, displayed in Figure 4. The similarity measures are the ones
presented in Section 3.3.

The first example (Figure 4a), has 4 cases in common with two
strategies: the “I strategy” (C1, C3, C4, C5) and the “+4 strategy”
(C1, C4, C5, C6). When comparing it with the “I strategy” z = 5

(minimum between 6 and 5) and the combined similarity is:
√

1
5

+
5
5

+ 7/4
5

+ 10/4
5

= 2.05. When comparing with the “+4” strategy,
z = 6 (minimum between 6 and 9) the combined similarity is:

√
5

6
+

5+2/3
6

+ 6/4
6

+ 10/4+1/3
6

= 2.04. Thus, in this case the learner will
be guided towards the “I strategy”.

The second example (Figure 4b), has 3 cases in common with
two strategies: the “spiral strategy” (C1, C3, C4) and the “H strat-
egy” (C1, C2, C5). When comparing it with the “spiral strategy” as
well as the “H strategy”, z = 5 (minimum between 5 and 5), and
the combined similarity is:

√
2

5
+ 4+2/3

5
+ 8/4

5
+ 10/4

5
= 2.12. In

this situation, when the learner’s construction is equally similar to
two strategies, the following options could be offered: (a) present
the learner with the two options and let him/her choose one of the
two (an approach that appears more suitable for advanced learners
than novices); (b) automatically suggest one of the two in a system-
atic way, e.g. present the one that occurs more/less often with other
learners; (c) inform the teacher about the learner’s trajectory and the
frequency of strategies and let him/her decide between the two.

Figure 4. Non-symmetrical strategies: (a) combination of ‘I’ and ‘+4’
strategies; (b) combination of ‘spiral’ and ‘H’ strategies.

Exploiting context. In the pond tiling task, when the learner is
constructing a specific (as opposed to general) tiling of the pond, the
value relation attribute is more relevant, while when dealing with a
general tiling, the dependency relation attribute is more important.
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Local feature weighting in this case involves two trained neural net-
works for each context and applying the weights delivered by the
NNs before the matching process.

Learning trajectories. Lets consider the example in Figure 4b
and a comparison after C3. The current trajectory includes the cre-
ation of 3 rectangles corresponding to C1, C2 and C3; this trajectory
is considered to be far from the desired outcome (surrounding the
pond), and thus, the future does not need to be evaluated accurately.
At this point with respect to the past, two strategies partially match
the learner’s current trajectory: “I” (C1, C2) and “spiral” (C1, C3)
strategy; the learner could be left to continue with his/her model con-
struction without intervention. With respect to the future, the desired
outcome can be obtained by following one of the two strategies pre-
viously identified.

If the comparison takes place after C5, the trajectory would in-
clude the creation of 5 rectangles (C1 to C5) and thus it can be con-
cluded that the learner has reached the desired outcome of surround-
ing the pond. However, in this process the learner did not use any
of the desirable strategies, i.e. any of the six strategies presented in
Figure 3. At this point in time two trajectories match the past and in-
dicate the future, as before, but now it might be considered pedagogi-
cally important to intervene and guide the learner towards a trajectory
that corresponds to one of the two identified desirable strategies.

5 CONCLUSIONS
In this paper a learner modelling process involving a combination
of intelligent methods was presented for the domain of mathemati-
cal generalisation. Case-based reasoning is used in combination with
soft computing (fuzzy sets and neural networks) in order to process
the models that the learners construct and thus be able to provide
feedback while learners work on the task.

Further work includes expanding the conceptual framework by
defining a strength as the maximum combined similarity measure
(similarity of the past and similarity of the future at a particular dis-
tance) for various evaluated trajectories and a reliability index that
will reflect the extent to which the similarities can be relied upon to
provide the right support.
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Belief Propagation in Fuzzy Bayesian Networks

Christopher Fogelberg1
and Vasile Palade and Phil Assheton2

Abstract. Fuzzy Bayesian networks are a generalisation
of classic Bayesian networks to networks with fuzzy variable
state. This paper describes our formalisation and outlines how
belief propagation can be conducted. Fuzzy techniques can
lead to more robust inference. A key advantage of our formal-
isation is that it can take advantage of all existing network
inference and Bayesian network algorithms. Another key ad-
vantage is that we have developed several techniques to con-
trol the algorithmic complexity. When these techniques can
be applied it means that fuzzy Bayesian networks are only
a small linear factor less efficient than classic Bayesian net-
works. With appropriate pre-processing they may be substan-
tially more efficient.

1 Introduction

Modern machine learning research frequently uses Bayesian
networks (BNs)[6; 7; 15; 16]. However, BN inference is NP-
complete due to cycles in the undirected graph[4], and belief
propagation is exponential in the tree-width of the network.
This makes them difficult to use for large problems.

Fuzzy[3] and hybrid fuzzy systems[11; 13] are also fre-
quently used. In a fuzzy system, a variable’s state is repre-
sented by a set of fuzzy values (FVs). Because fuzzy systems
do not force a model to artificially discretise a continuous un-
derlying state they are often more robust in the face of noise.

To date there has been very little research into BNs with
fuzzy variable states. What there is has centred around the
use of fuzzy approximations to perform inference and belief
propagation in a hybrid BN [1; 12]. A hybrid BN is one where
the parameters are a mix of continuous and multinomial dis-
tributions.

This paper’s key contribution is a formal generalisation of
classic BNs to fuzzy Bayesian networks (FBNs). In a FBN
the variables can have fuzzy states. The paper also describes
tractable belief propagation over FBNs. An important ad-
vantage of the presented formalisation is that existing infer-
ence algorithms (e.g. MCMC, simulated annealing) can be
used without modification. Furthermore, FBNs may be only
a small linear constant less efficient than classic BNs of the
same size, and appropriate pre-processing may make some
problems which were intractable for classic BNs tractable for
FBNs.

The paper is structured as follows. Section 2 presents a
fuzzy Bayesian network which will be used as an example.
Section 3 introduces some notation (subsection 3.1), and
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2
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presents belief propagation for variables with one parent (sub-
section 3.3) and for variables with multiple parents (subsec-
tion 3.4). Section 4 analyses the algorithmic efficiency of FBNs
and how it can be controlled. Section 5 outlines an important
bioinformatic domain where FBNs may be especially useful,
and section 6 concludes the paper.

2 A Fuzzy Bayesian Network

The structure of the FBN that is used as an example in this
paper is shown in figure 1. Call this FBN G = 〈η, θ〉, where η

denotes the structure of G and θ its parameters.
For clarity of presentation, G is a multinomial (discrete)

BN. However, the formalisation generalises easily and trans-
parently to continuously-valued FBNs and hybrid FBNs.

The relevant conditional distributions of G are shown in
figure 2. D’s distribution is not shown and we will later assume
a state for D with no loss of generality.

Because we have restricted the differences between BNs and
FBNs to belief propagation, the specification of a FBN and a
BN are identical.

3 Belief Propagation

Belief propagation in a Bayesian network involves calculat-
ing the updated probability distributions of variables in the
network, given θ and the observed states of other variables.

3.1 Some Notation

The terminology and notation is as follows. A variable has a
state, either a fuzzy state (FS) or a discrete state (DS).

A fuzzy state is made up of one or more components, and
each component is annotated with the variable’s degree of
membership (µ) in that component. For example, equation 1
is an example of a variable (S) with two components. It has
membership 0.7 in the component hi and membership 0.3
in the component mid. hi and mid are examples of values
that the variable can take. When annotated with µ they are
referred to as fuzzy values (FV). The set of all possible values
(fuzzy values) that a variable can take is the range of that
variable, e.g. hi, mid, lo.

S = [hi0.7, mid0.3] (1)

In general, the components of a variable’s state are enclosed
in square brackets. A discrete state is just a special case of
a fuzzy state. Discrete states have just one component with
µ = 1, and the square brackets and µ subscript can be omitted
in this situation. We assume that

P

c∈C
µc = 1 for a FS with

C components and have not considered other situations.
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Figure 1. The fuzzy Bayesian network G, used as an example in this paper.

→ A A = lo A = mid A = hi

0.7 0.1 0.2

(a) θA, A’s prior distribution

A → B B = lo B = mid B = hi

A = lo 0.6 0.2 0.2

A = mid 0.1 0.1 0.8

A = hi 0.1 0.2 0.7

(b) θB , B’s conditional distribution

B → C C = lo C = mid C = hi

B = lo 0.1 0.1 0.8

B = mid 0.1 0.8 0.1

B = hi 0.7 0.2 0.1

(c) θC , C’s conditional distribution

C, D → E E = lo E = mid E = hi

C = lo D = lo 0.6 0.2 0.2

C = lo D = mid 0.1 0.1 0.8

C = lo D = hi 0.1 0.1 0.8

C = mid D = lo 0.6 0.2 0.2

C = mid D = mid 0.1 0.6 0.3

C = mid D = hi 0.1 0.6 0.3

C = hi D = lo 0.1 0.2 0.7

C = hi D = mid 0.1 0.2 0.7

C = hi D = hi 0.8 0.1 0.1

(d) θE , E’s conditional distribution

Figure 2. θ for G. The conditional distributions of A, B, C and

E.

Just as a component can be a value from the range of
a variable, e.g. hi, a component can also be a probability
distribution (PD). PD are denoted with curly brackets, e.g.
{hi0.3, mid0.2, lo0.5}. Because the value associated with each
subscripted probability is implicit in the tuple order the value
names can be omitted: {0.3, 0.2, 0.5}.

An example of a fuzzy state which mixes values and prob-
ability distributions is shown in equation 2.

T = [{0.2, 0.1, 0.7}0.2, {0.1, 0.8, 0.1}0.6 , mid0.2] (2)

A PD which is annotated (subscripted) with µ is called a

fuzzy probability distribution (FPD). Samples are drawn from
a FPD in the same way that they are drawn from a PD.
However, a variable with membership µ in a FPD can only
have µ proportion of its state determined by that FPD; a
sample from a FPD will have the same µ as the FPD does.
For example, a sample from {0.2, 0.1, 0.7}0.2 will be one of
lo0.2, mid0.2 or hi0.2, and each of these components will be
drawn with probability 0.2, 0.1 and 0.7 respectively.

This means that the state of a sample from the uncertain
variable T (equation 2 will be some member from the set
[lo[0..0.8], mid[0.2..1], hi[0..0.8]] and the distribution over mem-
bers in this set is determined by the two FPD and one FV
which make up the fuzzy state of T .

3.2 Assumptions

The full and general analysis of FBNs would also consider un-
restricted interactions amongst components in a fuzzy state,
allowing

P

µ 6= 1 and so forth. In this article we make a num-
ber of linearising assumptions which make FBN belief propa-
gation cheap, relative to the cost of full general propagation.
They also greatly aid the clarity of the presentation in the
space available. Furthermore, these assumptions are reason-
able and do not restrict the general utility of FBNs. However
it is important to make them explicit. The assumptions (and
consequently the nature of full general propagation) will be
briefly summarised in this section; a more general discussion
is forthcoming.

3.2.1 Assumption: Total Membership

As noted above and in subsection 3.1, we assume that
P

µ =
1. This is our first linearising assumption, and it can be con-
ceptualised as follows. A variable’s degree of membership in
each of its |C| components forms a |C|-dimensional fuzzy state
space. If the variable has no uncertainty (no component is an
FPD) then |C| will be the same as the variable’s range. Even
if a FS has 0 membership in some of its range those values are
still part of the state’s FSS. By assuming that

P

c∈C
µc = 1,

we restrict our attention to a smaller |C|−1 dimensional sub-
space. This subspace constrains the degrees of membership
in each component in a cyclically conditional way on the de-
grees of membership in the other components. This assump-
tion simplifies the combination of components of fuzzy states
in subsection 3.4.

For example, if a FS has membership 0.5 in the value hi

its membership in the values lo and mid in the FSS are con-
strained to be in the range [0, 0.5]. Furthermore, its member-
ship in lo and mid mutually constrain (in this case define, as
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there are no other values in the range) each other. Figure 3
illustrates the impact of the first assumption on the FSS for
a fuzzy state with two components.

1

1

0 Membership in B

M
em

be
rs

hi
p 

in
 A

Figure 3. Imagine a fuzzy state with two components, A and

B. Such a state would have a two-dimensional FSS, as in this

figure. Without restriction, the state’s degree of membership in

each component could be specified by any point in the FSS.

However, we assume that
P

c∈C µc = 1. Therefore its membership

in components A and B must be specified by some point on the

dashed line.

3.2.2 Assumption: Component Independence

We also make two further assumptions about FBN during
belief propagation. The first is that components are indepen-
dent. This means that when a variable has only one parent
then its state will have one component for each component
its parent has, and these components will have the same µ

as the corresponding parent’s component. For example, the
children which have S (equation 1) as their only parent will
have two components in their FS, one with µ = 0.7 and one
with µ = 0.3.

When a variable has more than one parent then the com-
ponents of the parents will be mixed and combined before
propagation. This is described in subsection 3.4. Because we
assume independence, the child’s fuzzy state will have one
component for each component in the mixed and combined
parent set, and each of the child’s component will have the
same µ as the corresponding component in the parent set.

It will also be clear that we assume independence when we
describe how the parents’ components are mixed and com-
bined in subsection 3.4.

3.2.3 Assumption: FPD Samples

The third assumption implicit in this model is the assumption
that a sample from an FPD with µ = x will be a single fuzzy
component with µ = x. Although natural and intuitive we
do not believe that this is automatically entailed, thus we
explicitly assume it.

Consider an uncertain variable with a range of r in a stan-
dard (discrete) Bayesian network. Its state will be a probabil-
ity distribution which specified a single point in the r dimen-
sional probability space (p-space).

Now consider this variable in a FBN. Any uncertainty in
its state will be represented by an FPD component with some
µ. As described in subsection 3.1, a FPD is just PD with a
fixed (0 dimensional) µ associated with it.

This definition of a FPD could be generalised so that µ

could vary independently but was fixed for each of the r pos-
sible samples that could be drawn from the FPD. Call this
a slightly general FPD (SGFPD) and call the FPD defined
in subsection 3.1 a standard FPD. An SGFPD would specify
a single point in an r + r dimensional space, where r of the
dimensions are the probability of each value and the other r

dimensions specify the µ of a sample of each value. Just as the
first r dimensions specify a p-space, the second r dimensions
specify a µ-space. An example of such a space is given dia-
grammatically in figure 4, and it is used to contrast a SGFPD
with a standard FPD.

An example of an SGFPD might be “there is a 0.2 prob-
ability of drawing a sample of hi, and any sample of hi will
have µ = 0.3, and there is a 0.3 probability of drawing a sam-
ple of mid, and any sample of mid will have µ = 0.5, and. . . ”
and so forth. The assumption that

P

c∈C
µc = 1 for a state

could be relaxed if SGFPD were used.
After considering figure 4 it will be clear that SGFPD could

be further generalised so that the µ of any sample also varied
probabilistically, conditional on the value (hi, mid, etc.) of
the sample. Such a general FPD (GFPD) would be an r +
r dimensional probability distribution over the joint µ and
range of the variable. We believe that this represents the most
general kind of inference and belief propagation in a FBN.
Such inference is intractable and we do not consider it in this
paper.

In summary, the assumptions which we have made substan-
tially reduce the dimensionality of belief propagation and are
necessary for it to be tractable. However, more general FBNs
with GFPD do not have these restrictions; their utility will
be considered in a forthcoming publication.

3.3 Single-Parent Belief Propagation

Assume that observations indicate A = [mid0.2, hi0.8] in G.
With this information we can calculate the updated distribu-
tions on B and C.

Because A has an observed (certain) FS and is B’s only
parent the components of B’s updated FS can be read from
θB. This shows that:

B = [{0.1, 0.1, 0.8}0.2 , {0.1, 0.2, 0.7}0.8] (3)

The FS over C is calculated similarly. Just as each of the
fuzzy values in A lead to a weighted FPD in the FS of B

the same occurs for C, and C = [α0.2, β0.8]. The weighted
distributions α and β are calculated using standard BN belief
propagation, based on the conditional distribution of B. This
is shown in equations 4, 5 and 6.

p(C|B = lo) = {0.1, 0.1, 0.8}

p(C|B = mid) = {0.1, 0.8, 0.1}

p(C|B = hi) = {0.7, 0.2, 0.1} (4)

α = {0.1, 0.1, 0.8} × 0.1 + {0.1, 0.8, 0.1} × 0.1 +

{0.7, 0.2, 0.1} × 0.8

= {0.01, 0.01, 0.08} + {0.01, 0.08, 0.01} +

{0.56, 0.16, 0.08}

= {0.58, 0.25, 0.17} (5)
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Figure 4. Assume a variable with a range (r) of 2 (A and B). Each point in the 2 dimensional p-space (left hand side) could be

considered an index into a 2 dimensional µ-space (right hand side), as diagrammed. All proper probability distributions (
P

p = 1) fall on

the dotted dashed line in the p-space. The µ-space that is indexed by some point in the p-space could be unique to that point. In a

standard FPD, the µ-space is reduced to a single point on the dashed line and that point on the line in the µ-space is specified precisely

by the µ of the FPD. Because any sample from a standard FPD, regardless of its value, will have the same µ, r of the dimensions are

eliminated. In addition, we assume that an FPD has a proper probability distribution. In total, these reduces the dimensionality from

r + r to r − 1. In a SGFPD the µ-space would also be reduced to a single point, but any point in the µ-space would be a valid reduction,

so an SGFPD with a proper distribution over the values still has r + r − 1 dimensions.

β = {0.1, 0.1, 0.8} × 0.1 + {0.1, 0.8, 0.1} × 0.2 +

{0.7, 0.2, 0.1} × 0.7

= {0.01, 0.01, 0.08} + {0.02, 0.16, 0.02} +

= {0.49, 0.14, 0.07}

= {0.52, 0.31, 0.17} (6)

The calculated FS for C is shown in equation 7.

C = [{0.58, 0.25, 0.17}0.2 , {0.52, 0.31, 0.17}0.8 ] (7)

3.4 Multi-Parent Belief Propagation

Subsection 3.3 illustrated belief propagation in a FBN when
a variable has only one parent. This subsection shows naive
FBN belief propagation in the case of a variable with multiple
parents. Section 4 outlines several more nuanced approaches
which address the problems with naive propagation.

Take the calculated value of C, and assume a fuzzy state
for D (equation 8). What is the updated fuzzy state of E?

C = [{0.58, 0.25, 0.17}0.2 , {0.52, 0.31, 0.17}0.8 ]

D = [{0.45, 0.30, 0.25}0.3 , {0.1, 0.8, 0.1}0.7] (8)

Any combination of components, one from each parent, can
be used to calculate an updated probability distribution for a
variable. However, this raises the question of how to combine
and weight each combination of component distributions in
the parent FSs to calculate an updated FS for the child.

Because the parents are conditionally independent given
the variable being updated3, any particular combination of
PD and observations can be summed over, as one was in each
of equations 5 and 6. The summed over combinations became
components of C’s updated distribution.

3
And also given their updated state and the acyclic nature of the

graph

In the naive approach to belief propagation the Cartesian
product of the parents’ FS is used to find all possible combi-
nations of components. µ for each one of these combinations
is calculated using the product t-norm[2]. Any other fuzzy
conjunction (normalising µ where necessary) could also be
used. Because we assumed that

P

µ = 1 holds for each of
the parents though, using this fuzzy conjunction guarantees
that

P

µ over the child’s components will also equal 1 and no
normalisation is necessary.

For example, if we use the first components of C and
D ({0.58, 0.25, 0.17}0.2 and {0.45, 0.30, 0.25}0.3, respectively,
equation 8) then standard Bayesian propagation and using
the product t-norm to calculate µ shows that one member of
E’s updated FS is:

α = {0.3165, 0.2189, 0.4647}0.06 (9)

The full FPD for E will have four members, one for each
member of C × D (equation 10, below). For clarity, the cal-
culated α from equation 9 has not been substituted into this
equation.

E = [α0.06, β0.14, γ0.24, δ0.56] (10)

In general a variable with k parents that each have an FS
with m components will have an updated FS of size mk. As-
suming all variables have k parents, the grand-children will

have updated FS of size mkk
, and so forth. This is the fuzzy

state size explosion (FSSE), and it makes naive belief propa-
gation in a FBN intractable.

4 Dealing with Complexity

There are several ways that the explosion in the complex-
ity can be controlled by approximating the FS. This sec-
tion discusses four kinds of control. The bimodal fuzzy state
X = [{0.9α, 0.1β}0.5, {0.1α, 0.9β}0.5] is used as an example in
several places in this section. Such a variable could represent
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a committee of two in which the committee members (compo-
nents) hold diametrically opposite beliefs about the outcome
of some future event.

4.1 Linear Collapse

A first approximation that addresses the FSSE is to linearly
collapse a FS that is made up only of FPDs, immediately
after they are calculated. Each component can be weighted by
its fuzzy membership and they can be summed to calculate
a single, discrete, PD. For example, B (equation 3) can be
collapsed as shown in equation 11. Collapsed FS are denoted
with a prime.

B = [{0.1, 0.1, 0.8}0.2, {0.1, 0.2, 0.7}0.8 ]

∴ B
′ = {0.1, 0.18, 0.72} (11)

However, this approximation is unsatisfactory: it conflates
probability with fuzziness and may change the expected value
of the variable. Although it may be approximately correct in
some circumstances, a simple thought experiment will show
why it is insufficient.

Consider the bimodal FS X. The expected sample from X

is X ′ = [α0.5, β0.5]. Although this sample does not reflect any
of the uncertainty in X it does reflect the bi-modality (inde-
cision) of the variable (committee) as a whole. Subsection 4.4
returns to this approach.

If X is linearly collapsed though then X ′ = {0.5, 0.5}. No
sample drawn from this PD can be half α and half β. Im-
portant information in X has been lost. Although further be-
lief propagation will not be biased if this variable is summed
over4, there is no way to compare the linearly collapsed value
X ′ with any observed value for X when trying to evaluate the
quality of an inferred network.

Other approximations to the naive approach have been de-
veloped. They are discussed in the next three subsections.

4.2 Strict and Dynamic Top Fuzzy
Combinations

Consider again the full (naive) FS of E, reproduced in equa-
tion 12.

E = [α0.06, β0.14, γ0.24, δ0.56] (12)

Some of the components barely contribute to the overall
state and will not have a substantial influence on any children
either. Such components could be ignored, and the remaining
components could have their µ normalised. For example, if
just the top three components of E were used then the up-
dated FS would take the form:

E = [β0.149 , γ0.255, δ0.596] (13)

The number of components retained could be either k-
component strict selected or φ-dynamically selected. In the
former case, the top k components would be selected. In the
latter, the |C| components with greatest µ would be selected
so that

P

c∈C
µc > φ. Strict selection would mean that FBNs

were only a small linear factor less efficient than classic BNs
of the same size. However, the top k components may not be

4
Due to the use of the product t-norm.

an accurate reflection of the full FS, thus φ-dynamic selection
may be more appropriate in some cases.

4.3 Clustering the Fuzziness

Another way of controlling the FSSE is to calculate the full
FS of each variable during belief propagation. However, be-
fore using the full FS to update the state of its children, its
components could be clustered so that FPD which specified
similar distributions were combined together.

For example, the FS [. . . , {0.7, 0.2, 0.1}0.3, {0.6, 0.3, 0.1}0.2 , . . .]
might cluster to [. . . , {0.66, 0.24, 0.1}0.5, . . .].

Because the clustering problem would only have as many
dimensions as the range of each FPD, we speculate that a
simple fixed-k clustering algorithm like k-means would work
very well.

Although this approach is more complex than selection or
linear collapse, the total increase in complexity in belief prop-
agation would be related to and bound by the maximum in-
degree and range of a variable.

4.4 Expected Values

A fourth kind of control is inspired by particle filtering and
the Condensation algorithm[9]. The general sequential Monte
Carlo (SMC) method will be outlined first. Although this
approach is not as efficient as others it is applicable in all
cases and is strictly correct.

Consider X. An infinite sequence of independent samples
drawn from this uncertain fuzzy state will take something like
the form [α0.5, β0.5], [α0.5, β0.5], . . . , [α1], [α0.5, β0.5]. . . and so
forth.

The properties of this sequence are identical to those of
the fuzzy state, and a long-enough finite sequence will be a
good approximation to it. For example, 100 samples could
be drawn from X. Each of these samples could then be used
to propagate the uncertain state of X to X’s children. The
relative efficiency of this technique compared to clustering
depends on the range and kmax of the variables, but in certain
situations it may also be better.

As noted in subsection 4.1, the expected value of a variable
is easily calculated analytically. For example, the expected
value of X is [α0.5×0.9+0.5×0.1 , β0.5×0.1+0.5×0.9 ] = [α0.5, β0.5].

