
IJCAR 2008

4th International Joint Conference on Automated Reasoning

Sydney, Australia, August 10–15, 2008

Workshop Program

5th International Verification Workshop –
VERIFY’08

Bernhard Beckert and Gerwin Klein (Chairs)

WS 1 – August 10/11

II

Preface

The VERIFY workshop series aims at bringing together people who are in-
terested in the development of safety and security critical systems, in formal
methods, in the development of automated theorem proving techniques, and in
the development of tool support. Practical experiences gained in realistic veri-
fications are of interest to the automated theorem proving community and new
theorem proving techniques should be transferred into practice. The overall ob-
jective of the VERIFY workshops is to identify open problems and to discuss
possible solutions under the theme “What are the verification problems? What
are the deduction techniques?”.

This volume contains the research papers presented at the 5th International

Verification Workshop (VERIFY’08) held August 10–11, 2008 in Sydney, Aus-
tralia. This workshop was the fifth in a series of international meetings since 2002.
It was affiliated with the 4th International Joint Conference on Automated Rea-

soning (IJCAR 2008).
Each paper submitted to the workshop was reviewed by three referees, and an

intensive discussion on the borderline papers was held during the online meeting
of the Program Committee. 7 research papers were accepted based on originality,
technical soundness, presentation, and relevance. We wish to sincerely thank all
the authors who submitted their work for consideration. And we would like to
thank the Program Committee members and other referees for their great effort
and professional work in the review and selection process. Their names are listed
on the following pages.

In addition to the contributed papers, the program included two excellent
keynote talks. We are grateful to Prof. Gilles Barthe (IMDEA Software, Madrid,
Spain) and Prof. Gernot Heiser (National ICT and Univ. of New South Wales,
Sydney, Australia) for accepting the invitation to address the workshop.

August 2008 Bernhard Beckert
Gerwin Klein

IV

V

Program Co-Chairs and Organisers

Bernhard Beckert University of Koblenz-Landau, Germany
Gerwin Klein National ICT Australia, Sydney, Australia

Program Committee

Serge Autexier DFKI and University Saarbrücken, Germany
Gilles Barthe IMDEA Software, Madrid, Spain
Peter Baumgartner National ICT Australia, Canberra, Australia
Bruno Dutertre SRI International, USA
Reiner Hähnle Chalmers University, Gothenburg, Sweden
Andrew Ireland Heriot-Watt University, Edinburgh, UK
Joseph Kiniry University Dublin, Ireland
Heiko Mantel TU Darmstadt, Germany
Stephan Merz INRIA Lorraine, France
Carroll Morgan Univ. of New South Wales, Sydney, Australia
Peter Müller Microsoft Research, Redmond, USA
Michael Norrish National ICT Australia, Canberra, Australia
Wolfgang Paul Saarland University, Saarbrücken, Germany
Lawrence C. Paulson University of Cambridge, UK
Wolfgang Reif University of Augsburg, Germany
Wolfram Schulte Microsoft Research, Redmond, USA
Johann Schumann NASA Ames Research Center, USA
Luca Viganò University of Verona, Italy
Toby Walsh National ICT Australia, Sydney, Australia
Christoph Walther TU Darmstadt, Germany

Steering Committee

Serge Autexier DFKI and University Saarbrücken, Germany
Heiko Mantel TU Darmstadt, Germany

Additional Referees

Burkhard Wolff
Cesare Tinelli
Peter H. Schmitt
Simon Bäumler

VI

Table of Contents

Invited Talks

Certificate Translation . 1
Gilles Barthe

Operating System Verification for Real Use . 2
Gernot Heiser

Research Papers

Model Checking for Stability Analysis in Rely-Guarantee Proofs 3
Hasan Amjad, Richard Bornat

Compositional Proofs with Symbolic Execution . 12
Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

Specification Predicates with Explicit Dependency Information 28
Richard Bubel, Reiner Hähnle, Peter H. Schmitt

Bitfields and Tagged Unions in C: Verification through Automatic
Generation . 44
David Cock

Model Stack for the Pervasive Verification of a Microkernel-based
Operating System . 56
Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

Exploring Model-Based Development for the Verification of Real-Time
Java Code . 71
Niusha Hakimipour, Paul Strooper, Roger Duke

Precise Dynamic Verification of Confidentiality . 82
Gurvan Le Guernic

Author Index . 97

VIII

Certificate Translation?

Gilles Barthe

IMDEA Software, Madrid, Spain
gilles.barthe@imdea.org

Abstract

Program verification techniques based on programming logics and verification
condition generators provide a powerful means to reason about programs. Where-
as these techniques have very often been employed in the context of high-level
languages in order to benefit from their structural nature, it is often required,
especially in the context of mobile code, to prove the correctness of compiled
programs. Thus it is highly desirable to have a means of bringing the benefits
of source code verification to code consumers.

Certificate translation is a general method to transfer to code consumers
evidence gained through verification of source code; it relies on the notion of
certificate, used in Proof-Carrying Code to convey to the code consumer inde-
pendently verifiable evidence that programs respect policies. The talk provides
sufficient conditions of existence for algorithms that transform certificates of
source programs into certificates of compiled programs, and show that many
common transformations comply with these conditions.

? Joint work with Benjamin Grégoire, César Kunz, and Tamara Rezk

Operating System Verification for Real Use

Gernot Heiser

School of Computer Science and Engineering, University of New South Wales, and
Embedded, Real-Time and Operating Systems Program, National ICT Australia

Sydney, Australia
gernot@nicta.com.au

Abstract

Software verification remains an academic exercise as long as it focusses on toy
problems, such as systems that are too simplified for practical deployment, or
perform too poorly. Furthermore, formal verification of software is of limited
benefit if the software is deployed in a system where it executes on top of an
unverified operating system.

This talk presents an overview of an effort at NICTA which aims to formally
verify a complete operating-system kernel, designed for deployment in main-
stream embedded systems. It will explain the approach taken to address the con-
flicting goals of verifiability, general applicability and high performance. The ker-
nel, called seL4, is designed to replace commercially-deployed high-performance
L4 microkernels with no more than 10% performance degradation. The project,
which has been running since early 2004, is scheduled to complete by the end of
this year.

Model Checking for Stability Analysis in

Rely-Guarantee Proofs

Hasan Amjad and Richard Bornat

Middlesex University School of Computing Science, London NW4 4BT, UK
Hasan.Amjad@cl.cam.ac.uk R.Bornat@mdx.ac.uk

Abstract. Rely-guarantee (RG) reasoning is useful for modular Hoare-style proofs of
concurrent programs. However, RG requires that assertions be proved stable under the
actions of the environment. We cast stability analysis as a model checking problem and
show how this may be of use in interactive and automatic verification.

1 Introduction

Multi-core and multi-processor computing systems are now mainstream. Conse-
quently, concurrent programs are the focus of much recent research on automat-
ically proving safety, correctness and liveness properties. Often, the assertions
we would like to prove are not amenable to existing automatic analyses. This
paper studies one such scenario, and shows how existing automatic techniques
can nonetheless help the proof process. The demonstration is expected to be the
first step towards a fully automatic method.

Shared-memory concurrency, where multiple threads have read/write access
to the same memory addresses, is commonplace. The main challenge in proving
properties of such programs, and indeed in their design, is dealing with inter-
ference, i.e., the possibility that threads may concurrently make changes to the
same memory address.

The concurrent programming community has evolved several synchronisation
schemes to avoid interference. Most rely on some form of access denial, such as
locks. Whereas locks make it easy to reason about the correctness, they may
also cause loss of efficiency as threads wait to acquire locks on needed resources.
Locking schemes have thus become increasingly fine-grained, attempting to deny
access to the smallest possible size of resource, to minimise waiting and maximise
concurrency. The ultimate form of such fine-grained concurrency are programs
that manage without any synchronisation at all [14].

The finer the concurrency, the more involved the logic for avoiding interfer-
ence. This logic must implicitly or explicitly take the actions of other threads
into account. This is a problem for program proofs where we strive for modu-
larity, i.e., we wish to be able to reason about a piece of code in isolation from
the various environments it could execute in.

Rely-guarantee reasoning [11] offers a solution to this problem within the
framework of Hoare-style program proofs [10], by encoding the environment into

4 Hasan Amjad, Richard Bornat

the proof: all assertions must be shown to be unaffected under the actions of the
environment. Automatically checking for and ensuring such non-interference can
be problematic in many cases. In this paper, we describe preliminary progress
on a possible solution.

The next section gives brief relevant background. We then describe our
method, and comment on shortcomings and possible developments. We assume
some familiarity with program proofs using Hoare logic [10], and with model
checking [2].

2 Preliminaries

2.1 Rely-guarantee Reasoning

Rely-guarantee (RG) is a compositional verification method for shared memory
concurrency introduced by Jones [11]. Interference between threads is described
using binary relations. In that treatment, post-conditions were relational, so
assertions could talk about the state before and after an action. Here, in line
with traditional Hoare logic, we shall use post-conditions of a single state, as this
usually makes for simpler proofs. In either case, the essence of RG is unaffected
by this choice.

Our command language will be the one used by Jones [11], i.e., with as-
signment, looping, branching, sequential composition and parallel composition,
using C-like syntax. For parallel composition we assume standard interleaved ex-
ecution semantics, i.e., threads are programs with access to some shared state,
and atomic instructions occur interleaved.

Program variables will range over B and N. It may seem odd to have program
variables range over infinite types. In practice however, reasoning about numbers
with the aid of abstraction, has been found to be more tractable than reasoning
about finite but huge state spaces over words or bit-vectors, which are harder
to abstract due to fiddly problems with overflow and underflow.

RG can be seen as a compositional version of the Owicki-Gries method [15].
The specification for a command C is a four-tuple (P, R,G,Q), where P and Q
are the usual Hoare logic pre- and post-condition assertions on a single state. C
satisfies this specification if from a state satisfying P , and under environmental
interference R (the rely), C causes interference at most G (the guarantee), and
if it terminates, it does so in a state satisfying Q.

R and G summarise the properties of the individual atomic actions invoked
by the environment and the thread respectively. An action is given as a binary
relation on the shared state, and is written P Q. This notation indicates that
the action updates the part of shared state that satisfies P (at the moment the
action executes), so that it satisfies Q.

Model Checking for Stability Analysis in Rely-Guarantee Proofs 5

For example, the action corresponding to the command x := x + 1, that in-
crements a shared integer x, might be written as

x = N x = N + 1

where the implicitly existentially quantified N serves to relate the state before
and after the execution. Such logical variables are required for describing actions
using single-state assertions. We shall denote them using N, M, . . . and assume
they are existentially quantified with scope limited to the action.

G is the relation given by the reflexive and transitive closure of all actions
of the thread being specified. The actions are given by manual annotation, as in
general, automatic action discovery is non-trivial. R is calculated in an identical
manner from the actions of the environment. Typically, the actions comprising
R are just the G actions of all the other threads.

An assertion P on a single state is considered stable under interference from
a binary relation R if (P ; R) ⇒ P , i.e., if P (s) and (s, s′) ∈ R, then P (s′).
More specifically, if P is the pre-condition for some command C, then it must
continue to hold after any environment action, before the execution of C. For
our purpose, we do not need to pin down the level of atomicity of execution.

Jones gives a full proof system for the satisfaction relation, but we will not
need it for this work. However, we reproduce the two critical rules here, to make
our assumptions about RG concrete. The first rule is parallel composition, where
|| is the interleaving parallel composition operator.

(P1, R ∨G2, G1, Q1) � C1 (P2, R ∨G1, G2, Q2) � C2

(P1 ∧ P2, R, G1 ∨G2, Q1 ∧Q2) � C1||C2

The second rule tells us what it means for a command to be atomic.

(P, id, true, Q ∧G) � C P stable under R

(P, R,G,Q) � atomic(C)

Note one departure from standard RG: the post-condition of the very last
line of code is not checked for stability. It is instantaneously true immediately
after execution of that line. At this point, either the thread terminates, so that
we do not care whether the environment interferes with the post-condition, or,
the thread resumes execution from some command the pre-condition of which
will be the same as this post-condition, and thus will be checked for stability.

2.2 Temporal Logic Model Checking

Let V be the set of program variables (or state variables) used in a program (with
appropriate scope management, which we ignore without loss of generality).

6 Hasan Amjad, Richard Bornat

Each v ∈ V ranges over a non-empty set of values Dv. The state space S of
the program is given by

∏
v∈V Dv. A single state of the program is then a value

assignment to each v ∈ V .

Suppose AP is the set of all those atomic propositions over V that we might
use in the specification of a program. Then we can turn the program into a state
machine (technically, a Kripke structure) M represented as a tuple (S, S0, T, L)
where S is the set of states, S0 ⊆ S is the set of initial states, T ⊆ S × S is the
transition relation, and L : S → 2AP labels each state with the subset of AP
that is true in that state.

A temporal logic augments propositional logic with modal and fix-point op-
erators. The semantics of a temporal logic formula in which the atomic proposi-
tions range over AP can be expressed in terms of sets of states and/or sequences
of states of M . If we turn a program into a state machine, we can use temporal
logics to express time-dependent properties of the program.

The most common such property is the global invariant, i.e., a property that
holds in all states of a state machine, or equivalently, always holds during the
execution of a program.

Global invariants can be checked automatically using proof procedures known
as model checkers, subject only to time and space constraints. More importantly,
if the proof attempt fails, the model checker can return a counterexample, which
is an execution path (sequence of states) leading from an initial state to a state
in which the invariant is not satisfied.

The problem of model checking global invariants is in general undecidable
when the state space is infinite. However, the ability to produce counterexamples
has led to the development of counterexample guided abstraction refinement
(CEGAR) [3, 16], where the state space is first abstracted to a simpler one,
and if the constructed abstraction is too general it can often be automatically
iteratively refined until the desired property is verified. For our purposes we
will assume a simple abstraction scheme consisting of a single total abstraction
function α : S → A, where A is the abstract state space (the exact structure of
which depends on the α under consideration). Typically, α is not injective and
need not be surjective.

We do not need to describe model checking or CEGAR in more depth, partic-
ularly as there are many different abstraction schemes and CEGAR techniques.
Further details may be found in [2, 3, 7, 16].

3 Stability Analysis as Model Checking

If the assertion permits, stability can be checked syntactically and unstable as-
sertions can be automatically stabilised by a fix-point computation that disjunc-
tively adds state until stability is achieved. More precisely, given an assertion

Model Checking for Stability Analysis in Rely-Guarantee Proofs 7

satisfying a set of states s, we compute the fix-point by

s0 = s sn+1 = sn ∪R(sn)

until sn+1 = sn, i.e, performing n environment transitions. If the domain of any
program variable is infinite, this fix-point computation might not terminate. In
such cases, automatic stabilisation techniques rely on abstract interpretation to
simplify the domain.

As a simple example, consider the assertion x = 10 that is clearly unstable
under the environment action x = N x = N + 1. To stabilise, we would
proceed

s0 = (x = 10)

s1 = (x = 10 ∨ x = 11)

s2 = (x = 10 ∨ x = 11 ∨ x = 12)

...

so automatic stabilisation will not terminate. To fix it, we could use the boolean
abstraction α(x) ⇐⇒ x ≥ 10. Under this abstraction the action above becomes
the identity action in all cases except when x = 9, but in that case x = 10 does
not hold anyway, so we have stability immediately, and the assertion is stabilised
to x ≥ 10.

In general, if the abstraction is too weak, it may throw away so much infor-
mation that the proof becomes impossible (e.g., we can trivially stabilise any
assertion by replacing it with true). But if the abstraction is too strong, the
fix-point computation may not terminate, or may run out of time or space re-
sources.

Current techniques therefore use hand-crafted abstraction heuristics that are
found to work in practice, for the underlying variable domains [5, 17].

We have seen in §2.2 that this problem of finding exactly the right level of
abstraction also occurs in model checking. It is our hope that the model checking
solution can be applied to stability analysis as well. If so, the vast amount of
model checking research on this topic can be brought to bear on the problem.
We now present the first step towards this goal, by representing stability analysis
as a model checking problem.

Rather than representing R and G as the reflexive transitive closures of their
constituent actions, we consider them as state machines over the shared state.
In addition, the state machine also has state variables for the program counters
of the constituent threads. Tracking program counters allows us to easily encode
the flow control of actions in the state machine.

The state machine for the guarantee condition Gt for a thread t, is Mt =
(St, S0t, t, Lt) and is constructed as follows. Let Vt be the set of all shared pro-
gram variables used in t as well as the t program counter pct : N. Then St is

8 Hasan Amjad, Richard Bornat

constructed like S in §2.2. S0t is those states of St in which pct = 0 and in which
any other v ∈ Vt are assigned their initial values if any. Let al be the (possibly
empty) set of actions associated with the primitive command on line l of the
thread code (this is for easy specification: in reality a single atomic statement
can only have a single associated action, so the analysis simply conjoins them).
Then

t((s, pct), (s
′, pc′t)) =

∨
l

(
pct = l ∧ pc′t = next(s, l) ∧

∧
a∈al

a(s, s′)

)

where the next function encodes the control flow of thread t. Finally, Lt(s) =
{p ∈ AP | p(s) = true}. The state machine for R, MR = (SR, S0R, TR, LR) over
variables VR, is constructed analogously, though of course it is more complicated
since it encompasses the actions of all the other threads.

Now suppose that we wish to stabilise an assertion P that is the pre-condition
of a command at program line l in a thread t. The first step is to check whether
the assertion is already stable. To do this we augment MR with fresh1 variables
corresponding to any thread-local variables that occur in P , and also add iden-
tity actions over these variables to TR so that their values never change. This
represents our intuition that when checking the stability under the environment
of an assertion in thread t, t itself is not executing.

We can now model check the augmented state machine M ′
R for the global

invariant P . Note that here we can use standard model checking abstraction
construction techniques [7] to try and avoid non-termination. If the invariant
holds, then since it is a global invariant and α is total, it holds in the concrete
state space as well. Otherwise, we will obtain a counter-example giving a se-
quence of actions of the abstract state machine that violates the invariant. At
this point, standard CEGAR techniques can be employed to check whether the
counterexample has a corresponding concrete trace, in which case the stability
check has failed. If not, the abstract trace is spurious (caused by too weak an
abstraction), so we refine the abstraction using standard CEGAR methods and
call the model checker again, until we have success or failure.

At this point we have already improved on existing stabilisation methods by
not being reliant on having a syntactic check for stability. However, we still have
to handle the case where the stability check fails.

In this situation, we have at hand a counterexample trace π showing a se-
quence of environment actions that falsified P , and also the particular abstrac-
tion function α being used by the model checker when the stability check failed.
These two pieces of information can be used to weaken P and then repeat the
stability check, and iterate until P is stable.

1 So that there is no name clash with any v ∈ VR.

Model Checking for Stability Analysis in Rely-Guarantee Proofs 9

For example, if we are using predicate abstraction techniques, then for our
running example where we are checking stability of P ≡ x = 10, we may have

α(x) ⇐⇒ x = 10 and π ≡ x = 10 k x = 11

where k uniquely identifies the action responsible. This information suggests
generalising P to x ≥ 10, and then the stability check succeeds.

This is as far as we have come. The new weakened assertion must be found
manually for now, using the point-of-failure α and π as guides, as in the example
above. Of course, we could simply use the existing method of repeated disjunctive
addition of the resultant state of the involved actions (which in this cherry-
picked example fails to terminate). However, the model checking approach gives
us extra information (point-of-failure π and α) which should hopefully allow
us to do better. We plan to develop an automatic method that uses symbolic
simulation driven by the counterexample traces, perhaps in combination with
heuristics, to weaken P in a useful manner. Here, we expect to use existing model
checking research on automatic abstraction construction [8].

In fact, at the moment our in-development tool (effectively a translation layer
on top of the NuSMV model checker [1]) does not even perform abstraction, as
all our test assertions are over finite domains. This is because while it would be
simple to switch to a tool supporting automatic abstraction (e.g., BLAST [9]),
we are more interested in finding out how to use π to weaken P , which is the
real challenge.

3.1 Comment: Refining Stability

In standard RG, the rely is represented as the reflexive transitive closure of all
actions that the environment can execute. This can also be thought of as a state
machine, albeit a not very informative one in which any transition (action) can
execute from any state. Thus, our representation of R and G as state machines
of actions can be seen as a refinement of the standard RG representation. The
latter can be thought of as the state machine consisting of all states reachable
from any state via all possible interleavings of the underlying actions, regardless
of whether these interleavings will ever actually occur. Our refinement proceeds
by adding control flow information, thus ruling out certain interleavings.

Thus it is possible for us to prove the stability of stronger assertions than is
possible in standard RG. Since the stability check is orthogonal to the RG proof
system, this means that we automatically obtain a stronger proof system.

Indeed, we can parameterise the RG proof system by the level of refinement
of R and G. We have experimented along these lines by adding some G actions
to R, or by selectively exposing the thread-local state of the environment, both
of which rule out some class of impossible action sequences. In each case we

10 Hasan Amjad, Richard Bornat

have been able to prove properties that are stronger, and often more intuitive
to specify.

There is a trade-off here, since adding more information to R and G will
almost certainly make the underlying model checking problem harder, affecting
scalability. Nonetheless, increasing the refinement level is attractive not only be-
cause it permits stronger properties to be proved, but also because the stabilised
assertion may be syntactically smaller and thus more readable. This latter con-
sideration is important if these methods are used as part of a larger interactive
proof framework, such as a theorem prover.

4 Remarks

We do not know of any other work that uses model checking for stability analysis
in Hoare-style RG proofs. There is work underway at MSR Cambridge [6] that
also represents R and G as state machines, but their aim is to deal with questions
of liveness. Other than that we know only of the automatic stabilisation work
that inspired our own effort [17].

It is well known [4] that the standard RG proof rule for parallel composition
can become unsound if the satisfaction relation is strengthened (e.g., to include
liveness). We are safe since stability is a safety property, for which the standard
RG proof system is sound.

Apart from the unfinished aspect, this approach has other shortcomings. An
important one is that refining R and G quickly makes the underlying model
checking problem more resource intensive. The same refinement (specifically,
the need to track program counters) also prevents the results from scaling up
to arbitrary numbers of threads for free, unlike in standard RG. We expect
that model checking techniques like paramatric verification [13] and assume-
guarantee reasoning [12] (not to be confused with rely-guarantee) may help
with this. More generally, our ability to change the refinement level of R and G
should also help ameliorate the situation.

We are also considering the use of separation logic in this framework, to
frame out irrelevant state and thus alleviate our model checking woes. RG and
separation logic have already been combined [18]. Extending that framework to
our method will be another thread of future work.

Acknowledgement The first author would like to thank Viktor Vafeiades for
permission to copy from the description of RG in his Ph.D. thesis.

References

1. Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveriand, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An OpenSource tool
for symbolic model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, volume 2404 of LNCS. Springer, March 2002.