Doing this expectation calculation is analogous to summing
over or numerically integrating a probability distribution, and
we call it fuzzy integration. Like clustering the impact on ef-
ficiency of fuzzy integration depends on the range and kmax.

This approach is very similar to linear collapse but it has
a number of key advantages. Firstly, like linear collapse, it
does not bias any further belief propagation. This is untrue
of selection and clustering. Secondly, the expected value X ′

which is the result of this fuzzy integration can be meaning-
fully compared with observed values of X when performing
network inference. In many cases, users are only interested in
the expected (integrated) value. In these cases the expected
value of a FS is ideal.

5 A Bioinformatic Domain

Inference of large genetic regulatory networks (GRN) is a cen-
tral problem in modern bioinformatics. However, algorith-
mic complexity has limited detailed inference using BNs[6;
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15; 16] to N / 100 genes[5]. Approaches which can be ap-
plied to larger numbers of genes include modern clustering
methods[10] and the inference of graphical Gaussian models
over clustered gene expression data[8; 14].

FBNs suggest a novel approach to detailed exploration of
large GRN. Such a methodology generalises to the inference
of other large causal networks as well.

If the data is pre-processed by using a fuzzy cover algo-
rithm the dimensionality of the problem may be reduced by
an order of magnitude or more. This could lead to an expo-
nential reduction in the algorithmic complexity which would
more than offset any increase caused by the fuzzy state size
explosion and its collapse.

A fuzzy cover is a clustering algorithm which covers the
data, rather than clusters it. In a fuzzy cover, a variable (gene)
can have

P

c∈C
µc > 1, where C is the set of covers that the

algorithm finds.
Inference over the covers is performed using a standard al-

gorithm to find a virtual GRN. Using the retained µc for each
n ∈ N and c ∈ C, most of the original fidelity can be recovered
after the inference has been performed by linearly devolving
and normalising the network of covers back down to a net-
work of genes. The synergistic use of dimension-reduction and
FBNs are what we believe will be most useful.

The authors are using this approach (fuzzy covering, FBN
inference, FBN devolution) to infer and explore large genetic
regulatory networks. With fuzzy clustering and FBNs we ex-
pect to be able to perform more detailed exploratory inference
for N ≈ 1000.

6 Contributions and Future Work

This paper has presented a new formalisation which combines
fuzzy theory and Bayesian networks. Because of the way that
it extends classic BNs, all existing algorithms, tools and ma-
chine learning techniques for classic BNs can be used imme-
diately with FBNs.

Several techniques for tractably propagating fuzzy beliefs
across a FBN are also described. Using these techniques, pre-
viously used BNs can be assigned fuzzy variable states and
updated accordingly. This means that existing networks, of-
ten learnt only after substantial effort, can be easily reused.

Furthermore, the difference in BN and FBN efficiency with
sensible fuzziness collapse may be as little as a small linear
constant in some circumstances. This means that there are
few disadvantages to using FBNs instead of BNs.

The possibility of integrating FBNs into a machine learn-
ing pipeline which involves dimension-reduction and network
devolution also suggests that the inference of larger causal
networks will be possible using FBNs.

Future research may uncover more efficient methods for in-
tegrating, clustering or otherwise collapsing a FS. In addition,
the authors plan to present an even more generalised formali-
sation which relaxes the assumptions made in subsection 3.2.
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Combining Goal Inference and Natural-Language
Dialogue for Human-Robot Joint Action
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Abstract. We demonstrate how combining the reasoning compo-
nents from two existing systems designed for human-robot joint ac-
tion produces an integrated system with greater capabilities than ei-
ther of the individual systems. One of the systems supports primarily
non-verbal interaction and uses dynamic neural fields to infer the
user’s goals and to suggest appropriate system responses; the other
emphasises natural-language interaction and uses a dialogue man-
ager to process user input and select appropriate system responses.
Combining these two methods of reasoning results in a robot that is
able to coordinate its actions with those of the user while employing
a wide range of verbal and non-verbal communicative actions.

1 INTRODUCTION AND MOTIVATION
As robot systems become increasingly sophisticated, their role is
moving from one where the robot is essentially an intelligent tool
to one where the robot is able to participate as a full team member
in collaborative tasks. Supporting this type of human-robot coopera-
tion requires that the robot system be able to produce and understand
a wide range of natural communicative cues in order to allow hu-
mans to cooperate with it easily. For example, [15] experimentally
demonstrated the contribution of anticipatory action to the fluency
of human-robot interaction; similarly, natural-language dialogue has
been shown to be an effective means of coordinating actions between
a human and a robot [7].

A number of previous systems have also addressed the task of
human-robot cooperation, using a variety of communicative styles.
The Leonardo robot [2], for example, is able to learn simple action
sequences and to execute them jointly with the user. The Ripley sys-
tem [24] is able to manipulate objects in response to spoken requests
from a human partner; a more recent robot from the same group [16]
increases the responsiveness of the system and allows the action plan-
ner to adapt flexibly to a rapidly-changing world. The BARTHOC
[26] and ARMAR [27] humanoid robots both support multimodal
dialogue to interact with a human user in a variety of settings and
domains. The experiments described in [15] demonstrated that un-
derstanding and anticipating the user’s actions produces a robot that
can cooperate more smoothly with a human user.

Since an intelligent robot system must both process continuous
sensor data and reason about discrete concepts such as plans, actions,
and dialogue moves, this type of system is often made up of compo-
nents drawing from an assortment of representation and reasoning
paradigms. The robot system described in [22], for example, com-
bines low-level robot control and vision systems with a high-level

1 Technische Universität München, Germany, contact: foster@in.tum.de
2 University of Minho, Portugal, contact: wolfram.erlhagen@mct.uminho.pt

planner, using connectionist kernel perceptron learning to learn the
effects of different domain actions. Integration among the different
components of this system is achieved through a common represen-
tation of actions and their effects. Such hybrid architectures are also
particularly common when the robot is designed to cooperate with a
human partner; recent examples include [13, 17, 32].

In this paper, we present two robot systems designed to cooperate
with humans on mutual tasks and then show how combining rea-
soning components from these systems results in a more powerful
integrated system. Both of the robot systems have been developed in
the context of the JAST3 project (“Joint Action Science and Technol-
ogy”). The two main goals of this project are to investigate the cogni-
tive, neural, and communicative aspects of jointly-acting agents, both
human and artificial, and to build jointly-acting autonomous systems
that communicate and work intelligently on mutual tasks. The com-
mon task across the project is joint construction—that is, multiple
agents working together to assemble objects from their components.

The two JAST human-robot systems support intelligent coopera-
tion with humans on this joint construction task. Although both sys-
tems address the same basic task and incorporate similar input- and
output-processing components, the reasoning components are imple-
mented using very different techniques and they support very differ-
ent styles of interaction. The goal inference system is implemented
using dynamic neural fields and concentrates on inferring the user’s
intended domain actions based on their non-verbal behaviours and
on selecting appropriate domain actions for the system to perform in
response. For example, if the user picks up a bolt in a way that in-
dicates that they intend to use it themselves, the system might pick
up the corresponding wheel and hold it out to the user. The dialogue
system, on the other hand, concentrates on understanding and gener-
ating multimodal natural-language utterances to support cooperation
between the human and the robot, using a dialogue manager. Sec-
tions 2–3 present the details of these two systems and show a typical
interaction with each.

Since the two JAST human-robot systems address the same task,
using complementary forms of reasoning, it is possible to combine
the two forms of reasoning into a single system. This integrated sys-
tem is able both to intelligently infer the user’s actions and suggest
appropriate responses, and also to engage in dialogue with the user
to support coordination and to discuss situations when the system is
unable to infer the user’s goal. In Section 4, we present this integrated
system and show a sample of the interactions that it can support that
are not possible with either of the individual systems; this section
also gives some technical details of how the components of the two

3 http://www.euprojects-jast.net/
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systems are combined in practice. Finally, in Section 5, we compare
the integrated system with other similar systems and summarise the
contributions of the system and the areas for future work.

2 GOAL INFERENCE BASED ON DYNAMIC
NEURAL FIELDS

The first of the JAST human-robot systems concentrates on giving
the robot the ability to predict the consequences of observed actions,
using an implementation inspired by neurocognitive mechanisms un-
derlying this capacity in humans and other social species. Many con-
temporary theories of intention understanding in familiar tasks rely
on the notion that an observer uses their own motor repertoire to sim-
ulate an observed action and its effect ([4], for a review see [25]). The
selection of an appropriate complementary behaviour in a joint action
task depends not only on the inferred goal of the partner, but also on
the integration of additional information sources such as shared task
knowledge (e.g., a construction plan) and contextual cues.

The cognitive control architecture for action coordination in the
joint construction scenario is formalized by a coupled system of
dynamic fields representing a distributed network of local but con-
nected neural populations [3]. Different pools of neurons encode
task-relevant information about action means, action goals, and con-
text in the form of activation patterns that are self-sustained through
recurrent interactions.

The motor simulation idea is implemented by the propagation of
activity through interconnected neural populations that constitute a
learned chain of motor primitives directed towards a specific goal
[6]. Typical examples in the context of the construction scenario are
reaching-grasping-placing/plugging sequences. The chains are auto-
matically triggered by an observed motor act (e.g., reaching or grasp-
ing) whenever additional input from connected dynamic fields (e.g.,
representing the currently available subgoals) pre-activates the neu-
ral populations. As a consequence of the motor simulation, the robot
is able to react to the partner’s action sequences well ahead of their
completion. This anticipation capacity has been shown to be crucial
for a fluent team performance [1, 15].

In the layer of the control architecture linked to motor execution,
neural populations represent the decision about the most appropri-
ate complementary behaviour. The behaviour is selected as a con-
sequence of a competition process between all response alternatives
getting input from connected layers (for details see [1]).

A system based on this dynamic field architecture was imple-
mented to support human-robot cooperation on the JAST joint con-
struction task. This system constructs a toy vehicle (Figure 1) with
the user. The vehicle is composed of several components which are
initially distributed in the separated working areas of the two team-
mates; this ensures that neither of the agents is able to reach all of
the required components on its own and must rely on the partner to
retrieve them, making joint action essential to a successful interac-
tion. The robotics platform we are currently using consists of a torus
on which are mounted a 7 DOFs AMTEC arm (Schunk GmbH &
Co.KG) with a 3-fingered BARRET hand (Barrett Technology Inc.)
and a stereo vision system. The system uses synthesised speech to
communicate its reasoning process to the human partner.

To control the arm-hand system, we applied a global planning
method in posture space that facilitates the integration of optimiza-
tion principles derived from experiments with humans [5]. For the
object recognition as well as for the classification of object-directed
hand postures and communicative gestures such as pointing or de-
manding an object, a combination of feature- and correspondence-

Figure 1. The JAST goal-inference robot together with the toy vehicle that
the human and the robot jointly construct.

based pattern recognizers were used [30]. As a software development
platform we haven chosen YARP [19]. This open-source project sup-
ports inter-process communication, image processing and a class hi-
erarchy to ease code reuse across different hardware platforms.

Figure 2 illustrates a typical example of the goal inference and ac-
tion selection capacities in this domain. In the top image, the human
reaches his open hand towards the robot teammate. By activating the
respective action chain in its repertoire, the robot interprets this ges-
ture as a request for a bolt to fix the wheel. Since the human has al-
ready mounted the wheel on his side of the construction, this inferred
goal describes a currently active subtask. A logical complementary
action sequence would be that the robot grasps a bolt to place it in
the teammate’s hand. However, the human has seemingly overlooked
a bolt in his own working area. In this situation, the representation of
the inferred goal together with the representation of the bolt in the
work space of the human trigger the decision to make a pointing ges-
ture directed towards the object. In addition, the robot uses speech to
explain the type of error the human is making.

3 DIALOGUE-BASED HUMAN-ROBOT
INTERACTION

Like the system described in the preceding section, the JAST human-
robot dialogue system [23] also supports multimodal human-robot
collaboration on a joint construction task. In this case, the user and
the robot work together to assemble wooden construction toys on a
common workspace, coordinating their actions through speech, ges-
tures, and facial displays. The robot (Figure 3) consists of a pair
of Mitsubishi manipulator arms with grippers, mounted in a po-
sition to resemble human arms, and an animatronic talking head
[29] capable of producing facial expressions, rigid head motion, and
lip-synchronised synthesised speech. The input channels consist of
speech recognition, object recognition, robot sensors, and face track-
ing; the outputs include synthesised speech, head motions, and robot
actions. The components of the system communicate with each other
using the Ice distributed object middleware system [14].

The robot is able to manipulate objects in the workspace and to
perform simple assembly tasks. The primary form of interaction with
the current version of the system is one in which the robot instructs
the user on building a particular compound object, explaining the
necessary assembly steps and retrieving pieces as required, with the
user performing the actual assembly actions. As with the dynamic-
field system, the workspace is divided into two areas—one belonging
to the robot and one to the human—in order to make joint action
necessary for success in the overall task.

Input on each of the channels is processed using a dedicated mod-
ule for that channel. To process the speech, we use a Java Speech
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Figure 2. Example of the goal inference (top) and action selection (bot-
tom) capacities which are implemented by the dynamic field architecture. The
robot uses speech to communicate the results of its reasoning about the be-
haviour of the teammate.

Figure 3. The JAST dialogue robot with a selection of wooden
construction-toy components.

API interface to the commercial Dragon NaturallySpeaking speech
recogniser [21]. A camera mounted above the common work area
provides two-dimensional images of the contents of the workspace.
The information from this camera is pre-processed to extract regions
of interest (ROIs). The extracted ROIs are then processed in parallel
by a template-based object-recognition module [20] and a module
that performs static hand-gesture recognition [33].

Input received on all of the input sensors is continuously processed
by the corresponding modules and broadcast through Ice, using the
built-in IceStorm publish-subscribe mechanism. All of the input mes-
sages are received by a multimodal fusion component [11, 12], which
parses the recognized speech into logical forms using the OpenCCG
grammar formalism [31] and combines it with the recognised non-
verbal behaviour to produce multimodal hypotheses representing
user requests. The fusion hypotheses are then sent to the dialogue
manager, which selects an appropriate response.

The dialogue manager is implemented using the TrindiKit dia-
logue management toolkit [18]. This toolkit uses the well-known
information-state update approach to dialogue management [28],
which allows a dialogue to be modelled declaratively. When the dia-
logue manager receives a new set of fusion hypotheses, it selects the
appropriate system response using information from three sources:
the inventory of objects in the world, a representation of the cur-
rent assembly state, and the history of the dialogue. When the sys-
tem is jointly following an assembly plan with the user, the dialogue
manager is able to select from different strategies for traversing the
plan: it may use a postorder strategy, in which it proceeds directly
to describing the concrete assembly actions, or it may use a preorder
strategy, in which the structure of the plan is described before giving
specific assembly actions. More details on the dialogue manager and
on the description strategies are given in [10].

Once the dialogue manager has selected a response to the user’s
multimodal utterance, it sends the specification of the response to
the output planner. This module in turn sends commands to select
appropriate output on each of the individual channels to meet the
specification: linguistic content including appropriate multimodal re-
ferring expressions [9], facial expressions and gaze behaviours of the
talking head [8], and actions of the robot manipulators. The user then
responds to the system utterance by speaking or performing actions
in the world, and the interaction continues until the target object has
been assembled.

An excerpt from a typical interaction between a user and the JAST
dialogue system is shown in Figure 4. In this excerpt, the robot knows
the full plan for building the target object: a “railway signal”, which
has sub-components called a “snowman” and a “flower”. The assem-
bled object is shown in Figure 4(a). In the excerpt, the robot instructs
the user on how to build the target object, using a preorder strat-
egy, and the user learns to make particular sub-components along the
way. We are currently carrying out a system evaluation based on this
robot-as-instructor scenario. The evaluation is designed to compare
the two description strategies in terms both of user satisfaction and
in success in the overall joint-construction task.

We will shortly extend the dialogue system to handle scenarios
where the user also knows the assembly plan. In such situations, the
main goal of the interaction is no longer instruction, but rather—as
with the goal-inference system described previously—coordination
between the partners, and the user will be able to take much more
initiative in the dialogue than is currently possible. We will return to
the details of this extended scenario in the following section.
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(a) “Railway signal”

• SYSTEM: To build a railway signal, we
need to make a snowman and a flower.

• USER: How do you make a snowman?
• SYSTEM: [Picking up a red cube and

holding it out] To make a snowman, in-
sert the green bolt into your blue cube
and fasten it with this cube.

• USER: [picks up bolt and cube; takes
other cube; assembles “snowman”]
Okay.

• SYSTEM: Well done, you have made
a snowman. Now we need to make a
flower. To make a flower, [. . . ]

(b) Dialogue excerpt

Figure 4. A sample object and an excerpt from an interaction where the
robot instructs the user on how to construct this object.

4 INTEGRATING GOAL INFERENCE AND
NATURAL-LANGUAGE DIALOGUE

There are a number of similarities between the two human-robot
systems described above. Both support the same basic task—joint
construction—and view the goals and subgoals of this task in a simi-
lar way. Also, the input and output channels used by the two systems
are very similar: both include object and gesture recognition in the
input and produce speech and robot-manipulator actions as part of
their output. On the other hand, the reasoning processes used by the
two systems are very different: the former uses dynamic neural fields
to perform goal inference and action selection based entirely on non-
verbal input, while the latter uses techniques from issue-based dia-
logue management to engage in natural-language conversation with
some multimodal components. The strengths of the two systems are
also complementary: the dynamic-field system is good at detecting
and reasoning about the user’s non-verbal actions, but uses language
only for a limited form of canned output; the dialogue system sup-
ports advanced linguistic interaction, but has no mechanism to infer
the user’s intention from their actions in the world.

Motivated by the above similarities and complementary features,
we have combined components from the two individual human-robot
systems into a single, integrated architecture. The hardware platform
for the integrated system is the robot from the dialogue system (Fig-
ure 3), while the scenario is an extended version of the scenarios
used by each of the individual systems. As in the dynamic-field sce-
nario, the user and the robot are both assumed to know the assembly
plan for the target object and are able to infer the partner’s intentions
based on their behaviour, and the main goal of the interaction is for
the two participants to coordinate their actions. As in the dialogue
system, this coordination is accomplished through natural-language
dialogue incorporating both verbal and non-verbal communication.

Figure 5 shows the high-level architecture of the integrated sys-
tem. Messages on all of the multimodal input channels (speech, ges-
tures, and recognised objects) are sent to both of the input-processing
components, each of which—just as in the individual systems—
reasons about the meaning of the user’s actions in the current con-
text, each drawing information from the same set of state modules
(plan state, object inventory, interaction history). The inferred goals
and suggested system responses from the goal-inference system are
then passed to the the dialogue manager, which incorporates this in-

formation along with the processed messages from the fusion sys-
tem into the (extended) information state of the integrated system.
The dialogue manager then uses enhanced update rules to select an
appropriate system response to the input. Finally, just as in the indi-
vidual systems, the selected response is sent to the output system for
realisation on the output channels.

Multimodal
Input

Object
Inventory

Goal
Inference

Dialogue
Manager

Goal
State

Multimodal
Output

Figure 5. The architecture of the integrated system.

This integrated system supports interaction patterns that would not
be possible with either of the individual systems. Most importantly,
it is able both to detect unexpected actions from the user (i.e., ac-
tions that do not meet what it believes to be the current subgoals)
and to engage the user in dialogue to discuss how to deal with the
unexpected action. When both forms of reasoning work together, the
system is able to detect such user actions and to produce a variety of
responses, including correcting the user, asking for clarification as to
the user’s intentions, or attempting to silently revise its representa-
tion of the goal state. Varying the system’s response to this situation
is able to produce systems with different interactive “personalities”,
ranging from one that always makes the user follow the plan selected
by the system to one where the user has full control over the course
of the interaction.

Figure 6 shows a sample interaction between a user and the inte-
grated system, where the role of each of the reasoning components
is shown throughout. In this interaction, the user and the robot are
jointly building the “railway signal” object (Figure 4(a)). At the start,
the robot system has assumed that the user is building the “snow-
man” sub-component. When the user grasps a medium slat, which
is not needed for that subgoal, the goal inference system detects this
(just as in the sample interaction described at the end of Section 2)
and sends a message to the dialogue manager that the user’s action
cannot be integrated into the current plan.

At this point, the system has several options to deal with the mis-
match between its beliefs about the current subgoals and the recent
action of the user. It might silently revise its view of the current sub-
goals, for example, or it might—as in Figure 2—correct the user’s
apparent “error”. In the example, the system uses a third strategy,
and one that is only available because of the integration of the di-
alogue components: it asks the user in words to clarify their inten-
tions. After the user provides the needed clarification, also verbally,
the dialogue manager updates the system’s subgoals and informs the
goal-inference system of the change. The goal-inference system then
anticipates that, to meet this new subgoal, the user will need the nut
that is lying on the robot’s side of the table. The system therefore
picks up the nut and offers it to the user without being asked.

As can be seen by the right-hand columns in Figure 6, this type
of interaction would not be possible with either of the individual sys-
tems. The dialogue system does not have the necessary mechanism to
infer the user’s goals from their actions, while the goal-inference sys-
tem would only have been able to respond to the user’s unexpected
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Actions Dialogue Manager Goal Inference
User grasps a medium slat

Notices that action does not
meet current subgoal

Tells output planner to ask
for clarification

SYSTEM: “We don’t need a medium slat for the snowman”
USER: “Yes, but I want to build the flower now”

Interprets response and up-
dates subgoals

Suggests system response
Sends message to output
planner

Robot picks up a nut and holds it out
SYSTEM: “Then you’ll need this nut”

Figure 6. A sample interaction with the integrated system, showing the role of each individual reasoning component in the decision-making process.

action by treating it as an error rather than discussing the user’s goals
as in the example. Only when these two components are combined is
this rich interaction made possible.

4.1 Technical Details
The two individual systems use the same basic information in their
reasoning (task goals and subgoals, object inventory, input events);
however, due to the different implementations, they represent this
information quite differently. Also, at the implementation level, the
components of the dynamic-field system use YARP to communicate
with one another, while the dialogue system uses Ice as an integration
platform. A specific goal of the integration has been to make as few
changes as possible to the individual systems. An important aspect
of creating the integrated system has therefore been coming up with
a common representation for all of the relevant information, where
the representation is compatible with both of the systems and both of
the integration platforms.

To support the integration, we have defined generic interfaces to
represent recognised gestures and objects, as well as inferred and
proposed domain actions. These representations include the follow-
ing information:

• The Gestures representation includes the type of gesture recog-
nised (pointing, grasping, holding-out, unknown) and if necessary,
the object indicated.

• The Objects representation includes the classification of the ob-
ject, a 3D position and a flag indicating whether the object can be
reached by the robot.

• The Action representation consists of the type of action (grasp-
and-give, demand-and-receive, speak, undefined) and a string con-
taining further specifications (e.g. the object-id for grasp-and-give
or the sentence to speak out loud).

Internal communication between YARP and Ice is implemented
via a connector module that translates Ice messages to YARP mes-
sages and vice versa.

5 DISCUSSION
We have presented two human-robot systems, each of which is de-
signed to support the same joint construction task. One system uses
dynamic neural fields to perform non-verbal goal inference and ac-
tion selection, while the other uses a dialogue manager to support
multimodal natural-language interaction. We have then shown how

a system integrating the reasoning components of the two individual
systems is able to take advantage of the complementary strengths of
each to support interactions that neither system is able to support on
its own. In particular, this integrated system is able both to detect
the user’s intentions and anticipate their needs, and to use natural-
language dialogue to manage the joint activity. The integration of
these two systems is made possible through well-defined interfaces
that allow the two sets of reasoning components to share information
about world state, task goals, and input events.

In contrast to the other systems mentioned in the introduction,
the integrated JAST system is unique in that it combines methods
and techniques taken from two separate, fully-implemented, existing
systems—a neuro-inspired perception-action system and a symbolic,
multimodal-dialogue system—to produce an integrated robot system
that is able both to communicate with its human partner using lan-
guage and to intelligently understand and anticipate the partner’s in-
tentions. As demonstrated by the example in the preceding section,
the integrated system is able to go beyond the capabilities of either
of the individual systems to support intelligent human-robot cooper-
ation on the joint construction task.

The integrated system is currently under development: the neces-
sary interfaces have been specified as described in Section 4.1, and
the reasoning modules from the two systems are being adapted to
use the common interfaces. When the is completed, we will run a
user evaluation of the full system similar to that currently under way
for the dialogue system to demonstrate the contribution of both forms
of reasoning to natural human-robot joint action.
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Abstract. A hybrid evolutionary algorithm that combines genetic 
programming philosophy, with localized Extended Kalman Filter 
(EKF) training method is presented here. This algorithm is used for 
the topological evolution and training of Multi-Layered Neural 
Networks. It is implemented as a visual software tool in C++ 
programming language. The proposed hybrid evolutionary 
algorithm is applied on two bio-signal modeling tasks: the Magneto 
Encephalogram (MEG) of epileptic patients and the Magneto 
Cardiogram (MCG) of normal subjects, exhibiting very satisfactory 
results. 