Model Checking for Stability Analysis in Rely-Guarantee Proofs 11

2. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
3. E. M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-

guided abstraction refinement. In Allen Emerson and A. Prasad Sistla, editors, Computer Aided
Verification - (CAV’00), volume 1855 of LNCS, pages 154–169. Springer, 2000.

4. Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. CUP, 2001.

5. Dino Distefano, Peter O’Hearn, and Hongseok Yang. A local shape analysis based on separation
logic. In Holger Hermanns and Jens Palsberg, editors, TACAS, volume 3920 of LNCS, pages
287–302. Springer, 2006.

6. Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis. Proving liveness prop-
erties of non-blocking data structures. Submitted to POPL 2008.

7. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Orna Grumberg,
editor, Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS, pages
72–83. Springer-Verlag, June 1997.

8. Arie Gurfinkel, Ou Wei, and Marsha Chechik. Systematic construction of abstractions for model-
checking. In E. Allen Emerson and Kedar S. Namjoshi, editors, VMCAI, volume 3855 of LNCS,
pages 381–397. Springer, 2006.

9. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-modular ab-
straction refinement. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer-Aided Veri-
fication (CAV), volume 2725 of LNCS, pages 262–274. Springer, 2003.

10. C. A. R. Hoare. An axiomatic basis for programming. Communications of the ACM, 12(10):576–
580, 1969.

11. Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages 321–332,
1983.

12. K. L. McMillan. Verification of infinite state systems by compositional model checking. In
Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design and Verification Methods,
volume 1703 of LNCS, pages 219–234. Springer, 1999.

13. K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol by compo-
sitional model checking. In Tiziana Margaria and Thomas F. Melham, editors, Proceedings of
the 11th International Conference on Correct Hardware Design and Verification Methods, volume
2144 of LNCS, pages 179–195. Springer, 2001.

14. Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC ’96: Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, pages 267–275. ACM Press, 1996.

15. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach. Com-
mun. ACM, 19(5):279–285, 1976.

16. H. Säıdi. Model checking guided abstraction and analysis. In Jens Palsberg, editor, Proceedings of
the 7th International Static Analysis Symposium, volume 1824 of LNCS, pages 377–396. Springer,
July 2000.

17. Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-
bridge, 2007.

18. Viktor Vafeiadis and Matthew J. Parkinson. A Marriage of Rely/Guarantee and Separation Logic.
In CONCUR, volume 4037 of LNCS, pages 256–271, 2007.

Compositional Proofs with Symbolic Execution

Simon Bäumler, Florian Nafz, Michael Balser, and Wolfgang Reif

Institut für Informatik – University of Augsburg
Augsburg, Germany

Abstract. A proof method is described which combines compositional proofs of inter-
leaved parallel programs with the intuitive and highly automatic strategy of symbolic
execution. As logic we use an extended variant of Interval Temporal Logic that al-
lows to formulate programs directly in the Simple Programming Language (SPL). The
notation includes a complex interleaving operator. The interactive proof method we
use for temporal properties is symbolic execution with induction. Here, we show how
to combine this proof method with an assumption-guarantee approach to decompose
proofs for safety properties. We demonstrate the application of this technique with a
producer-channel-consumer case study. 1

1 Introduction

Verification of concurrent systems is an important topic, as, in comparison to
sequential programs, the system execution is much more complex. Validation of
concurrent systems by testing is very difficult and often not feasible, as there
are many more test cases and it is hard to reproduce tests. But also formal
verification of concurrent systems is complicated, because reasoning over all
possible execution traces tends to result in a huge state space which makes
automatic and interactive verification very difficult.

To avoid reasoning over the complete concurrent system, a common tech-
nique is compositional reasoning. The basic idea of this technique is, to split the
system into several subcomponents. Then, the overall property is proved only
with corresponding properties of the subcomponents. This idea was first formu-
lated by Dijkstra [1]. In compositional reasoning the proof is often done with a
compositional theorem. Such a theorem provides a number of proof obligations,
which have to be fulfilled, so that the overall property is valid. Ideally, these proof
obligations contain only single subcomponents and properties of these subcom-
ponents, but not the complete system itself. This results in several proofs of
feasible size.

A common compositional proof technique is the assumption-guarantee
paradigm, which was introduced by Jones [2] and by Misra & Chandy [3]. The
basic idea of this paradigm is, that each component can make specific assump-
tions to its environment in order to guarantee a specific behavior. An overview
of recent works on compositionality in general can be found e.g. in de Roever
et. al. [4] or Furia [5].

1 This work has been funded by the DFG program INOPSYS II, under contract number Re 828/6-3.

Compositional Proofs with Symbolic Execution 13

Symbolic execution, on the other hand, is a successful technique for interac-
tive verification of sequential programs (e.g. Dynamic Logic [6, 7]). It is a very
intuitive strategy for programs as the proof advances step by step similar as
most humans do it when trying to understand a program [8, 9]. Furthermore, it
can be automated to a large extend. Balser [10] presented an ITL2-based logic
with calculus that allows the symbolic execution of concurrent systems. This
calculus was integrated into the interactive theorem prover KIV [12]. Arbitrary
specification languages can be nested into this logic and thus making it unnec-
essary to translate a system specification into a special specification language
for formal verification. Even more important is that the interleaving in this logic
is compositional. That means, it is possible to replace a subcomponent with an
abstraction of the component in a concurrent proof. While this feature simplifies
concurrent proofs, it is still necessary to use symbolic execution on the whole
parallel system in order to prove a property. A compositional theorem for this
method would make it possible to prove properties of concurrent systems by
reasoning only over single subcomponents at a time.

The goal of this paper is to present an assumption-guarantee rule for the
logic presented in [10]. This would enable us to fully use the advantages of both
techniques, compositional reasoning and symbolic execution, as well as the tool
support, which is available for this logic.

We assume that the reader has at least basic knowledge in temporal logic
and sequent calculus. The remainder of the paper is structured as follows: A
short overview of our logic is given in Section 2. The compositional theorem we
use is presented in Section 3, its application is shown in Section 4 on a producer-
channel-consumer case study. Section 5 concludes the paper with related work
and an outlook.

2 Temporal Logic Framework

In the following an informal overview over the used temporal logic calculus is
given. The formal semantic is described in [13] and [10]. The calculus is inte-
grated into the interactive theorem prover KIV. The temporal logic framework is
a variant of ITL [11, 14] that is extended by explicitly including the behavior of
the environment into each step. The basis for ITL are finite or infinite sequences
π of valuations, which are called intervals. Valuations in π are called states. Each
state is described by a first-order predicate logic formula over dynamic variables
v, which also can be primed v′ or double primed v′′. The relation between v and
v′ is called system transition, whereas the relation between v′ and v′′ environ-
ment transition. The value of v′′ in a state must be equal to the value of v in
the next successive state. Thereby the system and the environment transition
alternate. A selection of the supported temporal operators are:

2 Interval Temporal Logic, introduced by Moszkowski [11]

14 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

◦ϕ there is a next state and it satisfies ϕ
last the current state is the last state
�ϕ ϕ holds always from now on in every state

ϕunlessψ either ϕ holds always from now on in every state
or ψ holds in any state and ϕ holds in every state before

⌈v⌉ frame assumption, only variables in v are modified
ϕ1 ‖ ϕ2 interleaving

Further, programs are written in a SPL (Simple Programming Language) [15]
like program syntax. The selection of the used SPL-operators are:

x := t assignment awaitψ synchronization
ϕ1|ϕ2 parallel assignment whileψ doϕ loop
ϕ1;ϕ2 sequential composition

Semantically, a program describes a set of traces. Therefore, it is possible
to embed programs into temporal formulas. This can be used for the parallel
composition of programs with the tl-interleaving operator.

2.1 Symbolic Execution

A typical sequent in proofs about interleaved programs has the form P, Γ ⊢ ∆.
Here, P is the interleaved program, Γ contains a temporal formula that describes
the environment behavior and a first order formula for the current variable
assignment, while ∆ contains the temporal property which has to be shown.

Symbolic execution on the following example sequent is done in two steps:

m := m+ 1;< prog >, �m′ = m′′, m = 2 ⊢ ∆

First, all temporal and program formulas are rewritten to a so called first-
next form, which encodes the transition to the next state in a predicate logic
formula. For this, the following rule3 is used:

m′ = m+ 1, ◦ < prog >, m′ = m′′, ◦�m′ = m′′, m = 2 ⊢ ∆

m := m+ 1;< prog >, �m′ = m′′, m = 2 ⊢ ∆
(prenex)

This rule separates propositons about the current state from propositions
about all following states. So after application of prenex each formula is either a
first-order formula, describing the first state in the trace or a temporal formula
with a leading next-Operator, that describes the remaining trace.

Now it is possible to advance one step in the trace. In all first-order formulas,
unprimed and primed variables are replaced by new static variables, while the
double primed variables are replaced by their unprimed version. Further, all

3 Note that rules in the sequent calculus are read bottom-up, with the conclusion at the bottom and
the corresponding proof obligations on the top part.

Compositional Proofs with Symbolic Execution 15

next-operators of temporal formulas are eliminated. In the example, this is done
by the following rule-application:

M1 = M0 + 1, < prog >, M1 = m′, �m′ = m′′, M0 = 2 ⊢ ∆

m′ = m+ 1, ◦ < prog >, m′ = m′′, ◦�m′ = m′′, m = 2 ⊢ ∆
(tl-step)

This results in the following sequent after simplification:

< prog >, �m′ = m′′, m = 3 ⊢ ∆

The rules for symbolic execution of formulas in the succedent are very similar.
In KIV these rules, prenex, tl-step and simplification, are combined to a single
complex rule called step.

2.2 Executing Interleaved Programs

To execute two interleaved formulas a first transition from one or the other for-
mula is executed. After this, execution continues with interleaving the remaining
formulas. For example, if there are two interleaved programs in the antecedent
m := 1; . . . ‖ n := 2; . . . , Γ ⊢ ∆ this formula is executed by symbolically exe-
cuting either program first. For this, the following rule is used:

m := 1; (. . . ‖ n := 2; . . .), Γ ⊢ ∆

n := 2; (m := 1; . . . ‖ . . .), Γ ⊢ ∆

m := 1; . . . ‖ n := 2; . . . , Γ ⊢ ∆
(interleaved left)

Furthermore the following equation holds for the interleaving operator

last ‖ φ ↔ φ

which can be used to eliminate terminated programs. In the case that one of the
programs is blocked, only the other program is executed.

One important feature of our interleaving operator is that it is compositional.
This means, that the following rule can be applied:

⊢ ϕ1 → ϕ2 ϕ2 ‖ ψ, Γ ⊢ ∆

ϕ1 ‖ ψ, Γ ⊢ ∆
(comp)

This feature is very important for the proofs of the theorems in chapter 3 and
for abstraction in general.

Note, that our interleaving operator also supports features like fairness and
blocking. These features and the general case, where the interleaving operator
contains arbitrary temporal formulas, are also described in detail in [16] or [10].

16 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

2.3 Induction and Sequencing

The basic idea to proof safety properties is to advance in the interval until a
valuation is reached that was considered earlier in the interval, so that a loop
was executed. If it can be proven that the property is true before and during
the loop so it is invariant, then the proof can be finished with an inductive
argument. A special rule start induction is used to generate a suitable induction
hypothesis.

Symbolic execution can lead to many paths, that have to be explored. Often
two different paths lead to same configurations (two sequent have the same
configuration if all temporal logic formulas are the same). To minimize the proof
effort a rule called sequencing is used, that allows to close a open premise when
there exists another premise with the same configuration, but with more general
predicate logic formulas.

3 Compositional Theorem

Most assumption/guarantee based compositional proof techniques use a special

operator similar to the ”while-plus” operator
+

_ presented in [17]. Informally,

the term A
+

_ G means, that if A holds up to step i, then G must hold up to
step i+ 1. This operator enables the formulation that a component violates its
guarantee G only after its assumption A is violated. It is needed to break the
circularity of the used compositional rule.

Assumptions and guarantees can be formulated with propositional predicates
over unprimed and primed variables (e.g. Cau and Collette [18]). We use the same
approach, but for the assumptions we use predicates over primed and doubly
primed variables. In this way it can be formalized which steps are allowed for the
components and which steps are allowed for the environment. This also allows

to use a standard TL operator unless as
+

_ operator, i.e.:

A
+

_ G := Gunless (G ∧ ¬A)

With these preliminaries we are able to construct a compositional theorem:

Theorem 1. If:

i. for all i = 1, . . . , n: Mi ⊢ Ai(v
′, v′′)

+

_ Gi(v, v
′)

ii. for all i = 1, . . . , n: Gi(v1, v2) ⊢ G(v1, v2) ∧
∧

j∈{1..n}∧j 6=iAj(v1, v2)

iii. for all i = 1, . . . , n: Ai(v1, v2) ∧ Ai(v2, v3) ⊢ Ai(v1, v3)
iv. A(v1, v2) ⊢

∧
i∈{1..n}Ai(v1, v2)

then:
M1 ‖ . . . ‖Mn ⊢ A(v′, v′′)

+

_ G(v, v′)

Compositional Proofs with Symbolic Execution 17

C

S

ST

I

aI

C

ST

ST aI

aI

C

SEST SE

ST

aI

ST

CO

CO

SE

CO

I

C

ST

ST aI

aI

C

SEST SE

ST

aI

Legend:

case distinction

simplifier

step

start Induction

apply Induction

sequencing

comp1

2

3 4 5

98 106

7

11 12

13

Fig. 1. Proof Graph for Theorem 1

Premise i is a temporal logic sequent while premise ii - iv contain only
predicate logic formulas. These four proof obligations have the following informal
meaning:

i. All components must sustain their guarantee as long as the assumption holds.
These are the only proof obligations which require a temporal logic proof.

ii. The guarantee of each component preserves the global guarantee and does
not violate the assumptions of all other components.

iii. The assumptions of all components are transitive. With this property, the
components assumption is preserved even if other components make several
steps.

iv. All component assumptions hold if the global assumption holds. Therefore,
no component assumption is violated in the environment-step.

Proof (Outline).
The theorem was formally proven with the theorem prover KIV by using the

ITL calculus described in section 2. As first step the proof for two components
was done by symbolic execution of two abstract and interleaved components. The
simplified proof graph4 for this first step is depicted in figure 1. The premises i-iv
of theorem 1 are used as lemmas for this proof. Premises ii-iv are applied by the
KIV simplifier on predicate logic premises, which are all closed automatically by
KIV. These simplifier steps are omitted in figure 1 for the sake of brevity.

The proof starts with the sequent M1 ‖ M2 ⊢ A(v′, v′′)
+

_ G(v, v′) (node 1).
M1 and M2 are abstract programs that have arbitrary behavior. At first both

4 The rules apply Induction and Sequencing refer both to another node in the proof tree, as explained
in section 2. Therefore we depict proofs as graphs. The nodes that are referred by the rules apply

Induction and Sequencing are represented by dashed arrows and pointed arrows respectively.

18 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

programs are replaced with their assumption-guarantee formulas of premise i of

the theorem via the rule comp, so node 2 has the following sequent: A1(v
′, v′′)

+

_

G1(v, v
′) ‖ A2(v

′, v′′)
+

_ G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′) Here, the step rule is
applied for symbolic execution. In the following, only the nodes 3-5 are described,
as the other three premises of node 2 are symmetrical to these nodes.

In node 3 the first parallel component has terminated, so it must be shown

that A2(v
′, v′′)

+

_ G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′) holds. This can by done using
step and apply induction.

In node 4 the first component has made a normal step (i.e. it is neither ter-
minated nor blocked). The case distinction discerns if A1(v

′, v′′) holds (node 7)

in this step or not (node 6). Node 6 has the sequent ¬A1(v
′, v′′) ‖ A2(v

′, v′′)
+

_

G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′). Here, in the next step there are three possibili-
ties:

– The left component makes a step (not depicted in the graph, as it can be
closed automatically by the simplifier).

– The right component makes a step and A2(v
′, v′′) is violated too (node 11).

This can be closed automatically by another step.
– The right component makes a step and A2(v

′, v′′) holds (node 12). This
premise can be closed by induction.

Node 7 contains exactly the same sequence as node 2, therefore induction can
be applied.

Node 5 treats the case if the left component is blocked. Here, three cases are
possible:

– Both assumptions A1(v
′, v′′) and A2(v

′, v′′) are violated (node 8). This can
be closed automatically via step rule.

– Only the assumption A1(v
′, v′′) is violated (node 9). This is the same case as

in node 6, therefore sequencing can be applied.
– A1(v

′, v′′) holds and the right component has made a step (node 10). This
case is covered in node 13, therefore sequencing can be applied.

This proof can be extended to n components by induction over the number
of components. The initial induction case for one component can be shown by
another temporal induction (similar to node 3 in the proof above). The inductive
step can be proved by using the proof for two components as lemma to reduce n
components to n−1 components. Then the induction hypotheses can be applied.

Usually the construction of a modularization rule is very difficult because of
mutual dependencies. One interesting thing in our framework is that symbolic
execution and tool support can not only be used to prove the modularization
theorem, it actually helps to find the correct premises for the rule. To do so,
the proof is as above, but without using the premises ii-iv as lemmas (as we

Compositional Proofs with Symbolic Execution 19

want to find them at this point). Then we try to close all open premises that
contain temporal logic formulas, which results in a similar proof graph as shown
in figure 1, but with several additional open premises that contain only predicate
logic sequents. So to find the correct premises for the modularization theorem are
a minimal set of generic predicate logic formulas from which all open sequents
can be shown. By this technique a semantic analysis of the parallel operator is
not necessary.

Extended Modularization Rule While this first rule may be useful for very simple
systems it must be improved to be usable for more complex cases. First, a vari-
able initialization in the temporal logic proofs (obligations i) is needed. Second,
applications of this first rule show, that the guarantees are often redundant.
Especially it is often necessary to have an invariance property. This invariant
can be used to express the relation between the initial state and all suceeding
states. Similar techniques for these additions are used e.g. in [18].

So, using the additional predicates I(v) for the invariant, Init(v) for the
initial values of the global system and a family of predicates Init i(v) for the
initial values for every system component leads to an extended version of the
compositional rule:

Theorem 2. If:

i. for all i = 1, . . . , n:

Mi, I(v), Init i(v) ⊢ Ai(v
′, v′′)

+

_ Gi(v, v
′)

ii. for all i = 1, . . . , n:
Gi(v1, v2) ∧ I(v1) ⊢ G(v1, v2) ∧

∧
j∈{1..n}∧j 6=iAj(v1, v2) ∧ I(v2)

iii. for all i = 1, . . . , n:
Ai(v1, v2) ∧Ai(v2, v3) ∧ I(v1)) ⊢ Ai(v1, v3)

iv. A(v1, v2) ∧ I(v1) ⊢
∧

i∈{1..n}Ai(v1, v2) ∧ I(v2)
v. for all i = 1, . . . , n:
Ai(v1, v2) ∧ I(v1) ∧ Init i(v1) ⊢ Init i(v2)

vi. Init(v1) ⊢
∧

i∈{1..n} Init i(v1) ∧ I(v1)

then:
M1 ‖ . . . ‖Mn, Init(v) ⊢ A(v′, v′′)

+

_ G(v, v′)

The informal meaning of the proof obligation of this theorem are as follows:

i. These obligations are mostly the same, except that we can now assume the
invariant and the initial condition for the respective component in the an-
tecedent.

ii. - iv. These obligations are mostly the same as in the previous rule, except
that the predicate I can now be assumed in the antecedent. Also, we have to
show in obligations ii. and iv., that the invariant is preserved by the guarantee
of each component and the global assumption.

20 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

Fig. 2. Producer-Channel-Consumer (ProChaCon)

v. Here it is shown, that the initial condition of a component is preserved by its
assumption.

vi. This obligation establishes the invariant and the initial conditions of the
components.

Proof (Sketch). This theorem was also formally proven with KIV. The proof for
theorem 2 and 1 are very similar. However, it must be shown for theorem 2 that
Init1(v), Init2(v) and I(v) holds in the first state. To do that, a case distinction
is used before the first step (node 2 in figure 1). The cases where one of the
formulas Init1(v), Init2(v) and I(v) does not hold can be proved via step and
induction, similar to node 8 in figure 1.

4 Case Study

In this section an example for applying the introduced theorem is presented.
After an introduction of the producer-channel-consumer case study (short
”ProChaCon”) and its specification the formulation of the assumption-guarantee
(short ”AG”) properties is described. The section closes with a description of
the proofs of some of the proof obligations.

ProChaCon consists, as the name implies, of three interleaved components,
depicted in Figure 2. Usually the values of the producer component are derived
from an application or another component. For our task it is sufficient to gener-
ate them randomly. These values are sent using a classical two-way-handshake
protocol [19] to the channel component. The channel is again divided into a
receiver and a sender component. Both are connected through a buffer in which
the incoming values are stored. The receiver is responsible to store the incom-
ing values into the buffer and the senders job is to forward the buffered values.
Thereto, the receiver attaches the incoming value to the buffer-list and the sender
transmit the first value of the list as long as the buffer is not empty. The buffered
values are transmitted to the consumer component, which processes the received
values in an arbitrary way. The history of sent and received values is modeled by
inserting history lists on certain points, e.g plist, also depicted in Figure 2. They

Compositional Proofs with Symbolic Execution 21

producer:

begin

while true do

await cha.sig =cha.ack;
a := [?];
cha:= mkch(a, cha.sig, cha.ack) ;
cha:= mkch(cha.data,

¬ cha.sig, cha.ack)|
plist := plist + a

end;

consumer:

begin

while true do

await chb.sig 6=chb.ack;
b := chb.data;
chb := mkch(chb.data,

chb.sig,chb.ack)|
clist := clist + b

end;

channel:

begin

1 while true do

2 await cha.sig 6=cha.ack;
3 c := cha.data;
4 cha := mkch(cha.data,

cha.sig,¬cha.ack)|
elista := elista + c ;

5 chbuf := chbuf + c|
elistb := elistb + c

end;

begin

while true do

await chbuf6= [];
d:= chbuf.first|
chbuf := chbuf.rest|
slista := slista + chbuf.first;

await chb.sig = chb.ack;
chb := mkch(d, chb.sig,chb.ack);
chb := mkch(chb.data,

¬chb.sig,chb.ack),
slistb := slistb + d

end;

Fig. 3. SPL Representation of ProdChaCon

are implemented as atomic assignments attached to the accordant program step.
A specification of the components with SPL is shown below in Figure 4.

First some abbreviatory notations are described that will be used in the
following. The sets of all used unprimed, primed and doubleprimed variables are
denoted with V , V ′ and V ′′. As mentioned in the introduction a step consists of
a system step and an environment step. In the following it is often necessary to
express that a component only change a set of variables L. This is formulated
by a frame assumption, which corresponds to the formula

⌈L⌉ :⇔
∧

w∈V \L w
′ = w

which states that all program variables except L are unchanged. Here, L is a
subset of V. Further, during the environment step some variables are unchanged.
This is formulated with the following predicate

Unchangedenv(L) :⇔
∧

w∈Lw
′ = w′′.

The verified property is “The list of received values is always a prefix of
the list of the sent values”. In other words, only values that have been sent are
received and the order is unchanged. So for the overall guarantee the formula

22 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

clist ⊑ plist → clist′ ⊑ plist′ is used, where ⊑ is the prefix operator. The global
assumption states that all variables are unchanged by the environment. This
leads to the following proof obligation for the complete system.

Unchangedenv(V)
+
→ (clist ⊑ plist → clist′ ⊑ plist′)

The system uses, as mentioned, a classical handshake to transmit values.
Therefore, the involved components have to guarantee at least that they fulfill
their part accurate. Sending components must guarantee that they transmit a
value only if it is their turn and that the history-lists are updated in a correct
way, formally expressed in Handshakesend.

Handshakesend(ch, hlist) :⇔
(ch.sig 6=ch.ack → (ch = ch′∧hlist = hlist′))

∧ (ch.sig =ch.ack∧ch′.sig =ch′.ack) →hlist = hlist′)
∧ (ch.sig =ch.ack∧ch′.sig 6=ch′.ack) →hlist + ch.data = hlist′

Analogously Handshakereceive express that the receiver has to guarantee that
values are only received if the handshake variables are unequal. The history
list is updated if the handshake variables signalizing that a value was received
successfully and the next value can be transmitted.

The producer component has to guarantee two things. First, that only inter-
nal variables and the handshake channel are changed. Second, that the hand-
shake protocol is implemented correctly. The producers environment assumption
A1 states that the environment does not change the internal variables as long
as the producer could transmit a value. This is captured in G1 and A1.

G1(V, V
′) :⇔⌈ a,cha,plist⌉∧ Handshakesend(cha,plist)

A1(V
′, V ′′) :⇔Unchanged env(a,plist)∧ (ch′

a.sig =ch′
a.ack→ch′

a =ch′′
a))

The AG of the consumer can be formalized analogously:

G4(V, V
′) :⇔⌈ b, chb,clist⌉ ∧ Handshakereceive(chb, clist)

A4(V
′, V ′′) :⇔Unchanged env(b,clist)∧ (ch′

b.sig 6= ch′
b.ack→ch′

b =ch′′
b))

In a similar way the AGs for both channel components (channelrec,
channelsend) can be formalized. They need additional guarantees, because they
pass the values via a buffer. That this is done correctly is formalized by the two
guarantees Buffer in and Buffer out.

Buffer in(buffer, hlistin, valuein) :⇔

(hlistin = hlist′in ∧ buffer = buffer′)
∨ (hlistin + valuein = hlist′in

∧ buffer + valuein = buffer′)

Compositional Proofs with Symbolic Execution 23

Buffer out(buffer, hlistout) :⇔

hlistout + buffer = hlist′out + buffer′

The complete guarantee for channelrec consists of the statements that
channelrec only changes its internal variables, that the receiver part of the hand-
shake protocol is implemented in a correct way and that the component writes
into the buffer correctly. Additionally, the component needs to guarantee that
the prefix property also holds between both internal history lists. As assumption
it can be presumed that the environment does not change the internal variables
and the channel is not changed as long as channelrec can receive a value. That
leads to the following AG.

G2(V, V
′) :⇔ ⌈ c, cha, chbuf, rlista, rlistb⌉

∧ Handshakereceive(cha, rlista)
∧ Buffer in(chbuf, rlistb, c)
∧ rlist′b ⊑ rlist′a

A2(V
′, V ′′) :⇔ Unchangedenv(c, rlista, rlistb)

∧ (ch′
a.sig 6=ch′

a.ack → ch′
a =ch′′

a))

The AG of the other channel component (channelsend) can be formalized
analogously with Buffer out and Handshakesend.

The system always has to be in a correct state. In other words the buffers have
to be empty or at least have to be filled in a non-conflicting way. This is expressed
as an invariant. Theoretically, it is also possible to put all these into the AGs
of the components, but it is more concise to have only local properties there.
Therefore statements consisting of variables of more than one component are
separated within an invariant, which expresses the connection of the components.
First it states that depending on the handshake variables the two neighbor
history lists are either equal or they differ in the value that is set in the data
field.

I 1(V) :⇔ (cha.sig = cha.ack → elista = plist)
∧ (cha.sig 6=cha.ack → elista + cha.data = plist)
∧ (chb.sig = chb.ack → clist = slistb)
∧ (chb.sig 6=chb.ack → clist + chb.data = slistb)

For the channel it is stated that all values that were written into the buffer
are either still in the buffer or were already send to the consumer component.
This is formalised with slist + chbuf = elistb. Additionally, some prefix properties
are needed to show the overall property:

I 2(V) :⇔ clist ⊑ slistb ∧ slistb ⊑ slista ∧ slista ⊑ elistb

∧ elista ⊑ elista ∧ elista ⊑ plist

24 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

The overall invariant I (V) is I 1(V) ∧ I 2(V). The only needed initial infor-
mation is, that the history-lists of both channel components are equal. This is
formulated with init2 ≡ (rlista = rlistb) and init3≡(slista = slistb).

I

ST

aIST

ST

aIAll proof obligations were formally proven with KIV. To give an
impression of the proof effort for the components, we describe as ex-
ample proof of the temporal logic proof obligation i for channelrec,
which is as follows:

M2, I(V), Init2(V) ⊢ A2(V
′, V ′′)

+
→ G2(V, V

′)

The proof graph for this obligation is shown on the right side. In
the beginning we start induction, explained in section 2.3. Initially
the program is in position 1 (the numbers refer to the program of
page 21). The while-loop could be evaluated, so that the program
is in position 2. Executing the first step leads to a case distinc-
tion. Either the await-statement could be evaluated to true and
the program is on position 3 or to false and the program remains
at position 2. In the second branch induction is applied, as the sequent has not
changed. In the first branch further steps are executed till the program is again
at position 1, which has been encountered before. In this case induction is ap-
plied and the proof is finished. The other three temporal logic proof obligations
can be verified analogously without additional effort.

The proofs for the predicate logic proof obligations are straight forward. They
start with a case distinction of the conjunctions on the right side of the sequence.
All premises can then be closed by the simplifier of KIV automatically.

All in all the reuse of the AGs is very high, for example every component
that uses a handshake protocol has to fulfill the handshake guarantees. Only the
invariant depends on the property we want to verify. All proofs are simple and
can be automated to a large extend. One reason for this is, that the components
are no longer interleaved after modularization and so symbolic execution leads
to only few new cases.

5 Related Work and Summary

In summary, we have presented a method how to use symbolic execution together
with compositional reasoning. As basis for our work we use an ITL variant [10]
that supports symbolic execution. Furthermore it provides a compositional inter-
leaving operator, which allows us to formulate an assumption-guarantee theorem
and prove it on syntactic level. The logic is fully integrated into the interactive
theorem prover KIV and all proofs where done within this tool. A further advan-
tage of our logic is the possibility to directly include multiple system description
languages into the logic formalism, e.g. SPL which is used in this work. Other
languages that were also successfully integrated into the logic are Statemate

Compositional Proofs with Symbolic Execution 25

and UML statecharts [20, 21] as well as Asbru, a language used for the verifica-
tion of medical protocols [22]. The tool support and the syntactic nature of the
theorem simplifies adaption of the theorem to particularities of these languages
(e.g. to have better support for events in statecharts). The ability of symbolic
execution of programs and statecharts supports intuitive and understandable
proofs. To our knowledge this is the first work combining symbolic execution
with compositional reasoning.

Our compositional theorem is inspired by the work of Abadi and Lamport

[17]. They introduced the
+

_ operator and a theorem which is suitable for safety
and liveness properties. In comparison to our work they use conjunction for
the composition of components. While conjunction is a more elementary oper-
ator than our interleaved operator, all components must be specified as stutter
equivalent components. To achieve this, their components must be specified in
a special formula in normal form, while we are able to specify the components
directly in various description languages. Due to the inclusion of the double
primed variables we have a stuttering mechanism directly in our semantics.

We use a similar technique for defining assumptions and guarantees as Cau
and Collette [18]. Their theoretical work is more general as the described theorem
can be adapted to state based as well as message based systems. Compared to
this our focus was to provide a calculus and tool support for our technique.

Solanki et. al. [23] use compositional reasoning together with ITL. They use
an AG variant that allows guarantees to be formulated in ITL. As tool they
use (ana)Tempura [14, 11]. This technique is applied to a semantic web service
description.

In a paper by Zwiers et. al. [24] invariants and preconditions are integrated
in a compositional framework for concurrency. Joseph and Pandya [25] integrate
invariants in a framework for total correctness. They use CSP-like distributed
programs. Moszkowski [26] uses ITL for a compositional specification and proof
technique. Further work about compositionality are e.g. Pnueli [27], Stirling [28]
or Woodcock and Dickinson [29].

The producer-channel-consumer case study is a standard example for compo-
sitional reasoning. Pnueli [30] described a producer-channel-consumer example
already 1986 formally with temporal logic. Abadi and Lamport [17] also used this
example to illustrate how to specify components of concurrent systems. In their
example they show that two N-element queues can be composed to an (2N+1)-
element queue. Jonsson and Tsay [31] use the same example and property.
The producer-channel-consumer example is also verified by Breitling et. al. [32],
where streams for modelling the communicationare are used and Rock et. al. [33]
in combination with TLA for specification.

Next steps are to apply our approach on liveness properties. First experi-
ments in this direction were very promising. Another interesting topic would

be to integrate an objectlevel
+

_ operator similar to [17]. This would allow us

26 Simon Bäumler, Florian Nafz, Michael Balser, Wolfgang Reif

to use more complex assumption guarantee properties without abandoning the
advantages of our approach: symbolic execution and tool support with various
system description languages.

References

1. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9)
(1965) 569

2. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM Trans.
Program. Lang. Syst. 5(4) (1983) 596–619

3. Misra, J., Chandi, K.: Proofs of networks of processes. IEEE Transactions of Software Engineering
(1981)

4. de Roever, W.P., et al.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge University Press (2001)

5. Furia, C.A.: A compositional world: a survey of recent works on compositionality in formal
methods. Technical Report 2005.22, Dipartimento di Elettronica e Informazione, Politecnico di
Milano (March 2005)

6. Harel, D.: Dynamic logic. In Gabbay, D., Guenther, F., eds.: Handbook of Philosophical Logic.
Volume 2. Reidel (1984) 496–604

7. Heisel, M., Reif, W., Stephan, W.: A Dynamic Logic for Program Verification. In Meyer, A.,
Taitslin, M., eds.: Logical Foundations of Computer Science. LNCS 363, Berlin, Logic at Botik,
Pereslavl-Zalessky, Russia, Springer (1989) 134–145

8. Burstall, R.M.: Program proving as hand simulation with a little induction. Information process-
ing 74 (1974) 309–312

9. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7) (1976) 385–394
10. Balser, M.: Verifying Concurrent Systems with Symbolic Execution. Shaker Verlag, Germany

(2006)
11. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press, Cambridge

(1986)
12. Balser, M., Reif, W., Schellhorn, G., Stenzel, K.: KIV 3.0 for Provably Correct Systems. In Hutter,

D., Stephan, W., Traverso, P., Ullmann, M., eds.: Proc. Int. Wsh. Applied Formal Methods.
Volume 1641 of LNCS., Springer (1999) 330–337

13. Balser, M., Reif, W.: Interactive verification of concurrent systems using symbolic execution.
Technical Report 2008-12, Universität Augsburg (2008)

14. Cau, A., Moszkowski, B., Zedan, H.: ITL – Interval Temporal Logic. Software Technology
Research Laboratory, SERCentre, De Montfort University, The Gateway, Leicester LE1 9BH,
UK. (2002) http://www.cse.dmu.ac.uk/STRL/ITL/.

15. Manna, Z., Pnueli, A.: Temporal verification diagrams. LNCS 789 (1994) 726–765 Springer-
Verlag.

16. Balser, M., Reif, W.: An interval temporal logic with compositional interleaving. Technical Report
2008-11, Universität Augsburg (2008)

17. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Programming Lan-
guages and Systems (1995)

18. Cau, A., Collette, P.: Parallel composition of assumption-commitment specifications: A unifying
approach for shared variable and distributed message passing concurrency. Acta Inf. 33(2) (1996)
153–176

19. Mead, C., Conway, L.: Introduction to VLSI systems. Addison-Wesley (1980)
20. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification of uml state

machines. In Davies, J., Schulte, W., Barnett, M., eds.: Proc. 6th Int. Conf. of Formal Engineering
Methods. Volume 3308 of LNCS., Springer (2004)

21. Thums, A.: Formale Fehlerbaumanalyse. PhD thesis, Universität Augsburg, Augsburg, Germany
(2004) (in German).

22. Schmitt, J., Balser, M., Reif, W.: Asbru in KIV v2.1 – a tutorial. Technical Report 2006-03,
University of Augsburg (2006)

Compositional Proofs with Symbolic Execution 27

23. Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web service descriptions with composi-
tional specification. In Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E., eds.: Proc. of 13th
int. conference on World Wide Web, ACM (2004) 544–552

24. Zwiers, J., de Roever, W.P., van Emde Boas, P.: Compositionality and concurrent networks:
Soundness and completeness of a proofsystem. In: Proc. of 12th Colloquium on Automata,
Languages and Programming, Springer (1985) 509–519

25. Pandya, P.K., Joseph, M.: P-A logic: a compositional proof system for distributed programs.
Distributed Computing 5(1) (1991) 37–54

26. Moszkowski, B.: Compositional reasoning using interval temporal logic and tempura. LNCS 1536
(1996) 439–464 Springer-Verlag.

27. Pnueli, A.: In transition from global to modular temporal reasoning about programs. (1985)
123–144

28. Stirling, C.: A generalization of Owicki-Gries’s Hoare logic for a concurrent while language.
Theor. Comput. Sci. 58(1-3) (1988) 347–359

29. Woodcock, J.C.P., Dickinson, B.: Using VDM with rely and guarantee-conditions. Experiences
from real projects. In: Proceedings of the 2nd VDM-Europe Symposium on VDM—The Way
Ahead, New York, NY, USA, Springer-Verlag New York, Inc. (1988) 434–458

30. Pnueli, A.: Applications of temporal logic to the specification and verification of concurrent
systems: A survey of current trends. LNCS 224, Berlin, Springer (1986)

31. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time temporal logic. The-
oretical Computer Science, Vol. 167 (1996)

32. Breitling, M., Philipps, J.: Black box views of state machines. Technical Report TUM-I9916,
Technische Univerität München (1999)

33. Rock, G., Stephan, W., Wolpers, A.: Modular reasoning about structured tla specifications. In
Berghammer, R., Lakhnech, Y., eds.: Tool Support for System Specification, Development and
Verification, Springer (1999)

Specification Predicates with Explicit

Dependency Information

Richard Bubel1, Reiner Hähnle1, and Peter H. Schmitt2

1 Dept. of Computer Science and Engg., Chalmers Univ. of Technology
bubel|reiner@chalmers.se

2 Dept. of Computer Science, Univ. of Karlsruhe
pschmitt@ira.uka.de

Abstract. Specifications of programs use auxiliary symbols to encapsulate concepts
for a variety of reasons: readability, reusability, structuring and, in particular, for writing
recursive definitions. The definition of these symbols often depends implicitly on the
value of other locations such as fields that are not stated explicitly as arguments. These
hidden dependencies make the verification process substantially more difficult. In this
paper we develop a framework that makes dependency on locations explicit. This allows
to define general simplification rules that avoid unfolding of predicate definitions in
many cases. A number of non-trivial case studies show the usefulness of the concept.

1 Introduction

In program logics, especially in logics that target object-oriented languages,
state-dependent predicates or functions are a convenient and often necessary
concept used in specifications. They allow one to keep specifications concise and
easy to read for humans. They are indispensable for the specification of inher-
ently recursive properties such as reachability. Especially in first-order program
logics there is no other alternative to specify properties recursively.

Such state-dependent predicate or function symbols, which are sometimes
called non-rigid symbols, are not straightforward to use in verification practice,
because they require special inference techniques. To unpack and transform their
definition after every single state change would be extremely inefficient and must
be avoided. As a first example, we consider the frequent specification task that
stipulates an object array a to contain only non-null references. It is convenient
to define a non-rigid unary predicate symbol on arrays:

nonNullArray(a) :⇔ ∀i.a[i] 6= null

A typical desirable property in this context is that a simple assignment to a
program variable j does not change the validity of nonNullArray. The formula-
tion in Hoare logic [11] is in the first line below, the second line is the same in
Dijkstra’s weakest precondition calculus [9], and the third line reformulates it in
Dynamic Logic [10]:

{nonNullArray(a)} j := j + 1; {nonNullArray(a)}
nonNullArray(a) → wp(j := j + 1, nonNullArray(a))
nonNullArray(a) → 〈j := j + 1;〉nonNullArray(a) .

Specification Predicates with Explicit Dependency Information 29

To prove this claim näıvely entails unpacking the definition of nonNullArray
or to define a special-purpose predicate transformer having specific knowledge
about the state dependencies in its definition. For example, the definition of
nonNullArray contains an implicit dependency on a and on a[i] for all i, but not
on any integer program variable j. The contribution of this paper is a technique
that makes this kind of implicit dependency information explicit in the symbol’s
syntax. This leads to significantly higher automation. The presented approach
has been evaluated in several small examples, e.g. verification of a selection sort
algorithm, but also to verify an implementation of the Schorr-Waite algorithm.
It allows to formulate uniform predicate transformers that can exploit generic
dependencies and that are applicable in a variety of situations. This paper is
partly based on results first published in the first co-author’s dissertation [8].

The paper is structured as follows. The program logic used in this paper is
introduced in Sect. 2. Syntax and semantics for the explicit dependency notation
called location descriptors are presented in Sect. 3. In Sect. 4 we show how
to prove that the chosen location descriptor is consistent with the predicate’s
definition. Predicate transformers in the form of simplification rules that take
advantage of explicit dependencies are presented in Sect. 5. Sect. 6 presents
applications and case studies that show the usefulness of the concept of location
descriptors. Sect. 7 credits related work and outlines future work.

2 Dynamic Logic with Updates

This section sketches the program logic used throughout the paper. We use
object-oriented dynamic logic (ODL) [4] which extends standard dynamic logic
[10] to cover all essential features of object-orientation, but is small enough for
theoretical purposes.

The programming language used in ODL is essentially a stripped down ver-
sion of JAVA. It supports all concepts except for inner and anonymous classes,
floating point arithmetic, threads (and, hence, GUI). Additionally, ODL does
not support dynamic method binding or exceptions. Some of these restrictions
stem from open scientific problems (floating points, threads), others are a conse-
quence of the goal to define a minimalistic object-oriented language into which
all aspects of realistic languages can be compiled without much overhead. We
concentrate on the language aspects essential for the paper and leave out, for
example, object allocation or exceptions. For a full account see [4]. When con-
venient we use the style of presentation given in [3] for the logic JAVA CARD DL.

Definition 1 (Signature). Let Tall := {>, boolean, int,⊥} ∪ Td denote a fi-
nite set of types. (Tall,v) forms a complete lattice with respect to the par-
tial order v (modelling the subtype hierarchy). Td is the set of all reference
types (closed by intersection) containing the Null type as least element. Fur-
ther, T := Tall − {⊥} denotes the set of all types except the bottom type.

30 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

ΣT := {Q,Op,Mod, U,Π,PSym,FSym,VSym} is a typed signature over T ,
where Q,Op are sets containing the classical first-order quantifiers and oper-
ators. Mod contains the box [·] and diamond 〈·〉 modalities. U is the set of ele-
mentary updates (defined below) and Π the set of programs. PSym, FSym are
typed predicate and function symbols with arity function α assigning each symbol
its signature. VSym is a set of typed first-order logic variables.

As mentioned in Sect. 1 we distinguish between rigid and state-dependent
(non-rigid) function and predicate symbols with the following notation: PSym =
PSymr ∪ PSymnr and FSym = FSymr ∪ FSymnr. It is useful to single out from
the non-rigid function symbols FSymnr the subset of location function symbols,
i.e., functions used to represent local program variables, fields and arrays that
can be changed by a program or update:

Definition 2 (Location Function Symbols). The set of location function
symbols FSymloc ⊆ FSymnr contains for each arity an infinite number of symbols
including

– for each program variable pv used in an ODL program a constant symbol with
the same name and type;

– for each attribute a of type T declared in a class C of the ODL program, a
unary location function symbol a@(C) : C → T ;

– the array access operator [] : >× int → >.

Note 1. ODL features separate syntactic categories for program and logic (first-
order) variables. Program variables are modelled as non-rigid constants and
cannot be quantified. Logic variables are rigid, quantifiable, and must not occur
inside programs. We omit the @(C) suffix from attribute names if no ambiguity
arises and write o.a instead of a(o) for attribute lookup expressions.

Definition 3 (Updates). Given a location function f and terms oi and v.
Then the expression f(o1, . . . , on) := v denotes an elementary update. General
updates are defined inductively. Let U , U1, U2 be updates, then all of the following
expressions are updates as well:

– the sequential composition U1 ;U2,
– the parallel composition U1 ||U2,
– the conditional \if (φ); U (where φ is a formula), and
– the quantification \for x; U (binding the first-order variable x in update U).

Definition 4 (Terms and Formulae). The inductive definition of terms and
formulae is as usual for typed first-order dynamic logic. We define only the less
common cases:

– Let U be an update and ξ a term (formula), then {U} ξ is a term (formula).

Specification Predicates with Explicit Dependency Information 31

– Let φ be a formula and p a program, then [p]φ (partial correctness) and 〈p〉φ
(total correctness) are formulae.

The following definitions formalise the semantics of formulae and updates.

Definition 5 (ODL Kripke Structure). An ODL Kripke structure K :=
(M,S, ρ) consists of

– A partial first-order model M = (D, I0) providing a domain mapping D that
assigns to each type its domain (with D(int) = Z) and a partial interpretation
I0 for all rigid and non-rigid predicate symbols:

I0(q) :=

{
↑ , if q ∈ PSymnr

G , if q ∈ PSymr, for some G ⊆ D(T1)× . . .×D(Tn)

where q : T1× . . .×Tn is a predicate symbol (analogous for function symbols)
– A set of states S where each S ∈ S contains an interpretation Inr completing

the partial interpretation I0 to a total interpretation I := I0 ∪̇Inr by assigning
a meaning to all non-rigid symbols.