1 INTRODUCTION 
One of the main problems that are faced when Artificial Neural 
Networks (ANN) and especially Multilayer Perceptrons, are applied 
on some tasks, is finding the network architecture or topology that 
is best suited for the task at hand. A small network for the problem 
might causes poor learning ability, while a large one might cause 
poor generalization. Until now the common method to determine 
the architecture of a neural network is by trial and error. However, 
in the last years there have been many attempts, in the direction of 
designing the architecture of a neural network automatically, that 
have led to a variety of methods. 

Two subcategories of such methods are a) the constructive and 
b) pruning (destructive) algorithms, [28], [29]. Roughly speaking, a 
constructive algorithm starts with a minimal network, that is an 
ANN with a minimal number of hidden layers, hidden neurons and 
connections, and adds new layers, neurons or connections, if it is 
necessary, during the training phase. On the opposite, a pruning 
(destructive) algorithm does the opposite, starts with a maximal 
network and deletes the unnecessary layers, nodes and connections 
during training.  

Another approach to this problem is by using Genetic 
Algorithms. Genetic Algorithms are a class of optimization 
algorithms, which are good in exploring a large and complex space 
in an intelligent way in order to find values close to the global 
optimum (see [12], [15], [20] and [22] for details). The design of a 
near optimal topology can be formulated as a search problem in the 
architecture space, where each point in the space represents network 
architecture. The training can be formulated as a search problem in 
the weight space. Since the end of the last decade, there have been 
several attempts to combine the technology of neural networks with 
that of genetic algorithms. Given some performance criteria, for 
example error, generalization ability, learning time, architectural 
complexity etc, for the architecture, the performance level of all 

architectures forms a surface in the space. The optimal architecture 
design equals to finding the optimum point on this surface.  

The first attempts, described in [10], [23], [25] and [27], focused 
mainly on the problem of training the networks and not in the 
topology design. They used neural networks with fixed architecture 
and genetic algorithms in order to search the weight space for some 
near optimum weight vector that solves the problem of network 
training. That is, they used genetic algorithms instead of some 
classical training algorithm. Soon the main research interest moved 
from the training, to the search for the optimal architectural (or 
topological) design of a neural network. Some first works used 
genetic algorithms in order to imitate the pruning algorithms. They 
start with a network larger than necessary for the task and then use 
a specially designed genetic algorithm to define which combination 
of connections is sufficient to, quickly and accurately, learn to 
perform the target task, using back propagation. Miller et al. [21] 
did that for some small nets. The same problem, but for larger 
networks, was faced by Whitley and Bogard in [26]. Bornholdt and 
Graudenz in [9], used a modified GA in order to evolve a simplified 
model of a biological neural network and then applied the algorithm 
to some toy Boolean functions. A different approach to the design 
and evolution of modular neural network architectures is presented 
in [13]. Billings and Zheng in [8] used a GA for the architectural 
evolution of radial basis function (RBF) networks. The most recent 
approach and maybe the most successful one, to the problem of 
finding the near optimum architecture is presented in [28]. There, 
Yao and Liu propose a new evolutionary system, the EPNet, for 
evolving artificial neural networks’ behavior.  

The last couple of years, there is an increasing interest in the use 
of multi-objective optimization methods and especially 
evolutionary multi-objective techniques for neural network training 
and structure optimization. Two very interesting approaches are 
presented in [31] and [32]. 

The present work is the sequence of a series of efforts 
concerning the application of evolutionary algorithms for the 
optimization of neural networks. In [17] a neural network model 
with binary neurons was evolved by a modified genetic algorithm in 
order to learn some Boolean functions. In [1], [2], [3], [4], [5], [6], 
[7], [11], [18] and [19] genetically evolved artificial neural 
networks were successfully used for a variety of problems.  

In this paper we present a hybrid evolutionary method that looks 
like more to a genetic programming technique for the evolution of a 
population of feed-forward Multi Layered Perceptrons [14]. This 
hybrid algorithm combines a genetic programming technique (for 
details see [16]) for the evolution of the architecture of a neural 
network, with a training method based on the localized Extended 
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Kalman Filter (EKF), known as Multiple Extended Kalman 
Algorithm (MEKA). The MEKA is described in detail in [24]. The 
novelty of this effort depends on, apart from the combination of 
evolution techniques with MEKA, the capability of the proposed 
method to search, not only for the optimal number of hidden units, 
but also, for the number of inputs needed for the problem at hand; 
of course this stands only for time series prediction problems where 
the number of needed past values, which represent the network’s 
inputs, is unknown. This hybrid algorithm is an evolved and heavily 
enriched version of an older algorithm that was developed by the 
authors and presented in [4], [7] and [19]. Furthermore this 
evolutionary neural network system has been implemented as a 
visual tool in C++ with a graphical user interface. In order to test 
the ability of this algorithm to produce networks that perform well, 
we apply the system on two biosignals, namely the Magneto 
Encephalogram (MEG) recordings of epileptic patients and 
Magneto Cardiogram (MCG) of normal subjects. The algorithm 
produces networks with small sizes that perform well.  

The rest of the paper is organized as follows. Section 2 describes 
the hybrid evolutionary algorithm, while the numerical experiments 
are presented in section 3. Finally, section 4 discusses the 
concluding remarks.  

2 THE HYBRID EVOLUTIONARY 
ALGORITHM  

2.1 THE MULTIPLE EXTENDED KALMAN 
ALGORITHM - MEKA 

Consider a network characterized by a weight vector w. The 
average cost function that should be minimized during the training 
phase is defined in terms of N input-output patterns as follows: 
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Where ( )jd n  is the desired response and ( )jy n the actual 

response of output neuron j when input pattern n is presented, while 
the set C includes all the output neurons of the network. The cost 
function depends on the weight vector w due to the fact that ( )avE w

( )jy n  itself depends on w. 
Concentrating on an arbitrary neuron i, which might be located 

anywhere in the network, its behavior during the training phase may 
be viewed as a non-linear dynamic system, which in the context of 
Kalman filter theory may be described by the following state-
measurement equations [14], [24]: 
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Where the iteration n corresponds to the presentation of the nth 

input pattern, ( )ix n  and  are the input and output vector of 

neuron i respectively and 

( )iy n

( )ie n  is the measurement error at the 
output of neuron i, the instantaneous estimate of which is given by: 
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The differentiation in equation (5) corresponds to the back-

propagation of the global error to the output of neuron i. The 
activation function ϕ(•) is responsible for the non-linearity in the 
neuron. The weight vector of the optimum model for neuron i is 
to be “estimated” through training with examples. The activation 
function is assumed to be differentiable. Accordingly, we can use 
Taylor series to expand equation (3) about the current estimate of 
the weight vector and thereby linearize the equation as follows [14]: 

iw
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( )iy n
∧

 is the output of neuron i that results from the use of the 
weight estimate. In equation (8) we have assumed the use of the 
logistic function; other sigmoid functions, like the hyperbolic 
tangent, can be used as well. The first term of the right hand side of 
equation (7) is the desired linear term while the remaining term 
represents a modeling error. Thus substituting equation (7) and (4) 
in (3) and ignoring the modeling error we obtain: 

 
( ) ( ) ( ) ( )T

i i i id n q n w n e n= +  (9) 
 
Where ( )ie n  and ( )iq n  are defined in equations (5) and (8) 

respectively.  
Equations (2) and (9) describe the linearized behavior of neuron 

i. Given the pair of equations (2) and (9), we can make use of the 
standard Recursive Least Squares (RLS) algorithm equations [14], 
which is a special case of the Kalman filter, to make an estimate of 
the weight vector ( )iw n  of neuron i. The resulting solution is 
defined by the following system of recursive equations [14] that 
describe the Multiple Extended Kalman Algorithm (MEKA) [24]: 

 
( ) ( ) ( ) ( )1 1i ir n P n q nλ= − ⋅ − ⋅ i  (10) 

( ) ( ) ( ) ( )( )1 T
i i i ik n r n r n q n 1= ⋅ + ⋅ −  (11) 

( ) ( ) ( ) (1i i iw n w n e n k n+ = + ⋅ )i  (12) 

( ) ( ) ( ) ( ) ( )1 1 T
i i iP n P n k n r nλ+ = − ⋅ − ⋅ i  (13) 

 
Where, n=1,…,N is the iteration number and N is the total 

number of examples.  
The vector ( )iq n  represents the linearized neuron activation 

function given in equation (6),  is the current estimate of the 

inverse of the covariance matrix of  and  is the Kalman 
gain. The parameter λ is a forgetting factor which takes values in 
the range (0,1], and 

( )iP n

( )iq n ( )ik n

( )ie n  is the localized measure of the global 
error. Equation (13) is called the Riccatti difference equation.  

Each neuron in the network perceives its own effective input 
( )iq n , hence it has to maintain its own copy of ( )iP n  even in the 
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case in which it  may share some of its inputs with other neurons in 
the network. 

2.2 THE EVOLUTIONARY ALGORITHM 
The proposed evolutionary algorithm is an improved version of a 
modified genetic algorithm that was used aforetime by the authors.  
It maintains the basic working philosophy of evolutionary 
algorithms and resembles genetic programming (see [16] for 
details) since it evolves complicated structures like linked lists and 
not simple bit strings as genetic algorithms do.  

The algorithm evolves, using a number of genetic operators, a 
population of artificial neural networks (multilayered perceptrons) 
that are represented as linked lists of network layers and neurons; 
thus it is used the direct encoding scheme. The basic steps of the 
algorithm are as follow: 
1. Initialization: An initial population of neural networks (called 

individuals) is created. Every individual has a random number 
of neurons (or nodes) and connections (synapses). The 
connection weights are initialized to some random values 
within a specific range. 

  
2. Training: Every individual (neural network) in the population 

is trained using MEKA for a small number of training epochs. 
For populations other than initial, training occurs only for 
those networks that have been changed by the application of 
genetic operators. 

 
3. Fitness Evaluation: As fitness function it is used a function that 

combines the performance of the network in the training 
and/or validation set with the size of the network. The 
performance is evaluated using the Mean Squared Error (MSE) 
or the Mean Relative Error (MRE). While, the size is the 
number of neurons and/or the number of active synapses in the 
network. So the fitness function for the case of MRE has a 
formula of the type: 

 

( ) ( ) ( ) ( )
1

1
Fitness i

MRE i sp MRE i SIZE i
=

+ + ⋅ ⋅
 (14) 

 
Where sp is a parameter that controls the weight of the 
network size in the evaluation of fitness, MRE(i) is the value 
of MRE of individual i, SIZE(i) is the size of individual i 
which can be calculated as the number of active connections 
or the number of neurons and i is an index taking values in the 
range 1 to population size. 
 

4. Selection: Selection operator is been used in order to create a 
new, intermediate, population from the old one, by selecting 
individuals based on their fitness. This can be done using any 
of the following three different selection schemes  that have 
been implemented, namely: 

 The Elitism Roulette Wheel Selection Operator, with 
variable elitist pressure (for more details see [12], [16], [20] 
and [22]). 

 The Rank Based Selection (for more details see [12], [16], 
[20] and [22]). 

 The Tournament Selection with variable tournament size 
(for more details see [12], [16], [20] and [22]). 

 
5. Mutation: It works on the members of Three different 

mutation operators are implemented: 
 Input Mutation: it selects randomly a neural network from 
the population and changes its number of inputs. This 
operator works only on time series modeling and prediction 
problems, where the number of past values (network inputs) 

needed to predict future values is not usually known a 
priory. 

 Hidden mutation: it selects randomly a neural network from 
the population and changes the structure of its hidden 
region by adding or deleting a random number (selected 
uniformly from a given interval) of hidden neurons.  

 Non Uniform Weight mutation: it is responsible for the fine 
tuning capabilities of the system. It selects randomly a 
number of connection weights and changes their values to 
new ones as follows: Let suppose that w is the old weight 
value then the new one is given by the formula:  

 
( ) ( ) (( )1 ,w n w n w t ub w n+ = ± Δ − )  (15) 

 
Where lb and ub are the lower and upper bounds of the 
weight values, t is the generation number, and Δ(t,y) is a 
function that returns a value in the range [0,y], such that the 
probability of Δ(t,y) being close to 0 increases as t 
increases. This property causes this operator to search the 
solution space initially uniformly (while t is small) and very 
locally at the later stages. In our experiments the following 
function, [20] was used: 
 

( ) ( )1, 1
bt

Tt y y r −⎛ ⎞
Δ = ⋅ −⎜ ⎟

⎝ ⎠
 (16) 

 
Where r is a random number on [0,1], T is the maximal 
generation number (a parameter of the algorithm), and b is a 
system parameter determining the degree of non-uniformity. 
 

 Gaussian weight mutation: it works like the Non Uniform 
Weight mutation operator with the difference that the new 
weight value is calculated by the formula: 

 
( ) ( ) (1w n w n w n+ = + Δ )  (17) 

 
Where, Δw is a small random number following Gaussian 
distribution.  

 Uniform weight mutation: it works like the Gaussian 
mutation operator with the difference that, Δw is a small 
random number following Uniform distribution.  
 

6. Crossover: It selects two parents (neural networks) and 
generates one or two offspring by recombining parts of them. 
The offspring take the place of their parents in the new 
population. In the presented algorithm crossover recombines 
whole neurons with their incoming connections. But since we 
have to deal with networks with different structures, the new 
connections that might have to be produced are initialized with 
random weight values as in the initialization phase. Herein 
crossover works more like a mutation operator, like in most 
genetic programming systems, than as the recombination 
operator of genetic algorithms  

 
Therefore the presented hybrid evolutionary algorithm works in 

brief as follows: it starts with a population of randomly constructed 
Neural Networks (step 1). Networks undergo some training for a 
couple of epochs with MEKA, using the training set (step 2). 
Performance is measured with the fitness function (step 3) using the 
validation set, in order to improve generalization. Then a new, 
intermediate, population is created, by selecting the more fit 
individuals according to their fitness (step 4) using any of the three 
selection schemes. Some members of this intermediate population 
undergo transformations by means of genetic operators to form the 
members (individuals) of the new population: mutation (step 5) and 
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crossover (step 6) operators. The new population that is created is 
trained again (step 2); new members are trained for a couple of 
epochs, while the members that have survived and passed from the 
old population may be trained with MEKA for some more epochs, 
or may not be trained at all. This is the new generation. This whole 
process continues until a predefined termination condition is 
fulfilled; the termination condition might be a maximum number of 
generation or a minimum error (MSE or MRE) value. Once 
terminated the algorithm is expected to have reached a near-
optimum solution, i.e. a trained network with near optimum 
architecture. 

2.3 THE TOOL 
This hybrid evolutionary algorithm has been implemented as a 

visual tool in C++ programming language, having a graphical user 
interface (GUI). Specifically, it was used the Borland C++ version 
6.0 IDE for Windows. Figure 1 and 2 depict two of the basic forms 
of the program, for the two main categories of problems that it can 
be used for, classification and time series prediction. Figure 3 is the 
“statistics” form that illustrates the evolutionary process and prints 
useful information about it.    

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.     The main form for classification problems of the evolutionary 
neural network system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.     The main form for prediction problems of the evolutionary 
neural network system 

 
The user can select between this two problem categories. Then 

he/she can insert the values of the various genetic parameters, the 
training, validation and test files, as well as the output log files. The 
user can observe the evolutionary process using some real time 
graphical display of the error, the performance of the best ever 
network and other parameters.  

Figure 3.     The “statistics” form 

3 NUMERICAL EXPERIMENTS 
In order to examine the ability of the algorithm to produce networks 
that learn and generalize well we have tested it on two real world 
problems: the modeling of the MEG recordings of epileptic patients 
and the modeling MCG recordings of normal subjects.  

Brain dynamics can be evaluated by recording the changes of the 
neuronal electric voltage, either by the electroencephalogram 
(EEG), or by the MEG. The EEG recordings represent the time 
series that match up to neurological activity as a function of time. 
On the other hand the MEG is generated due to the time varying 
nature of the neuronal electric activity, since time-varying electric 
currents generate magnetic fields. EEG and MEG are considered to 
be complementary, each one carrying a part but not the whole of the 
information related to the underlying neural activity. Thus, it has 
been suggested that the EEG is mostly related to the inter-neural 
electric activity, whereas the MEG is mostly related to the intra-
neural activity. The MEG recordings of epileptic patients were 
obtained using a Super-conductive QUantum Interference Device 
(SQUID) and were digitized with a sampling frequency of 256Hz 
using a 12-bit A/D Converter. SQUID is a very sensitive 
magnetometer, capable to detect and record the bio-magnetic fields 
produced in the human brain due to the generation of electrical 
micro-currents at neural cellular level [30].  

The same stands for the MCG recordings which are magnetic 
recordings of the heart operation of normal subjects. MEG and 
MCG data were provided by the Laboratory of Medical Physics of 
the Democritus University of Thrace, Greece, where a one-channel 
DC SQUID is operable. Both biosignal data were normalized in the 
interval [0,1] in order to be processed by the neural networks. 

In all the experiments we used, for comparison reasons, the same 
parameter values, which are depicted in table 1. For the case of the 
MEG modeling, as training set where used 1024 data samples 
(corresponding to a four seconds epoch of the MEG) while for the 
testing was used 512 data samples (corresponding to a two seconds 
epoch of the MEG). For the case of the MCG modeling, as training 
set where used 1024 data samples and for the test set was used 1024 
data samples The algorithm was left to run over 1000 generations. 

In order to evaluate the forecasting capability of the produced 
networks we used three well-known error measures, the Normalized 
Root Mean Squared Error (NRMSE), the Correlation Coefficient 
(CC) and the Mean Relative Error (MRE). The performance of the 
hybrid algorithm for the case of MEG modeling is depicted in 
tables 2 and 3 and in figure 4, while for the case of MCG in tables 4 
and 5 and in figure 5.   
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Table 1.     Parameters used for the cases of MEG and MCG modeling 
Parameter Value 

Population 
Max number of Generations 
Crossover Probability 
Input Mutation Probability 
Weight Mutation Probability 
Uniform Mutation Probability 
nonUniform Mutation Probability 
Gaussian Mutation Probability 
MeanGaussian 
StDev Gauss 
Predicting Horizon 

50 
1000 
0,1 
0,1 
0,1 
0,1 
0,1 
0,1 
0,1 
0,25 
1 

 
Table 2.     MEG forecasting - Errors on the Training Set 

Architecture  NRMSE C.C. MRE 
4-9-1 0.2540 0.9674 0.0350 
3-3-1 0.2913 0.9581 0.0386 
4-5-1 0.2564 0.9672 0.0357 
3-2-1 0.2967 0.9557 0.0411 
3-3-1 0.2705 0.9656 0.0369 
3-4-1 0.2655 0.9645 0.0361 

 
Table 3.     MEG forecasting - Errors on the Test Set 

Architecture NRMSE C.C. MRE 
4-9-1 0.1971 0.9805 0.0403 
3-3-1 0.2189 0.9757 0.0438 
4-5-1 0.2063 0.9786 0.0434 
3-2-1 0.2309 0.9733 0.0466 
3-3-1 0.2177 0.9765 0.0446 
3-4-1 0.2111 0.9775 0.0429 
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Figure 4.     MEG forecasting, performance on the test set. 

 
Table 4.     MCG forecasting - Errors on the Training Set 

Architecture  NRMSE C.C. MRE 
12-10-1 0.1918 0.9815 0.8421 
9-20-1 0.1840 0.9829 0.8073 
10-11-1 0.1790 0.9839 0.6790 
13-10-1 0.1869 0.9824 0.7875 
13-12-1 0.2213 0.9761 0.8983 
10-9-1 0.2274 0.9740 0.9702 
4-4-1 0.3593 0.9441 0.9822 
3-1-1 0.6481 0.8262 0.9061 

Table 5.     MCG forecasting - Errors on the Test Set 
Architecture  NRMSE C.C. MRE 

12-10-1 0.2419 0.9704 1.4222 
9-20-1 0.2081 0.9781 1.1874 
10-11-1 0.2214 0.9752 1.3642 
13-10-1 0.1858 0.9827 0.9617 
13-12-1 0.2163 0.9774 0.8677 
10-9-1 0.2193 0.9760 0.9882 
4-4-1 0.3586 0.9445 0.9817 
3-1-1 0.6497 0.8241 0.9915 
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Figure 5.     MCG forecasting, performance on the test set. 

4 CONCLUSIONS  
In the current paper it was presented a hybrid biological inspired 
evolutionary algorithm that combines a genetic programming 
technique with a training method based on the Multiple Extended 
Kalman Algorithm.  This hybrid algorithm is implemented in C++ 
as a software system with a graphical user interface.  

The main novelties of the proposed hybrid algorithm are the 
combination of genetic programming technique with MEKA, the 
use of a fitness function that combines performance with network 
size, the ability to evolve not only the structure of the hidden layers 
but the number of inputs as well, and the large number of different 
genetic operators and especially mutation operators that have been 
implemented. Another novelty is the representation used for neural 
networks. As said before, every network in the population is 
represented as a link list of layers and neurons, using the direct 
encoding scheme. The use of link lists has some certain advantages 
that have to do mainly with the memory management; you use only 
the memory that is needed every time and you don’t have to 
allocate a maximum memory size, for maximum network size like 
other representation schemes. Moreover link lists are dynamic data 
structures, which it means that the neural network architecture can 
change dynamically during run time in contrast with other data 
structures like matrices that in C++ can not change during run time.           

This hybrid algorithm was used for the modeling of two 
biological time series, namely the Magneto Encephalogram (MEG) 
recordings of epileptic patients and Magneto Cardiogram (MCG) of 
normal subjects. All the reported cases refer to predictions on 
recordings of the dynamics of nonlinear systems. In all the 
performed experiments the algorithm was able to find a near 
optimum network architecture that gave small prediction errors. 
Therefore we can conclude that the algorithm is able to produce 
small and compact networks that learn and generalize well.  

The algorithm has only tested on time series prediction problems 
and it is in our intention to test it on some difficult classification 
problems as well.  
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One of the main drawbacks of this kind of algorithms, namely 
the evolutionary algorithms, hybrid or not, is that they are 
computational expensive in terms of computer memory and CPU 
time. Even though the proposed algorithm belongs to this category, 
the use of MEKA for just a couple of epochs for the training phase 
of the neural networks and the representation where each member 
of the population is a network represented as a link list so that there 
is no need to use encoding and decoding functions for the 
calculation of network’s performance, makes the algorithm less 
computational expensive than other approaches to the same 
problem of neural networks evolution.  

The algorithm could be further improved by adding some more 
genetic operators for better and faster local search both to the 
architecture and weight space and this is going to be one of our 
future research targets. Furthermore, in the integrated software 
system there are already implemented a large number of genetic 
operators whose influence to the performance of the hybrid 
algorithm needs to be appraised; we need to see which of the three 
selection schemes, or the many mutation operators give better 
results.  Another future research direction will be the combination 
of MEKA with other evolutionary techniques like Particle Swarm 
Optimization and Differential Evolution for neural network 
evolution.  
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Abstract. We use decision trees and genetic algorithms to 
analyze the academic performance of students and the 
homogeneity of tutoring teams in the undergraduate program on 
Informatics at the Hellenic Open University (HOU). Based on 
the accuracy of the generated rules, we examine the applicability 
of the techniques at large and reflect on how one can deploy 
such techniques in academic performance alert systems. 

1 INTRODUCTION 
Student success is a natural performance indicator in 
universities. However, if that success is used as a criterion for 
tutor assessment (and subsequent possible contract renewal), and 
if students must evaluate their own teachers, then tutors may tend 
to lax their standards. This paper is about dealing with this issue 
in the context of the Hellenic Open University (HOU); we focus 
on the undergraduate Informatics program (about 2,500 
students). We ask whether we can detect regularities in distance 
tutoring, then, we try to associate them with measures of 
students’ success in an objective way and, subsequently, reflect 
on how to effectively disseminate this information to all 
interested parties. 

The measurement strategy we have developed to-date in HOU 
has been progressively refined to deal with two closely linked 
problems: that of predicting student success in the final exams 
and that of analyzing whether some specific tutoring practices 
have any effect on the performance of students. Each problem 
gives rise to the emergence of a different type of user model. A 
student model allows us, in principle, to explain and maybe 
predict why some students fail in the exams while others 
succeed. A tutor model allows us to infer the extent to which a 
group of tutors diffuses its collective capacity effectively into the 
student population they advise. However, both types of models 
can be subsequently interpreted in terms of the effectiveness of 
the educational system that the university implements. 