– The state transition relation ρ defining the programs’ semantics, where for a
program p and two states S1, S2 ∈ S the relation ρ(p)(S1, S2) holds if and only
if executing p in state S1 terminates in the final state S2. As ODL programs
are deterministic the final state is unique whenever it exists.

A function β : VSym →
⋃

T∈T D(T) assigning to all logic variables an ele-
ment of the universe of the appropriate type is a variable assignment.

Definition 6 (Semantic Location). A semantic location is defined as a tuple
〈f, (e1, . . . , en)〉 where f : T1 × . . .× Tn → T is a location function symbol as in
Def. 2 and ei (for i ∈ {1, . . . , n}) are elements in D(Ti).

Definition 7 ((Consistent) Semantic Update). An elementary semantic
update is a pair (〈f, (e1, . . . , en)〉, d) where 〈f, (e1, . . . , en)〉 is a semantic location
with f : T1 × . . . × Tn → T and d an element of D(T). A (possible empty) set
of elementary semantic updates is called semantic update. A semantic update is
called consistent, if it contains for any semantic location at most one elementary
semantic update.

Definition 8 (Application of a Consistent Semantic Update). The appli-
cation of a consistent semantic update CU is a mapping between states. Applying
CU in a state S maps it to the state S ′ = CU(S) that coincides on the value of
all location function with S except for the semantic locations occurring in CU :
whenever (〈f, (e1, . . . , en)〉, d) ∈ CU then S ′(f)(e1, . . . , en) evaluates to d.

Updates are an explicit notation to capture symbolic state changes. The
definition of a semantics for updates is rather technical due to clashes when

32 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

an update assigns different values to the same location. Sequential composition
describes two successive state changes, while parallel composition updates the
locations simultaneously and may cause clashes by updating the same location
with differing values, e.g., l := t1 || l := t2. We use a last-one-wins clash resolu-
tion, i.e., in the resulting state location l has the value t2. Quantified updates
allow us to represent state changes of infinitely many locations. Resolution of
clashes caused by quantified updates is left out for space reasons (see [3, 18]).

Example 1. Some updates and their intended semantics:

– The elementary update x := t assigns to the program variable x the value t.
Applying it to a program variable y in {x := t} y results in t if x and y are
the same variable, otherwise, the term evaluates to y.

– The parallel update x := y || y := x swaps the content of the program vari-
ables x and y. Parallel updates are evaluated simultaneously and, therefore,
are independent of each other. More formally, let K := (M,S, ρ) be an ODL
Kripke structure, S ∈ S and β a variable assignment. Evaluating the above
update under (K, S, β) results in the consistent update CU mapping S to
a state CU(S) coinciding with S except for the program variables x and y

whose values in (K, S, β) are swapped.
– The quantified update \for i; a[i] := 0 assigns 0 to all components of a.

We continue by defining the semantics of terms and formulae:

Definition 9 (Semantics of Terms and Formulae). The inductive semantic
definitions are as usual. We list only a few non-obvious cases, full definitions
are in [3, 4].

Let K := (M,S, ρ) denote an ODL Kripke structure, t(K,S,β) the evaluation
of term t in state S under a variable assignment β, and |= the validity relation.

– ({U} t)(K,S,β) := t(K,S′,β) where S ′ = U (K,S,β)(S)
– S, β |= 〈p〉φ (p ∈ Π) iff a state S ′ exists with S ′, β |= φ and ρ(p)(S, S ′)
– S, β |= [p]φ (p ∈ Π) iff S ′, β |= φ holds for any state S ′ with ρ(p)(S, S ′)
– S, β |= {U} φ iff S ′, β |= φ, where S ′ = U (K,S,β)(S)

Later in the paper we need means to relate two arbitrary states on the syntac-
tic level. For this we use a special kind of update called anonymous program
update whose purpose is to perform a state transition to an unspecified state.
Anonymous programs of this kind are well-known from propositional dynamic
logic [10]. They are deterministic and terminating.

Definition 10 (Anonymous Program, Anonymous Program Update).
The atomic programs st1, st2 . . . are called (elementary) anonymous programs.
The set of programs Π is extended accordingly. Further, we extend the inductive
definition of updates by including the elementary anonymous program update
ωi for each anonymous program sti.

Specification Predicates with Explicit Dependency Information 33

Definition 11 (Semantics of Anonymous Program Updates). An anony-
mous program sti is interpreted in an ODL Kripke Structure K such that for all
S ∈ S there exists exactly one state S ′ ∈ S such that ρ(sti)(S, S

′) holds. An
anonymous program update ωi is then evaluated to a state transformer such
that ω

(K,S,β)
i (S) = S ′ for all variable assignments β.

3 Symbols with Explicit Dependencies

In this section we introduce a syntactic notation for non-rigid symbols that
renders explicit the implicit dependencies on the state in their definition.

3.1 Location Descriptors

We need a notation to describe sets of locations. We use location descriptors
introduced in the KeY-system [3] for modifies/assignable clauses. The origin of
this notation goes back to quantified updates [18], see also Sect. 2. Location
descriptors permit a compact and extensional characterisation of location sets.

Definition 12 (Location Descriptor). A location descriptor has the form

\for x1, . . . , xn; \if (Φ) loc

where (i) x1, . . . , xn are variables bound in Φ and loc, (ii) Φ is an arbitrary
formula, and (iii) loc is a term with a location function symbol as top level oper-
ator, i.e., a program variable, an attribute function or the array access function.
Except for x1, . . . , xn no other free variables occur in Φ or loc.

Location descriptors ld1, ld2 can be accumulated to sets of location descriptors
by concatenation: ldnew := ld1 ; ld2. In case no variables are bound or Φ is
identical to true, the corresponding parts in the syntax can be omitted.

Example 2. Here are some typical usages of location descriptors:

– \for List x; x.next capturing all next locations of List-typed elements.
Note that the guard has been omitted here.

– \for T [] a, int i; \if (i >= 0∧ i < a.length) a[i] meaning all T -typed array
component locations with indexes between 0 and the array length.3

– \for Tree t; t.left ; \for Tree t; t.right capturing all left and right

locations of Tree-typed elements.

Definition 13 (Location Descriptor Extension). Let K := (M,S, ρ) be
an ODL Kripke structure with universe D =

⋃
T∈T D(T). The extension of a

location descriptor ld = \for x1, . . . , xn; \if (Φ) l(t1, . . . , tn) in a given state
S ∈ S is defined as the set of semantic locations:

ld(K,S) := {〈 l, (t1, . . . , tn)(K,S,β)〉 | (K, S, β) |= Φ, β : VSym → D}

Concatenation of location descriptors is evaluated as union of their extensions.

3 The attribute length returns the length for each array and is unspecified otherwise.

34 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

Note 2. This definition works for any kind of location descriptor. In particular,
the guard formula Φ and possible subterms of the location term can be arbitrary
ODL formulae and terms that may contain non-rigid symbols or even programs.

3.2 Syntax and Semantics of Symbols with Explicit Dependencies

The notation introduced above provides a concise way to characterise sets of lo-
cations. Now we extend the names of non-rigid (predicate and function) symbols
by qualifications in the form of location descriptors. The idea is that the value
of thus qualified symbols depends at most on the values of their arguments plus
those locations contained in the extension of their location descriptor.

Definition 14 (Symbols with Explicit Dependencies). Let ld denote a
semicolon-separated list of location descriptors and let p : T1 × · · · × Tn be a
non-rigid predicate. The non-rigid predicate symbol p[ld] : T1× · · · × Tn is called
predicate with explicit dependencies. Analogously for functions.

The definitions of terms and formulae remain unchanged. The only difference
is that the signature contains the above defined location-dependent symbols.

There are only few restrictions on the interpretation of ordinary non-rigid func-
tion and predicate symbols: essentially, their interpretation has to be well-defined
and respect their types. The situation is different for symbols with explicit de-
pendencies. The interpretation of a symbol p[ld] with explicit dependencies has
to coincide on all states S1, S2 that share the same values for the locations de-
scribed by ld. This is precisely formulated in the next two definitions.

Definition 15 (ld-Equivalence). For any Kripke structure K we define for
any location descriptor ld the equivalence relation ≈ld on states where S1 ≈ld S2

iff the following two conditions hold:

1. ld(K,S1) = ld(K,S2) (identical location descriptor extension) and
2. f (K,S1)(d1, . . . , dn) = f (K,S2)(d1, . . . , dn) for any 〈f, (d1, . . . , dn)〉 ∈ ld(K,S1).

The additional restriction required for Kripke structures to accomodate symbols
with explicit dependencies is now covered by the definition:

Definition 16 (Dependency-Consistent Kripke Structure). We call an
ODL Kripke structure K := (M,S, ρ) dependency-consistent if for any predicate
k[ld] (function f [ld]) depending on ld and any two states S1, S2 with S1 ≈ld S2

the evaluation of predicate k[ld] (function f [ld]) in S1 and S2 coincides.

Lemma 1. Let K be a dependency-consistent Kripke structure. Then in any
two states S1, S2 ∈ S with t

(K,S1)
i = t

(K,S2)
i (i ∈ {1 . . . n}) the atomic formula

p[ld](t1, . . . , tn) evaluates to the same truth value whenever S1 ≈ld S2 holds.
Analogously for location dependent function symbols.

Specification Predicates with Explicit Dependency Information 35

Note 3. The notions of satisfiability, validity and model carry over to dependen-
cy-consistent Kripke structures in a straightforward manner. From now on we
deal only with dependency-consistent Kripke structures and the corresponding
notions of model, validity, etc., if not stated otherwise.

Example 3. Instead of modelling nonNullArray as a non-rigid predicate as done
on p. 28, it can now be modelled as a predicate symbol with explicit dependen-
cies: nonNullArray[\for T [] a, int i; a[i]] : T []. This expresses explicitly that its
value depends only on the value of the components of T []-typed arrays and, of
course, on its argument.

4 Correct Definitional Extensions

Definitional extension in first-order logic preserves consistency, i.e., adding a new
axiom of the form ∀x(p(x) ↔ φ) for a new predicate symbol p not occurring in φ
will not introduce new inconsistencies. For predicates with explicit dependencies
an axiom of the form ∀x : Tp[ld]; (p[ld](x) ↔ φ) may already by inconsistent
with respect to the dependency semantics of Def. 16: one has to ensure that
the implicit state dependencies of φ are reflected in the location descriptor ld.
The problem only concerns the implication ∀x : Tp[ld]; (p[ld](x) → φ). We will
consider only implicational axioms of this type and, to simplify the presentation,
we assume there is only one axiom for each defined predicate. These axioms will
be exploited during proof search as rewrite rules p[ld](t1, . . . , tn) φ(t1, . . . , tn)
named axiomp[ld]→φ, where the ti’s are terms of the appropriate type. In this
setting we allow the defined symbol to occur recursively on the right-hand side.

We intend to define a proof obligation that, when valid, ensures a given
implicational axiomatisation of a location-dependent symbol to be consistent
with respect to dependency semantics. The problem of termination in the case
of recursive rewrite rules is a different matter and has to be dealt with separately.

We need a new concept called anonymising update for location descriptors :
this is a quantified update for a given location descriptor that assigns all locations
in its extension a fixed, but unknown value:

Definition 17 (Anonymising Update for Location Descriptors). Let
ld := \for T o; \if (φ) f(t) be a location descriptor. The quantified update

Vld := \for T o; \if (φ); f(t) := c(t)

with c being a fresh uninterpreted rigid function symbol of matching type and
arity is called an anonymising update for the location descriptor ld. For ld =
ld1; . . . ; ldn we define Vld = Vld1 || . . . || Vldn.

With the help of anonymising updates it is possible to formulate dependence
consistency (Def. 16) directly as the proof obligation

pop[ld]→φ := ∀x : Tp[ld]; (({ωc} {Vld} φ(x)) ↔ {Vld} φ(x))) (1)

36 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

where ωc is a fresh anonymous program update (Def. 10).

Theorem 1. If (1) is logically valid, then ∀x : Tp[ld]; (p[ld](x) → φ) is consis-
tent with respect to dependency semantics.

5 Simplification Rules

In this section we introduce two update simplification rules that can be applied
to arbitrary atomic formulas with explicit dependencies. We make use of the
following Lemma [3, Sect. 3.9], [18]:

Lemma 2. Two updates U1, U2 are called equivalent if they induce the same
state transformer in any Kripke structure. Then every update U that has no
anonymous program update as a component is equivalent to an update of the form
upPart1 || . . . ||upPartlen with upParti := \for Ti xi; \if (τi); gi(ui) := vali .

Crucial for the first simplification rule is the notion of relevant location sym-
bol. Relevant location symbols are a syntactic approximation of the location
symbols that a formula φ or a term t may depend on. The notation is Loc(φ)
and Loc(t). In the definition below, and later, we use the following notation:

– h[ld](s1, . . . , sn) stands for a function or predicate symbol with explicit de-
pendencies, ld = ld1; . . . ; ldq;

– ldi := \for Ti1 oi1; . . . ;Tiri
oiri

; \if (φi) fi(ti1, . . . , tiαi
)

For ease of presentation we assume that fi 6= fj for i 6= j. This affects the
formula ψU1,U2,ld in Def. 20. It is not hard to see how to adapt this formula to
the unrestricted case.

Definition 18 (Relevant Location Symbols).
Loc(¬ψ) := Loc(ψ)
Loc(Q T x;ψ) := Loc(ψ) Q ∈ {∀,∃}
Loc(ψ ◦ φ) := Loc(ψ) ∪ Loc(φ), ◦ ∈ {∧,∨,→, . . .}
Loc(h(s1, . . . , sn)) :=

⋃n
i=1 Loc(si), h is a rigid symbol

Loc(〈prg〉ψ) := FSymloc see Def. 2
Loc([prg]ψ) := FSymloc see Def. 2
Loc(g(s1, . . . , sn)) := {g} ∪

⋃n
i=1 Loc(si) g is a location fct. symbol

Loc(ld) :=
⋃q

i=1

(
Loc(fi(ti1, . . . , tiαi

)) ld as stipulated above
∪ Loc(φi)

)
Loc(h[ld](s1, . . . , sn)) := Loc(ld) ∪

⋃n
i=1 Loc(si)

Loc(h(s1, . . . , sn)) := FSymloc if h is a non-rigid symbol,
but not a location symbol
and without explicit dep.

Loc(U) :=
⋃len

i=1(Loc(gi(ui)) ∪ Loc(τi) U as in Lemma 2
∪ Loc(vali))

Loc(ωc) := FSymloc see Defs. 2, 10
Loc({U}ξ) := Loc(U) ∪ Loc(ξ) ξ a formula or term

Specification Predicates with Explicit Dependency Information 37

Lemma 3. Let φ be an arbitrary formula, K a Kripke structure, S a state in
K, U as in Lemma 2 with gi 6∈ Loc(φ) for all i then

(K, S) |= φ iff (K, S) |= {U}φ

This lemma guarantees the correctness of the following rule.

Definition 19 (Coincidence Simplification Rule).

{U} k[ld](s1, . . . , sn) {U ′} k[ld](s1, . . . , sn)

where U ′ := U − {upParti | gi 6∈ Loc(k[ld](s1, . . . , sn))} and U as in Lemma 2.

Example 4. Here is an instance of the coincidence simplification rule, where s is a
term with j 6∈ Loc(s): ({i := iV al || j := jV al} p[i](s)) ({i := iV al} p[i](s))

Example 5. The coincidence simplification rule allows to prove the motivating
example on p. 28 easily: in nonNullArray(a) → {j := j + 1} nonNullArray(a)
we use nonNullArray[\for T [] a, int i; a[i]] as introduced in Example 3. For
j 6∈ Loc(a) an instance of this rule simplifies

{j := j + 1} nonNullArray[. . .](a) nonNullArray[. . .](a)

rendering the implication trivially valid.

The coincidence simplification rule is of an approximate nature but is suf-
ficient for many practical purposes. We provide a stronger, semantic simplifi-
cation rule in the form of the equivalence simplification rule. We require suffi-
cient and necessary conditions for the logical equivalence of the two formulae
{U1} k[ld](s1, . . . , sn) and {U2} k[ld](s1, . . . , sn). First we want the argument
terms of k[ld] to evaluate to the same values after the respective updates, i.e.,
{U1}sl

.
= {U2}sl for all 1 ≤ l ≤ n. Next we want to formalise that the locations

described by each ldj after update U1 are the same as those described by ldj

after update U2 and that their values coincide:

ψ1
j = ∀d;∀cj;∀oj;{

({U1} (φj ∧ cj
.
= tj ∧ d

.
= fj(tj))) → ∃oj({U2} (φj ∧ cj

.
= tj ∧ d

.
= fj(tj)))

}
ψ2

j = ∀d;∀cj;∀oj;{
({U2} (φj ∧ cj

.
= tj ∧ d

.
= fj(tj))) → ∃oj({U1} (φj ∧ cj

.
= tj ∧ d

.
= fj(tj)))

}
It is now not hard to see that ψU1,U2,ld =

∧q
j=1(ψ

1
j ∧ψ2

j)∧
∧n

l=1{U1}sl
.
= {U2}sl is

valid if and only if {U1} k[ld](s1, . . . , sn) ↔ {U2} k[ld](s1, . . . , sn) is valid. This
justifies the following rule:

Definition 20 (Equivalence Simplification Rule).

{U1} k[ld](s1, . . . , sn) {U2} k[ld](s1, . . . , sn) provided formula ψU1,U2,ld holds.

38 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

Example 6. We modify Ex. 5 by using the more specialised 0-ary predicate
nonNullArraya[\for int i; a[i]] restricting the non-null element property to only
those arrays referenced by the program variable a. Let

a 6= b→ (nonNullArraya[. . .] → {b[0] := null} nonNullArraya[. . .])

the formula to be proven valid where b is an array of the same type as a. Note that
we cannot apply the coincidence simplification rule here: Loc(\for int i; a[i])
yields [·], i.e., the non-rigid array lookup function which is also the leading
function symbol of the update {b[0] := null} . Now we apply the equivalence
simplification rule which gives for formula ψ1

1:

∀d :T ; c1 : T []; c2 : int; i : int;
(({b[0] := null} (true ∧ c1

.
= a ∧ c2

.
= i ∧ d .

= a[i])) →
∃i : int; (true ∧ c1

.
= a ∧ c2

.
= i ∧ d .

= a[i]))

Under the assumption a 6= b this can be easily proven with a first-order theorem
prover after applying the update.

Note 4. The calculus with the equivalence simplification rule added is complete
for the logic containing symbols with explicit dependencies relative to the cal-
culus without those symbols.

6 Applications and Case Studies

In this section we show applications of symbols with explicit dependency in-
formation modelling specification predicates such as reachability. Using these
symbols provides advantages for interactive and automated proving. By being
able to delay expanding the definition of a non-recursive predicate, the proof
remains readable for a human reader. The automation benefits from the avail-
ability of general simplification rules reducing the need to look into the definition
of non-rigid symbols. This is briefly illustrated in two case studies.

6.1 Specification predicates

Reachability. Treatment of linked data structures in specification and verification
of object-oriented programs requires routinely to express reachability between
two objects via a finite chain of fields. Fig. 1 shows a simple binary, directed
tree, where subtrees are accessible via the fields left and right.

Specifying properties such as an element occurring in a given list requires to
introduce and formalise the concept of reachability for these data structures. In
the following we concentrate on the definition of a predicate formalising reach-
ability for the directed, binary tree structure in Fig. 1. We aim to define a

Specification Predicates with Explicit Dependency Information 39

n1

n2

n4 n5

left

n3

n6 n7

right

Subtree at n5 is reachable from the root n1 via fields left and right in exactly 2 steps:
reach[\for Tree t; t.left;\for Tree t; t.right](n1, n5, 2)

Fig. 1. A binary tree datastructure with its associated reachable predicate symbol.

predicate that takes three arguments x, y (both of type Tree) and n (of type
int) and holds if the subtree y can be reached from tree x in exactly n steps us-
ing only the fields left and right. The recursive definition for the reachability
predicate is rather straightforward:

reach(x, y, n) :⇔

false , if n < 0
x
.
= y , if n

.
= 0

(x.left 6 .= null∧reach(x.left, y, n− 1))∨
(x.right 6 .= null∧reach(x.right, y, n− 1))

, if n > 0

A calculus rule can be easily derived from the definition. The predicate is
clearly non-rigid as it depends not only on the value of its arguments but also
on the left and right fields of the subtrees below and including x. There-
fore, we easily identify a location descriptor capturing all location dependencies,
namely \for Tree t; t.left; \for Tree t; t.right describing the set of all left,
right locations of all trees. Hence, the location-dependent predicate symbol for
capturing reachability in our notation is:

reach[\for Tree t; t.left; \for Tree t; t.right](Tree, Tree, int) .

6.2 Selection Sort

Verification of a sorting algorithm consists of showing that the result is indeed
sorted and that the result contains exactly the elements of the original collection,
in other words, that the result is a permutation of the input. For the verification
of a standard selection sort implementation in JAVA a specification predicate with
explicit dependencies has been used to formalise permutation of two arrays.4

The permutation predicate perm[\for int[] o; int i; o[i]](int[], int[]) is defined
with the help of a recursive count of the occurrences of all elements in both
arrays. The predicate occurs once in the post condition stating that the resulting
array is indeed a permutation of the original, and the second time in the loop
invariant of the sorting algorithm.

The selection sort algorithm starts at the first array element and swaps it with
the first minimal element encountered in the subsequent array continuing until

4 This case study has been joint work and is also reported in [19], where the focus was an improved
loop invariant rule.

40 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

the last element is reached. Therefore, it utilises two nested loops. To prove that
both loops preserve the permutation property without predicates having explicit
location dependencies requires several inductive subproofs. To substantiate this
claim we look at the following formula5 that occurs as subgoal during the proof
and has to be proven valid:

{\for int i; aCopy[i] := a0[i] || \for int i; a0[i] := get0(a, i)} perm[. . .](a0, aCopy) →
{b10 := FALSE || b4 := TRUE || b5 := FALSE || . . . ||
\for int i; aCopy[i] := a0[i] || \for int i; a0[i] := get0(a, i) ||
a0[idx1] := get0(a0, idx2) || a0[idx2] := get0(a0, idx1)} perm[. . .](a0, aCopy)

The update of the formula in the implication’s premise states a transition to
a state where array aCopy is a shallow copy of the old content of array a0.
Simultaneously new values are assigned to the components of array a0. The
complete formula in the premise states then that in this state aCopy and a0 are
permutations.

The update of the formula in the conclusion starts with a number of updates
stemming from branch predicates irrelevant for the permutation property. The
quantified updates assign the components of the arrays aCopy and a0 the exact
same values as it is the case for the premise formula. But the following two
updates lead to a slightly different state with a0[idx1] and a0[idx2] swapped.

Obviously, the implication is valid, because a standard transposition lemma
can be used to show preservation of the permutation property. The technical
difficulty is that a straightforward application of this transposition lemma is
not possible. One has to prove that all updates preceding the array locations
including the twelve updates abbreviated by “. . . ” have no effect on the per-
mutation property. This is done inductively using a strengthening of the claim
where for any possible value of b10, b4, b5, . . . the permutation property remains
unchanged.

In contrast, the approach presented in this paper exploiting dependency in-
formation allows to prove the formula valid without induction. Application of the
Coincidence Simplification Rule (Def. 19) simplifies the state representation in
the conclusion so far that the application of the transposition lemma is directly
possible. We were able to prove the permutation property for an executable JAVA

implementation of selection sort with only one user interaction exploiting the
fact that swapping exactly two elements in an array preserves the permutation
property.

6.3 Schorr-Waite Algorithm

The most complex case study so far where predicates with explicit dependencies
were used is the verification of a fully functional JAVA implementation of the

5 Slightly simplified and beautified.

Specification Predicates with Explicit Dependency Information 41

Schorr-Waite graph marking algorithm [20] for arbitrary finite graph structures.
The abstract algorithm has been verified in several case studies [7, 6, 21, 16, 1, 5,
12], mostly for the case of binary graphs. Our case study, first reported in [8], is
to our knowledge the first time that an executable JAVA implementation for the
general case was verified.

The Schorr-Waite graph marking algorithm saves memory by avoiding to
encode the taken path in the method call stack. Instead a small number of aux-
iliary variables and subtle pointer rotations are used to encode the backtracking
path. Besides showing that all reachable nodes are visited, the challenge is to
show that afterwards the graph structure is restored, because the traversal uses
destructive pointer manipulations.

Specification predicates with explicit dependencies were employed to express
reachability of two nodes in the graph structure and for a specification predicate
that characterises the backtracking path. The reachability predicate has been
specified similar to the one in Sect. 6.1. The predicate characterising the back-
tracking path is specified in such a way that it evaluates to true if a given node
is an element of the currently taken path. This is clearly state-dependent as the
backtracking path changes during execution.

7 Related and Future Work

The Java Modelling Language (JML) [14] supports a depends clause used to
express on which other fields a model field depends. The depends clause is then
used to extend assignable clauses appropriately in case they contain model fields.
These depends clauses have been introduced by Leino [15], the main idea being
to replace the occurrence of an abstract/model field a with a function symbol
a′(f1, . . . , fn) that explicitly enumerates the fields it depends on.

Separation logic [17] requires to specify exactly those locations of the heap
(alternatively, to separate a heap into two orthogonal heaps) that are necessary
to prove a property. The local judgements are then generalised by application
of a frame rule. This approach is in the following sense complementary to ours:
in separation logic, the shape of the heap is made explicit and dependencies are
lifted with the help of a frame axiom. We make location dependencies explicit
and can, therefore, abstract away from the concrete layout of the heap. This
seems more appropriate for target languages such as JAVA. Another advantage
of our approach is that only standard typed first-order logic is used.

Dynamic frames as introduced in [13] provide a uniform treatment of mod-
ified locations and dependencies, which are separate concerns in the presented
work allowing for more precision. Of particular interest is the preservance oper-
ator Ξf for a dynamic frame (set of locations) f expressing that a computation
does depend on or modify it. This property can be translated to our framework

42 Richard Bubel, Reiner Hähnle, Peter H. Schmitt

and logic. The other operators for dynamic frames deal with variants of modifies
clauses in presence of object creation.

In [2] read effects are used for treating invocations of pure methods. Our
approach is directly targeted at the level of specification predicates without
the need to define them as pure boolean methods, it provides a compact and
precise notion for the dependencies and works without an explicit heap pre-
sentation. Another concern of [2] is well-definedness of specifications containing
pure methods. For our approach well-definedness is desirable, but will not cause
unsoundness of the verification system.

Further related work focusses on data groups or similar concepts to support
information hiding and encapsulation. This is ongoing work in the context of
the KeY project.

Future work includes to exploit further application scenarios for predicates
with explicit dependencies. Rümmer suggested to use them to achieve second-
order like specification capabilities in a first-order dynamic logic through para-
meterisation with functions. This allows, for example, to use the same specifi-
cation for the sum over all elements of an array

∑
i f(a[i]) for any function f .

Further, we will investigate how to improve automation of the equivalence up-
date simplification rule, i.e., in finding a suitable equivalent update U2.

8 Conclusion

We introduced non-rigid specification predicate (and function) symbols that ex-
plicitly list the set of locations their value may depend on. Then we presented a
verification framework for such symbols with explicit dependencies. This frame-
work consists of two parts: on the one hand a uniformly generated proof obli-
gation that ensures correctness of a predicate with explicit dependencies with
respect to its axiomatisation; on the other hand a number of general simplifi-
cation rules that allow one to exploit explicit dependencies within the context
of a proof. Several application scenarios common in program verification as well
as two case studies support the usefulness of our approach. The implementa-
tion and case studies were done within the KeY-system [3], however, as pointed
out in the introduction the problem of location-dependent predicates as well as
the solution presented here can be transferred to other program logics based on
weakest precondition reasoning.

Acknowledgments

We thank Philipp Rümmer and Wolfgang Ahrendt for valuable comments. Spe-
cial thanks go also to Benjamin Weiß for valuable comments and in particular for
pointing out a problem in the original version of Def. 8. We thank the anonymous
referees for their valuable comments.

Specification Predicates with Explicit Dependency Information 43

References

1. J. Abrial. Event based sequential program development: Application to constructing a pointer
program. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proc. Formal Methods, volume 2805
of LNCS, pages 51–74. Springer, September 2003.

2. Ádám Darvas and K. R. M. Leino. Practical reasoning about invocations and implementations
of pure methods. In M. B. Dwyer and A. Lopes, editors, Fundamental Approaches to Software
Engineering (FASE), volume 4422 of LNCS, pages 336–351. Springer-Verlag, 2007.

3. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2006.

4. B. Beckert and A. Platzer. Dynamic logic with non-rigid functions: A basis for object-oriented
program verification. In U. Furbach and N. Shankar, editors, Proc. Intl. Joint Conference on
Automated Reasoning, Seattle, USA, volume 4130 of LNCS, pages 266–280. Springer-Verlag, 2006.

5. L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning about a copying garbage collector.
In Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM Press, Jan. 2004.

6. R. Bornat. Proving pointer programs in Hoare logic. In R. C. Backhouse and J. N. Oliveira,
editors, Mathematics of Program Construction, volume 1837 of LNCS, pages 102–126. Springer,
2000.

7. M. Broy and P. Pepper. Combining algebraic and algorithmic reasoning: An approach to the
Schorr-Waite algorithm. ACM Trans. Program. Lang. Syst., 4(3):362–381, 1982.

8. R. Bubel. Formal Verification of Recursive Predicates. PhD thesis, Fakultät für Informatik, Univ.
Karlsruhe, June 2007.

9. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
10. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing. MIT Press, Oct.

2000.
11. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576–580, 583, Oct. 1969.
12. T. Hubert and C. Marché. A case study of C source code verification: the Schorr-Waite algorithm.

In B. K. Aichernig and B. Beckert, editors, Proc. 3rd IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pages 190–199. IEEE Press, 2005.

13. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without restric-
tions. In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM, volume 4085 of Lecture Notes in
Computer Science, pages 268–283. Springer, 2006.

14. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, and P. Chalin.
JML Reference Manual, Feb. 2007. Draft revision 1.200.

15. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, Caltech, 1995.
16. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In F. Baader, editor,

Automated Deduction — CADE-19, volume 2741 of LNCS, pages 121–135. Springer, 2003.
17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. 17th Annual

IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE Computer Society, 2002.
18. P. Rümmer. Sequential, parallel, and quantified updates of first-order structures. In M. Hermann

and A. Voronkov, editors, Proc. Logic for Programming, Artificial Intelligence and Reasoning,
Phnom Penh, Cambodia, volume 4246 of LNCS, pages 422–436. Springer-Verlag, 2006.

19. S. Schlager. Symbolic Execution as a Framework for Deductive Verification of Object-Oriented
Programs. PhD thesis, Fakultät für Informatik, Univ. Karlsruhe, Feb. 2007.

20. H. Schorr and W. M. Waite. An efficient machine-independent procedure for garbage collection
in various list structures. Commun. ACM, 10(8):501–506, 1967.

21. H. Yang. Verification of the schorr-waite graph marking algorithm by refinement, 2003. Unpub-
lished, http://ropas.kaist.ac.kr/ hyang/paper/dagstuhl-SW.pdf.

Bitfields and Tagged Unions in C –

Verification through Automatic Generation

David Cock

Sydney Research Lab., NICTA?, Australia

Abstract. We present a tool for automatic generation of packed bitfields and tagged
unions for systems-level C, along with automatic, machine checked refinement proofs
in Isabelle/HOL. Our approach provides greater predictability than compiler-specific
bitfield implementations, and provides a basis for formal reasoning about these typically
non-type-safe operations. The tool is used in the implementation of the seL4 microkernel,
and hence also in the lowest-level refinement step of the L4.verified project which aims
to prove the functional correctness of seL4. Within seL4, it has eliminated the need for
unions entirely.

1 Introduction

In this paper we present a tool that automatically generates inline-able C functions
to implement tagged unions of packed bitfield types, based on a simple domain-
specific-language specification. We then generalise, and suggest a technique to
exploit the desires of systems programmers to ease program verification.

The motivation for this work was the C implementation of the seL4 mi-
crokernel, and the needs of the associated L4.verified project [8, 3]. The seL4
microkernel [5, 7] is an evolution of the L4 family [17] for secure, embedded
devices. The L4.verified project aims to prove its functional correctness. The
need to produce code that can be verified with reasonable effort requires the
disciplined use of ‘ugly’ programming idioms, those which violate the basic
abstractions of the underlying semantic model. In our case, these are heap type
aliases, i.e. unions, non-type-safe pointer accesses, and sub-machine-word ma-
nipulations. These violations occur commonly together, in the tagged union and
bitfield construct. See Fig. 1 for an example from the OKL4 kernel [19], a current
commercial implementation of L4. This pattern is very regular, and an obvious
target for automation. Generation of this code is desirable for two reasons: First,
via controlled tagged unions, it adds functionality to C in a disciplined, type-safe
way. Second, bitfield implementations vary widely, both in performance and in
actual behaviour between compilers, and even different versions of the same
compiler. As a result, they are usually mistrusted by kernel programmers. In
contrast, our generated code is fast, predictable and formally correct.

? NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council.

Bitfields and Tagged Unions in C: Verification through Automatic Generation 45

union {

struct {

BITFIELD2(word_t,

type : 2,

tcb_p : BITS_WORD - 2

);

} x;

word_t raw;

};

Fig. 1. Example of combined union/bitfield usage. From OKL4 2.1, ”include/caps.h”, lines 92-100.

Our approach is to provide an opaque, abstract type, implementing the
tagged-union/bitfield semantics, together with generated accessor functions. The
tool automatically provides the proofs that the functions behave as expected.
Whilst this is not a radically new idea, our approach is successful precisely
because we target the regular low-level functions, which nonetheless comprise
14% of the code within seL4. This tool also provides a case study for the use
of the C semantics of Tuch et al. [26], and Dawson’s Isabelle/HOL library for
machine words [4]. The remainder of the paper is laid out as follows: Section
2 introduces the specification language used to describe the bit-level layout of
structures, Section 3 shows the C code generation framework, and Section 4
explains the framework of automatically generated proofs to allow reasoning
without descending to the level of pointers and bit manipulation.

2 Specification Language

The tagged-union/packed-bitfield structure is useful in a number of contexts e.g.
hardware-dictated page-table layouts, hardware register mapping, and highly
optimised data structure storage. As a running example, we will consider a subset
of the seL4/ARM capability representation. Capabilities are used as a proxy
for authority, and we consider only two capability types: Null caps (null cap)
which function as placeholders, and Untyped caps (untyped cap) which convey
authority over a power of two sized block of memory. The capability is represented
as a two word (64 bit) bitfield: Null caps contain no data other than the type
tag, whereas Untyped caps have two fields: capBlockSize and capPtr, a pointer
aligned on a 16-byte boundary.

The cap representations are specified as follows (the full grammar is included
in Fig. 5). First the machine word size (32 bits for ARM) is specified with the
base keyword:

base 32

Next, bitfield blocks are specified. Fields are listed from most-significant
to least-significant bit (Fig. 2). The padding keyword introduces anonymous

46 David Cock

padding space, to achieve the desired alignment, and the field keyword reserves
space for a named field. In the null cap example, padding 32 reserves one
empty machine word, field capType 4 allocates a 4 bit field at the top of the
second word, and padding 28 explicitly fills the remainder of the second word.
The trailing padding is mandatory where the fields do not fill the lower bits of
the last word.

block null_cap {

padding 32

field capType 4

padding 28

}

block untyped_cap {

padding 27

field capBlockSize 5

field capType 4

field_high capPtr 28

}

Fig. 2. Packed bitfield layout

Padding between fields is inserted explicitly, fields are forbidden to cross
word boundaries, and the size of each block must be a multiple of the base
word size. These restrictions ensure that the implementation maps efficiently
onto common machine operations, and present no difficulties in practice. The
field high keyword specifies that a field should be left-aligned to the word size
when read or written, padded on the right with zero bits, see Fig. 3.

Fig. 3. field high implementation

Bitfields and Tagged Unions in C: Verification through Automatic Generation 47

tagged_union cap capType {

tag null_cap 0

tag untyped_cap 1

}

Fig. 4. Tagged union specification

Finally, blocks are grouped together into tagged unions (Fig. 4). The keyword
tagged union is followed by the name of the union, and the name of the tag
field, then a list of block names, together with their associated tag values. All
blocks in the union must be the same size, and each must contain a tag field. All
tag fields must be the same size, and at the same location within the block.

entity_list ::= empty

| entity_list block

| entity_list tagged_union

| entity_list base

base ::= "base" INTLIT

block ::= "block" IDENTIFIER "{" fields "}"

fields ::= empty

| fields "padding" INTLIT

| fields "field_high" IDENTIFIER INTLIT

| fields "field" IDENTIFIER INTLIT

tagged_union ::= "tagged_union" IDENTIFIER IDENTIFIER "{" tags "}"

tags ::= empty

| tags "tag" IDENTIFIER INTLIT

Fig. 5. Specification language grammar

3 Generated Code

This section gives a brief overview of the code generated from the specifications
above. Each block and union in the specification language is translated to a
C representation with appropriate access and update functions. Each object is
represented by a struct containing simply an array of machine words, and for
each union, an enum of tag values. The wrapping struct allows pass and return
by value in C.

48 David Cock

struct cap {

uint32_t words[2];

};

typedef struct cap cap_t;

enum cap_tag {

cap_null_cap = 0,

cap_untyped_cap = 1,

};

typedef enum cap_tag cap_tag_t;

For each block and union, the tool generates create, access and update
functions. Each such function is generated in a purely functional version, which
passes and returns a stack object of appropriate struct type:

static inline cap_t CONST

cap_untyped_cap_set_capBlockSize(cap_t cap, uint32_t v) {

assert(((cap.words[0] >> 28) & 0xf) ==

cap_untyped_cap);

cap.words[1] &= ~0x1f;

cap.words[1] |= (v << 0) & 0x1f;

return cap;

}

Also generated is a pointer lifted version, which operates indirectly on heap
values through a supplied pointer:

static inline void

cap_untyped_cap_ptr_set_capBlockSize(cap_t *cap_ptr,

uint32_t v) {

assert(((cap_ptr->words[0] >> 28) & 0xf) ==

cap_untyped_cap);

cap_ptr->words[1] &= ~0x1f;

cap_ptr->words[1] |= (v << 0) & 0x1f;

}

The prototypes for the remaining functions are given in Fig. 6.
Note that the generated API only provides functions that read the tag field

through the union type, and no function to write it directly. This imposes a
class-like behaviour on the types. The subtype is set implicitly at creation time,
and can only be modified by overwriting with an object of a different type. This
will turn out to be an important property for verification.

In practice the output is automatically pruned, so that only those functions
actually used in the source are generated. This speeds the proof process. As the
specification language is highly focussed and carefully limited, the generated
code is simple and fast, highly predictable, and easily inlined by the compiler.

4 Generated Specifications

The final and most novel part of the approach consists of the automatically
generated, machine checked function specifications together with their automated

Bitfields and Tagged Unions in C: Verification through Automatic Generation 49

static inline uint32_t CONST

cap_get_capType(cap_t cap);

static inline uint32_t PURE

cap_ptr_get_capType(cap_t *cap_ptr);

static inline cap_t CONST

cap_untyped_cap_new(uint32_t capBlockSize,

uint32_t capPtr);

static inline void PURE

cap_untyped_cap_ptr_new(cap_t *cap_ptr,

uint32_t capBlockSize,

uint32_t capPtr);

static inline uint32_t CONST

cap_untyped_cap_get_capBlockSize(cap_t cap);

static inline uint32_t PURE

cap_untyped_cap_ptr_get_capBlockSize(cap_t *cap_ptr);

static inline cap_t CONST

cap_untyped_cap_set_capBlockSize(cap_t cap,

uint32_t v);

static inline void

cap_untyped_cap_ptr_set_capBlockSize(cap_t *cap_ptr,

uint32_t v);

Fig. 6. Generated function prototypes for the example

proofs. The function of the generated proofs is not only to show implementation
correctness, but also to provide sufficient reasoning power to allow any statement
involving the generated functions to be rephrased in terms of simple operations
on abstract, high-level types in the theorem prover. This means that we can
avoid invoking bit manipulations and pointer dereferences when reasoning about
the packed structures as part of a larger proof. We can instead reason about
higher-level types, for which there is well established support.

This abstract representation is expressed in terms of Isabelle’s record types,
which behave much like struct or record constructs in typical programming
languages, providing access and update of disjoint fields. The bitfields from the
C level are represented as records of fields on the abstract level. For example,
the untyped cap block is represented as follows:

record cap_untyped_cap_CL =

capBlockSize_CL :: "word32"

capPtr_CL :: "word32"

Tagged unions are represented by an algebraic datatype wrapping the records
corresponding to the component bitfields, with one constructor for each. Tag

50 David Cock

fields are not included in the record representation, but are implied by the choice
of constructor within the union type. Any bitfields which are empty after the
removal of the tag field are represented simply by a naked constructor, with no
associated record. The cap union translates thus:

datatype cap_CL =

Cap_null_cap

| Cap_untyped_cap cap_untyped_cap_CL

The name convention is that the C types and identifiers, when parsed into
Isabelle, are tagged by appending C, whereas the lifted types are tagged with CL.
The connection between the C level and the abstract level will be provided by
two functions in the example below: cap_lift and cap_untyped_cap_lift. The former
lifts any cap_C to a cap_CL, and the latter lifts a cap_C with the untyped cap tag
directly to a cap_untyped_cap_CL. It is under-specified in all other cases.

The properties of the generated functions are expressed as strongest-postcon-
dition Hoare rules. Specifically, we use Schirmer’s [23] verification environment
for imperative programs in Isabelle/HOL. It contains a verification condition
generator (VCG) which automates reasoning about Hoare-triples. Tuch’s et
al. [26] instantiation to C parses the generated code directly into Isabelle/HOL
and into Schirmer’s representation language SIMPL.

As an example, we will take the generated specification of the generated
C function cap untyped cap set capBlockSize. It takes two arguments, an
untyped capability cap and a new block size v. It returns the original capability
updated with the new block size. The formal specification below translates this
into a record update:

"Γ ` {|s. cap_get_tag ´cap = cap_untyped_cap |}
´ret__struct_cap_C :==

PROC cap_untyped_cap_set_capBlockSize(´cap, ´v)

{|cap_untyped_cap_lift ´ret__struct_cap_C =

cap_untyped_cap_lift scap (|capBlockSize_CL := sv AND (mask 5) |) ∧
cap_get_tag ´ret__struct_cap_C = cap_untyped_cap |}"

The specification above reads as follows. For all program contexts Γ , if the
tag of the C-struct cap in the current state (indicated by ´) equals the value
cap_untyped_cap, and we execute the function cap_untyped_cap_set_capBlockSize with
parameters cap and v, storing its return value in ret__struct_cap_C, we will arrive at
the following post condition: lifting the return value to the abstract record type
is the same as lifting the value of cap in the initial state s, and then performing
an update of the abstract record field capBlockSize_CL with the value v had in
state s. Additionally, as a convenience for automated methods in the larger proof,
we provide that the tag of the return value remains cap_untyped_cap. A separate
specification states (and the tool proves) that the function is side-effect free, i.e.
that no global variables, including the heap, are changed. The term AND (mask 5)

carries the additional information that the field has a size of 5 bits. This form
proved more convenient than the alternative of having an abstract field of word

Bitfields and Tagged Unions in C: Verification through Automatic Generation 51

length 5, because casting between word lengths often introduces additional proof
obligations.

The meaning of the rule can also be expressed by means of the commuting
diagram in Fig. 7.

•
λcap. cap(|capBlockSize CL := v AND (mask 5)|)// •//

•
cap untyped cap set capBlockSize(...,v)

//

cap untyped cap lift

OO

•

cap untyped cap lift

OO

Fig. 7. Refinement picture for field update.

For Fig. 7, consider cap untyped cap set capBlockSize as a function from
cap t (its first argument) to cap t (its return value). Control flows left to right,
and r (| a := x |) is the Isabelle syntax for the record r, with field a updated
with value x. This makes it clear that the function of the rule is to allow us to
transform a function call into a record update, by commuting it with a lift. We
can therefore take any precondition of the form P (cap_untyped_cap_lift cap), and
commute it past any number of field updates, to produce a postcondition of the
form P (f (cap_untyped_cap_lift cap)), where f is the composition of a number of
record updates.

•
(|capBlockSize CL = capBlockSize AND (mask 5), capPtr CL = capPtr AND (mask 28)|)// •//

•
cap untyped cap new(capBlockSize,capPtr)

// •

cap untyped cap lift

OO

Fig. 8. Refinement picture for initialisation

That this is useful becomes clear when we consider the equivalent diagram
for the cap_untyped_cap_new function (Fig 8), which returns a new untyped ca-
pability. This provides a starting point for our chain of reasoning, by pro-
viding the identity cap_untyped_cap_lift cap = (|capBlockSize_CL=capBlockSize AND (mask

5),capPtr_CL=capPtr AND (mask 28) |). We can base our argument on such a case, as
long as bitfield objects are only initialised via the appropriate * new functions,
and the type tags are never externally modified. This justifies the API restriction

52 David Cock

introduced in Section 3, which is adhered to by the seL4 kernel implementation
without loss of convenience or performance.