The rest of this paper is organised in five sections. The next 
section presents the educational background. Section 3 then 
reviews the fundamental features of the AI techniques that we 
have used. Following that we report the experimental results for 
the undergraduate programme that we have analysed, as well as a 
short evaluation of the individual module results that seem to 
signify an interesting deviation. Section 5 presents a discussion 
from the point of view of how one can generalise our approach 
as well as how one can substitute other intelligent techniques for 
data analysis; finally we conclude and describe directions for 
future development. 

2 THE EDUCATIONAL BACKGROUND 
A module is the basic educational unit at HOU. It runs for 
about ten months and is the equivalent of about 3-4 
conventional university semester courses. A student may 
register with up to three modules per year. For each module, 
a student is expected to attend five plenary class meetings 
throughout the academic year. A typical class contains about 
thirty students and is assigned to a tutor (tutors of classes of 
the same module collaborate on various course aspects). 
Class face-to-face meetings are about four hours long and are 
structured along tutor presentations, group-work and review 
of homework. Furthermore, each student must turn in some 
written assignments (typically four or six), which contribute 
towards the final grade, before sitting a written exam. That 
exam is delivered in two stages: you only need sit the second 
if you fail or miss the first. 

Students fail a module and may not sit the written exam if 
they do not achieve a pass grade in the assignments they turn 
in; these students must repeat that module afresh. A student 
who only fails the written exam may sit it on the following 
academic year (without having to turn in assignments); such 
“virtual” students are also assigned to student groups but the 
tutor is only responsible for marking their exam papers. 

3 GENETIC ALGORITHMS AND 
DECISION TREES FOR PREDICTION 

In our work we have relied on decision trees to produce 
performance models. Decision trees can be considered as rule 
representations that, besides being accurate, can produce 
comprehensible output, which can be also evaluated from a 
qualitative point of view [1, 2]. In a decision tree nodes 
contain test attributes and leaves contain class descriptors. 

A decision tree for the (student) exam success analysis 
problem could look like the one in Figure 1 and tells us that a 
mediocre grade at the second assignment (root) is an 
indicator of possible failure (left branch) at the exams, 
whereas a non-mediocre grade refers the alert to the fourth 
(last) assignment. 

Decision trees are usually produced by analyzing the 
structure of examples (training instances), which are given in 
a tabular form. An excerpt of a training set that could have 
produced such a tree is shown in Table 1. Note that the three 
examples shown are consistent with the decision tree. As this 
may not always be the case, there rises the need to measure 
accuracy, even on the training set, in order to compare the 
quality of two decision trees which offer competing 
explanations for the same data set. 
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Figure 1. A sample decision tree [3]. 

Note that the sample decision tree does not utilize data neither 
on the first nor the third assignments, but such data is shown in 
the associated table. Such dimensionality reduction information 
is typical of why decision trees are useful; if we consistently 
derive trees on some problem that seem to not use some data 
column, we feel quite safe to not collect measurements for that 
data column. Of course, simple correlation could also deliver 
such information, however it is the visual representation 
advantages of decision trees that have rendered them as very 
popular data analysis tools. 

Table 1. A sample decision tree training set (adapted from [3]). 
Assgn1 Assgn2 Assgn3 Assgn4 Exam 

... ... ... ... ... 

4.6 7.1 3.8 9.1 PASS 

9.1 5.1 4.6 3.8 FAIL 

7.6 7.1 5.8 6.1 PASS 
 

Analyzing the performance of high-risk students is a goal 
towards achieving tutoring excellence. It is, thus, reasonable to 
assert that predicting a student’s performance can enable a tutor 
to take early remedial measures by providing more focused 
coaching, especially in issues such as priority setting and time 
management. 

Initial experimentation at HOU [4] consisted of using several 
machine learning techniques to predict student performance with 
reference to the final examination. The scope of the 
experimentation was to investigate the effectiveness and 
efficiency of machine learning techniques in such a context. The 
WEKA toolkit [5] was used because it supports a diverse 
collection of techniques. The key result was that learning 
algorithms could enable tutors to predict student performance 
with satisfying accuracy long before final examination. The key 
finding that lead to that result was that success in the initial 
written assignments is a strong indicator of success in the 
examination. Furthermore, our tutoring experience corroborates 
that finding. 

We then employed the GATREE system [6] as the tool of 
choice for our experiments, to progressively set and test 
hypotheses of increasing complexity based on the data sets that 
were available from the university registry. The formation and 
development of these tests is the core content of this chapter and 
is presented and discussed in detail in the following sections. 
GATREE is a decision tree builder that employs genetic 
algorithms to evolve populations of decision trees; it was 
eventually used because it produces short comprehensible trees. 

Of course, GATREE was first used [3] to confirm the 
qualitative validity of the original findings experiments [4], 
also serving as result replication, before advancing to more 
elaborate experiments [7, 8, 9]. 

GATREE [6] evolves populations of trees according to a 
fitness function that allows for fine-tuning decision tree size 
vs. accuracy on the training set. At each generation, a certain 
population of decision trees is generated and sorted 
according to fitness. Based on that ordering, certain genetic 
operators are performed on some members of the population 
to produce a new population. For example, a mutation may 
modify the test attribute at a node or the class label at a leaf, 
while a cross-over may exchange parts between decision 
trees. 

The fitness function is fitnessi=Correcti
2*x/(sizei

2+x), for 
tree i. The first part of the product is the actual number of 
training instances that i classifies correctly. The second part 
of the product (the size factor) includes a factor x which 
regulates the relative contribution of the tree size into the 
overall fitness; thus, the payoff is greater for smaller trees 

When using GATREE, we used the default settings for the 
genetic algorithm operations and set cross-over probability at 
0.99 and mutation probability at 0.01. Moreover, all but the 
simplest experiments (explicitly so identified in the following 
sections) were carried out using 10-fold cross-validation, on 
which all averages are based (i.e. one-tenth of the training set 
was reserved for testing purposes and the model was built by 
training on the remaining nine-tenths; furthermore, ten such 
stages were carried out by rotating the testing one-tenth. 

4 DATA ANALYSIS AT A PROGRAMME 
LEVEL 

Before advancing, we first review some aggregate statistics of 
the undergraduate informatics programme at HOU.  

First, Table 2 presents the success rates for the modules 
that we have analysed. 

Table 2. Success (percentage) rates of modules. 
 2004-5 2005-6 2006-7 

INF10 35% 38% 33% 

INF11 55% 52% 55% 

INF12 39% 34% 35% 

INF20 56% 44% 44% 

INF21 37% 44% 37% 

INF22 71% 61% 55% 

INF23 N/A 83% 97% 

INF24 70% 64% 58% 

INF30 81% 85% 84% 

INF31 93% 92% 85% 

INF35 N/A 98% 93% 

INF37 N/A 98% 98% 

INF42 N/A N/A 100% 
 

Next, Table 3 presents the enrolment numbers for these 
modules. Note that, as we advance from junior to senior 
years, the overall enrolment is dramatically reduced and the 
success rates increase. 

Assgn2  in [3..6] 

FAIL 

Assgn4  < 3 FAIL 

PASS 
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Table 3. Enrollment numbers at modules. 
 2004-5 2005-6 2006-7 

INF10 987 1.247 1.353 

INF11 492 517 642 

INF12 717 818 925 

INF20 362 389 420 

INF21 322 363 383 

INF22 321 291 321 

INF23 N/A 52 73 

INF24 157 167 221 

INF30 156 198 199 

INF31 149 200 144 

INF35 N/A 101 58 

INF37 N/A 106 132 

INF42 N/A N/A 109 
 
The above statistics are all drawn from the university registry 

and none is subject to any further processing. However, all 
results presented from now on, refer to experiments carried out 
totally using the GATREE system, with the occasional help of 
some post-processing automation scripts. 

4.1 Detecting a shift in exam grades 
There is a straightforward way to attempt to answer this 
question. One can build a model that attempts to answer the 
success question for the first stage of the final exam. Then, one 
can build a model that attempts to answer the success question 
for the overall student grade. A gross disparity in these numbers 
should be indicative of an issue that merits investigation. 

The simplest data to consider as input for this problem 
consists of exercise and exam grades, as in Table 1, omitting any 
other information (for example, which tutor was responsible for 
a student). The results reported are based on re-classification (we 
reserve a cross-validation like mechanism for the more detailed 
experiments later on) and are shown in Table 4. 

What does a difference signify? To answer that, one can take 
a step backwards and try to answer a simpler question: what does 
a large difference signify? We have elected to brand a difference 
as large when the re-classification accuracy of the same module 
for the same year differs by at least 20 percentage points when 
we compare the model predicting the pass/fail result of the first 
stage of the final exam and the corresponding model after a 
possible second stage (which is the actual pass/fail grade for the 
module). In Table 4 such differences are shown in bold. 

There are two issues that become apparent when one views 
Table 4. The first is that whenever we observe an increase in the 
model accuracy when switching from the first exam (E) to the 
final grade (F), this is associated with senior modules where 
eventual success rates (see Table 2) are substantial. The only 
decrease is observed in a junior year module where success rates 
are considerably reduced compared to senior year modules. 

Table 4. Model accuracies omitting tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 83 84 84 82 83 82 

INF11 75 76 76 78 75 80 

INF12 74 76 86 74 78 74 

INF20 76 70 76 59 87 60 
INF21 83 78 76 72 77 73 

INF22 68 80 68 76 63 70 

INF23 N/A 46 78 89 99 

INF24 67 67 68 66 69 70 

INF30 77 82 64 85 71 94 
INF31 65 95 86 93 68 91 
INF35 N/A 72 97 80 92 

INF37 N/A 95 100 95 98 

INF42 N/A N/A 96 100 
 

It is straightforward to attribute the increase in senior year 
modules to the fact that, eventually, students have to focus on 
their exam and pass the test, regardless of how well they did 
along the year. The large discrepancy, however, suggests that 
the exercises do not serve well their goal, which is to keep the 
students engaged in the learning process. One could say that 
exercises are less of learning opportunities and more of 
necessary evils. 

The dramatic decrease in the 2006-7 year results of the 
INF20 module are quite interesting. They reflect, basically, a 
huge fail rate in the first stage of the exam, which is well 
served by a small model that predicts failure all around. 

When seen from that viewpoint, however, the relatively 
narrow margins of the junior year modules seem quite 
impressive, since they are also associated with low overall 
pass rates. The difference, however, is that the junior modules 
also report significant dropout rates which skews 
pessimistically the rates reported in Table 2. 

4.2 Detecting tutor influence 
If we take the data sets that were used in section 4.1 and put 
back in the information on which tutor was responsible for 
each student group, we can run the same experiments and try 
to see whether the tutor attribute will surface in some models 
(sample data are shown in Table 5). 

In principle, observing models where the tutor attribute 
appears near the decision tree root would not be a good thing, 
suggesting that a crucial factor in student success is not the 
educational system itself but the tutor. As a matter of fact we 
can opt to not look for this information at all in the resulting 
trees; comparing the accuracies to the ones reported in Table 
4 should suffice. These results are now shown in Table 6. 
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Table 5. An expanded sample training set (see Group). 
Assgn1 Assgn2 Assgn3 Assgn4 Group Exam 

... ... ... ... ... ... 

4.6 7.1 3.8 9.1 Athens-1 PASS 

9.1 5.1 4.6 3.8 Patras-1 FAIL 

7.6 7.1 5.8 6.1 Athens-2 PASS 

Table 6. Model accuracies including tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 82 83 80 79 82 81 

INF11 75 77 76 78 75 80 

INF12 75 77 81 72 80 72 

INF20 76 72 76 62 87 61 

INF21 84 77 74 74 75 72 

INF22 66 80 68 74 62 75 

INF23 N/A 52 82 90 99 

INF24 63 69 69 69 66 74 

INF30 75 82 60 88 75 94 

INF31 67 94 85 93 89 91 
INF35 N/A 72 98 76 90 

INF37 N/A 96 100 94 98 

INF42 N/A N/A 96 100 
 

This time we observe that the relative difference between the 
models which utilise the tutor attribute and the ones that do not 
are quite small. There are some very interesting cases, however. 

For example, the INF11 module demonstrates near zero 
differences throughout. It is interesting to note that this module 
utilizes a plenary exam marking session, which means that tutors 
get to mark exam papers drawn from all groups at random. This 
places only marginal administrative overhead and, when viewed 
from the point of model consistency, seems to be well worth it. 

Another example is the INF31 module (shown in bold), 
which demonstrated a year where the tutor attribute seemed to be 
of paramount importance. In that year, the gap between the first 
exam stage and the final grade seems to be influenced by the 
tutors. It is now very narrow (89 to 91) while it was quite wide 
(68 to 91). This could suggest a relative gap in tutor 
homogeneity. 

There is one other way to view the importance of the tutor 
attribute. One can derive a model for one module group and then 
attempt to use that model as a predictor of performance for the 
other module groups (within the same module). This approach, 
while suppressing the tutor attribute, essentially tests its 
importance by specifically segmenting the module data set along 
groups. The overall accuracy is then averaged over all individual 
tests. This is the lesion comparison; its results are shown in 
Table 7. 

We highlight (in bold) the main difference from the results in 
Table 4, where it now seems that the gap has been shortened a 
while. Surprisingly, it suggests an erratic intra-group 
consistency. Note also, that this particular result in Table 4 was 
the only one not to pass the binary choice (50%) level, which it 
only just did in Table 6. 

Table 7. Lesion study model accuracies including tutor data. 
 2004-5 2005-6 2006-7 

 E F E F E F 

INF10 78 78 75 75 77 77 

INF11 70 74 72 75 71 74 

INF12 71 68 77 69 75 71 

INF20 70 65 72 60 82 61 

INF21 79 68 69 65 69 64 

INF22 57 74 61 68 60 65 

INF23 N/A 65 74 83 98 

INF24 62 70 66 69 63 66 

INF30 70 82 64 84 65 89 

INF31 63 91 79 91 59 83 

INF35 N/A 66 97 72 91 

INF37 N/A 95 98 91 95 

INF42 N/A N/A 93 100 
 

Furthermore, we tried to summarise the results from a 
further point of view: that of consistency between the results 
reported for the E and F columns of both tables. Essentially 
we computed the quantity (F5-E5)-(F6-E6) for each module 
for each year, where the subscript indicates which table that 
particular number was drawn from. Not surprisingly, the two 
singularities observed were module INF23 for year 2005-6 
(with a value of about 20%) and module INF31 for year 
2006-7 (with a value of about -22%). 

4.3 Observing the accuracy-size trade-off 
It is interesting to investigate whether the conventional 
wisdom on model characteristics is valid. In particular, we 
analysed the results in Table 6 and in Table 7 with respect to 
whether an increase (or decrease, accordingly) in model 
accuracy for a particular module for a year was associated 
with a reduction in model size. We say that the model 
accuracy increases if the accuracy for the E column of that 
year is less that the corresponding number in the F column. 
For the 68 pairs of numbers reported in Table 6 and in Table 
7 we observed that only in 4 of them did we see the same 
direction in model accuracy and model size. So, conventional 
wisdom was confirmed in nearly 95% of the cases. 

5 DISCUSSION 

HOU has been the first university in Greece to operate, from 
its very first year, a comprehensive assessment scheme (on 
tutoring and administrative services). Despite a rather hostile 
political environment (at least in Greece), quite a few 
academic departments have lately been moving along the 
direction of introducing such schemes, though the practice 
has yet to be adapted at a university level. Still, however, 
there is quite a mentality shift required when considering the 
subtle differences between “measuring” and “assessing”. 

The act of measuring introduces some error in what is 
being measured. If indices are interpreted as assessment 
indices, then people (actually, any “assessed” subject where 
people are involved – groups of people, for example) will 
gradually skew their behaviour towards achieving good 
measurements. Such behaviour is quite predictably human, of 
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course; the problem is that it simply educates people in the ropes 
of the measurement system while sidelining the real issue of 
improving the educational service. 

By shifting measurement to quantities that are difficult to 
“tweak”, one hopes that people whose performance is assessed 
will gradually shift form fine-tuning their short-term behaviour 
toward achieving longer-term goals. Indeed, if people find out 
that the marginal gains from fine-tuning their behaviour are too 
small for the effort expended to achieve them, it will be easier to 
convince them to improve more fundamental attitudes towards 
tutoring (as far as tutors are concerned) or studying (as far as 
students are concerned). 

In our application, this is demonstrated two-fold. 
First, by disseminating tutor group homogeneity indices, one 

hopes that, regardless how we call these indices, these tutor 
groups will be motivated by peer pressure to consider their 
performance vis-a-vis other tutor groups. Even if that may not be 
really required, that introspection itself will quite likely improve 
how hat particular tutor group co-operates; at least it will focus 
their decisions with respect to why such decisions might 
influence their overall ranking. 

For students, a similar argument applies. Realising that one 
fits a model which predicts likely failure, even if one knows that 
the particular model is known to err quite some times, is 
something that will most likely motivate that person to take a 
more decisive approach to studying. For adult students, such a 
decisive approach might even mean to drop a course of studying 
or defer studying. This is not necessarily negative, however; 
knowing how to better utilise one’s resources is a key skill in life 
long learning. 

We have selected decision trees because we want to generate 
models that can be effectively communicated to tutors and 
students alike. We have also selected genetic algorithms to 
induce the decision trees because we have shown [7] that, for the 
particular application domain, we can derive small and easy to 
communicate yet accurate trees. We thus need a hybrid 
approach: rule-based output to be comprehensible and grounded 
and evolutionary computing to derive this output. 

Which other techniques should one utilise to develop the 
models? We cannot fail to note that conventional statistics can 
be cumbersome to disseminate to people with a background on 
humanities or arts, and this could have an adverse impact on the 
user acceptance of such systems. In that sense, the decision of 
whether the models are computed centrally or in a decentralized 
fashion (by devolving responsibility to the tutors, for example) is 
a key factor. In any case, deploying our measurement scheme in 
an organization-wide context would also lend support to our 
initial preference for short models. At the same time, the 
possibility of a decentralized scheme also suggests that we 
should strive to use tools that do not demand a steep learning 
curve on the part of the tutors. 

Of course, one can take an alternative course and drop the 
requirement that a model has to be communicated. If we only 
focus on the indices then any technique can be used, from neural 
networks to more conventional ones, such as naive Bayes or 
logistic regression [4]. As in all data mining application 
contexts, it is the application that must drive the techniques to 
use; for our problem, suffice to note that the comparisons 
reported (Table 4, Table 6 and Table 7) are essentially technique 
independent, yet the GATREE approach has proven to-date to be 
the best method for prototyping the measurement exercise that 
we are developing. 

6 CONCLUSION 

We have shown how we have used a combination of genetic 
algorithms and decision trees in the context of experimenting 
with how one might setup a quality control system in an 
educational context. 

Quality control should be a core aspect of any educational 
system but setting up a system for quality control entails 
managerial and administrative decisions that may also have to 
deal with political side-effects. Deciding how to best and as 
early as possible defuse the potential stand-offs that a quality 
measurement message might trigger calls for the employment 
of techniques that not only ensure a basic technical soundness 
in the actual measurement but also cater to the way the results 
are conveyed and subsequently exploited. This is particularly 
so when the application context for the large scale suggests 
that data and models will freely flow amongst thousands of 
tutors and tens of thousands of students. 

We have earlier [9] expressed the view that our approach 
is applicable to any educational setting where performance 
measurement can be cast in terms of test (and exam) 
performance. In the proposed paper we have scaled up our 
analysis to cover several modules and years and still believe 
that taking the sting out of individual performance evaluation 
but still being able to convey the full message is a key 
component of tutoring self-improvement. Scaling our 
approach to other programmes, other institutions and, even, 
obtaining the approval of our own university for official and 
consistent reporting of such indices is, however, less of a 
technical nature and more of a political exercise. After all we 
need to persuade people that some innovations are less of a 
threat and more of an opportunity. 
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Recognizing predictive patterns in chaotic maps

Nicos G. Pavlidis1, Adam Adamopoulos2 and Michael N. Vrahatis3

Abstract. We investigate the existence of rules (in the form
of binary patterns) that allow the short-term prediction of
highly complex binary sequences. We also study the extent to
which these rules retain their predictive power when the se-
quence is contaminated with noise. Complex binary sequences
are derived by applying two binary transformations on real-
valued sequences generated by the well known tent map. To
identify short-term predictors we employ Genetic Algorithms.
The dynamics of the tent map depend strongly on the value
of the control parameter, r. The experimental results suggest
that the same is true for the number of predictors. Despite
the chaotic nature of the tent map and the complexity of the
derived binary sequences, the results reported suggest that
there exist settings in which an unexpectedly large number
of predictive rules exists. Furthermore, rules that permit the
risk free prediction of the value of the next bit are detected in
a wide range of parameter settings. By incorporating noise in
the data generating process, the rules that allow the risk free
prediction of the next bit are eliminated. However, for small
values of the variance of the Gaussian noise term there exist
rules that retain much of their predictive power.

1 Introduction

In this paper we consider the problem of identifying rules, in
the form of binary patterns, that are perfect, or in the worst
case good, short-term predictors of complex binary sequences.
A binary pattern of length L is defined as perfect short-term
predictor if its presence in any place of the binary sequence is
declarative of the value of the next bit. By definition, perfect
predictors, enable the risk-free prediction of the next bit. Sim-
ilarly, good short-term predictors, are binary patterns whose
appearance in any position of the binary sequence renders the
value of the next bit highly predictable.

Complex binary sequences are derived through the applica-
tion of binary transformations on real–valued data sequences
obtained from the tent map. The tent map is a piecewise-
linear, continuous map on the unit interval [0, 1] into itself:

fr(x) =


rx, x ∈ [0, 1/2]
r(1− x), x ∈ (1/2, 1]

, (1)
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where r is a control parameter that assumes values in the
interval [0, 2]. We consider a discrete process generated by:

xn+1 = fr(xn) = fr (fr (. . .))| {z }
(n+1) times

= f (n+1)
r (x0), n = 0, 1, . . . ,

(2)

where f
(n)
r denotes the nth iterate of fr. The Lyapunov ex-

ponent is given by:

λr(x) = lim
n→∞

1

n
ln

˛̨̨̨
d

dx
f (n)

r (x)

˛̨̨̨
= ln r,

everywhere in [0, 1]. For r ∈ (0, 1), the orbit, f
(n)
r (x0), for

any x0 ∈ [0, 1] converges to the unique fixed point 0, as n
increases. For r = 1, every point x ∈ [0, 1/2] is a fixed point.
The chaotic region is 1 < r 6 2, in which λr > 0 [5]. For
r > 1 the map has two unstable fixed points, one at 0 and the
other at x∗(r) = r/(r+1). Using the notation in [5], we write,

xn(r) ≡ f
(n)
r (1/2). Then x1(r) = r/2 and x2(r) = r(1−r/2).

The intervals, (0, x2(r)) and (x1(r), 1) are transient for fr, and
we have frA = A for A = [x2(r), x1(r)]. If r ∈

`√
2, 2
˜
, then

A is an attractor. At r =
√

2, the attractor A splits into two
bands, A0 and A1, at the position x = x∗(r). For r ∈

`
1,
√

2
˜

we have fr(A0) = A1 and fr(A1) = A0. Similarly, at r2 =
√

2,
each of the two bands splits into two bands, Aij(i, j = 0, 1). In
this manner, as r decreases, band splitting occurs successively
at r = r1, r2, . . . , rm, . . ., where rm = 21/2m

, and m = 1, 2, . . ..
By setting r0 = 2, then, for rm+1 < r < rm, there exist 2m

disjoint intervals Ai1,i2,...,im , ik = (0, 1) in which the invariant
density is positive (the 2m-band regime). Defining, l = 1+i1+
2i2+· · ·+2m−1im, and Jl ≡ Ai1,i2,...,im , it is shown in [5] that
fr(Jl) = Jl+1 for 1 6 l 6 2m − 1, and fr(JM ) = J1, where
M = 2m. Therefore, if r lies in the interval

`
1,
√

2
˜
, fr maps

a set of intervals between r − r2/2 and r/2 to themselves.
If, on the other hand, r >

√
2 these intervals merge. This is

illustrated in the bifurcation diagram of Fig. 1.
Real-world time series are frequently contaminated by

noise. To this end, we investigate the resilience of the predic-
tors to the presence of noise in the data generating process.
We include an additive Gaussian noise term with zero mean,
to Eq. (1), and study the extent to which the predictors de-
tected in the original sequences retain their predictive power
for different values of the variance of the distribution.

2 Methods

The tent map, described in Eq. (1), was employed to gener-
ate raw data sequences xn(x0, r). To generate the raw data
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Figure 1. Bifurcation diagram of the steady states of the tent
map with respect to r.

from the tent map the GNU Multiple Precision Arithmetic Li-
brary (GMP) [1] was utilized to generate floating point num-
bers with precision of at least 5000 bits. Subsequently, binary
data sequences bn(x0, r) were produced by applying the sim-
ple, threshold, binary transformation originally proposed for
the logistic equation in [4]:

bn(x0, r) =


0, if xn 6 0.5,
1, if xn > 0.5.

(3)

Eq. (3) produces a bit with value ‘1’ when the value of
the tent map is greater that 0.5 and a bit with value ‘0’
otherwise. To avoid transient phenomena, the first 104 iter-
ations of the map were discarded. A number of real-valued
sequences xn(x0, r) were generated through Eq. (1) for differ-
ent values of the control parameter, r, and starting points, x0.
Binary sequences, bn(x0, r), of 106 bits were produced by ap-
plying Eq. (3) on the raw data, xn(x0, r).

A second binary transformation, also proposed in [4] for the
logistic equation, was applied on the raw data. This transfor-
mation is also a simple, linear, threshold binary transforma-
tion, but with a variable threshold. The threshold value is the
previous value of the raw data of the tent map. Hence, the
second transformation is formulated as:

bn(x0, r) =


0, if xn 6 xn−1,
1, if xn > xn−1.

(4)

The number of all possible patterns of length L, 2L, in-
creases exponentially with respect to L. For large values of L,
therefore, it is infeasible to perform exhaustive search, and
more efficient search methods, such as Genetic Algorithms
(GAs), are required [2, 3]. To this end, a simple GA with bi-
nary representation was implemented and utilized. The GA
population consisted of L–bit patterns. The fitness of a pat-
tern p, was the number of times p was encountered in the
binary sequence bn(x0, r). The selection process used was
roulette wheel selection. As crossover operator the well–known
one–point crossover operator was employed. Finally, the mu-
tation operator utilized was the flip bit mutation operator .
GAs were applied for several values of L and a number of
binary sequences, bn(x0, r). Consequently, patterns that can
account as perfect, or good, predictors can be identified by
comparing the obtained results for L–bit and (L+1)–bit pat-
terns.

3 Presentation of Results

3.1 Fixed threshold

In the following, we present indicative results for binary se-
quences of length 106, obtained by applying the transforma-
tion of Eq. (3). In Fig. 2 the distribution of bits with value ‘1’
and ‘0’ for different values of r is plotted. Evidently, an equal
distribution of the two occurs only as r tends to 2.

Figure 2. Distribution of ones (dashed) and zeros (solid)
according to the transformation of Eq. (3) for bn(0.1, r) and

r ∈ [1, 2] with stepsize 10−3.

The number of distinct patterns of length L that appear for
different values of r, is reported in Table 1. In detail, the first
column of Table 1 reports the value of r; the second column
indicates the length of the binary patterns L; the third column
corresponds to the number of different patterns of length L
identified in each binary sequence (#f); and finally the fourth
column reports the ratio of the number of patterns of length L
found (#f) to the number of possible binary patterns of this
length (2L). The lower the ratio shown in the last column of
the table the fewer the patterns that appear in the binary
sequence and hence the higher the predictability.

An inspection of Table 1 suggests that increasing the value
of r, gradually increases the number of patterns that are en-
countered for each value of L and hence degrades predictabil-
ity. This effect becomes clear by comparing the results for
r = 1.44 and r = 1.999. For r = 1.44 and L = 2, already the
ratio of appearing to all possible patterns is 0.75 suggesting
that one out of the four possible patterns is absent. This ratio
decreases as L increases to reach 0.091 for L = 9 indicating
that less than 10% of all possible patterns of this length are
present in the sequence b106(0.1, 1.44). On the contrary, for
r = 1.999 all possible patterns appear for all the different val-
ues of L up to and including L = 9. It should be noted that
for r = 1.999 and L = 10 the ratio of column four becomes
less than unity, but still its value is very close to that, 0.999,
suggesting that even in this case increasing L reduces the ratio
but this effect takes place very slowly.

Next, the impact of introducing noise to the data generating
process is investigated. A normally distributed, ε ∼ N (0, σ2),
additive noise term was included in the tent map equation,
yielding xn+1 = fr(xn) + ε, where fr(xn) is given by Eq. (1).
It should be noted that we enforced the resulting raw data se-
ries to lie in the interval [0, 1] by rejecting realizations of the
noise term that would result in xn+1 /∈ [0, 1]. The obtained
experimental results for the most predictable binary sequence
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Table 1. Number of patterns in b106 (0.1, r) obtained through
the transformation of Eq. (3) for different values of r.

r L #f #f/2L

2 3 0.750
3 5 0.625
4 7 0.437
5 11 0.343

1.44 6 15 0.234
7 23 0.179
8 31 0.121
9 47 0.091
2 3 0.750
3 5 0.625
4 7 0.437
5 11 0.343

1.5 6 16 0.250
7 25 0.195
8 37 0.144
9 57 0.111
2 3 0.750
3 5 0.625
4 8 0.500
5 13 0.406

1.6 6 21 0.328
7 34 0.265
8 55 0.214
9 88 0.171
2 4 1.000
3 7 0.875

1.7 4 12 0.750
5 21 0.656

r L #f #f/2L

6 36 0.562
1.7 7 61 0.476

8 105 0.410
9 179 0.349
2 4 1.000
3 7 0.875
4 13 0.812
5 24 0.750

1.8 6 43 0.671
7 78 0.609
8 141 0.550
9 253 0.494
2 4 1.000
3 8 1.000
4 15 0.937
5 29 0.906

1.9 6 55 0.859
7 105 0.820
8 199 0.777
9 379 0.740
2 4 1.000
3 8 1.000
4 16 1.000
5 32 1.000

1.999 6 64 1.000
7 128 1.000
8 256 1.000
9 512 1.000

when no noise is included, b106(0.1, 1.44), are summarised in
Table 2. The first column of the table corresponds to the pat-
tern length L; the second lists all the possible binary patterns
of length L (due to space limitations, only patterns of length
up to four are included); while columns three to six report the
number of occurrences of each pattern for different values of
the variance, σ2, starting with the case of no noise (σ2 = 0).

Starting from the case of no noise, we observe that more
than three quarters of the binary sequence consists of bits
with value ‘1’. Furthermore, from the patterns with length
two, the pattern ‘00’ is missing, indicating that a ‘0’ is always
followed by a ‘1’. This fact renders the unit length pattern
‘0’ (and consequently all patterns of any length ending with a
‘0’) a perfect predictor, and hence approximately 23% of the
sequence is perfectly predictable. The inclusion of the additive
noise term distorts these findings gradually as the variance in-
creases. For σ2 = 0.01 findings are marginally altered as the
length two pattern ‘00’ appears only 17 times in the length
106 binary sequence. Thus, the probability of a ‘1’ following
a bit with value ‘0’ is 0.99993. For σ2 = 0.1 and σ2 = 0.5
this probability becomes 0.56109 and 0.44146 respectively. In
the case of σ2 = 0.5, therefore, the impact of noise is so large
that the original finding is reversed and a ‘0’ is more likely to
be followed by a ‘0’. The fact that increasing the variance of
the noise term deteriorates the predictability of the binary se-
quence is also evident from the fact that patterns that did not
appear in the not contaminated with noise sequence, appear
frequently in the contaminated series. The predictive power
of the binary pattern ‘0’ (perfect predictors in the noise-free
binary sequence) with respect to the value of the variance of
the additive noise term, σ2 is illustrated in Fig. 3. To gen-
erate Fig. 3, σ2 assumed values in the interval [0, 0.5] with
stepsize 10−3.

Table 2. Patterns in b106 (0.1, 1.44) obtained through the
transformation of Eq. (3) and different values of σ2.

L patterns σ2 = 0.0 σ2 = 0.01 σ2 = 0.1 σ2 = 0.5
1 0 230307 246757 434808 552264

1 769693 753243 565192 447736
00 0 17 190252 308874

2 01 231742 246799 243209 244133
10 231742 246799 243209 244133
11 536514 506383 323328 202858
000 0 0 93237 173043
001 0 17 97015 135831
010 112119 119901 108060 133112
011 119623 126897 135149 111021

3 100 0 17 97015 135831
101 231742 246782 146194 108301
110 119623 126898 135148 111021
111 416890 379485 188179 91837
0000 0 0 50612 96905
0001 0 0 42625 76138
0010 0 17 43068 74254
0011 0 0 53947 61577
0100 0 9 44101 74116
0101 112119 119892 63959 58995
0110 0 2915 55812 60753

4 0111 119622 123982 79336 50268
1000 0 0 42625 76138
1001 0 17 54390 59693
1010 112119 119884 64992 58858
1011 119623 126897 81202 49443
1100 0 8 52914 61715
1101 119623 126890 82234 49306
1110 119623 123983 79336 50268
1111 297267 255502 108843 41569

Figure 3. Predictive power of the unit length binary pattern ‘0’
in the sequences obtained through the transformation of Eq (3)

with respect to the variance σ2 of the noise term.

3.2 Variable threshold

In this subsection we present results from the analysis of
binary sequences derived by applying the transformation of
Eq. (4), according to which the threshold is equal to the previ-
ous value of the tent map. The distribution of bits with value
‘1’ and ‘0’ for different values of the control parameter r is
illustrated in Fig. 4. Comparing Figs. 2 and 4 it is evident
that the two transformations yield substantially different dis-
tributions of ones and zeros. For the second transformation,
the proportion of ones exceeds that of zeros for r marginally
larger than 1. As shown in Fig. 4 the two proportions are
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Figure 4. Distribution of ones (dashed) and zeros (solid)
according to the transformation of Eq. (4) for bn(0.1, r)

and r ∈ [1, 2] with stepsize 10−3.

equal until r becomes equal to
√

2. This finding is attributed
to the band splitting phenomenon, briefly described in Sec-
tion 1, that occurs for r ∈ (1,

√
2] [5]. From that point and

onward their difference increases.
The number of patterns of different length L that appear

in the binary sequences of length 106, are reported in Table 3
for different values of the control parameter r. More specifi-
cally, the first column of Table 3 reports the value of r; the
second column corresponds to the length L of the binary pat-
terns; the third column reports the number of different pat-
terns of length L that were identified in the sequence (#f);
and lastly, column four depicts the proportion of the patterns
encountered (#f) to the number of possible binary patterns
of length L (2L).

As in the case of the fixed threshold binary transforma-
tion, increasing the value of the control parameter r increases
the number of patterns that appear in the derived binary
sequences. However, this effect is more pronounced for the
fixed threshold transformation of Eq. (3) than for the vari-
able threshold transformation of Eq. (4). Even for r = 1.999,
Table 3 reports that the number of binary patterns of length
two is three, suggesting that one pattern of length two does
not appear, and hence a unit length perfect binary predictor
exists. In contrast, for the fixed threshold binary transforma-
tion, Table 1, all four length two binary patterns are present
in the sequences that are generated with r > 1.7. Moreover,
the ratio of the patterns of length L found to the number of
possible patterns of this length decreases more rapidly in the
sequences generated by the variable threshold transformation.
For instance, for r = 1.44, the number of patterns of length
nine is 47 for the fixed threshold transformation, while for the
variable threshold transformation this number is 10.

The impact of introducing noise on the short-term predic-
tors is studied next. Table 4 reports the patterns of length
two to four that were encountered in the binary sequence
b106(0.1, 1.44) that was obtained through the second transfor-
mation, for different values of σ2. In detail, the first column of
Table 4 corresponds to the length L of the patterns; the second
column lists all possible binary patterns of this length; while
columns three to six report the number of occurrences of each
pattern in the binary sequences obtained for different values

Table 3. Number of patterns in b106 (0.1, r) obtained through
the transformation of Eq. (4) for different values of r.

r L #f #f/2L

2 3 0.750
3 4 0.500
4 5 0.312
5 6 0.187

1.44 6 7 0.109
7 8 0.062
8 9 0.035
9 10 0.019
2 3 0.750
3 4 0.500
4 5 0.312
5 6 0.187

1.5 6 7 0.109
7 8 0.062
8 9 0.035
9 11 0.021
2 3 0.750
3 4 0.500
4 5 0.312
5 7 0.218

1.6 6 9 0.140
7 12 0.093
8 15 0.058
9 19 0.037
2 3 0.750

1.7 3 4 0.500
4 5 0.312
5 7 0.218

r L #f #f/2L

6 9 0.140
1.7 7 12 0.093

8 16 0.062
9 21 0.041
2 3 0.750
3 5 0.625
4 7 0.437
5 10 0.312

1.8 6 14 0.218
7 19 0.148
8 27 0.105
9 38 0.074
2 3 0.750
3 5 0.625
4 8 0.500
5 12 0.375

1.9 6 18 0.281
7 27 0.210
8 40 0.156
9 59 0.115
2 3 0.750
3 5 0.625
4 8 0.500
5 13 0.406

1.999 6 21 0.328
7 34 0.265
8 55 0.214
9 89 0.173

of the variance of the additive noise term ε ∼ N (0, σ2). Note
that as in the previous case, the resulting raw data sequence

{xn}10
6

n=0 was restrained in the interval [0, 1] by rejecting re-
alizations of the noise term that would result in xn /∈ [0, 1].

Starting from the case of no noise, we observe that zeros
and ones are approximately equally distributed in the binary
sequence. As in the case of the first transformation, pattern
‘00’ is missing from the patterns of length two, a finding which
implies that a ‘0’ is always followed by a ‘1’, and hence all the
binary patterns of any length that end with ‘0’ are perfect pre-
dictors. Furthermore, the pattern ‘111’ was not encountered,
implying that ‘11’ is always followed by a ‘0’. From the inspec-
tion of the findings for patterns of length three we also obtain
a good predictor of length two, namely the pattern ‘01’, for
which the probability of appearance of ‘0’ immediately after
this pattern is 0.96919. Comparing the aforementioned find-
ings for the case of no noise, with the corresponding ones
obtained by the first, fixed threshold, transformation we con-
clude that the binary sequence obtained through the variable
threshold transformation is more predictable.

As expected, the introduction of noise eliminates all the
perfect predictors identified in the original binary sequence.
For a low value of the variance, σ2 = 0.01, the findings are
marginally distorted. The previously not encountered pattern
‘00’ appears 5979 times yielding a probability of encounter-
ing a bit with the value ‘1’ following a bit with a value of
‘0’ equal to 0.987688. This probability is marginally lower
than the corresponding probability for the first transforma-
tion. On the other hand, when the variance of the noise term
increases to σ2 = 0.1 and σ2 = 0.5 this probability becomes
0.867348 and 0.698495, respectively. Both these probabilities

46



Table 4. Patterns in bn(0.1, 1.44) obtained through the
transformation of Eq. (4) and different values of σ2.

L patterns σ2 = 0.0 σ2 = 0.01 σ2 = 0.1 σ2 = 0.5
1 0 492207 485787 399771 471981

1 507793 514213 600229 528019
00 0 5979 52973 142274

2 01 492415 479647 346368 329606
10 492414 479647 346368 329606
11 15169 34725 254289 198512
000 0 628 7257 32975
001 0 5351 45716 109299
010 477246 447216 186610 187262
011 15169 32430 159758 142343

3 100 0 5351 45716 109299
101 492414 474296 300652 220307
110 15168 32430 159758 142343
111 0 2295 94530 56169
0000 0 71 979 6175
0001 0 557 6278 26800
0010 0 4840 24665 57459
0011 0 511 21051 51840
0100 0 3964 24580 59905
0101 477246 443252 162030 127357
0110 15168 30378 98071 98715

4 0111 0 2052 61686 43628
1000 0 557 6278 26800
1001 0 4794 39438 82499
1010 477245 442376 161945 129803
1011 15169 31919 138707 90503
1100 0 1387 21136 49394
1101 15168 31043 138622 92949
1110 0 2052 61686 43628
1111 0 243 32844 12541

are higher than the corresponding ones for the case of the
transformation of Eq. (3). Moreover, note that for the case of
the first transformation and σ2 = 0.5 a bit with value ‘0’ is
more likely to be followed by a bit with the same value (prob-
ability equal to 0.55854); a phenomenon that does not occur
at present. For the pattern ‘11’ the probability of encounter-
ing a zero immediately after it becomes 0.933909, 0.628256,
and 0.717049, for σ2 equal to 0.01, 0.1, and 0.5, respectively.
Finally, for the pattern ‘01’ the probability of zero after its
appearance is 0.932387, 0.538762, and 0.568140 for σ2 equal
to 0.01, 0.1, and 0.5, respectively. The predictive power of the
binary patterns, ‘0’, ‘11’, (perfect predictors in the noise-free
binary sequence) and ‘01’ (good predictor in the noise-free
binary sequence), with respect to the value of the variance of
the additive noise term, σ2 is illustrated in Fig. 5. To gener-
ate Fig. 5, σ2 assumed values in the interval [0, 0.5] with a
stepsize of 10−3.

4 Conclusions

Despite the chaotic nature of the tent map and the resulting
complexity of the binary sequences that were derived after the
application of two threshold, binary, transformations a large
number of short-term predictors was detected. The reported
experimental results indicate that the binary sequences gen-
erated through the variable threshold binary transformation
are more predictable than those obtained through the fixed
threshold transformation. This finding is clearer for values of
the control parameter, r, close to its upper bound, 2. Indeed
for r = 1.999 all the patterns of length up to nine appear in the
binary sequences obtained through the first transformation,

Figure 5. Predictive power of binary patterns identified in the
sequences obtained through the transformation of Eq (4) with

respect to the variance σ2 of the noise term.

suggesting that there is no perfect predictor. On the contrary,
for the sequences generated through the second transforma-
tion with the same value of r, only three out of the four pos-
sible patterns of length two are encountered, suggesting that
there is a perfect short-term predictor of length one. The in-
clusion of an additive Gaussian noise term with zero mean in
the tent map equation eliminated all perfect predictors. How-
ever, for small values of the variance of the Gaussian noise
binary patterns with high predictive power were identified.

Future work on the subject will include the investigation of
multiplicative noise, as well as, the application of this method-
ology to real–world time series and in particular financial time
series. It is worth noting that the second binary transforma-
tion is particularly meaningful in the study of financial time
series as it corresponds to the direction of change of the next
value relative to the present one.
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Abstract. In this paper, we present an improved approach 
integrating rules, neural networks and cases, compared to a 
previous one. The main approach integrates neurules and cases. 
Neurules are a kind of integrated rules that combine a symbolic 
(production rules) and a connectionist (adaline unit) 
representation. Each neurule is represented as an adaline unit. 
The main characteristics of neurules are that they improve the 
performance of symbolic rules and, in contrast to other hybrid 
neuro-symbolic approaches, retain the modularity of production 
rules and their naturalness in a large degree. In the improved 
approach, various types of indices are assigned to cases 
according to different roles they play in neurule-based 
reasoning, instead of one. Thus, an enhanced knowledge 
representation scheme is derived resulting in accuracy 
improvement. Experimental results demonstrate its 
effectiveness.  

1   INTRODUCTION 
In contrast to rule-based systems that solve problems from 
scratch, case-based systems use pre-stored situations (i.e., 
cases) to deal with similar new situations. Case-based reasoning 
offers some advantages compared to symbolic rules and other 
knowledge representation formalisms. Cases represent specific 
knowledge of the domain, are natural and usually easy to obtain 
[11], [12]. Incremental learning comes natural to case-based 
reasoning. New cases can be inserted into a knowledge base 
without making changes to the preexisting knowledge. The 
more cases are available, the better the domain knowledge is 
represented. Therefore, the accuracy of a case-based system can 
be enhanced throughout its operation, as new cases become 
available. A negative aspect of cases compared to symbolic 
rules is that they do not provide concise representations of the 
incorporated knowledge. Also it is not possible to represent 
heuristic knowledge. Furthermore, the time-performance of the 
retrieval operations is not always the desirable.   

Approaches integrating rule-based and case-based reasoning 
have given interesting and effective knowledge representation 
schemes and are becoming more and more popular in various 
fields [3], [13], [14], [15], [17], [18], [19]. The objective of 
these efforts is to derive hybrid representations that augment the 
positive aspects of the integrated formalisms and 
simultaneously minimize their negative aspects. The 
complementary advantages and disadvantages of rule-based and 
case-based reasoning are a good justification for their possible 

combination. The bulk of the approaches combining rule-based 
and case-based reasoning follow the coupling models [17]. In 
these models, the problem-solving (or reasoning) process is 
decomposed into tasks (or stages) for which different 
representation formalisms (i.e., rules or cases) are applied. 

However, a more interesting approach is one integrating 
more than two reasoning methods towards the same objective. 
In [16] and [10], such an approach integrating three reasoning 
schemes, namely rules, neurocomputing and case-based 
reasoning in an effective way is introduced. To this end, 
neurules and cases are combined. Neurules are a type of hybrid 
rules integrating symbolic rules with neurocomputing in a 
seamless way. Their main characteristic is that they retain the 
modularity of production rules and also their naturalness in a 
large degree. In that approach, on the one hand, cases are used 
as exceptions to neurules, filling their gaps in representing 
domain knowledge and, on the other hand, neurules perform 
indexing of the cases facilitating their retrieval. Finally, it 
results in accuracy improvement. 

In this paper, we enhance the above approach by employing 
different types of indices for the cases according to different 
roles they play in neurule-based reasoning. In this way, an 
improved knowledge representation scheme is derived as 
various types of neurules’ gaps in representing domain 
knowledge are filled in by indexed cases. Experimental results 
demonstrate the effectiveness of the presented approach 
compared to our previous one. 

The rest of the paper is organized as follows. Section 2 
presents neurules, whereas Section 3 presents methods for 
constructing the indexing scheme of the case library. Section 4 
describes the hybrid inference mechanism. Section 5 presents 
experimental results regarding accuracy of the inference 
process. Section 6 discusses related work. Finally, Section 7 
concludes. 

2   NEURULES 
Neurules are a type of hybrid rules integrating symbolic rules 
with neurocomputing giving pre-eminence to the symbolic 
component. Neurocomputing is used within the symbolic 
framework to improve the performance of symbolic rules [7], 
[10]. In contrast to other hybrid approaches (e.g. [4], [5]), the 
constructed knowledge base retains the modularity of 
production rules, since it consists of autonomous units 
(neurules), and also retains their naturalness in a large degree, 
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since neurules look much like symbolic rules [7], [8]. Also, the 
inference mechanism is a tightly integrated process, which 
results in more efficient inferences than those of symbolic rules 
[7], [10]. Explanations in the form of if-then rules can be 
produced [9], [10]. 

 

2.1 Syntax and Semantics 

The form of a neurule is depicted in Fig.1a. Each condition Ci is 
assigned a number sfi, called its significance factor. Moreover, 
each rule itself is assigned a number sf0, called its bias factor. 
Internally, each neurule is considered as an adaline unit 
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the conditions 
of the rule. The weights of the unit are the significance factors 
of the neurule and its bias is the bias factor of the neurule. Each 
input takes a value from the following set of discrete values: [1 
(true), 0 (false), 0.5 (unknown)]. This gives the opportunity to 
easily distinguish between the falsity and the absence of a 
condition in contrast to symbolic rules. The output D, which 
represents the conclusion (decision) of the rule, is calculated via 
the standard formulas: 

D = f(a) ,    ∑
n

i=
ii Csf + = sf     

1
0a  

( )
⎩
⎨
⎧ ≥

=
         

a           
a

otherwise-
if

f
1

01
 

 
where a is the activation value and f(x) the activation function, 
a threshold function. Hence, the output can take one of two 
values (‘-1’, ‘1’) representing failure and success of the rule 
respectively. 

 
Fig. 1. (a) Form of a neurule (b) a neurule as an adaline unit 

The general syntax of a condition Ci and the conclusion D is: 
<condition>::= <variable> <l-predicate> <value>  
<conclusion>::= <variable> <r-predicate> <value> 
where <variable> denotes a variable, that is a symbol 
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, in a 
medical domain. <l-predicate> denotes a symbolic or a numeric 
predicate. The symbolic predicates are {is, isnot} whereas the 
numeric predicates are {<, >, =}. <r-predicate> can only be a 
symbolic predicate. <value> denotes a value. It can be a symbol 
or a number. The significance factor of a condition represents 
the significance (weight) of the condition in drawing the 

conclusion(s). Table 1 (Section 3) presents two example 
neurules, from a medical diagnosis domain. 

Neurules can be constructed either from symbolic rules, thus 
exploiting existing symbolic rule bases, or from empirical data 
(i.e., training examples) (see [7] and [8] respectively). An 
adaline unit is initially assigned to each possible conclusion.  
Each unit is individually trained via the Least Mean Square 
(LMS) algorithm. When the training set is inseparable, special 
techniques are used. In that case, more than one neurule having 
the same conclusion are produced. 