Equivalent rules are proved automatically for all the generated functions, and
their pointer-lifted versions. The latter involve direct heap access to record fields
and automate the interactive reasoning Tuch provides [25]. Additionally to what
Tuch provides, we make use of the concept of packed records, which allow us
to ignore padding in record implementations and derive more precise properties
of the corresponding memory layout. Packed records are represented by a type
class in Isabelle that simply states that all fields in the record are of a size that
makes padding unnecessary.

The proofs of the specifications above are fully automated and generally
consists of two to three automated method invocations in Isabelle. The first of
these is a call to the C-level VCG mentioned above. The second and possibly
third, first reduce the remaining proof obligation from variable, heap, and struct-
updates to a goal on bit-vectors only. This is then solved automatically with a
carefully designed set of generic, algebraic rewrite rules for the bit operations
involved in the generated functions. The direct proof script for one specification
of a typical C-function is typically about 10 lines long.

5 Related Work

Earlier work on OS verification includes PSOS [10] and UCLA Secure Unix [27].
Later, KIT [2] describes verification of process isolation properties down to object
code level, but for an idealised kernel far simpler than modern microkernels. The
Verisoft project [11, 12] is attempting to verify a whole system stack, including
hardware, compiler, applications, and a simplified microkernel: VAMOS. The
VFiasco [14] project is attempting to verify the Fiasco kernel, another variant of
L4, directly at the C++ level. These verification projects do not use generated
C code for automating parts of their proof obligations. In the case of Verisoft,
there is no reason to distrust the compiler as it is also verified [20, 15]. Directly
using C or dropping down to assembly code to implement the desired features
does not have the benefit of the high-level reasoning support and API the tool
presented here provides, however.

The verified proofs in this work build directly on Tuch’s et al. memory model
for C [26, 25, 24] which in turn builds on work by Schirmer [23, 22] that provides
a generic framework, verification condition generator, and Hoare logic [13] for
imperative programs. Both are intended for interactive verification. This paper
uses the predictable structure of the generated code to completely automate the
pointer level proofs on the C implementation.

This work also builds directly on Dawson’s machine-word library [4] for
Isabelle/HOL. Despite recent progress in tools like Yices [6], bit-vector proofs for
machine words remain hard to automate. Traditional SAT solvers are usually too

Bitfields and Tagged Unions in C: Verification through Automatic Generation 53

slow to handle the resulting proof obligations on realistic word sizes. Again, due
to the predictable nature of the generated code, the tool is able to fully automate
the bit-level verification conditions with a set of algebraic rewrite rules. This
means that switching to different, say 64-bit, architectures should not result in
any noticeable slowdown of the generated proofs.

General translation validation [21] and compiler correctness including Leroy’s
et al. work [16] are related to the topic. As mentioned above, the tool presented
here can exploit the known, predictable nature of the application domain to
provide a convenient interface to, and integration into, the user’s proofs.

Also related to generated correctness proofs is the idea of proof-carrying
code [18], which usually focusses on the machine level and on specific properties
such as memory safety or resource constraints. Functional correctness is not
usually targeted, because it is impossible to automate completely. Barthe et
al. [1] come close by automatically transforming certificates from source code
to machine code and, similarly to the work presented here, generating proofs
for generated code. In contrast to this, the bitfield generator here does not
require any source-level proof as input. It generates a full functional correctness
statement automatically.

Denney et al. [9] automatically prove properties about generated aerospace
software. The generated code appears more complex than that presented here,
but the semantics they are using is not foundational and the properties do not
cover full functional correctness, only specific safety properties.

6 Conclusion

This paper has summarised a generator for tagged unions of packed bitfields in
the C programming language, as they are used in low-level systems code and
operating system kernel implementations. In theory, this data structure can be
implemented with C primitives without resorting to a generator. However, com-
piler implementations of bitfields seem to be so unpredictable in memory layout
and performance over different platforms and compilers that kernel programmers
distrust this compiler feature more than others.

The tool generates efficient, predictable, and above all correct C code from a
short, high-level description that is detailed enough to provide precise memory
layout specification which is important to map data, for instance, to memory
mapped hardware device registers. The generated code includes the data type
itself as well as an API for convenient, high-level access on the stack and on the
heap.

This work shows that an automatic correctness proof of generated code for
controlled environments is not hard to achieve, even if this code contains bit-level
reasoning and pointer access. The proof is foundational in the sense that it
assumes no specific axioms on the application domain, but is built directly on

54 David Cock

the semantics of the C programming language. The proof is machine-checked
in the theorem prover Isabelle/HOL and provides an example of translation-
validation: Instead of proving the correctness of the generator, the correctness of
the generated code is proven instead.

The usefulness of the tool reaches further than a stand-alone correctness proof.
The Hoare-triples proven integrate directly, within the same formal model, with
larger implementation proofs of client code using the generated bitfields. The
Hoare-triples are designed such that client proofs and code have no need to reason
about the internal representation or bit-level operations that are carried out.
They provide an abstract interface. Translation validation has likely made this
easier to achieve than in a generator correctness proof. No meta-level reasoning
or switching of formal models is required.

The tool is expected to automate 14% of the C implementation proofs in the
L4.verified project, covering 1,800 lines of C code with 7,800 lines of generated
proof. The seL4 kernel, including all generated inline functions, comprises 12,600
lines of code. The tool is generally applicable to code that needs to have direct,
reliable control over the memory layout of data structures. The technique of gen-
erating proofs that integrate well into interactive environments should generalise
easily to constrained application domains where the structure of the generated
proof is predictable.

References

1. G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing compilers.
In Proceedings of the 13th International Static Analysis Symposium (SAS), volume 4134 of LNCS,
pages 301–317, Seoul, Korea, August 2006. Springer.

2. William R. Bevier. Kit: A study in operating system verification. IEEE Transactions on Software
Engineering, 15(11):1382–1396, 1989.

3. David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state monads and scalable
refinement. In Cesar Munoz and Otmane Ait, editors, Proceedings of the 21st International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’08), LNCS. Springer, 2008. To
appear.

4. Jeremy E. Dawson. Isabelle theories for machine words. In Seventh International Workshop on
Automated Verification of Critical Systems (AVOCS’07), Electronic Notes in Computer Science,
Oxford, UK, September 2007. Elsevier. To appear.

5. Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel M. T. Chakravarty.
Running the manual: An approach to high-assurance microkernel development. In Proc. ACM
SIGPLAN Haskell Workshop, Portland, OR, USA, September 2006.

6. Bruno Dutertre and Leonardo de Moura. The yices smt solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2006. Link visited June 2008.

7. Dhammika Elkaduwe, Philip Derrin, and Kevin Elphinstone. A memory allocation model for an
embedded microkernel. In Proc. 1st MIKES, pages 28–34, Sydney, Australia, 2007.

8. Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and Gernot Heiser. Towards a
practical, verified kernel. In Proc. 11th Workshop on Hot Topics in Operating Systems, San Diego,
CA, USA, May 2007.

9. Bernd Fischer Ewen Denney and Johann Schumann. Using automated theorem provers to certify
auto-generated aerospace software. In Proc. 2nd International Joint Conference on Automated
Reasoning (IJCAR’04), volume 3097 of LNCS, pages 198–212. Springer, 2004.

Bitfields and Tagged Unions in C: Verification through Automatic Generation 55

10. Richard J. Feiertag and Peter G. Neumann. The foundations of a provably secure operating
system (PSOS). In AFIPS Conf. Proc., 1979National Comp. Conf., pages 329–334, New York,
NY, USA, June 1979.

11. Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On the correctness of
operating system kernels. In Joe Hurd and Thomas F. Melham, editors, Proc. TPHOls’05, volume
3603 of LNCS, pages 1–16, Oxford, UK, 2005. Springer.

12. Mark A. Hillebrand and Wolfgang J. Paul. On the architecture of system verification environments.
In Hardware and Software: Verification and Testing, volume 4899 of LNCS, pages 153–168, Berlin,
Germany, 2008. Springer.

13. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

14. Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified operating system. In
Proc. 2nd ECOOP-PLOS Workshop, Glasgow, UK, October 2005.

15. Dirk Leinenbach and Elena Petrova. Pervasive compiler verification—from verified programs to
verified systems. In Ralf Huuck, Gerwin Klein, and Bastian Schlich, editors, Proceedings of the 3rd
international Workshop on Systems Software Verification (SSV’08), Electronic Notes in Computer
Science, Sydney, Australia, February 2008. Elsevier. To appear.

16. Xavier Leroy. Formal certification of a compiler back-end, or: Programming a compiler with a
proof assistant. In J. G. Morrisett and S. L. P. Jones, editors, 33rd symposium Principles of
Programming Languages (POPL’06), pages 42–54, New York, NY, USA, 2006. ACM.

17. J. Liedtke. On µ-kernel construction. In 15th ACM Symposium on Operating System Principles
(SOSP), December 1995.

18. George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 106–119, New York, NY,
USA, 1997. ACM.

19. Open Kernel Labs, Inc. OKL web site. http://www.ok-labs.com, 2007. Visited May 2008.
20. Elena Petrova. Verification of the C0 Compiler Implementation on the Source Code Level. PhD

thesis, Saarland University, Computer Science Department, Saarbrücken, Germany, 2007.
21. Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Bernhard Steffen,

editor, Proc. 4th Intl. Conf. Tools and Algorithms for Construction and Analysis of Systems
(TACAS’98), volume 1384 of LNCS, pages 151–166. Springer, 1998.

22. Norbert Schirmer. A verification environment for sequential imperative programs in Isabelle/HOL.
In F. Baader and A. Voronkov, editors, Logic for Programming, AI, and Reasoning, volume 3452
of LNAI, pages 398–414. Springer, 2005.

23. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München, 2006.

24. Harvey Tuch. Formal Memory Models for Verifying C Systems Code. PhD thesis, School for
Computer Science and Engineering, University of New South Wales, Sydney, Australia, 2008.

25. Harvey Tuch. Structured types and separation logic. In Ralf Huuck, Gerwin Klein, and Bastian
Schlich, editors, Proceedings of the 3rd International Workshop on Systems Software Verification
(SSV’08), Electronic Notes in Computer Science, Sydney, Australia, February 2008. Elsevier. To
appear.

26. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Martin
Hofmann and Matthias Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 97–108, Nice, France, 2007. ACM.

27. Bruce Walker, Richard Kemmerer, and Gerald Popek. Specification and verification of the UCLA
Unix security kernel. Commun. ACM, 23(2):118–131, 1980.

Model Stack for the Pervasive Verification of a

Microkernel-based Operating System?

Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan

Saarland University, Computer Science Dept.
66123 Saarbrücken, Germany

{md11,jandb,sebastian}@wjpserver.cs.uni-sb.de

Abstract. Operating-system verification gains increasing research interest. The com-
plexity of such systems is, however, challenging and many endeavors are limited in some
respect: Some projects focus on a particular aspect like memory safety, not pursuing
functional correctness. Others restrict their verification efforts to a single layer of soft-
ware, assuming correctness of those below. Only few projects aim at pervasive formal
verification of a computer system over several software layers.
In our paper, we present an approach to the formal specification of a microkernel-based
operating system at several layers and glance on our verification experience with this
model stack. From our experience, we conclude that pervasiveness entails more than
just cumulative verification efforts on several layers. In fact, it is a challenging task to
integrate models and proofs into a uniform, coherent theory.

1 Introduction

Software-verification tools have greatly improved in recent years. As a conse-
quence, the verification of low-level software gains increasing research interest
as a touch-stone for the industrial applicability of software verification in gen-
eral. While many aspects of operating-system verification are currently studied,
they are not integrated into a uniform, coherent theory. In our paper, we concen-
trate on the integration of several operating-system models in order to form a
pervasive verification stack. We point out the integration problems and describe
the specific design decisions that we made in order to support integration.

A characteristic problem of operating-system software is that hardware com-
ponents become visible and the program functionality cannot be expressed in
the pure semantics of a high-level language like C. Usually, this functionality is
implemented in assembly and encapsulated in a small number of C functions, or
primitives. Thus, only a small part of low-level code is indeed implemented in
assembly while larger code portions are written in C and just use these primi-
tives. From a model-theoretic point of view, such primitives extend the original
C semantics. Another important problem related to operating systems regards
the atomicity of operations in a concurrent setting. The processor might be in-
terrupted in its current computation after each assembly instruction but a single
C statement is usually compiled into several instructions.

? Work partially funded by the German Federal Ministry of Education and Research (BMBF) in the
framework of the Verisoft project under grant 01 IS C38.

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 57

Consequently, we need an assembly semantics, a C semantics and a sim-
ulation theorem between both semantics. Leinenbach and Petrova [1] provide
exactly that: a proven correct compiler that translates programs from the per-
fectly type-safe C variant C0 into the assembly language of our risc processor.
An important feature of C0 is the inline-assembly statement, which permits
the language extensions via primitives. Using this mechanism, we have imple-
mented our operating system in C0. The correct C0 compiler is an elementary
prerequisite for our model stack.

Outline. In Sect. 2, we explain the fundamentals of our operating system. This
section comprises a sketch of the correct compiler, a survey of the features of
our microkernel, and an outline of the system’s implementation design. With
these prerequisites in place, we give an overview of our model stack in Sect. 3.
Certainly, we cannot descend into all details of the stack in this paper.1 Hence, we
confine ourselves to aspects of encapsulation and state partitioning. In Sect. 4,
we describe our formal specification of the generic interface between the user
processes and the kernel. Moreover, we sketch our formal model for assembly
and C0 processes. This process abstraction is an elementary prerequisite for the
model of communicating user processes as well as for the top-level specification of
the operating system. We illustrate in Sect. 5, why we use the process abstraction
already in the Vamos specification and how we have constructed the latter model
in order to support the abstraction towards Coup and the top-level specification.
We conclude in Sect. 6.

2 Background

2.1 A Correct Compiler for an Extensible Language

In this section, we summarize work of Leinenbach and Petrova [1,2]. They provide
a formally verified compiler that translates programs from the perfectly type-
safe C variant C0 into the assembly language of a risc processor. Restrictions
of C0 in comparison to C are that expressions must be side-effect-free, all type
conversions have to be made explicitly, and there is no pointer arithmetic. In
spite of that, C0 still features dynamic memory allocation and inlined assembly.

The inline-assembly statement is an important feature for language exten-
sions. Though the effect of this statement cannot be expressed in the formal
C0 semantics, the compiler literally embeds the given assembly code into the
compilation. Using this hook, we can implement C0 functions that use inline
assembly in order to extend C0 by a functionality that cannot be expressed by
other C0 statements.

1 The complete Isabelle/HOL theories of the models as well as detailed documentation are made
available at the Verisoft repository, see <http://www.verisoft.de/VerisoftRepository.html>

<http://www.verisoft.de/VerisoftRepository.html>

58 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

For C0 and for the assembly language, two small-step transition semantics
have been formalized in Isabelle/HOL. Leinenbach has formally proven compiler
correctness by a stepwise simulation between both semantics. Below, we describe
the semantics in detail. We often deal with structured values, which we define
by enumerating the components in prose, e. g., “a value x consisting of two
components this and that”. We refer to a single component with a dot, e. g.,
x.this refers to component this of value x. An update of this component is
denoted by x [this := q].

C0 Semantics. For lack of space, we can only glance at the C0 semantics.
C0 programs are statically represented by the program environment Γ , which
comprises a symbol table of global variables, a type-name environment, and a
function table. The dynamically changing state sC0 of a C0 program in execution
is composed of
– the remaining program sC0.prog , and
– the current state of the program variables sC0.mem.

In the following sections, we assume an evaluation function get-val for the look-
up, and an update function set-val for the manipulation of a certain variable in
the memory. We refer to the value of expression e in state sC0 by get-val(sC0, e).
If we update the left-value l in state sC0 with some expression u, we denote the
resulting configuration by set-val(sC0, l, u).

The transition relation δseq
C0 of this semantics is a partial function.

The Target Assembly Language. The assembly semantics was developed for
the risc processor Vamp [3]. The assembly semantics abstracts from the paging
mechanism of the processor and employs a linear memory model. An assembly
state sasm consists of the following components:

– the normal and the delayed program counters, sasm.pc and sasm.dpc, respec-
tively, implementing the delayed branch mechanism.

– the general-purpose register file sasm.gpr ∈ {0, . . . , 31} → {0, 1}32.
– the memory size sasm.V measured in pages of 4096 bytes. It defines the set

of available memory addresses: VA(sasm) = {a | a < sasm.V · 4096}
– the byte-addressable linear memory sasm.vm ∈ VA(sasm)→ {0, 1}8

We denote the state space of the assembly semantics by Sasm. Assembly
computations are modeled by the partial function δseq

asm ∈ Sasm ⇀ Sasm. Note
that the effects of exceptions like illegal page faults cannot be fully determined
from the assembly-machine state. In that case, δseq

asm gets stuck. But with sufficient
resources, a compiled C0 program does not generate exceptions during normal
execution. Moreover, the memory size sasm.V can neither be read nor changed
by the assembly machine itself but depends on the operating-system kernel. We
extend the semantics accordingly in Sect. 4.

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 59

2.2 Fundamentals of our Microkernel

In this section, we sketch the features of Vamos and explain the fundamental
access-control mechanism that establishes the process roles “privileged process”
and “device driver”.

Our microkernel Vamos performs the following tasks: (a) enforcement of
a minimal access control, (b) process management, (c) memory management,
(d) priority-based round-robin scheduling, (e) support for user-mode device dri-
vers, and (f) inter-process communication (IPC). Processes can control these
tasks via the kernel’s application binary interface (ABI). Table 1 lists the kernel
calls that constitute the ABI.

Most kernel calls are reserved for so-called privileged processes. Thus, only
a privileged process can bring up new processes or kill existing ones, alter the
memory consumption of processes, change their scheduling parameters, or con-
trol the registration of device drivers. Any process, however, might use the IPC
mechanism. Thus, the privileging serves as a minimal access control. We pre-
sume that the privileged processes constitute the user-mode parts of the op-
erating system and implement a more sophisticated access-control mechanism.
Non-privileged processes may then communicate with the privileged processes
in order to request kernel services on their behalf.

Table 1. Application binary interface of the Vamos kernel

Kernel Call Description

Access Control

set privileged p add a process to the set of privileged processes

Process Management

process create p create a new process from a memory image
process clone p copy an already existing process
process kill p kill a process

Memory Management

memory add p increase the amount of virtual memory for a process
memory free p decrease the amount of virtual memory for a process

Scheduling Mechanism

chg sched params p change scheduling parameters

Device Driver Support

change driver p (un)register a process as a driver for a set of devices

enable interrupts d re-enable a set of interrupts after their successful handling

dev read d / dev write d communicate with a certain device

Inter-Process Communication

ipc send send a message to another process
ipc receive receive a message from another process
ipc request send a message and immediately wait for a reply
change rights manipulate IPC rights
read kernel info receive information from the kernel

p call is reserved for privileged processes d call is reserved for device drivers

60 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

When Vamos boots, it launches one single process, the init process. This
process is privileged and has to set up the required servers of the operating
system, start and register the device drivers, and possibly run initial applications.

A device driver is a user process, which is designated for the communication
with certain devices. Only if a process is registered as a driver for a particular
device, it may place read or write requests from or to that device, respectively.
Moreover, the device driver is notified of interrupts from that device.

2.3 Implementation Design

Fig. 1 depicts the implementation structure of Vamos. The lowest software layer
is called communicating virtual machines (CVM). This layer encapsulates all
hardware-specific low-level functionality, which is possibly using inline assembly.
CVM has two major tasks: memory virtualization and switching between differ-
ent threads of execution. Hence, CVM includes a page-fault handler with a sim-
ple memory swapping facility [4]. Moreover, it exports an interface of so-called
primitives for the access and manipulation of user machines to the hardware-in-
dependent part. We have thereby established a solid framework for microkernel
construction.

Using this framework, we have implemented our microkernel Vamos in C0
without extra portions of inline assembly. On every kernel entry, CVM preserves
the old context, establishes a suitable C0 environment and calls the function
kdispatch of Vamos. For the manipulation of the user memory or registers, Va-
mos may call the primitives of CVM. The return value of kdispatch determines,
which user machine resumes when the kernel execution finishes.

Hardware

CVM

kdispatch primitives

Vamos

S
y
st

em
m

o
d
e

App SOS App

kcalls kcalls

U
se

r
m

o
d
e

Fig. 1. Implementation scheme

SOS (C0+asm)?

Coup (C0+asm)?

Vamos asm?

CVM C0 asm?

Fig. 2. Schematics of our model stack

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 61

While CVM and Vamos run in the privileged system mode of the processor,
user machines run in the unprivileged user mode. In the figure, we labelled
one user machine “SOS” for simple operating system and the others “App”
as abbreviation for application. The SOS constitutes the highest layer of our
operating system. It features an advanced rights management with different
users, implements a sophisticated access control to kernel services like process
creation and provides further services like file-system and network access. All
user machines interact with the kernel via kernel calls. The special instruction
trap causes an exception, which is handled in Vamos. Vamos can examine and
alter the state of the user machine using CVM primitives, thus identifying the
user machine’s specific request and storing the kernel’s corresponding response.

3 Model-Stack Overview

In analogy to the software stack, we have developed a model stack. For each
software layer, this stack contains a specification that fully describes the observ-
able behavior of this layer. The specification describes the full functionality of
the software layer, on the one hand, and forms the foundation for the simula-
tion proofs for the more abstract layers, on the other hand. We build the model
stack as a means of verifying statements about the real system on a convenient,
abstract layer. Such statements include safety and liveness properties.

Fig. 2 shows our model stack. The lowest model describes CVM. This model
comprises a kernel machine, given in the C0 semantics, and a number of user
machines with virtual memory, given in the assembly semantics. The kernel runs
in system mode with disabled interrupts. The user machines, in contrast, may
be interrupted after each assembly instruction, thus we model them on assembly
level. We will not descend into the details of this model in the present publication
because it has been described earlier [5].

We can instantiate the kernel of CVM with the Vamos implementation,
i. e., the C0 program that implements (the hardware-independent part of) our
microkernel is executed as CVM’s kernel machine. The Vamos model specifies
the behaviour of the resulting system. In short, this model establishes assembly
processes that communicate with the kernel via a well-defined interface, the
kernel ABI. A code-correctness proof for the Vamos implementation establishes
the simulation theorem between the instantiated CVM model and the Vamos
specification.

While the Vamos processes use the assembly semantics, the SOS and the
applications are written in C0. The kernel ABI is encapsulated in a few library
functions. Except for the library functions, the verification of these programs
should certainly employ the more abstract C0 semantics. For this purpose, we
designed the model communicating user processes (Coup). This model simu-
lates Vamos but it abstracts from the scheduler and establishes C0 processes.

62 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

We need to abstract from the particular Vamos scheduler because of the dif-
ferent granularity of the program semantics: The execution of a process might
be suspended and resumed on every assembly instruction but a C0 statement
usually contains several assembly instructions. The simulation proof has three
parts: (1) The execution traces of Coup should contain all traces of Vamos.
(2) There is a confluent reordering of any execution trace such that there is no
scheduling event during a single C0 statement. (3) The kernel library is correctly
implemented.

We can instantiate one of the C0 processes with the implementation of SOS.
The SOS model specifies the behaviour of the resulting system. The simulation
between both models can be shown by the functional correctness of the SOS
implementation.

4 Process Abstraction

In this section, we formalize the interface between the processes and the kernel.
Both kernel models, the Vamos specification and the Coup model, use this
process abstraction in order to access and manipulate processes. Our abstraction
is based on the observation that Vamos interacts with processes only via a
well-defined interface, the kernel ABI. Hence, we can encapsulate processes in
a self-contained input-output automaton, thereby hiding the internal state and
just exposing the generic interface.

We define a process as input-output automaton described by a tuple

(Sproc, Σproc, Ωproc, ωproc, vm-sizeproc, initproc, δproc)

with state space Sproc, input alphabet Σproc, output alphabet Ωproc, output func-
tions ωproc and vm-sizeproc, initialization function initproc, and transition function
δproc.

While the state space Sproc depends on the individual process abstraction,
the interface between the kernel and the processes is naturally shared by all
process abstractions. This interface is entirely defined by Σproc and Ωproc.

The output alphabet Ωproc enumerates all possible kernel calls. Additionally,
we have to treat a few error cases. As the kernel calls are internally identified by a
number, a process might specify an invalid number. This condition is represented
by the special output value undefined trap. Moreover, a process might generate
exceptions like an arithmetic overflow or an illegal page fault. These exceptions
are collectively represented as value runtime error. Finally, the output ε denotes
the intention to perform a local computation.

The input alphabet Σproc reflects all kernel-initiated changes of a process.
These comprise all possible responses to kernel calls, on the one hand, and the
demand to change the amount of virtual memory, on the other hand. While the

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 63

former are the synchronous reaction to a kernel call, the latter may be issued
asynchronously at any stage of a process. In order to perform a local transition,
we pass the input ε to the transition function δproc.

In addition to the usual functions δproc ∈ Σproc × Sproc → Sproc for transi-
tions and ωproc ∈ Sproc → Ωproc for the output, we use two more functions in
our process abstraction. In order to compute the overall memory consumption
of the process system, Vamos needs to know the amount of virtual memory that
is currently occupied by every process. The function vm-sizeproc ∈ Sproc → N
provides the necessary information. When a new process is created, Vamos
has to translate a representation of a given binary executable file into the cor-
responding, initial process state. We specify this translation in the function
initproc ∈ N? → Sproc.

For the kernel specification, the generic abstraction of processes as self-
contained input-output automata is rather a matter of taste than necessity.
However, this generic process abstraction is a cornerstone of the Coup model.
Moreover, it is crucial for the simulation theorem between Vamos and Coup be-
cause both models mainly differ in the process abstraction. Hence, it proved to
be beneficial that many definitions of the specification are parametrized over the
process abstraction and can thus be reused in Coup as well. Finally, the intro-
duction of this parameter on the whole Coup model is just a logical consequence
because it paves the way for the integration of other language semantics.

In the following, we refine the generic abstraction with specific process models
for assembly and C0.

Assembly Processes. We reuse the state space Sasm of the assembly seman-
tics for our assembly processes. Based on this state space, we now define the
output functions ωasm and vm-sizeasm, the transition function δasm, and the ini-
tialization function initasm. The function vm-sizeasm simply returns the value of
the component V of the current state: vm-sizeasm(sasm) = sasm.V . However, the
definitions for other functions are too complex to fully present them here. We
constrain ourselves to an exemplary excerpt.

Fig. 3 depicts the formal definition of the output function ωasm and the tran-
sition function δasm for the call process clone. We assume that sasm is the state
of an assembly process. The predicate trap holds iff the current instruction is
a trap, and the function simm extracts the sign-extended immediate constant
from the current instruction. If there is a trap with immediate constant 2, the
output function will return the pair of value process clone and the content of
register 11. Let us now assume that the kernel recognizes this output from the
current process but the process is not privileged. In this case, the kernel signals
this error condition by passing value err unprivileged via the transition function
to the current process. Then, the transition function updates the register 22 with
the corresponding error code and increases the program counters.

64 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

trap(sasm) ∧ simm(sasm) = 2 =⇒ ωasm(sasm) = (process clone, sasm.gpr(11))

δasm(err unprivileged, sasm) = sasm

24 gpr(22) := −4
pc := sasm.pc + 4

dpc := sasm.dpc + 4

35

Fig. 3. Formal definition of the output function and the transition function of
assembly processes for the call process clone

C0 Processes. In order to represent C0 processes, we define an automaton
with the following signature:

(SC0, Σproc, Ωproc, ωC0, vm-sizeC0, initC0, δC0)

Any state sC0 ∈ SC0 comprises the static program environment as well as
the dynamic program state of the C0 machine as described in Sect. 2.1. We
store the program environment because processes might dynamically be created
and killed, hence the program might change. The output functions ωC0 and
vm-sizeC0, the transition function δC0, and the initialization function initC0 are
defined in analogy to their assembly-process counterparts.

For example, the formal definition of the output function and the transition
function for the call process clone is given in Fig. 4. We assume that sC0 is the
current state of a C0 process. The component sC0.prog denotes the remaining
program of the process. We consider the first statement of the program. If this
statement is a call to the function vc process clone, we define the output of
ωC0 as the pair of process clone and the value of the first argument to the function
call. Let us now assume that the kernel recognizes this output from the current
process, clones the given process, and computes the value hnnew as new identifier
for the clone. It would then pass this value via the transition function to the
current process, thus signalling the success of the clone operation. In this case,
the transition function updates the memory sC0.mem at the address designated
by the left-value e with value hnnew and removes the function call from the
remaining program.

5 Formal Kernel Models

In the previous section, we described our process model. Now, we embed the
processes into the two concurrent kernel models, the Vamos specification, and
the Coup model. The former specifies the exact behaviour of our microkernel
with a particular scheduler. This model is used for code verification. The latter
abstracts the scheduler and focusses on the interaction of the processes with the

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 65

sC0.prog = ”e = vc process clone(e0); r”
=⇒ ωC0(sC0) = (process clone, get-val(sC0.mem, e0))

sC0.prog = ”e = vc process clone(e0); r”

=⇒ δC0((succ new process, hnnew), sC0) = sC0

»
mem := set-val(sC0.mem, e, hnnew)
prog := r

–
Fig. 4. Formal definition of the output function and the transition function of
C0 processes for the call process clone

microkernel.We need this more abstract model in order to describe the reordering
of interleaved sequences and to introduce C0 processes.

Both models are Moore machines. We describe the kernel specification with
the tuple (Sv, s

0
v, Σ̂, Ω̂, ωv, δv) and the Coup model with (Svc, s

0
vc, Σ̂, Ω̂, ωvc, δvc).

The state spaces Sv, Svc contain the initial states s0
v and s0

vc, respectively. For
device communication, we use the input alphabet Σ̂ and the output alphabet
Ω̂. The functions ωv and ωvc determine the output in a current state. Finally, δv

and δvc describe the transitions of the models. The notable difference between
these machines regards the determinism: While the Vamos specification is fully
deterministic, Coup features a non-determinism in its scheduling decisions. Con-
sequently, the transition relation δv is functional while δvc is not.

Below, we introduce the different components of the models side by side.

Device Communication. Our kernel uses memory-mapped I/O for device com-
munication. Hence, the output alphabet Ω̂ comprises read and write accesses to
device addresses. The input alphabet Σ̂ consists of interrupt lines and optionally
incoming data. Hillebrand et al. [6] have described our device interface in detail.

State Spaces. A state sv ∈ Sv comprises the following components:

– The partial function sv.procs maps the process identifiers (PIDs) of the cur-
rently active processes to their assembly states sasm ∈ Sasm. For inactive
processes, this function is undefined.

– Priorities are assigned to each PID of the active processes with the partial
function sv.priodb.

– All other scheduling information is kept in the component sv.schedds .
– The partial function sv.rightsdb maps PIDs to a data structure for the man-

agement of IPC rights and the set of privileged processes.
– Finally, the component sv.devds contains data for device communication.

At first sight, the separation of priorities from the remaining scheduling data
might surprise, here. The reason for this unintuitive partitioning is that Coup
abstracts from the particular scheduling algorithm but the priorities remain
visible. We modularized the states and the corresponding transition functions in

66 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

order to share the definition of similar parts between the Vamos specification,
Coup, and the SOS model.

A central part of the Vamos specification are the scheduling data structures.
The component sv.schedds is divided into sub components. The current time
time ∈ N is a counter for clock ticks. Process-specific scheduling information
for active processes is collected in the partial function procdb that maps PIDs
to a record of (a) the time slice tsl , (b) the amount of consumed time ctsl , and
(c) the absolute timeout to. If a process is found to be computing when a timer
interrupt raises, the component ctsl is increased until the process has finally
run for tsl ticks. In this case, another process is scheduled. If a process calls the
kernel for IPC and no partner is ready for communication, the absolute timeout
to is computed from the current time and the relative timeout that has been
specified with the call.

Moreover, the scheduler maintains different queues for scheduling. They are
represented as finite sequences in the Vamos specification. Namely, there is
a ready queue ready(prio) of schedulable processes for each priority prio ∈
{0, 1, 2}. The processes that cannot currently be scheduled (because they are
waiting for an IPC partner) are held in a queue named wait .

In Vamos, the current process is the first process in the highest, non-empty
ready queue. If all ready queues are empty, the current process is undefined.
Formally, we define the function cup as:

cup(sv.schedds) = p ⇐⇒ ∃i : sv.schedds.ready(i) = (p, . . .) ∧
∀ j > i : sv.schedds.ready(j) = ()

The corresponding Coup state svc inherits most components of sv. Only two
components change: The process abstraction becomes a model parameter, i. e.,
component svc.procs of a Coup state svc is a partial function from PIDs to a
generic state space Sproc for processes. Moreover, the scheduling data structures
are replaced by a current-process indicator. We retain the current process in the
state in order to compute the output from the current state. The output function
ωvc signals the demand for device communication. In order to determine this
demand, we need to employ the output function ωproc of the current process.
Consequently, we fix this process beforehand instead of including transitions for
all ready processes in the transition relation.

Transitions. A transition δv(σ̂, sv) of the Vamos specification under the device
input σ̂ ∈ Σ̂ has up to three phases:

1. If the current process cp = cup(sv.schedds) is defined, we consult its out-
put ωproc(sv.procs(cp)) and compute the response according to the current
Vamos state. For instance, if a process calls process clone, we check for
sufficient privileges and resources and choose the corresponding response

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 67

σ ∈ Σproc for success or failure. With this response, we advance the cur-
rent process: sv [procs(cp) := δproc(σ, sv.procs(cp))].

2. If the timer-interrupt line is raised, the scheduler increases the clock-tick
counter sv.schedds.time and the consumed time sv.schedds.procdb(cp).ctsl of
the current process. Moreover, the scheduler wakes up all processes p with
elapsed timeouts.

3. Finally, Vamos delivers interrupts to waiting drivers and saves the remaining
interrupts for later delivery in sv.devds .

The Coup transitions behave very similarly. However, a transition svc
σ←→

s′
vc ∈ δvc, obtains cp directly from svc.cup. Moreover, the only visible effect of the

second phase is the wake-up of certain waiting processes. This effect is simulated
non-deterministically and independently from the timer interrupt.

Reusability. As mentioned earlier, we worked hard to reuse as much definitions
as possible in the different layers of abstraction. For example, in contrast to the
Coup model, the kernel specification does not actually rely on the encapsulation
of processes as self-contained input-output automata. Since Vamos only con-
siders assembly processes, it would be easier to directly manipulate the state of
these processes. However, in order to literally reuse update functions and def-
initions, we invested the extra work and already introduced the input-output
automata at this level of our model stack.

Consider the formal definition of the function v clone updt procs in Fig. 5.
This function describes the necessary updates in case of a successful call to
process clone. Without going into detail, depending on the relation between
the calling process (psubj) and the process that was cloned (pobj), this func-
tion updates the state of the calling process, the state of the cloned process,
and the state of the new process. The important thing about this definition
is that the updates are presented in a process-abstraction independent man-
ner. Rather than updating particular registers, as it would suffice for assem-
bly processes, we feed the generic transition function δproc with generic input,
e.g. (succ new process, hnnew). Now, this generic interface between kernel and
processes allows us to use v clone updt procs in both models, i.e. Vamos and
Coup. Proceeding in a similar way with all kernel calls keeps the models clear
and maintainable. Furthermore, tedious equivalence proofs between Vamos and
Coup are avoided.

6 Conclusion

Related Work. With the CLI stack [7], a pioneering approach started out
for pervasive verification of a complete system with rigorous formalizations of
specifications and proofs. Most notably, the simple kernel KIT [8] was developed

68 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

v clone updt procs(procs, psubj, pobj, pnew, hnnew) =
λx.

if x = psubj then δproc((succ new process, hnnew), procs(psubj))
else if x = pnew ∧ psubj = pobj then δproc((succ new process, 0), procs(psubj))
else if x = pnew then procs(pobj)
else procs(x)

Fig. 5. Formal definition of the function v clone updt procs that computes the
component procs after a call to process clone

and its machine code implementation was proven to be correct. However, this
kernel is fairly simple compared to modern microkernels.

Many recent projects undertake verification efforts on modern microkernels.
Among them are L4.verified [9], VFiasco [10], Eros [11], and the Flint project
[12]. Though these projects may have achieved some advances, they all discard
pervasiveness but focus on the verification of a single software layer. The Flint
project has developed a verification framework for an assembly language and
has formally proven the correctness for context-switching code. The other three
projects have established semantics for C variants and have verified different
properties on source code level. As far as we can see, inlined assembly portions
are just postulated to be correct and solely described by their semantical effects.
Moreover, these projects rely on compiler correctness.

Traditionally, concurrent systems are described by the Calculus of Communi-
cating Systems [13] or as Communicating Sequential Processes (CSP) [14]. Both
approaches, however, argue on a very abstract level and are mainly used to spec-
ify system requirements at an early stage in the system design. Basin, Olderog
and Sevinç [15], for instance, describe the combination of CSP and Object-Z
in order to specify and analyze security automata. Unfortunately, a link to the
actual code is missing.

Discussion. We presented an approach to a pervasive, formal specification of
a microkernel-based operating system. The formal models of our microkernel
Vamos and the SOS occupy almost 400 kB and comprise about 8,000 lines of
specification. The formalization took us about 48 person months. The different
specification layers resemble essentially the implementation layers.

A recurring problem was the semantic gap between the high-level imple-
mentation language C0 and certain hardware details that were manipulated by
the considered programs. Such details concerned hidden hardware components
like devices, on the one hand, and the granularity of atomic operations on the
hardware level, on the other hand. Both problems arose simultaneously when we
argued about C0 processes: In pure C0, we cannot express kernel calls. Hence, we
extended the original C0 semantics by a library of functions that implement the

Model Stack for the Pervasive Verification of a Microkernel-based Operating System 69

kernel calls using inlined assembly. Moreover, user machines may be interrupted
after the execution of any assembly instruction. Consequently, we had to justify
that we may confluently shift all rescheduling events to statement boundaries
before we could argue about C0 processes. In non-pervasive approaches, these
challenges are likely to be skipped.

When we began to specify the different layers of our operating system, we
started with independent models. As expected, many parts of the formal models
overlapped because we specified the same operating system at several layers of
abstraction. After a short period of evaluation for each abstraction layer, we
coupled the models as tight as possible in order to minimize the proof efforts for
the simulation theorems between adjacent models.

This ambivalent approach was very successful. In the very beginning, the
specifications change very often, such that maintaining dependencies between
them would be very tedious and distracting from the individual problems. As
soon as the models stabilized, however, there was a common ground for a tight
meshing. The synergies between the layers could easily be identified and utilized.

The key to shared definitions between the Vamos specification and the Coup
model was twofold: On the one hand, we unitized the state space in a way that
permits easy abstraction between the different abstraction layers. On the other
hand, we established the process abstraction already at the Vamos specification.
Both arrangements together enabled a very tight mesh, which could even be
reused in the SOS specification.

Of course, this tight mesh of the models has drawbacks: The specification
of an abstract layer depends massively on the underlying layers, which impedes
the understanding of this model. Moreover, even the lower layers became more
complicated, so for instance, when the process abstraction was already intro-
duced in the Vamos specification. Finally, several layers were affected whenever
the abstraction at one level turned out to be wrong.

From our experience, however, we conclude that the advantages outweigh
the drawbacks. We saved valuable time by reusing the definitions, which we
otherwise had spent in distracting equivalence proofs. For instance, we succeeded
with the step-wise simulation proof between the Vamos specification and the
Coup model within two months. We have proven this simulation for most kernel
calls within days. Most of the time, however, we spend with the verification of
IPC. This effort was caused by a considerably simpler modelling of IPC in Coup,
which became possible after the scheduler was abstracted. In this particular case,
the simpler modelling was desirable and hence, we invested the additional time
for the proof. Independent models, however, would possibly have caused such
an overhead for every kernel call.

In the code-correctness proof for Vamos, there is only a minimal overhead
(hours) induced by the use of the process abstraction in the specification. All in
all, we invested about 18 person months to show the correctness of the IPC send

70 Matthias Daum, Jan Dörrenbächer, Sebastian Bogan

call. Including all auxiliary functions, the implementation of this call accounts
for nearly half the code size and comprises the most complex parts. Again 18
person month had been spent on the functional verification of the file system
and the hard disk driver code in the SOS. This code covers 20% of the SOS
implementation.

Summary. The fundamental difference of our “pervasive” approach compared
to “incremental” approaches that focus on a single layer at a time regards the
design of specifications: At first, models are usually adapted to the actual verifi-
cation goal. If it is the only goal, to show that the formal specification precisely
describes the implementation, the specification tends to move closely towards
the implementation. If a model is used as fundament of an underlying compo-
nent without a proof, there is a likelihood that the model over-abstracts the
actual implementation. At second, regarding one single layer at a time necessar-
ily leads to self-contained, independent models. When combining those different
layers later on, there is a tremendous proof effort necessary to establish simula-
tion theorems between the adjacent layers. Our approach prevents this effort by
the specification design.

References

1. Leinenbach, D., Petrova, E.: Pervasive compiler verification: From verified programs to verified
systems. In: Workshop on Systems Software Verification, to appear, Elsevier (2008)

2. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: Code
generation and implementation correctness. In: SEFM. (September 2005) 2–11

3. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all together: Formal
verification of the VAMP. STTT 8(4-5) (2006) 411–430

4. Alkassar, E., Starostin, A., Schirmer, N.: Formal pervasive verification of a paging mechanism.
In: TACAS. (2007)

5. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating system
kernels. In: TPHOLs. Volume 3603 of LNCS., Springer (2005) 1–16

6. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of pervasive
system verification. In: ICCD, IEEE Computer Society (2005) 309–316

7. Bevier, W.R., Hunt, Jr., W.A., Moore, J.S., Young, W.D.: An approach to systems verification.
J. Autom. Reasoning 5(4) (December 1989) 411–428

8. Bevier, W.R.: Kit and the short stack. J. Autom. Reasoning 5(4) (December 1989) 519–530
9. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustworthy computing

systems: taking microkernels to the next level. Operating Systems Review (July 2007) 41(3)
10. Hohmuth, M., Tews, H., Stephens, S.G.: Applying source-code verification to a microkernel: the

vfiasco project. In: Operating Systems Review, European workshop: beyond the PC, New York,
NY, USA, ACM Press (2002) 165–169

11. Shapiro, J.S., Weber, S.: Verifying the EROS confinement mechanism. In: Symposium on Security
and Privacy, IEEE Computer Society (2000) 166–176

12. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: Machine context manage-
ment. In: TPHOLs, Lecture Notes in Computer Science (September 2007) 189–206

13. Milner, R.: A Calculus of Communicating Systems. Springer (1982)
14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
15. Basin, D.A., Olderog, E.R., Sevinç, P.E.: Specifying and analyzing security automata using

CSP-OZ. In: ASIACCS, ACM (2007) 70–81

Exploring Model-Based Development for the

Verification of Real-Time Java Code

Niusha Hakimipour1, Paul Strooper1, and Roger Duke1

University of Queensland, St. Lucia, Queensland, Australia
niusha@itee.uq.edu.au, pstroop@itee.uq.edu.au, rduke@itee.uq.edu.au

Abstract. Many safety- and security-critical systems are real-time systems and, as a
result, tools and techniques for verifying real-time systems are extremely important.
Simulation and testing such systems can be exceedingly time-consuming and these
techniques provide only probabilistic measures of correctness. There are a number of
model-checking tools for real-time systems. However, they provide formal verification
for models, not programs. To increase the confidence in real-time programs written in
real-time Java, this paper takes a modelling approach to the design of such programs.
First, models can be mechanically verified, to check whether they satisfy particular
properties, by using current real-time model-checking tools. Then, programs are de-
rived from the model by following a systematic approach. To illustrate the approach we
use a nontrivial example: a gear controller.

1 Introduction

Real-time [1] is a broad term used to describe applications that have timing
requirements. Many safety- and security-critical systems are real-time systems
and, as a result, tools and techniques for verifying real-time systems are ex-
tremely important. The traditional ways of ensuring that real-time systems
operate correctly have been simulation and testing. However, in many cases
these techniques are exceedingly time-consuming and provide only probabilistic
measures of correctness. Formal methods advocate the use of mathematical rea-
soning as an alternative; one of the most promising of these methods has been
model-checking [2].

There are a number of model-checking tools for real-time systems [3–6].
However, they provide formal verification for models, and no systematic ap-
proach for deriving programs from those models. This means it is still necessary
to show that the programs that implement those models satisfy the properties
as well.

Real-time systems have to generate their output within a finite and predica-
ble time. Therefore, the specification of the language in which real-time systems
are implemented is as important as verifying such systems. Real-Time Specifi-
cation for Java (RTSJ) [1] was proposed in January 2002. Sun has developed a
simulator, Java Real-Time System (Java RTS) 2.0 [7], for simulating real-time
Java code that is compliant with the RTSJ.

To verify real-time Java code which is compliant with the RTSJ, an approach
based on JPF (Java PathFinder) [8] has been proposed by Lindstrom et al. [9].

72 Niusha Hakimipour, Paul Strooper, Roger Duke

JPF is a Java model-checker which has a state-exploring JVM (Java Virtual
Machine) at its core. However, the approach based on JPF to verify real-time
Java code has not been implemented yet, and it only supports properties that
are specified as normal Java assertions, without timing constraints.