 
Table 1. Example neurules 

NR1: (-23.9) 
if patient-class is human0-20 (10.6), 
    pain is continuous (10.5), 
    fever is high (8.8), 
    fever is medium (8.4), 
    patient-class is human21-35 (6.2), 
    fever is no-fever (2.7), 
    ant-reaction is medium (1.1) 
then disease-type is inflammation 

NR2: (-13.4) 
 if patient-class is human21-35 (6.9), 

  pain is continuous (3.2), 
  joints-pain is yes (3.1), 
  fever is low (1.5), 
  fever is no-fever (1.5) 

 then disease-type is chronic-
inflammation 

 

2.2  The Neurule-Based Inference Engine 

The neurule-based inference engine performs a task of 
classification: based on the values of the condition variables 
and the weighted sums of the conditions, conclusions are 
reached. It gives pre-eminence to symbolic reasoning, based on 
a backward chaining strategy [7], [10]. As soon as the initial 
input data is given and put in the working memory, the output 
neurules are considered for evaluation. One of them is selected 
for evaluation. Selection is based on textual order. A neurule 
fires if the output of the corresponding adaline unit is computed 
to be ‘1’ after evaluation of its conditions. A neurule is said to 
be ‘blocked’ if the output of the corresponding adaline unit is 
computed to be ‘-1’ after evaluation of its conditions. 

A condition evaluates to ‘true’ (‘1’), if it matches a fact in 
the working memory, that is there is a fact with the same 
variable, predicate and value. A condition evaluates to 
‘unknown’, if there is a fact with the same variable, predicate 
and ‘unknown’ as its value. A condition cannot be evaluated if 
there is no fact in the working memory with the same variable. 
In this case, either a question is made to the user to provide data 
for the variable, in case of an input variable, or an intermediate 
neurule with a conclusion containing the variable is examined, 
in case of an intermediate variable. A condition with an input 
variable evaluates to ‘false’ (‘0’), if there is a fact in the 
working memory with the same variable, predicate and 
different value. A condition with an intermediate variable 
evaluates to ‘false’ if additionally to the latter there is no 
unevaluated intermediate neurule that has a conclusion with the 
same variable. Inference stops either when one or more output 
neurules are fired (success) or there is no further action 
(failure). 

During inference, a conclusion is rejected (or not drawn) 
when none of the neurules containing it fires. This happens 
when: (i) all neurules containing the conclusion have been 
examined and are blocked or/and (ii) a neurule containing an 
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alternative conclusion for the specific variable fires instead. For 
instance, if all neurules containing the conclusion ‘disease-type 
is inflammation’ have been examined and are blocked, then this 
conclusion is rejected (or not drawn). If a neurule containing 
e.g. the alternative conclusion ‘disease-type is primary-
malignant’ fires, then conclusion ‘disease-type is inflammation’ 
is rejected (or not drawn), no matter whether all neurules 
containing as conclusion ‘disease-type is inflammation’ have 
been examined (and are blocked) or not. 

3   INDEXING 
Indexing concerns the organization of the available cases so 
that combined neurule-based and case-based reasoning can be 
performed. Indexed cases fill in gaps in the domain knowledge 
representation by neurules and during inference may assist in 
reaching the right conclusion. To be more specific, cases may 
enhance neurule-based reasoning to avoid reasoning errors by 
handling the following situations: 

(a) Examining whether a neurule misfires. If sufficient 
conditions of the neurule are satisfied so that it can fire, it 
should be examined whether the neurule misfires for the 
specific facts, thus producing an incorrect conclusion. 

(b) Examining whether a specific conclusion was erroneously 
rejected (or not drawn). 

In the approach in [10], the neurules contained in the neurule 
base were used to index cases representing their exceptions. A 
case constitutes an exception to a neurule if its attribute values 
satisfy sufficient conditions of the neurule (so that it can fire) 
but the neurule's conclusion contradicts the corresponding 
attribute value of the case. In this approach, various types of 
indices are assigned to cases. More specifically, indices are 
assigned to cases according to different roles they play in 
neurule-based reasoning and assist in filling in different types 
of gaps in the knowledge representation by neurules. Assigning 
different types of indices to cases can produce an effective 
approach combining symbolic rule-based with case-based 
reasoning [1]. 

In this new approach, a case may be indexed by neurules and 
by neurule base conclusions as well. In particular, a case may 
be indexed as: 

(a) False positive (FP), by a neurule whose conclusion is 
contradicting. Such cases, as in our previous approach, 
represent exceptions to neurules and may assist in 
avoiding neurule misfirings.  

(b) True positive (TP), by a neurule whose conclusion is 
endorsing. The attribute values of such a case satisfy 
sufficient conditions of the neurule (so that it can fire) 
and the neurule's conclusion agrees with the 
corresponding attribute value of the case. Such cases 
may assist in endorsing correct neurule firings.  

(c) False negative (FN), by a conclusion erroneously 
rejected (or not drawn) by neurules. Such cases may 
assist in reaching conclusions that ought to have been 
drawn by neurules (and were not drawn). If neurules 
with alternative conclusions containing this variable 
were fired instead, it may also assist in avoiding neurule 
misfirings. ‘False negative’ indices are associated with 

conclusions and not with specific neurules because there 
may be more than one neurule with the same conclusion 
in the neurule base. 

The indexing process may take as input the following types 
of knowledge: 

(a) Available neurules and non-indexed cases. 
(b) Available symbolic rules and indexed cases. This type of 

knowledge concerns an available formalism of symbolic 
rules and indexed exception cases as the one presented in 
[6].  

The availability of data determines which type of knowledge 
is provided as input to the indexing module. If an available 
formalism of symbolic rules and indexed cases is presented as 
input, the symbolic rules are converted to neurules using the 
‘rules to neurules’ module. The produced neurules are 
associated with the exception cases of the corresponding 
symbolic rules [10]. Exception cases are indexed as ‘false 
positives’ by neurules. Furthermore, for each case ‘true 
positive’ and ‘false negative’ indices may be acquired using the 
same process as in type (a). 

When available neurules and non-indexed cases are given as 
input to the indexing process, cases must be associated with 
neurules and neurule base conclusions. For each case, this 
information can be easily acquired as following: 

Until all intermediate and output attribute values of the case 
have been considered: 
1. Perform neurule-based reasoning for the neurules based on 

the attribute values of the case. 
2. If a neurule fires, check whether the value of its conclusion 

variable matches the corresponding attribute value of the 
case. If it does (doesn't), associate the case as a ‘true 
positive’ (‘false positive’) with this neurule. 

3. Check all intermediate and final conclusions. Associate the 
case as a ‘false negative’ with each rejected (or not drawn) 
conclusion that ought to have been drawn based on the 
attribute values of the case. 
To illustrate how the indexing process works, we present the 

following example. Suppose that we have a neurule base 
containing the two neurules in Table 1 and the example cases 
shown in Table 2 (only the most important attributes of the 
cases are shown). The cases however, also possess other 
attributes (not shown in Table 2). 

‘disease-type’ is the output attribute that corresponds to the 
neurules’ conclusion variable. Table 3 shows the types of 
indices associated with each case in Table 2 at the end of the 
indexing process. 

To acquire indexing information, the input values 
corresponding to the attribute values of the cases are presented 
to the example neurules. Recall that when a neurule condition 
evaluates to ‘true’ it gets the value ‘1’, whereas when it is false 
gets ‘0’. 

For example, given the input case C2, the final weighted sum 
of neurule NR1 is: -23.9 + 10.6 + 10.5 + 8.8 = 6>0. Note that 
the first three conditions of NR1 evaluate to ‘true’ whereas the 
remaining four (i.e., ‘fever is medium’, ‘fever is no-fever’, 
‘patient-class is human21-35’ and ‘ant-reaction is medium’) to 
‘false’ (not contributing to the weighted sum). 

 

51



Table 2. Example cases 
Case 
ID 

patient-class pain fever ant-
reaction 

joints-
pain disease-type 

C1 human21-35 continuous low none yes chronic-
inflammation 

C2 human0-20 continuous high none no inflammation 
C3 human0-20 night high none no inflammation 
C4 human0-20 continuous medium none no inflammation 

C5 human21-35 continuous no-fever medium yes chronic-
inflammation 

C6 human0-20 continuous low none no 
chronic-

inflammation 
 

The fact that the final weighted sum is positive means that 
sufficient conditions of NR1 are satisfied so that it can fire. 
Furthermore, the corresponding output attribute value of the 
case matches the conclusion of NR1 and therefore C2 is 
associated as ‘true positive’ with NR1.  
 

Table 3. Indices assigned to the example cases in Table 2 
Case 
ID 

Type of index Indexed by 

C1 ‘True positive’ Neurule NR2 
C2 ‘True positive’ Neurule NR1 
C3 ‘False negative’ Conclusion ‘disease-type is 

inflammation’ 
C4 ‘True positive’ Neurule NR1 
C5 ‘False positive’ Neurule NR1 
C5 ‘True positive’ Neurule NR2 
C6 ‘False negative’ Conclusion ‘disease-type is chronic-

inflammation’ 
 

Similarly, when the input values corresponding to the 
attribute values of cases C1 and C4 are given as input to the 
neurule base, sufficient conditions of neurules NR2 and NR1 
respectively are satisfied so that they can fire and the 
corresponding output attribute case values match their 
conclusions. Furthermore, when the input values corresponding 
to the attribute values of case C5 are given as input to the 
neurule base, sufficient conditions of both neurules NR1 and 
NR2 are satisfied so that they can fire. However, the 
corresponding output attribute case values match the conclusion 
of NR2 and contradict the conclusion of NR1. In addition, 
conclusion ‘disease-type is inflammation’ cannot be drawn 
when the input values corresponding to the attribute values of 
case C3 are given as input because the only neurule with the 
corresponding conclusion (i.e., NR1) is blocked. A similar 
situation happens for case C6. 

4  THE HYBRID INFERENCE MECHANISM 
The inference mechanism combines neurule-based with case-
based reasoning. The combined inference process mainly 
focuses on the neurules. The indexed cases are considered 
when: (a) sufficient conditions of a neurule are fulfilled so that 
it can fire, (b) all output or intermediate neurules with a specific 
conclusion variable are blocked and thus no final or 
intermediate conclusion containing this variable is drawn.  

In case (a), firing of the neurule is suspended and case-based 
reasoning is performed for cases indexed as ‘false positives’ 
and ‘true positives’ by the neurule and cases indexed as ‘false 
negatives’ by alternative conclusions containing the neurule’s 
conclusion variable. Cases indexed as ‘true positives’ by the 
neurule endorse its firing whereas the other two sets of cases 
considered (i.e., ‘false positives’ and ‘false negatives’) prevent 
its firing. The results produced by case-based reasoning are 
evaluated in order to assess whether the neurule will fire or 
whether an alternative conclusion proposed by the retrieved 
case will be considered valid instead.  

In case (b), the case-based module will focus on cases 
indexed as ‘false negatives’ by conclusions containing the 
specific (intermediate or output) variable. 

The basic steps of the inference process are the following: 

1. Perform neurule-based reasoning for the neurules. 
2. If sufficient conditions of a neurule are fulfilled so that it can 
fire, then 

2.1. Perform case-based reasoning for the ‘false positive’ 
and ‘true positive’ cases indexed by the neurule and the 
‘false negative’ cases associated with alternative 
conclusions containing the neurule’s conclusion 
variable. 

2.2. If none case is retrieved or the best matching case is 
indexed as ‘true positive’, the neurule fires and its 
conclusion is inserted into the working memory. 

2.3. If the best matching case is indexed as ‘false positive’ or 
‘false negative’, insert the conclusion supported by the 
case into the working memory and mark the neurule as 
'blocked'.  

3. If all intermediate neurules with a specific conclusion 
variable are blocked, then 

3.1. Examine all cases indexed as ‘false negatives’ by the 
corresponding intermediate conclusions, retrieve the 
best matching one and insert the conclusion supported 
by the retrieved case into the working memory. 

4. If all output neurules with a specific conclusion variable are 
blocked, then 

4.1. Examine all cases indexed as ‘false negatives’ by the 
corresponding final conclusions, retrieve the best 
matching one and insert the conclusion supported by the 
retrieved case into the working memory. 

The similarity measure between two cases ck and cl is 
calculated via a distance metric [1]. The best-matching case to 
the problem at hand is the one having the maximum similarity 
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with (minimum distance from) the input case. If multiple stored 
cases have a similarity equal to the maximum one, a simple 
heuristic is used. 

Let present now two simple inference examples concerning 
the combined neurule base (Table 1) and the indexed example 
cases (Tables 2 and 3). Suppose that during inference sufficient 
conditions of neurule NR1 are satisfied so that it can fire. Firing 
of NR1 is suspended and the case-based reasoning process 
focuses on the cases contained in the union of the following sets 
of indexed cases:  

• the set of cases indexed as ‘true positives’ by NR1: 
{C2, C4},  

• the set of cases indexed as ‘false positives’ by 
NR1: {C5} and 

• the set of cases indexed as ‘false negatives’ by 
alternative conclusions containing variable 
‘disease-type’ (i.e., ‘disease-type is chronic 
inflammation’): {C6}. 

So, in this example the case-based reasoning process focuses on 
the following set of indexed cases: {C2, C4} ∪ {C5} ∪ {C6} = 
{C2, C4, C5, C6}. 

Suppose now that during inference both output neurules in 
the example neurule base are blocked. The case-based 
reasoning process will focus on the cases contained in the union 
set of the following sets of indexed cases: 

• the set of cases indexed as ‘false negatives’ by 
conclusion ‘disease-type is inflammation’: {C3}. 

• the set of cases indexed as ‘false negatives’ by 
conclusion ‘disease-type is chronic-inflammation’: 
{C6}. 

Therefore, in this example the case-based reasoning process 
focuses on the following set of indexed cases: {C3} ∪ {C6} = 
{C3, C6}. 

5   EXPERIMENTAL RESULTS 
In this section, we present experimental results using datasets 
acquired from [2]. Note that there are no intermediate 
conclusions in these datasets. The experimental results involve 
evaluation of the presented approach combining neurule-based 
and case-based reasoning and comparison with our previous 
approach [10]. 75% and 25% of each dataset were used as 
training and testing sets respectively. Each initial training set 
was used to create a combined neurule base and indexed case 
library. For this purpose, each initial training set was randomly 
split into two disjoint subsets, one used to create neurules and 
one used to create an indexed case library. More specifically, 
2/3 of each initial training set was used to create neurules by 
employing the ‘patterns to neurules’ module [8] whereas the 
remaining 1/3 of each initial training set constituted non-
indexed cases. Both types of knowledge (i.e., neurules and non-
indexed cases) were given as input to the indexing construction 
module presented in this paper producing a combined neurule 
base and an indexed case library which will be referred to as 
NBRCBR. Neurules and non-indexed cases were also used to 
produce a combined neurule base and an indexed case library 

according to [10] which will be referred to as 
NBRCBR_PREV. 

Inferences were run for both NBRCBR and 
NBRCBR_PREV using the testing sets. Inferences from 
NBRCBR_Prev were performed using the inference mechanism 
combining neurule-based and CBR as described in [10]. 
Inferences from NBRCBR were performed according to the 
inference mechanism described in this paper. No test case was 
stored in the case libraries. 

Table 4 presents such experimental results regarding 
inferences from NBRCBR and NBRCBR_PREV. It presents 
results regarding classification accuracy of the integrated 
approaches and the percentage of test cases resulting in neurule-
based reasoning errors that were successfully handled by case-
based reasoning. Column ‘% FPs handled’ refers to the 
percentage of test cases resulting in neurule misfirings (i.e., 
‘false positives’) that were successfully handled by case-based 
reasoning. Column ‘% FNs handled’ refers to the percentage of 
test cases resulting in having all output neurules blocked (i.e., 
‘false negatives’) that were successfully handled by case-based 
reasoning. ‘False negative’ test cases are handled in 
NBRCBR_PREV by retrieving the best-matching case from the 
whole library of indexed cases. 

 
Table 4. Experimental results 
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Car 
(1728 

patterns) 

96.04% 52.81% 64.07% 92.49% 15.51% 20.36%

Nursery 
(12960 

patterns) 

98.92% 58.68% 52.94% 97.68% 6.60% 18.82%

 
As can be seen from the table, the presented approach results 

in improved classification accuracy. Furthermore, in inferences 
from NBRCBR the percentages of both ‘false positive’ and 
‘false negative’ test cases successfully handled are greater than 
the corresponding percentages in inferences from 
NBRCBR_PREV. Results also show that there is still room for 
improvement. 

We also tested a nearest neighbor approach working alone in 
these two datasets (75% of the dataset used as case library and 
25% of the dataset used as testing set). We used the similarity 
measure presented in Section 5. The approach classified the 
input case to the conclusion supported by the best-matching 
case retrieved from the case library. Classification accuracy for 
car and nursery dataset is 90.45% and 96.67% respectively. So, 
both integrated approaches perform better. This is due to the 
fact that the indexing schemes assist in focusing on specific 
parts of the case library.  
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7   CONCLUSIONS 
In this paper, we present an approach integrating neurule-based 
and case-based reasoning that improves a previous hybrid 
approach [10]. Neurules are a type of hybrid rules integrating 
symbolic rules with neurocomputing. In contrast to other neuro-
symbolic approaches, neurules retain the naturalness and 
modularity of symbolic rules. Integration of neurules and cases 
is done in order to improve the accuracy of the inference 
mechanism. Cases are indexed according to the roles they can 
play during neurule-based inference. More specifically, they are 
associated as ‘true positives’ and ‘false positives’ with neurules 
and as ‘false negatives’ with neurule base conclusions. 

The presented approach integrates three types of knowledge 
representation schemes: symbolic rules, neural networks and 
case-based reasoning. Most hybrid intelligent systems 
implemented in the past usually integrate two intelligent 
technologies e.g. neural networks and expert systems, neural 
and fuzzy logic, genetic algorithms and neural networks, etc. A 
new development that should receive interest in the future is the 
integration of more than two intelligent technologies, 
facilitating the solution of complex problems and exploiting 
multiple types of data sources. 
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Abstract. Case-based reasoning is a popular approach used in 
intelligent systems. Whenever a new case has to be dealt with, 
the most similar cases are retrieved from the case base and their 
encompassed knowledge is exploited in the current situation. 
Combinations of case-based reasoning with other intelligent 
methods have been explored deriving effective knowledge 
representation schemes. Although some types of combinations 
have been mostly explored, other types have not been 
thoroughly investigated. In this paper, we briefly outline 
popular case-based reasoning combinations. More specifically, 
we focus on combinations of case-based reasoning with rule-
based reasoning, soft computing and ontologies. We illustrate 
basic types of such combinations and discuss future directions. 

1 INTRODUCTION 
Case-based representations store a large set of previous cases 
with their solutions in the case base using them whenever a 
similar new case has to be dealt with [19], [22]. Whenever, a 
new input case comes in, a case-based system performs 
inference in four phases known as the case-based reasoning 
(CBR) cycle [1]: (i) retrieve, (ii) reuse, (iii) revise and (iv) 
retain. The retrieval phase retrieves from the case base the 
most relevant stored case(s) to the new case. Indexing 
schemes and similarity metrics are used for this purpose. In 
the reuse phase, a solution for the new case is created based 
on the retrieved most relevant case(s). The revise phase 
validates the correctness of the proposed solution, perhaps 
with the intervention of the user. Finally, the retain phase 
decides whether the knowledge learned from the solution of 
the new case is important enough to be incorporated into the 
system. 

CBR can be effectively combined with other intelligent 
methods [25], [31]. Two main trends for CBR combinations 
can be discerned. The first trend involves embedded 
approaches in which the primary intelligent method (usually 
CBR) embeds one or more other intelligent methods to 
assist its internal online and offline tasks. The second 
combination trend involves approaches in which the 
problem solving process can be decomposed into tasks for 
which different representation formalisms are required or 
available. In such situations, a CBR system as a whole (with 
its possible internal modules) is integrated ‘externally’ with 

other intelligent systems to create an improved overall 
system. 

Popular CBR combinations involve combinations with rule-
based reasoning (RBR), model-based reasoning (MBR) and soft 
computing methods. CBR has also been combined with other 
intelligent methods (e.g. ontologies). In certain CBR 
combinations both combination trends have been followed. In 
other combinations one of the two trends is mostly explored. 

In this paper, we briefly discuss aspects involving CBR 
combinations. We focus on intelligent methods with which 
CBR is usually combined. Our purpose is not to present an 
extensive survey of developed CBR combinations but to 
present their key aspects. 

3 COMBINATIONS OF CBR 
Combinations of CBR with other intelligent methods have been 
explored for more effective knowledge representation and 
problem solving. CBR can be combined with various intelligent 
methods. However, CBR is usually combined with RBR, MBR 
and soft computing methods. 

To categorize CBR combinations one could use Medsker’s 
general categorization scheme for integrated intelligent systems 
[26]. Medsker distinguishes five main combination models: 
standalone, transformational, loose coupling, tight coupling and 
fully integrated models. Distinction between those models is 
based on the degree of coupling between the integrated 
components. Underlying categories for some of these models 
are also defined. Main types of underlying categories for loose 
and tight coupling models involve pre-processing, post-
processing and co-processing models as well as embedded 
processing (for tight coupling models only). Not all of these 
combination models and/or their underlying categories have 
been thoroughly explored in the case of CBR combinations. 
The types of combination models that have been applied to 
CBR combinations depend on the nature of the other intelligent 
methods combined with CBR. Some combination models are 
difficult to apply in certain CBR combinations. For instance, it 
is difficult to apply the fully integrated model in combinations 
of RBR with CBR. Obviously, the standalone model can be 
applied to combinations of CBR with any other method. 

Generally speaking, coupling models are the most usual 
CBR combination models. More specifically, embedded 
coupling approaches constitute perhaps the most popular trend. 
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Most of the combinations following this trend use other 
intelligent methods to assist various CBR tasks. CBR is a 
generic methodology for building knowledge-based systems 
and its internal reasoning tasks can be implemented using a 
number of techniques as long as the guiding CBR principles are 
followed [36]. The reverse approach that is, embedding case-
based modules into intelligent systems employing other 
representations to assist in their internal tasks does not seem to 
be popular with the exception of combinations with genetic 
algorithms. In combinations of CBR with RBR and MBR, 
various coupling approaches have also been investigated 
besides embedded approaches [31]. In coupling combinations 
of CBR with soft computing methods, embedded approaches 
seem to be the most thoroughly investigated. 

In the following, we discuss main issues involving 
combinations of CBR with RBR, fuzzy logic, neural networks, 
genetic algorithms and ontologies. 

 

3.1 Combinations of CBR with RBR 
Various types of coupling models involving combinations of 
CBR and RBR have been investigated i.e., sequential 
processing, co-processing and embedded processing [31]. 

In sequential processing, information (produced by 
reasoning) necessarily passes sequentially through some or all 
of the combined modules to produce the final result [33], [11]. 

In co-processing approaches, the combined modules closely 
interact in producing the final result. Such systems can be 
discerned into two types: cooperation-oriented, which give 
emphasis on cooperation, and reconciliation-oriented, which 
give emphasis on reconciliation. In the former type, the 
combined components cooperate with each other (usually by 
interleaving their reasoning steps) [27], [32]. In the latter, each 
component produces its own conclusion, possibly differing 
from the conclusion of the other component, and thus a 
reconciliation process is necessary [14]. 

In embedded processing, CBR systems employ one or more 
RBR modules to perform tasks of their CBR cycle (e.g. 
retrieval and adaptation). Such approaches are quite common in 
CBR especially for adaptation. RBR systems embedding CBR 
modules do not seem to exist. 

 

3.2 Combinations of CBR with Fuzzy Logic 
CBR can be combined with fuzzy logic in fruitful ways in order 
to handle imprecision. A usual approach is the incorporation of 
fuzzy logic into a CBR system in order to improve CBR aspects 
[4], [29], [35], [9]. Such combinations have been vastly 
explored as imprecision and uncertainty are inherent in various 
CBR tasks. Fuzzy terms may be used in case representation 
enabling a flexible encoding of case features that encompasses 
imprecise and uncertain information. Fuzzy logic may be also 
proved very useful in indexing and retrieval. Fuzzy indexing 
enables multiple indexing of a case on a single feature with 
different degrees of membership [35]. Fuzzy similarity 
assessment and matching methods can produce more accurate 
results. Fuzzy clustering and classification methods can also be 

applied in case retrieval. In addition, fuzzy adaptation rules can 
be employed in case adaptation. 

The works concerning combination of RBR with CBR [31] 
could potentially be improved with use of fuzzy rules. 
Investigation of coupling approaches in combinations of CBR 
with fuzzy systems besides embedded ones could be fruitful. 

 

3.3 Combinations of CBR with Neural Networks 
Neural networks are usually employed by CBR to perform 
tasks such as indexing, retrieval and adaptation. In this way, 
appealing characteristics of neural networks such as 
parallelism, robustness, adaptability, generalization and ability 
to cope with incomplete input data are exploited [10], [35]. Due 
to the fact that different types of neural networks have been 
developed (e.g. back propagation neural networks, radial basis 
function networks, Self-Organizing Map networks, ART 
network), different types of neural capabilities for classification 
and clustering can be exploited. Certain CBR approaches have 
employed different types of neural networks for the various 
internal CBR tasks (e.g. [12], [34]). Knowledge extracted from 
neural networks could also be exploited by CBR [10], [35]. An 
interesting direction could involve non-embedded coupling 
approaches combining CBR with neural networks. 

 

3.4 Combinations of CBR with Genetic Algorithms 
Usual combinations of CBR with genetic algorithms (GAs) 
involve use of GAs to optimize (one or more) aspects of a CBR 
system. On the other hand, CBR can be exploited to enhance 
GAs. Other types of combinations of CBR with GAs can be 
also implemented. 

GAs can be used within CBR to enhance indexing and 
retrieval. GAs have been used to assign case feature weights 
enhancing similarity assessment [39], [8], to perform feature 
selection [18] and generally to select relevant indices for 
evolving environments. GAs have also been used to retrieve 
multiple similar cases [38]. If k nearest neighbor retrieval is 
applied, genetic algorithms can be used to find the optimal k 
parameter in order to improve the retrieval accuracy [2]. 
Furthermore, GAs can be used to perform instance selection 
i.e., finding the representative cases in a case base and 
determining a reduced subset of a case base. In this way, time 
performance is improved by reducing search space and 
accuracy can be improved through elimination of noisy and 
useless cases [2]. 

Additionally, GAs have been used to enhance case 
adaptation [16], [17]. Genetic algorithms can also optimize case 
representation, e.g. by performing case feature discretization 
[18] and removing irrelevant features. Such optimizations 
improve accuracy, search time and storage requirements. It is 
also quite usual to simultaneously optimize more than one CBR 
aspect with GAs (e.g. [2], [18]). 

On the other hand CBR can be employed to enhance GAs. 
CBR can be applied to GAs by creating cases to track the 
history of a search. This case base can contribute in the 
understanding of how a solution was reached, why a solution 
works, and what the search space looks like. It could thus be 
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used to design highly tailored search strategies for future use 
[23]. Such an approach could therefore be used to explain the 
results of the genetic algorithm and for knowledge extraction. 
Moreover, similar stored cases can be also incorporated into a 
genetic algorithm to reduce convergence time and improve 
solution accuracy. GAs randomly initialize their starting 
population. Instead, relevant stored cases can be used as part of 
the initial population (solution) of GAs. Additionally, relevant 
stored cases can be periodically injected into the pool of 
chromosomes while the genetic algorithm runs [24], [7]. In 
certain approaches, CBR is exploited by GAs for both 
knowledge extraction and case injection [30]. 

 

3.5 Combinations of CBR with Ontologies 
Ontologies facilitate knowledge sharing and reuse. They can 
provide an explicit conceptualization describing data semantics 
and a shared and common understanding of the domain 
knowledge that can be communicated among agents and 
application systems [6]. Ontologies play a crucial role in 
enabling the processing and sharing of knowledge between 
programs on the Web [21]. Intelligent Decision Support 
Systems in the semantic Web framework should be able to 
handle, integrate with and reason from distributed data and 
information on the Web [3]. 

Therefore ontologies can be combined with CBR in various 
ways. Ontologies can be used by a CBR system to represent the 
input problem [20], to enhance similarity assessment [13], case 
representation, case abstraction and case adaptation [3]. 
Ontologies may perform all such CBR tasks [37]. 

 

3.6 Combinations of CBR with Multiple Intelligent 
Methods 
The previous sections focused on combinations of CBR with 
one other individual intelligent method. However, intelligent 
systems have been developed that combine CBR with multiple 
other intelligent methods. Such multi-integrated paradigms 
usually follow a coupling model.  

Obviously, a CBR system may employ multiple intelligent 
methods (e.g. rules and various soft computing methods) to 
perform its internal tasks [36]. Typical examples of approaches 
employing multiple soft computing methods within the CBR 
cycle are presented in [12] and [34]. In [12] all of the four 
phases of the CBR cycle employ soft computing methods. 
Employed soft computing methods are a self-organizing neural 
network for retrieval, a radial basis neural network for reuse, 
fuzzy systems for revise and all soft computing methods for 
retain. In [34] fuzzy logic, supervised and unsupervised neural 
networks and a genetic algorithm are employed for case 
representation, indexing, retrieval and adaptation. 

More interesting approaches concern multi-integrated 
systems not following the embedded approach. Typical such 
multi-integrated approaches involve combinations of CBR, 
RBR and MBR (e.g. [28]). Such approaches seem to be quite 
effective, because combinations of CBR with RBR and MBR 
individually have been thoroughly investigated. Quite often 
such systems have been implemented to deal with deficiencies 

of earlier systems combining CBR with only one of the other 
two intelligent methods (e.g. RBR or MBR alone). Multi-
integrated CBR approaches, besides those involving 
RBR/MBR, could be developed. For instance, ontologies could 
constitute an interesting candidate method that could be 
combined with CBR and another intelligent method in order to 
facilitate knowledge sharing and reuse among the integrated 
system components themselves [5] and among integrated 
systems. Such a combination could be useful in Web-based 
systems that need to share knowledge. Fruitful such approaches 
could involve combinations of CBR, ontologies and 
RBR/MBR. For instance in [6] an approach combining CBR, 
RBR and an ontology is presented. 

Multi-integrated paradigms could also be considered systems 
combining CBR with certain types of neuro-symbolic or neuro-
fuzzy approaches in which the neuro-symbolic (neuro-fuzzy) 
module fully integrates the neural and symbolic (fuzzy) 
approach. Such modules could be used within CBR instead of 
plain neural or fuzzy components. Non-embedded coupling 
approaches can be applied as well. For instance, in [15] a 
neuro-symbolic method is combined with CBR according to the 
reconciliation coupling approach. 

4  CONCLUSIONS 
In this paper, we discuss key aspects involving combinations of 
CBR with other intelligent methods. Such combinations are 
becoming increasingly popular due to the fact that in many 
application domains a vast amount of case data is available. 
Such combined approaches have managed to solve problems in 
application domains where a case-based module needs the 
assistance and/or completion of other intelligent modules in 
order to produce effective results. This trend is very likely to 
carry on in the following years. 

Future directions in combinations of CBR with other 
intelligent methods could involve a number of aspects.  Main 
such aspects involve: (a) combinations of CBR with soft 
computing methods, (b) combinations of CBR with fuzzy rules, 
(c) combinations of CBR with ontologies and (d) combinations 
of CBR with neuro-symbolic and neuro-fuzzy approaches.  

Combinations of CBR with soft computing methods not 
following an embedded coupling approach could be an 
interesting future research direction. At present there seems to 
be a lack of great interest in pursuing this direction since the 
main interest has been focused on employing soft computing 
methods within CBR. A non-embedded direction in the 
combinations of CBR with soft computing could be pursued as 
thoroughly as in the case of combinations of CBR with 
RBR/MBR. A further step towards this direction could involve 
non-embedded approaches combining CBR with multiple soft 
computing methods or combinations of CBR, soft computing 
and other intelligent methods (e.g. RBR, MBR or ontologies). 

Combinations of CBR with fuzzy rule-based systems could 
be based on work combining CBR with RBR that is, 
investigation of various coupling approaches. 

The increasing interest in Web-based intelligent systems and 
future advances in the Semantic Web is likely to provide an 
impetus to approaches combining CBR with ontologies. This 
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trend is likely to involve multi-integrated approaches 
combining CBR, ontologies and other intelligent methods. 

Finally, a direction that may be useful to pursue involves 
non-embedded coupling approaches combining CBR with 
neuro-symbolic and neuro-fuzzy modules. Few such 
approaches have been developed.  
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Abstract.    In this paper we present an application for the 

construction of mutual fund portfolios. It is based on a 

combination of Intelligent Methods, namely an argumentation 

based decision making framework and a forecasting algorithm 

combining Genetic Algorithms (GA), MultiModel Partitioning 

(MMP) theory and Extended Kalman Filters (EKF). The 

argumentation framework is employed in order to develop mutual 

funds performance models and to select a small set of mutual 

funds, which will compose the final portfolio. The forecasting 

algorithm is employed in order to forecast the market status 

(inflating or deflating) for the next investment period. The 

knowledge engineering approach and application development 

steps are also discussed.12 

1 INTRODUCTION 

Portfolio management [8] is concerned with constructing a 

portfolio of securities (e.g., stock, bonds, mutual funds [13], etc.) 

that maximizes the investor’s utility. In a previous study [14], we 

constructed mutual fund (MF) portfolios using an argumentation 

based decision making framework. We developed rules that 

characterize the market and different investor types policies using 

evaluation criteria of fund performance and risk. We also defined 

strategies for resolving conflicts over these rules. Furthermore, the 

developed application can be used for a set of different investment 

policy scenarios and supports the investor/portfolio manager in 

composing efficient MF portfolios that meet his investment 

preferences. The traditional portfolio theories ([8], [11], [12]) 

were based on unidimensional approaches that did not fit to the 

multidimensional nature of risk ([3]), and they did not capture the 

complexity presented in the data set. In [14], this troublesome 

situation was resolved by the high level of adaptability in the 

decisions of the portfolio manager or investor when his 

environment is changing and the characteristics of the funds are 

multidimensional that was demonstrated by the use of 

argumentation. 

Our study showed that when taking into account the market 

context, the results were better if we could forecast the status of 

the market of the following investment period. In order to achieve 

this goal we employed a hybrid system that combines Genetic 

Algorithms (GA), MultiModel Partitioning (MMP) theory and the 

Extended Kalman Filter (EKF). A general description of this 

algorithm and its application in linear and non-linear data is 

discussed in [2], while the specific version used in this 

contribution is presented in [1], where its successful application to 

non-linear data is also presented. This algorithm captured our 

attention because it had been successfully used in the past for 
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accurately predicting the evolution of stock values in the Greek 

market (its application on economic data is presented in [2]). 

Moreover, there is a lot of work on hybrid evolutionary algorithms 

and their application on many difficult problems has shown very 

promising results [4]. The problem of predicting the behavior of 

the financial market is an open problem and many solutions have 

been proposed. However, there isn't any known algorithm able to 

identify effectively all kinds of behaviors. Also, many traditional 

methods have been applied to the same problem and the results 

obtained were not very satisfactory. There are two main 

difficulties in this problem, firstly the search space is huge and, 

secondly, it comprises of many local optima. 

In this contribution, we present the whole application resulting 

from the combination of argumentation with hybrid evolutionary 

systems along with the respective results. 

The rest of the paper is organized as follows: Section two 

presents an overview of the concepts and application domain 

knowledge. Section three outlines the main features of the 

proposed argumentation based decision-making framework and 

the developed argumentation theory. The forecasting hybrid 

evolutionary system is presented in section four, followed by 

section five, which presents the developed application and 

discusses the obtained empirical results. Finally, section six 

summarizes the main findings of this research. 

2 DOMAIN KNOWLEDGE 

This section describes the criteria (or variables) used for 

creating portfolios and the knowledge on how to use these criteria 

in order to construct a portfolio. 

The data used in this study is provided from the Association of 

Greek Institutional Investors and consists of daily data of domestic 

equity mutual funds (MFs) over the period January 2000 to 

December 2005. 

The proposed framework is based on five fundamental 

variables. The return of the funds is the actual value of return of 

an investment defined by the difference between the nominal 

return and the rate of inflation. This variable is based on the net 

price of a fund. At this point, it is very important to mention that 

transaction costs such as management commission are included in 

the net price. Frond-end commission and redemption commission 

fluctuate depending on the MF class and in most cases are very 

low. The standard deviation is used to measure the variability of 

the fund’s daily returns, thus representing the total risk of the 

fund. The beta coefficient (β) is a measure of fund’s risk in 

relation to the capital risk. The Sharpe index [13] is a useful 

measure of performance and is used to measure the expected 

return of a fund per unit of risk, defined by the standard deviation. 

The Treynor index [15] is similar to the Sharpe index except that 
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performance is measured as the risk premium per unit of 

systematic (beta coefficient) and not of total risk. 

 On the basis of the argumentation framework for the selection 

of a small set of MF, which will compose the final multi-

portfolios, the examined funds are clustered in three groups for 

each criterion for each year. For example, we have funds with 

high, medium and low performance (return), the same for the 

other criteria. 

The aforementioned performance and risk variables visualize 

the characteristics of the capital market (bull or bear) and the type 

of the investor according to his investment policy (aggressive or 

moderate). Further information is represented through variables 

that describe the general conditions of the market and the investor 

policy (selection of portfolios with high performance per unit of 

risk).  

The general conditions of the market are characterized through 

the development of funds which have high performance levels 

(high return). Regarding the market context, in a bull market, 

funds are selected if they have high systematic or total risk. On the 

other hand, in a bear market, we select funds with low systematic 

and total risk. An aggressive investor is placing his capital upon 

funds with high performance and high systematic risk. 

Accordingly, a moderate investor selects funds with high 

performance and low or medium systematic risk. Some types of 

investors select portfolios with high performance per unit of risk. 

Such portfolios are characterized by high Sharpe ratio and high 

Treynor ratio. 

3 ARGUMENTATION-BASED DECISION 

MAKING 

In this section we firstly present the argumentation framework that 

we used and then we describe the domain knowledge modeling 

based on the argumentation framework. 

3.1 The Argumentation Framework 

Autonomous agents, be they artificial or human, need to make 

decisions under complex preference policies that take into account 

different factors. In general, these policies have a dynamic nature 

and are influenced by the particular state of the environment in 

which the agent finds himself. The agent's decision process needs 

to be able to synthesize together different aspects of his preference 

policy and to adapt to new input from the current environment. 

Such agents are the mutual fund managers. 

In order to address requirements like the above, Kakas and 

Moraitis ([6]) proposed an argumentation based framework to 

support an agent's self deliberation process for drawing 

conclusions under a given policy.  

Argumentation can be abstractly defined as the principled 

interaction of different, potentially conflicting arguments, for the 

sake of arriving at a consistent conclusion (see e.g. [10]). The 

nature of the “conclusion” can be anything, ranging from a 

proposition to believe, to a goal to try to achieve, to a value to try 

to promote. Perhaps the most crucial aspect of argumentation is 

the interaction between arguments. This means that argumentation 

can give us means for allowing an agent to reconcile conflicting 

information within itself, for reconciling its informational state 

with new perceptions from the environment, and for reconciling 

conflicting information between multiple agents through 

communication. A single agent may use argumentation techniques 

to perform its individual reasoning because it needs to make 

decisions under complex preferences policies, in a highly dynamic 

environment (see e.g. [6]). This is the case used in this research. 

In the following paragraphs we describe the theoretical framework 

that we adopted: 

Definition 1. A theory is a pair (T, P) whose sentences are 

formulae in the background monotonic logic (L, ⊢ ) of the form 

L←L1,…,Ln, where L, L1, …, Ln are positive or negative ground 

literals. For rules in P the head L refers to an (irreflexive) higher 

priority relation, i.e. L has the general form L = h_p(rule1, rule2). 

The derivability relation, ⊢ , of the background logic is given by 

the simple inference rule of modus ponens. 

An argument for a literal L in a theory (T, P) is any subset, T, 

of this theory that derives L, T ⊢ L, under the background logic. A 

part of the theory T0 ⊂ T, is the background theory that is 

considered as a non defeasible part (the indisputable facts). 

An argument attacks (or is a counter argument to) another 

when they derive a contrary conclusion. These are conflicting 

arguments. A conflicting argument (from T) is admissible if it 

counter-attacks all the arguments that attack it. It counter-attacks 

an argument if it takes along priority arguments (from P) and 

makes itself at least as strong as the counter-argument (we omit 

the relevant definitions from [6] due to limited space). 

Definition 2. An agent’s argumentative policy theory is a 

theory T = ((T, T0), PR, PC) where T contains the argument rules in 

the form of definite Horn logic rules, PR contains priority rules 

which are also definite Horn rules with head h_p(r1, r2) s.t. r1, r2 ∈ T and all rules in PC are also priority rules with head h_p(R1, 

R2) s.t. R1, R2 ∈ PR ∪ PC. T0 contains auxiliary rules of the 

agent’s background knowledge. 

Thus, in defining the decision maker’s theory we specify three 

levels. The first level (T) defines the (background theory) rules 

that refer directly to the subject domain, called the Object-level 

Decision Rules. In the second level we have the rules that define 

priorities over the first level rules for each role that the agent can 

assume or context that he can be in (including a default context). 

Finally, the third level rules define priorities over the rules of the 

previous level (which context is more important) but also over the 

rules of this level in order to define specific contexts, where 

priorities change again. 

3.2 The Decision Maker’s Argumentation 

Theory 

Using the presented argumentation framework, we transformed 

the criteria for all MFs and experts knowledge (§2) to background 

theory (facts) and rules of the first and second level. Then, we 

defined the strategies (or specific contexts) in the third level rules. 

The goal of the knowledge base is to select some MFs in order 

to construct our portfolio. Therefore our rules have as their head 

the predicate selectFund/1 and its negation. We write rules 

supporting it or its negation and use argumentation for resolving 

conflicts. We introduce the hasInvestPolicy/2, preference/1 and 

market/1 predicates for defining the different contexts and roles. 

For example, John, an aggressive investor is expressed with the 

predicate hasInvestPolicy(john, aggressive). 

The knowledge base facts are the performance and risk 

variables values for each MF, the thresholds for each group of 
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values for each year and the above mentioned predicates 

characterizing the investor and the market. The following rules are 

an example of the object-level rules (level 1 rules of the 

framework - T): 

 

r1(Fund): selectFund(Fund) ← highR(Fund) 

 

r2(Fund): ¬selectFund(Fund) ← highB(Fund) 

 

The highR predicate denotes the classification of the MF as a 

high return fund and the highB predicate denotes the classification 

of the MF as a high risk fund. Thus, the r1 rule states that a high 

performance fund should be selected, while the r2 rule states that a 

high risk fund should not be selected. Such rules are created for 

the three groups of our performance and risk criteria.  

Then, in the second level we assign priorities over the object 

level rules. The PR are the default context rules or level 2 rules. 

These rules are added by experts and express their preferences in 

the form of priorities between the object level rules that should 

take place within defined contexts and roles. For example, the 

level 1 rules with signatures r1 and r2 are conflicting. In the 

default context the first one has priority, while the bear market 

context reverses this priority: 

 

R1: h_p(r1(Fund),r2(Fund)) ← true 

 

R2: h_p(r2(Fund),r1(Fund)) ← market(bear) 

 

Rule R1 defines the priorities set for the default context, i.e. an 

investor selects a fund that has high return on investment (RoI) 

even if it has high risk. Rule R2 defines the default context for the 

bear market context (within which, the fund selection process is 

cautious and does not select a high RoI fund if it has high risk). 

Finally, in PC (level 3 rules) the decision maker defines his 

strategy and policy for integrating the different roles and contexts 

rules. When combining the Aggressive investor role and bear 

market context, for example, the final portfolio is their union 

except that the aggressive investor now would accept to select 

high and medium risk MFs (instead of only high). The decision 

maker’s strategy sets preference rules between the rules of the 

previous level but also between rules at this level. Relating to the 

level 2 priorities, the bear market context’s priority of not buying 

a high risk MF, even if it has a high return, is set at higher priority 

than that of the general context. Then, the specific context of an 

aggressive investor in a bear market defines that the bear market 

context preference is inverted. See the relevant priority rules: 

 

C1: h_p(R2, R1) ← true 

 

C2: h_p(R1, R2) ← hasInvestPolicy(Investor, aggressive). 

 

C3: h_p(C2, C1) ← true 

 

Thus, an aggressive investor in a bear market context would 

continue selecting high risk funds. In the latter case, the argument 

r1 takes along the priority arguments R1, C2 and C3 and becomes 

stronger (is the only admissible one) than the conflicting r2 

argument that can only take along the R2 and C1 priority 

arguments. Thus, the selectFund(Fund) predicate is true and the 

fund is inserted in the portfolio. 

The problem with the above rules is that the facts market(bear) 

or (exclusive) market(bull) could not be safely determined for the 

next investment period. In the application version presented in 

[14] it was just assumed to remain the same as at the time of the 

investment. This strategy, however produced quite poor results for 

this context if it should change in the next period. 

4 FORECASTING THE STATUS OF THE 

FINANCIAL MARKET 

One of the most prominent issues in the field of signal processing 

is the adaptive filtering problem, with unknown time-invariant or 

time-varying parameters. Selecting the correct order and 

estimating the parameters of a system model is a fundamental 

issue in linear and nonlinear prediction and system identification. 

The problem of fitting an AutoRegressive Moving Aaverage 

model with eXogenous input (ARMAX) or a Nonlinear 

AutoRegressive Moving Aaverage model with eXogenous input 

(NARMAX) to a given time series has attracted much attention 

because it arises in a large variety of applications, such as time 

series prediction in economic and biomedical data, adaptive 

control, speech analysis and synthesis, neural networks, radar and 

sonar, fuzzy systems, and wavelets [5]. 

The forecasting algorithm used in this contribution is a generic 

applied evolutionary hybrid technique, which combines the 

effectiveness of adaptive multimodel partitioning filters and GAs’ 

robustness [1]. This method has been first presented in [7]. 

Specifically, the a posteriori probability that a specific model, of a 

bank of the conditional models, is the true model, can be used as 

fitness function for the GA. In this way, the algorithm identifies 

the true model even in the case where it is not included in the 

filters’ bank. It is clear that the filter’s performance is 

considerably improved through the evolution of the population of 

the filters’ bank, since the algorithm can search the whole 

parameter space. The proposed hybrid evolutionary algorithm can 

be applied to linear and nonlinear data; is not restricted to the 

Gaussian case; does not require any knowledge of the model 

switching law; is practically implementable, computationally 

efficient and applicable to online/adaptive operation; and exhibits 

very satisfactory performance as indicated by simulation 

experiments [2]. The structure of the hybrid evolutionary system 

used is depicted in Figure 1. 

The representation used for the genomes of the population of 

the GA is the following. We use a mapping that transforms a fixed 

dimensional internal representation to variable dimensional 

problem instances. Each genome consists of a vector x of real 

values xi∈ℜ , i = 1, ..., k, and a bit string b of binary digits 

bi∈{0,1}, i = 1, ..., k. Real values are summed up as long as the 

corresponding bits are equal. Obviously, k is an upper bound for 

the dimension of the resulting parameter vector. We use the first 

k/3 real values for the autoreggressive part, the second k/3 real 

values for the moving average part, and the last k/3 real values for 

the exogenous input part. An example of this mapping is 

presented in Figure 2. For a more detailed description of this 

mapping refer to [2]. 

At first, an initial population of m genomes is created at 

random (each genome consists of a vector of real values and a bit 

string). As stated before, each vector of real values represents a 

possible value of the NARMAX model order and its parameters. 

For each such population we apply an MMAF with EKFs and 
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have as result the model-conditional probability density function 

(pdf) of each candidate model. This pdf is the fitness of each 

candidate model, namely the fitness of each genome of the 

population (Figure 3). 

 

  

Figure 1: The structure of the hybrid evolutionary system used 

for forecasting 

 

Figure 2: Mapping from a fixed dimensional internal 

representation to a variable length NARMAX parameter 

vector. The resulting order is n(p, q, r) = (4, 3, 2). 

The reproduction operator we decided to use is the classic 

biased roulette wheel selection according to the fitness function 

value of each possible model order [9]. As far as crossover is 

concerned, we use the one-point crossover operator for the binary 

strings and the uniform crossover operator for the real values [9]. 

Finally, we use the flip mutation operator for the binary strings 

and the Gaussian mutation operator for the real values [9]. Every 

new generation of possible solutions iterates the same process as 

the old ones and all this process may be repeated as many 

generations as we desire or till the fitness function has value 1 

(one) which is the maximum value it is able to have as a 

probability For a more detailed description of this hybrid 

evolutionary system refer to [2]. 

 

 

Figure 3: The fitness of each candidate model is the model 

conditional pdf (m is the number of the extended Kalman 

filters in the multimodel adaptive filter) 

In this contribution we apply a slightly different approach 

compared to the one presented in [2]. In [2], at the algorithm’s 

step where the value of the estimation (output) x of each filter is 

calculated, the past values of x that are used in order to estimate 

the next value of x are always taken from the estimation file (the 

file of all past values of x that have been estimated by the 

algorithm till this point). All these values are used in each 

generation in order to estimate the next value of the estimation 

(output) vector x. The method presented in this contribution uses a 

different approach in order to estimate x. At the algorithm’s step 

where the value of x for each filter is calculated, the past values of 

x that are used in order to estimate the next value of x are smaller 

than the total length of the time series that has been estimated till 

this point. The length of past values used in each generation in 

order to estimate the next value of x equals to n/2, where n is the 

total length of the time series to be estimated. Every new value of 

x, estimated by the algorithm, is added to this time series of length 

n/2 and the oldest one is removed in order this time series to 

sustain a length of n/2. The value of n/2 was not selected 

arbitrarily. We have conducted exhaustive experiments using 

many different values. The value of n/2, that has been finally 

selected, was the most effective one, that is, the one that resulted 

in the best prediction results. 

Thus, the hybrid evolutionary system presented in Figure 1 is 

used in order to forecast the behavior of the financial market in 

relation to its current status. The market is characterized as bull 

market if it is forecasted to rise in the next semester, or as bear 

market if it is forecasted to fall. We used the return values of the 

Greek market index for each semester starting from year 1985 to 

the years of our sample data (2000 to 2005). The algorithm 

performed very well considering that it could forecast the next 

semester market behavior with a success rate of 85.17% (12 out of 

14 right predictions). 

5 THE PORTFOLIO CONSTRUCTION 

APPLICATION 

In this section we firstly present the system architecture, i.e. the 

combination method for the argumentation decision making sub-

system and the hybrid forecasting sub-system that resulted in a 
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coherent application. Then we present the results of this 

combination. 

5.1 System Architecture 

The portfolio generation application is a Java program creating a 

human-machine interface and managing its modules, namely the 

decision making module, which is a prolog rule base (executed in 

SWI-prolog1) using the Gorgias2 framework, and the forecasting 

module, which is a Matlab3 implementation of the forecasting 

hybrid system (see Figure 4). 

The application connects to the SWI-Prolog module using the 

provided Java interface (JPL) that allows for inserting facts to an 

existing rule-base and running it for reaching goals. The goals can 

be captured and returned to the Java program. The application 

connects to Matlab by executing it in a system shell. The matlab 

program writes the results of the algorithm to a MySQL4 database 

using SQL (Structured Query Language). The application first 

executes the forecasting module, then updates the database, using 

JDBC (Java DataBase Connectivity interface) technology, with 

the investor profile (selected roles) and, finally, queries the 

decision making module setting as goal the funds to select for 

participation in the final portfolio. Thus, after the execution of the 

forecasting module the predicate market/1 is determined as bull or 

bear and inserted as a fact in the rule base before the decision 

making process is launched. The reader can see in Figure 5 a 

screenshot of the integrated system. 

 

 

Figure 4: System Architecture 

5.2 System Evaluation 

For evaluating our results we defined scenarios for all years for 

which we had available data (2000-2005) and for all combinations 

of contexts. That resulted to the two investor types combined with 

the market status, plus the two investor types combined with the 

high performance option, plus the market status combined with 

the high performance option, all together five different scenarios 

run for six years each. Each one of the examined scenarios refers 

                                                                 
1 SWI-Prolog offers a comprehensive Free Software Prolog environment, 

http://www.swi-prolog.org 
2 Gorgias is an open source general argumentation framework that 

combines the ideas of preference reasoning and abduction, 

http://www.cs.ucy.ac.cy/~nkd/gorgias/ 
3 MATLAB® is a high-level language and interactive environment for 

performing computationally intensive tasks, http://www.mathworks. 

com/products/matlab 
4  MySQL is an open source database, http://www.mysql.com 

to different investment choices and leads to the selection of 

different number and combinations of MFs. 

 

 

Figure 5: A screenshot for portfolio generation for a scenario 

of a moderate investor in a bull market context 

In Table 1 the reader can inspect the average return on 

investment (RoI) for the six years for all different contexts. The 

reader should notice that the table contains two RoI columns, the 

first (“Previous RoI”) depicts the results before changing the 

system as they appeared in [14]. The second presents the results of 

upgrading the application by combining it with the hybrid 

evolutionary forecasting sub-system and by fixing the selected 

funds participation to the final portfolio. The latter modification is 

out of the scope of this paper but the reader can clearly see that it 

has greatly influenced the performance of all scenarios. 

Table 1, however, shows the added value of this contribution as 

the market context has become the most profitable in the “New 

RoI” column (8.17% RoI), while in the “Previous RoI” column it 

was one of the worst cases (3.72% RoI). Consequently the specific 

contexts containing the market context have better results. 

Table 1: Average RoI for six years. The New RoI column 

shows the gains after the evolutionary hybrid forecasting 

system’s integration 

Context type Context 
Previous 
RoI (%) 

New RoI (%) 

simple general 3.53 6.86 

role aggressive 2.65 7.38 

role moderate 4.02 6.09 

context market 3.72 8.17 

role high performance 4.98 7.16 

specific context aggressive – market 3.56 7.92 

specific context moderate – market 4.72 6.08 

specific context aggressive - high p. 4.88 7.46 

specific context moderate - high p. 4.98 7.16 

specific context Market - high perf. 4.59 7.23 

ASE-GI RASE 6.75 

 
Moreover, Table 1 also shows the added value of our approach 

as the reader can compare our results with the return on 

investment (RASE) of the General Index of the Athens Stock 

Exchange (ASE-GI). According to the results of this table, the 

average return of the constructed portfolios for all contexts, except 

two, achieves higher return than the market index. The two cases 

where the constructed portfolios did not beat the market index are 

the moderate simple context and moderate-market specific 
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context. This is, maybe, due to the fact that in these two contexts 

we have an investor who wishes to earn more without taking into 

account any amount of risk in relation to the variability which 

characterizes the conditions of the market during the examined 

period. This fact  makes it very difficult to implement investment 

strategies that can help a fund manager outperform a passive 

investment policy. 

Furthermore, we notice that in some specific contexts the 

results are more satisfying than the results obtained by simple 

contexts, while in others there is little or no difference. This 

means that by using effective strategies in the third preference 

rules layer the decision maker can optimize the combined 

contexts. Specifically, the aggressive-high performance specific 

context provides better results than both the simple contexts 

aggressive and high performance (the ones that it combines) and 

the general context. The moderate-high performance specific 

context’s returns on investment are equal to the higher simple 

context’s returns (high performance) while the aggressive-market 

specific context returns are closer to the higher simple context’s 

returns (market). 

Finally, in Figure 6, we present the RoI of all contexts 

separately for each year. This view is also useful, as it shows that 

for two years, 2003 and 2004, RASE was greater than all our 

contexts RoI performance. This shows that our application, for the 

time being, performs better for medium term to long term 

investments, i.e. those that range over five years. 

 

 

Figure 6: Comparative RoIs of all contexts for each year. 

6 CONCLUSION 

The objective of this paper was to present an artificial intelligence 

based application for the MF portfolio generation problem that 

combines two different intelligent methods, argumentation based 

decision making and a hybrid system that combines Genetic 

Algorithms (GA), MultiModel Partitioning (MMP) theory and the 

Extended Kalman Filter (EKF). 

We described in detail how we developed our argumentation 

theory and how we combined it with the hybrid system to 

determine an important fact for the decision making process, i.e. 

the status of the financial market in the next investment period.  

The developed application allows a decision maker (fund 

manager) to construct multi-portfolios of MFs under different, 

possibly conflicting contexts. Moreover, for medium to long term 

investments, the returns on investment of the constructed 

portfolios are better than those of the General Index of the Athens 

Stock Exchange, while the best results are those that involve the 

forecasting of the financial market. 

Our future work will be to develop a new rule base for the 

problem of determining when to construct a new portfolio for a 

specific investor. We will also make the application web-based so 

that it can get on-line financial data available from the internet for 

computing the decision variables and for allowing the investors to 

insert their profiles by filling on-line forms. Finally, we will 

continue evaluating our application as new data become available 

for years after 2005. Our aim is to be able to guarantee a better 

RoI than that of the ASE. 
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An Architecture for Multiple Heterogeneous Case-Based 
Reasoning Employing Agent Technologies. 

Elena I Teodorescu and Miltos Petridis1 

 
Abstract. This paper presents an investigation into applying 
Case-Based Reasoning to Multiple Heterogeneous Case 
Bases using agents. The adaptive CBR process and the ar-
chitecture of the system are presented. A case study is pre-
sented to illustrate and evaluate the approach. The process of 
creating and maintaining the dynamic data structures is 
discussed. The similarity metrics employed by the system 
are used to support the process of optimisation of the col-
laboration between the agents which is based on the use of a 
blackboard architecture. The blackboard architecture is 
shown to support the efficient collaboration between the 
agents to achieve an efficient overall CBR solution, while 
using case-based reasoning methods to allow the overall 
system to adapt and “learn” new collaborative strategies for 
achieving the aims of the overall CBR problem solving 
process. 

1   Introduction1 

Case-based reasoning (CBR) is now an established artificial intel-
ligence paradigm. Given a case-base of prior experiences, a CBR 
system solves new problems by retrieving cases from the case-
base, and adapting their solutions to comply the new require-
ments[1].  

Multiple Case Based Reasoning (MCBR) is used to retrieve so-
lutions for a new problem from more than one case-base. Methods 
for managing sharing of standardized case bases have been studied 
in research on distributed CBR (e.g. [13]), as have methods for 
facilitating large-scale case distribution [10].  Leake and Sooria-
muthhi propose a new strategy for MCBR - an agent selectively 
supplements its own case-base as needed, by dispatching problems 
to external case-bases and using cross-case-base adaptation to 
adjust their solutions for inter-case-base differences [4, 5, 6,13 ]. 

In many problems in modern organisations, the knowledge en-
capsulated by cases is contained in multiple case bases reflecting 
the fragmented way with which organisations capture and organise 
knowledge. The traditional approach is to merge all case bases into 
a central case base that can be used for the CBR process. However, 
this approach brings with it three challenges: 

• Moving cases into a central case base potentially sepa-
rates from its context and makes maintenance more diffi-
cult. 

• Various case bases can use different semantics. There is 
therefore a need to maintain various ontologies and map-
pings across the case bases. 

• The knowledge content “value” of individual cases can 
be related to its origination. This can be lost when merg-
ing into a central case base. 

Keeping the cases distributed in the form of a Heterogeneous 
Multiple Case Based Reasoning system (HMCBR) may have a 
number of advantages such as increased maintainability and com-
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petence and the contextualisation of the cases. Past research at 
Greenwich [2][3] has shown the need to combine knowledge en-
coded in cases from various heterogeneous sources to achieve a 
competent, seamless CBR system. 

Ontanon and Plaza [7] looked at a way to “improve the overall 
performance of the multiple case systems and of the individual 
CBR agents without compromising the agent’s autonomy”. They 
present [8] a framework for collaboration among agents that use 
CBR and strategies for case bartering (case trading by CBR 
agents). Nevertheless, they do not focus at the possibility of cases 
having different structures and what impact this will have on ap-
plying CBR to heterogeneous case bases. Leake [5] states that “An 
important issue beyond the scope of this paper is how to establish 
correspondences between case representations, if the representa-
tions used by different case-bases differ.”  

Given several case bases as the search domain, it is very likely 
that they have different structures. Ideally, accessing Multiple Case 
Bases should not require a change to their data structures. In order 
for an MCBR system to effectively use case-bases that may have 
been developed in different ways, for different tasks or task envi-
ronments, methods are needed to adjust retrieved cases for local 
needs. 

Leake and Sooriamurthi [4] proposed a theoretical “cross-case-
base adaptation” which would adapt suggested solutions from one 
case base to apply to the needs of another. They are currently 
exploring sampling methods for comparing case-base characteris-
tics in order to select appropriate cross-case-base adaptation strate-
gies. 

2   Adaptive CBR 

In order to enable effective solution retrieval across autonomous 
case bases with differing structures, it is essential to have access 
and a good understanding of each of the different case base struc-
tures involved. This would make it possible to identify the com-
monalities, equivalences and specific characteristics of every case 
base associated with the system.  

2.1 The process of adaptive CBR 

Instead of trying to adapt the suggested solutions from one case 
base to the needs of another, the approach investigated in this study 
will be to create a “dynamic structure” of a general case. This 
dynamic structure would be modified every time a new case base 
with a new structure is added. 

The process of adaptive CBR, within the architecture of the 
HMCBR System (Figure 1), will incorporate a number of steps. 

 Firstly, in order for the system to work with a particular case 
base, it will need to know the structure of that case base. Every 
newly added case base will therefore have to publish its structure to 
a Registry System. The published structures are required to have 
their own data dictionaries attached to enable the creation of a 
dynamic Data Dictionary. 
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Fig. 1.  The Architecture of the HMCBR System 

 
The published structure will be retrieved by the Dynamic CB 

System and used to adapt the local dynamic structure to accommo-
date any new elements and map existing ones. 

When the dynamic structure reflects all participating case bases, 
a case query can be submitted. The system would then reformulate 
the target case structure into each provider’s case base structure. 
The target case structure will be a subset of the dynamic structure. 

The reformulated cases are submitted to each provider and solu-
tion cases are retrieved using KNN techniques [1]. The structures 
of these solutions will be translated into the dynamic structure, thus 
creating a dynamic case base. Finally, the system will apply the 
classical CBR process to the dynamic case base. 

The whole process is intended to provide a transparent view of 
the CBR process across the heterogeneous system.  

2.2   Case Study  

This case study requires searching for a property from three estate 
agencies without amalgamating their case bases structures. 

Let us suppose that the estate agencies have different case base 
structures (figure 2). 

A possible buyer should be able to search for a property and get 
all the suitable solutions from all three agencies. A search should 
retrieve the best matches from all case bases as if it was dealing 
with a single case base in a way transparent to the buyer. 

 

 
Fig. 2.  Three different Case Base Structures 

3   Creating the Dynamic Structure 

Creating and maintaining a dynamic structure makes the self-
adaptive multi case base reasoning system possible. By adding a 
new case base to the existing ones, new attributes are added to a 
global dynamic structure and new relations linked to these attrib-
utes are established.  

   CBS1. 
            type 
DCBS 
name

Apartment Studio Detached 
house 

House 0 0 1 
Flat 1 0.8 0 

Fig. 3. Data Dictionary includes relations between some of the 
attributes. 

A data dictionary is required to keep all the metadata for the dy-
namic structure. This data dictionary would have multiple func-
tions: It records the location and the name of every attribute from 
the Case Base Structures (CBS) and how these are translated into 
the Dynamic Case Base Structure (DCBS). It also stores the type 
and any default value for every single attribute.  

The Data Dictionary will reflect any relationships between the 
Dynamic Case Base Structure attributes. These relationships can be 
mathematical relationships or look-up tables (figure 3). 

We will use the presented case study to show how a dynamic 
structure is created and how it is continuously changed by adding 
new case bases to the search domain. 

Let us suppose that our general structure (the initial state of the 
Dynamic Structure containing few main attributes of a property) is 
already built (see figure 4). The structure has attached a basic Data 
Dictionary mainly containing the data types of the existing attrib-
utes. 

We will show how this initial structure will be dynamically 
changed by consecutively adding the three agents to the search 
domain. 

Adding the Case Base Structure 1 to the system implies map-
ping of the attributes ParkingSpace, Area and Type into the Dy-
namic Structure (these attributes are already existing in the initial 
structure) and also adding more attributes to it (i.e. NoOfRooms,  
NoOfBathrooms, GardenLength, GardenWidth) 

 

 
 
 

 
 
 
 
 
 
Fig. 4.  Initial state of the Dynamic Structure and Data Dictionary 

 
The Data Dictionary will reflect the mapping of attributes: 

CBS1.ParkingSpace = DCBS.ParkingSpace;  
CBS1.Area = DCBS.Location 
CBS1.type= DCBS.name 

The following attributes will be added to the dynamic data dic-
tionary:  

NoOfRooms: integer; 
GardenLength: double; GardenWidth: double 

Any other relevant relationships such as look-up tables for de-
fining mappings between the values of attribute Type of CBS1 and 

 
Case Bases Structures 1(CBS1) 

 

 
Case Bases Structures 2(CBS2) 

 

 
Case Bases Structures 3(CBS3) 
 

 

Data Dictionary 
Size: Double 
NoOfBedrooms: Integer 
Location: String 
ParkingSpace: double 

Name: house flat 
house 1 0 
flat 0 1 
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the values of the attribute Name of the dynamic structure will be 
captured. 

Case Base Structure 2 will add another attribute, GardenSize, to 
the Dynamic Structure and the data dictionary will record mapping 
of attributes:  

CBS2.Name = DCBS.Name,  
 CBS2.Location = DCBS.Location , 

CBS2.NoOfBedrooms = DCBS. NoOfBedrooms; 
The mathematical relationships are recorded:  

DCBS.GardenSize = DCBS.GardenLength * DCBS.GardenWidth, 
 Functions can be applied, for example to keep the same metric 

system: 
DCBS.GardenSize= CBS2.GardenSizeInFeet/(3.281)2 
The Data Dictionary would also include a look-up table show-

ing the conversion of values of CBS2.Name to values of 
DCBS.Name. 

Attention has to be paid to the meanings of the names of the at-
tributes. For example, if the attribute “Type” in CBS1 and the 
attribute “Name” in CBS2 have the same meaning (they would be 
translated as “Name” in DCBS, with values found in a look-up 
table), the attribute “Name” from CBS3 has not the same meaning 
as the one from CBS2. It is actually translated into DCBS.Location 
(similar to CBS2.Location) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Adapted Dynamic Structure after CBS3 was added 
 
By adding the third estate agent case base to the search domain, 

the dynamic structure will grow even more (see figure 5) and the 
Data dictionary will reflect it by adding the attributes 
DSBS.Garage and DSBS.View.  

The following attributes are mapped:  
CBS3.Name = DCBS.Location 
CBS3.Description = DCBS.Name  
CBS3.GardenSizeInMeters = DCBS.GardenSize 

Another look-up table can be created and added to the Data Dic-
tionary to record the relationship between the Garage and Parking-
Space. Figure 6 shows the state of the Dynamic data Dictionary 
after CBS1, CBS2 and CBS3 are added. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Adapted Dynamic Data Dictionary after CBS1, CBS2 

and CBS3 are added 

4   Optimising the agent collaboration process  

In order to optimise the process of collaboration between the 
agents to achieve an efficient solution from the overall CBR proc-
ess when applied across the heterogeneous case bases, an overall 
similarity metric is required. Additionally, an overall process to 
enable collaboration between the agents is necessary based on a 
flexible architecture to enable this collaboration. 

4.1   Defining an overall similarity metric  

The overall similarity metric between a target and a source Case 
can be defined as: 
 

,்ܥሺߪ ௦ሻܥ ൌ ,்ܥ௬ሺߪ ௦ሻܥ כ ߱௬ሺ்ܥሻ                 ሺ1ሻ 
where: 
σ: overall similarity 
σCBy: similarity from case base provider CBy 
CT: target case 
CS: source case 
߱௬ሺ்ܥሻ: weighting for a case base provider y for case CT 

To allow for defining locally optimised similarity metrics for 
different providers, the following metric can be defined: 

,்ܥ௬ሺߪ ௦ሻܥ ൌ߱௬ሺݔሻ כ ,்ܥ௬ሺߪ ,௦ܥ ሻ            ሺ2ሻݔ
௫

 

where: 
߱௬ሺݔሻ : the weighting from case base provider CBy for at-
tribute x  
,்ܥ௬ሺߪ ,௦ܥ  ሻ : the local similarity metric for provider CByݔ
for attribute x. 

This extended similarity metric takes into account the level of 
trust that the HMCBR system attributes to the competence of each 
case base provider. The level of trust is determined by applying 
CBR to the case-base of the history of queries. Additionally it 
allows to adjust the trust to particular providers to different “re-
gions” in the case base allowing for case base  providers to be 
“specialised” on particular types of domain knowledge. Finally, the 
extended metric allows for different ways of defining similarity 
based on possible particularities pertaining to individual case base 
providers. 

Let us assume that in our case study the third estate agent is 
specialised in city apartments. After a few searches for country side 
houses with gardens, reasoning can be applied to the History case-
base. Results will show that, for this particular query, the estate 
agent’s level of trust is not high, i.e. there will be less solutions for 
this particular case base added to the Dynamic case-base. 

A global level of trust of a provider’s case-base can be calculat-
ing taking in consideration the results of all the previous enquiries 
for that provider. 

4.2 An architecture and process to support effective 
collaboration between case base agents 

The architecture of the HMCBR system shown in figure 1 contains 
the dynamic CB system, which incorporates a blackboard architec-
ture. Blackboards have been used very effectively in the past for 
the construction of hybrid and agent based AI systems [11], [12]. 

The dynamic CB system is where the process for agent collabo-
ration is controlled. It is based on a blackboard architecture incor-
porating the blackboard containing the target and retrieved cases 
from various providers together with similarity calculations and 
rankings. The blackboard also contains a log of the solution proc-
ess and the reconciliation strategy followed, thus representing the 
state of the overall CBR solution process at any point in this proc-
ess. Figure 7 shows the structure of the dynamic CB module incor-
porating the blackboard architecture. 

Dynamic Data Dictionary 
CBS1.Area = DCBS.Location 
NoOfRooms: integer 
CBS1.type= DCBS.name 
DCBS.GardenSize: double 
DCBS.GardenSize = CBS2.GardenSizeInFeet 
DCBS.GardenSize = DCBS.GardenLenght * 

DCBS.GardenWidth  ... 
CBS3.Name = DCBS.Location 
CBS3.GardenSizeInMetres = DCBS.GardenSize 
 Garage ParkingSpace 
Garage 1 0.7 
ParkingSpace 0.7 1 
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Fig. 7.  The Dynamic CB system incorporating the blackboard 

architecture  
 
The blackboard manager manages the overall solution process, 

communicates with and keeps track of the CB agents, selects and 
implements a solution strategy and monitors and evaluates the 
solutions achieved. Given a new target case, the blackboard man-
ager decides on  strategy for finding similar cases from the CB 
providers. The blackboard system decides which CB providers to 
use and the number of cases to retrieve from each one and other 
requirements, such as the requirement for diversity, similarity 
thresholds etc. The system then initialises the agents and assigns to 
them a mission. On return, the results (cases) are mapped using the 
dynamic data dictionary and written to the blackboard. A “global” 
CBR process is used to decide on the retrieved cases. The system 
then selects and presents the shortlisted cases after the reconcilia-
tion process and provides these to the user, together with links to 
their original forms for the user to explore. Finally, the system 
“reflects” on the process by updating the query history and confi-
dence weights for each provider. 

The system described here has been implemented and tested on 
a set of case bases from three different estate agent case bases, all 
using different structures. Experiments with the system have shown 
that the system can retrieve useful cases combining cases from all 
case bases to provide a more efficient overall solution when com-
pared to using the case bases separately or mapping them to one 
central case base. Additionally, the system has shown that it can 
provide a more diverse retrieved case population in both cases. A 
full scale evaluation of the system, including using a different 
application domain is under way. 

5 Conclusion 

At a time of increasing web-based communication and sharing of 
knowledge between organisations and organisational units within 
enterprises, heterogeneous CBR applied to Multiple Case Bases 
seems to be the natural progression in this area of research. 

The paper investigates an approach based on agents operating 
on different structures/views of the problem domain in a transpar-
ent and autonomous way. In this approach all data is kept locally 
by each case base provider in its native form. Agents can be dy-
namically added to the system, thus increasing the search domain 
and potentially the competence and vocabulary of the system.  

This research proposes a new architecture for a self-adaptive 
MCBR system which involves the use of a dynamic structure based 
on the blackboard architecture. The Dynamic Structure reflects all 
participating case base provider structures. As new agents are 
added to the system, their case base structure is published and is 
used to adapt the Dynamic Structure accordingly.  

The Dynamic Structure is used at runtime to translate search 
queries into the local structures of each agent. Each agent can then 

use the translated query to match it to its local cases and retrieve 
the best matches. 

A Data Dictionary is created in order to manage the Dynamic 
Structure. This contains the metadata for the Dynamic Structure, 
such as mapping details of the case base provider’s structures to the 
Dynamic Structure, type information and relationships between 
attributes of the dynamic structure. 

The dynamic case base system manages the overall process, in-
cluding controlling the agents, reconciling and optimising the 
retrieved cases and feeding back into its strategy by continuously 
adjusting weights representing confidence levels on individual case 
base providers. A prototype system to evaluate the efficiency of 
using a heterogeneous Multiple Case Based Reasoning system is 
currently being evaluated. Preliminary findings are encouraging. 

Further work will concentrate into optimising the process of 
collaboration between the agents and methods and strategies for the 
reconciliation of retrieved cases.  
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