A real-time model is a simplified representation of a real-time system. Mod-
els focus on system behaviour and abstract many details of programs [10]. More
importantly, these models can be verified mechanically with real-time model-
checkers. This paper investigates a modelling approach to design real-time pro-
grams written in RTSJ, by means of an industrial example. In this approach,
Timed Automata [11] are used as the modelling language, since Timed Automata
have well-defined mathematical properties and a simple graphical representation.
Moreover, Timed Automata can capture both qualitative and quantitative fea-
tures of real-time systems [12]. The next step is to mechanically verify the model
using the UPPAAL model-checker [4]. UPPAAL has a graphical user interface;
it is well-used and well-supported. After verifying the model, a mapping between
the model features and RTSJ are used to derive the RTSJ code from the model.
This approach can increase the confidence in the correctness of the program.

In this paper, we present an initial application of the proposed approach
to a nontrivial example. The RTSJ code for this example is derived by hand,
following the systematic approach. The current mapping we propose does not
deal with timing constraints on specific time values (rather than lower- or upper-
bounds) which are described in Section 3. We have also left the mapping of a
number of challenging Timed Automata features for future work.

In the next section, theories and languages that have been proposed for
modelling real-time systems and related work on real-time model-checking are
reviewed. In Section 3, we investigate an approach to implement the behaviour
exhibited by real-time models in RTSJ. A realistic industrial case study, a gear
controller [13], is used as an example in this section. Section 4 provides the
verification result of the gear controller and discusses the limitations of our
approach, and Section 5 concludes the paper.

2 Background

Traditional formalisms for temporal reasoning deal with the qualitative aspect
of time, that is, the order of certain system events (an example of a qualitative
time property is: event A occurs before event B). However, real-time systems
often require quantitative aspects of time. This means they need to consider the
actual difference in time between certain system events.

Timed Automata [11] provide a formalism for the modelling and verification
of real-time systems. Examples of other formalisms are Timed Petri Nets [14],
Time Petri Nets [15], Timed Process Algebras [16], and Real-time Logics [17].

Exploring Model-Based Development for the Verification of Real-Time Java Code 73

Model-checking of Timed Automata representations has become popular for
the analysis of real-time systems [18]. In the last decade, there have been a num-
ber of tools developed based on Timed Automata to model and verify real-time
systems, notably Kronos [3], UPPAAL [4], RT-Spin [5] and MOCHA [6]. Timed
Automata can capture both qualitative and quantitative features of real-time
systems [12]. For instance, liveness, fairness and nondeterminism are qualitative
features and bounded response and timing delays are quantitative features that
can be captured with Timed Automata. Timed Automata also have well-defined
mathematical properties and a simple graphical representation.

A Timed Automaton is a finite-state automaton extended with a finite set
of real-valued variables modelling clocks. Timed words in a Timed Automaton
are infinite sequences in which a real-valued time of occurrence is associated
with each symbol [11]. Each clock can be reset to zero with the transitions of
the automaton, and keeps track of the time elapsed since the last reset. The
transitions of the automaton put certain constraints on the clock values. A tran-
sition may be taken only if the current values of the clocks satisfy the associated
constraints.

Figure 1 shows the Timed Automata used by the UPPAAL model checker
for a clutch specified by Lindahl et al. [13]. The UPPAAL Timed Automata [19]
extends Timed Automata with a number of additional features such as bounded
integers, arrays and urgent locations, as discussed in Section 3.

Fig. 1. Timed Automaton representing Clutch

The Clutch provides services to open or close the clutch in 100 to 150µs. In
the case that opening or closing the clutch takes more than 150µs, the clutch will

74 Niusha Hakimipour, Paul Strooper, Roger Duke

stop in an error state. This example will later be used to illustrate our proposed
approach.

Channels in Timed Automata are used to synchronize and communicate.
For Channel CName, CName? represents receiving a message and CName! repre-
sents sending a message. In Figure 1, a message is sent via OpenClutch! and two
messages are received via ClutchIsOpen? and ClutchIsClosed?. OpenClutch?,
ClutchIsOpen! and ClutchIsClosed! are in another Timed Automaton not
shown in Figure 1. Timer is a clock and Timer==150 is a guard. A guard in
UPPAAL is a side-effect-free statement which evaluates to a boolean. The tran-
sition from the Opening to the ErrorOpen can be taken if and only if Timer==150
is enabled. In the Opening state, Timer<=150 is an invariant. The Automaton
needs to leave Opening before this invariant is violated.

3 From Models To Implementations

A Model is a simplified representation of the system. We use Timed Automata
to describe models. These models represent the behaviour of real-time programs
written in RTSJ and they can be verified mechanically with the UPPAAL model-
checker. Then, we apply our approach on these models to design real-time pro-
grams which still satisfy the properties. Figure 2 shows an overview of this
model-based approach, which is similar to the model-based approach proposed
by Magee and Kramer to design concurrent Java programs from FSP models [10].

Fig. 2. Architecture

Exploring Model-Based Development for the Verification of Real-Time Java Code 75

3.1 RTSJ

Real Time Specification of Java (RTSJ) [1] was introduced in January 2002.
RTSJ is designed to support both hard and soft real-time applications. RTSJ
adds several features to Java, such as Clocks, Time, Scoped Memory Areas
which provide guarantees on allocation time, Fixed Priority Scheduling Policy,
Asynchronous Events and Real-Time Threads.

Figure 3 shows part of the RTSJ code for the clutch Timed Automaton
discussed in Section 2. The details of mapping the Clutch Timed Automaton to
the real-time Java code are described in Section 3.3.

Clutch is a real-time thread. Two classes, NonHeapRealtimeThread and
RealtimeThread, are defined in RTSJ to support real-time threads. Non-heap
real-time threads are not targeted by the garbage collector [1].

ClutchClock is declared as a clock. Clocks in RTSJ are derived from an
abstract class called Clock. There are three types of clocks in RTSJ:

– A “monotonic” clock progresses at a constant rate, suitable for timeouts.
– A “countdown” clock can be reset to zero, paused or continued.
– A “CPU execution time” clock counts the amount of time that is being

consumed by a particular thread.

MaxTimeClutch and CurrentTime are a relative and absolute time respectively.
In RTSJ, time is defined by three classes:

– a duration measured by a particular clock is ”relative” time;
– “absolute” time is a time relative to some epoch, such as system start-up

time;
– “rational” time is a subclass of relative time to represent the rate of certain

event occurrences.

3.2 Model-based approach

An overview of the mapping for different features and expressions in UPPAAL
Timed Automata is shown in Tables 1 and 2. The details of the mapping are
provided in Section 3.3.

3.3 Mapping Details

Timed Automaton: Every Timed Automaton is mapped to a non-heap real-
time Java thread. As non-heap real-time Java threads are not targeted by the
garbage-collector, programs using such threads have no non-determinism due
to garbage-collection delays or memory allocations. Each thread has a state

76 Niusha Hakimipour, Paul Strooper, Roger Duke

1.public class Clutch extends NonHeapRealTimeThread{

2. public void run(){

3. Environment env = new Environment();

4. Clock ClutchClock = Clock.getRealtimeClock(); // Timer

5. RelativeTime MaxTimeClutch = new RelativeTime(0,150);

6. RelativeTime MinTimeClutch = new RelativeTime(0,100);

7. AbsoluteTime CurrentTime = ClutchClock.getTime();

8. String state = "Closed";

9. while(true){

10. if(state == "Closed"){

11. if(env.IsReadyOpenClutch){

12. env.IsReadyOpenClutch = false;

13. env.ChannelAcknowledgeOpenClutch = true;

14. CurrentTime = ClutchClock.getTime();

15. state = "Opening";

16. continue;

17. }

18. }

19. if(state == "Opening"){

20. if(((ClutchClock.getTime().subtract(CurrentTime)).compareTo(MaxTimeClutch) >= 0)){

21. env.ErrStat = 2;

22. state = "ErrorOpen";

23. continue;

24. }

25. if(((ClutchClock.getTime().subtract(CurrentTime)).compareTo(MinTimeClutch) > 0)){

26. env.ChannelAcknowledgeClutchIsOpen = false;

27. env.IsReadyClutchIsOpen = true;

28. while(!env.ChannelAcknowledgeClutchIsOpen);//busy loop

29. state = "Open";

30. continue;

31. }

32. }

33. if(state == "Open"){...}

34. if(state == "Closing"){...}

35. }/*while*/

36. }/*run*/

37.}/*class*/

Fig. 3. Potential RTSJ code corresponding to Clutch Timed Automata

Table 1. Features Mapping Table

Feature Description Currently supported Mapped to

Timed Automaton a finite-state machine Yes Real-time Thread
extended with clock variables

Broadcast channels that are not Yes A variable in the
channels blocking Environment class
Binary channels are declared Yes Two variables in the
synchronisation as chan c Environment class
Urgent time is not allowed to Yes Resetting the value
location pass in an urgent location of the Clock
Urgent delays must not occur No
synchronisation if its channel is enabled
Committed a state that Partially Using RTSJ Priorities
location cannot delay
Initialisers used to initialise Yes Assignments in the

integers and arrays thread constructor

Exploring Model-Based Development for the Verification of Real-Time Java Code 77

Table 2. Expressions Mapping Table

Expression Description Currently supported Mapped to

Assignment an expression with Yes An assignment in RTSJ
a side-effect

Guard a side-effect free expression Partially An if condition
associated with a transition

Invariant a side-effect free expression Partially An if condition except for
associated with a state time invariants

variable that is initialised to the initial state of the Automaton. The behaviour
for the Automaton is encoded in an infinite loop in the thread run method.
This loop contains several if statements on the state variable and each if

statement contains the behaviour of the Timed Automaton in a state with at
least one outgoing edge. As an example, Figure 3 shows the real-time thread
corresponding to the Clutch Timed Automaton. Inside the run method of the
Clutch thread in Figure 3, the string variable state represents the state, which
is initialised to Closed. The infinite while loop contains four if statements
corresponding to the four states with at least one outgoing edge: Closed, Open,
Closing and Opening.

Global Variables and Broadcast Channels: To model global variables, one
additional class, Environment, is introduced to implement the environment.
The Environment contains global variables as static variables and all threads
that need to access global variables create an instance of the Environment ob-
ject. Broadcast Channels are considered as global variables, since they are non-
blocking. For example, inside the run method of the Clutch thread in Figure 3,
an instance of Environment is created to access the shared variable, ErrStat.

Binary synchronisation: In order to model a synchronous channel C, two
boolean variables are introduced, IsReadyC and ChannelAcknowledgeC. The
variable IsReadyC is set to true by the sender to inform the receiver that a new
message is put in the channel C and receiver sets this boolean to false whenever it
reads a new value from the channel variable. The ChannelAcknowledgeC ensures
that the sender will not progress until the receiver receives the message. When-
ever the sender sets its channel variable, it also sets the ChannelAcknowledgeC

to false and will not continue until this variable is true again. Receiver sets
this ChannelAcknowledgeC to true when it has read the message. The initial
value of ChannelAcknowledgeC and IsReadyC are true and false respectively.
In Figure 3, the clutch is the receiver for the OpenClutch channel. A tran-
sition from Closed to Opening is taken when a new message is put in the
OpenClutch channel (line 11). When the clutch receives the OpenClutch mes-
sage, it sets IsReadyOpenClutch to false to be ready for the next message and
also sets ChannelAcknowledgeOpenClutch to true to inform the sender that it
received the message (lines 12 and 13). On the other hand, the clutch is the
sender for the ClutchIsOpen channel. It sets the IsReadyClutchIsOpen and

78 Niusha Hakimipour, Paul Strooper, Roger Duke

ChannelAcknowledgeClutchIsOpen variables (lines 26 and 27) and it waits un-
til the receiver receives this message (line 28).

Urgent Locations: Time is not allowed to pass when the system is in an urgent
or committed location. For a Timed Automaton, this is semantically equivalent
to a location with incoming edges resetting the Timed Automaton clock and
labelled with the invariant Clock<=0. However, interleavings with normal states
are allowed. To model urgent locations we will add an assignment that saves the
value of the clock after all lines of code that lead to an urgent location and then
set back the clock to this value when the program leaves the code corresponding
to such a location. However, the discrepancy between model and code must be
noted and analysed. This feature does not occur in the gear-controller example.

Urgent Synchronisation: In an Urgent Synchronisation, if a synchronisation
transition on an urgent channel is enabled, delays must not occur. In RTSJ,
a priority scheduler is defined and the priority of an object that extends the
Schedulable class can be set. However, even running the object with the highest
priority will take some amount of time after it is enabled. The problem is even
more challenging when the model contains more than one Urgent Synchronisa-
tion. We have not dealt with this feature as it did not occur in the gear-controller
example.

Committed Locations: Committed Locations are urgent Locations that can
not be delayed when they are enabled. Therefore, the discrepancy between model
and code must be noted and analysed. This feature occurred in one Automaton,
Controller, of our example [13]. The RTSJ code for this Automaton is available
online [20].

Clocks: Each instance of a clock in a Timed Automaton is mapped to a clock
in RTSJ. To check an upper- or lower-bound on a clock, a relative time is declared
in Java for each bound. In addition, every thread contains an absolute time and
a clock. To check the time elapsed from a particular moment, the absolute time
is set to the current value of the clock. Then, the difference between the current
value of the clock and the absolute time will be checked with the corresponding
relative time. For example, a clock, two relative times and an absolute time
are introduced for timing issues in Figure 3 (lines 4-7). In the Clutch Timed
Automaton, when the transition from Closing to Opening is taken, the clock
will be reset. The corresponding code for this action is shown in line 14, in
which the absolute time CurrentTime is set to the current value of the clock
ClutchClock. Therefore, the time elapsed from this moment will be measured.
Inside the else statement, the program checks if the time is more than 100µs
(line 25).

Guards: A transition from one state to another state can be taken if and
only if the guard on the transition is enabled. A Guard is translated to an if

statement. The code inside the if block corresponds to the transition updates
(assignments). In Timed Automata constraints on the value of the clocks or

Exploring Model-Based Development for the Verification of Real-Time Java Code 79

clock differences are only compared to integer expressions; guards over clocks
are essentially conjunctions [19]. Line 20 in Figure 3 indicates that if the time
elapsed since the last time at which the variable CurrentTime is set is equal to
or more than the relative time MaxTimeClutch, 150, the ErrStat will be set to
2 and the state will be set to ErrorOpen. However, in the Timed Automaton,
the guard on the transition from the Opening to the ErrorOpen is Timer==150
and not Timer >= 150. Since there is no guarantee that the thread will execute
this code at exactly one time, we need to be more flexible in the code than in the
model. However, in this case, rather than noting and analysing the difference
between model and code, we can actually modify (re-engineer) the model to
match the code and then repeat the analysis of the properties we want to check
on the modified model.

Dealing with non-determinism: A Timed Automaton can contain more than
one transition with an enabled guard. If a state contains more than one outgoing
edge with an enabled guard, one of them will be taken non-deterministically. Fol-
lowing the standard notion of refinement, an implementation can be more deter-
ministic than the model. However, if we want to implement the non-determinism
we can use a random variable in RTSJ. This feature occurred in one Automaton,
Interface, of our example [13]. The RTSJ code for this Automaton is available
online [20].

Invariants: The Automaton needs to leave a state before its state invariant
is violated. In other words, Timed Automaton must take one of the enabled
transitions if the current state invariant is violated. In RTSJ we cannot guar-
antee that the thread has a CPU before a certain time limit. However, we can
accumulate the upper-bound of the run time of RTSJ code. To accumulate this
run time upper-bound we can assign a fixed RTSJ run-time (based on the ver-
sion of RTSJ and the hardware we use) to each line of code. We can then add
these times to accumulate the run time of code corresponding to a state with an
invariant. In Figure 1, the Opening has a state invariant, Timer<=150. There-
fore, the clutch cannot stay in the Opening more than 150 ms and it needs to
go to either ErrOpen or Open before this invariant is violated. This invariant is
an assumption that should independently verified for a particular hardware and
version of the RTSJ to check opening the clutch should take no more than 150
ms. In other words, executing the code in lines 14-16, 19-20 and 25 or lines 14-16
and 19-21 in Figure 3 should take less than 150µs.

4 Verification result

To illustrate the applicability of the proposed method, we applied this approach
to the gear-controller [13]. The model presented by Lindahl et al. contains 5
Timed Automata with a total of 63 states and 83 transitions. We recreated this

80 Niusha Hakimipour, Paul Strooper, Roger Duke

model and verified it with UPPAAL. However, the verification results were not
entirely consistent with the result provided by Lindahl et al. [13]. We had to add
the timing invariants on all states and increase the time bounds in the timing
properties to satisfy them. The RTSJ derived from the Timed Automaton had
5 Java threads, 1320 lines of code and 16 assumptions for 16 time invariants in
the model. The Timed Automata for the gear controller and the RTSJ code are
both available online [20].

We unintentionally made an error in the UPPAAL model (when the clutch
Automaton transitions from Opening to ErrOpen, we did not set ErrStat to 2).
As a result, one of the system properties was violated. This property required
the gear controller to notice that the clutch reached ErrOpen, before 300µs. UP-
PAAL detected this error and we fixed the model. We wanted to see whether
the same error would be detected in RTSJ. Therefore, we removed line 22 from
Figure 3. However, the error was not detected since the offending code was not
executed in the simulator as the timer never exceeds 150µs. Then, we changed
the invariant on Opening from 150µs to 50µs (line 20) and the error was de-
tected. This shows why the model-checking approach is useful, as it detected an
error in the model that is more difficult to detect in the code.

To demonstrate the discrepancy between the models, in which we make as-
sumptions about invariants, and the code, where lines of code take a certain
amount of time to execute, we changed the timing in both the model and imple-
mentation. In the original model, the invariant on the Opening state is 150µs
and the transaction to Open can only be made after 100µs. These properties are
used to prove that if the clutch transits to ErrOpen, then the gear controller
notices this before 300µs. We changed the invariant 150µs to 2µs and the guard
on transition to Open to 1µs. In the model this is still sufficient to prove the
gear controller notices the error before 4µs. However, if we make these changes
in the code, then the error is only detected after 50µs.

5 Conclusion

In this paper, a nontrivial real-time example, a gear controller, was used to
investigate a model-based approach to derive an RTSJ program from an UP-
PAAL model. We started from an existing UPPAAL Timed Automata for the
gear controller, model checked it and followed our systematic approach to derive
an RTSJ program from it. However, this approach has some limitations. As an
example, when the model contains specific time values, rather than upper- or
lower-bounds, it cannot be straightforwardly mapped to RTSJ code. Some other
features, such as urgent synchronisation, were also left for future work.

Exploring Model-Based Development for the Verification of Real-Time Java Code 81

References

1. Andy Wellings. Concurrent and Real-Time Programming in Java. John Wiley and Sons Ltd,
2004.

2. Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 1999.
3. Sergio Yovine. Kronos: a verification tool for real-time systems. Journal on Software Tools for

Technology Transfer, 1(1–2):123–133, 1997.
4. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Int. Journal on Software

Tools for Technology Transfer, 1(1–2):134–152, 1997.
5. Stavros Tripakis and Costas Courcoubetis. Extending Promela and Spin for real time. In Tools

and Algorithms for Construction and Analysis of Systems, pages 329–348. Kluwer Academic
Publishers, 1996.

6. Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani, and
Serdar Tasiran. MOCHA: Modularity in model checking. In Computer Aided Verification, pages
521–525. Kluwer Academic Publishers, 1998.

7. Java SE real-time system - evaluation downloads. http://java.sun.com/javase/technologies/
realtime/rts/. Date accessed: 20 August 2007.

8. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - a second generation of a Java
model checker. In Proceedings of the Workshop on Advances in Verification, pages 164–169. World
Scientific Publishing Company, 2000.

9. Gary Lindstrom, Peter Mehlitz, and Willem Visser. Model checking real time Java using Java
PathFinder. In 3rd Int’l Symposium on Automated Technology for Verification and Analysis,
pages 444–456. Springer-Verlag, 2005.

10. Jeff Magee and Jeff Kramer. Concurrency State Models and Java Programs. John Wiley and
Sons Ltd, 2005.

11. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lecture
Notes on Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.), LNCS 3098, pages
89–90. Springer-Verlag, 2004.

12. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994.

13. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear controller:
an industrial case study using UPPAAL. Technical Report ASTEC 97/09, Advanced Software
Technology, Uppsala University, 1997.

14. C. Ramchandani. Analysis of asynchronous concurrent systems by Timed Petri Nets. Technical
Report TR120, MIT (Massachusetts Institute of Technology), 1974.

15. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems using
Time Petri Nets. IEEE Trans. Softw. Eng., 17(3):259–273, 1991.

16. Anton Wijs. Achieving discrete relative timing with untimed process algebra. In ICECCS ’07:
Proceedings of the 12th IEEE International Conference on Engineering Complex Computer Sys-
tems (ICECCS 2007), pages 35–46. IEEE Computer Society, 2007.

17. Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In IEEE Symposium on Foun-
dations of Computer Science, pages 164–169. IEEE Computer Society, 1989.

18. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling using priced timed
automata. SIGMETRICS Perform. Eval. Rev., 32(4):34–40, 2005.

19. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.
www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf, 2004. Date accessed: 15 May
2007.

20. Niusha Hakimipour’s home page. http://itee.uq.edu.au/∼niusha/GearControler.rar. Date ac-
cessed: 1 May 2008.

Precise Dynamic Verification of Confidentiality

Gurvan Le Guernic

INRIA-MSR - Parc Orsay Universit, 91893 Orsay - France
http://www.msr-inria.inria.fr/~gleguern/

gleguern@gmail.com

Abstract. Confidentiality is maybe the most popular security property to be formally
or informally verified. Noninterference is a baseline security policy to formalize confiden-
tiality of secret information manipulated by a program. Many static analyses have been
developed for the verification of noninterference. In contrast to those static analyses,
this paper considers the run-time verification of the respect of confidentiality by a single
execution of a program. It proposes a dynamic noninterference analysis for sequential
programs based on a combination of dynamic and static analyses. The static analysis
is used to analyze some unexecuted pieces of code in order to take into account all
types of flows. The static analysis is sensitive to the current program state. This sensi-
tivity allows the overall dynamic analysis to be more precise than previous work. The
soundness of the overall dynamic noninterference analysis with regard to confidentiality
breaches detection and correction is proved.

1 Introduction

Language-based security is an active field of research. The majority of work on
confidentiality in this field focuses on static analyses [15]. Recent years have seen
a resurgence of dynamic analyses aiming at enforcing confidentiality at run time
[5, 8, 16, 21]. The first reason is that nowadays it is nearly impossible for con-
sumers to prevent the execution of “bad” code on their devices — for example,
in September 2007 cybercriminals introduced malicious scripts which were exe-
cuted by any browser visiting webpages of a US Consulate [9]. Moreover, there
are two main potential advantages of dynamic analyses over static analyses [8].
The first one is the increased knowledge of the execution environment and be-
havior at run time, including the knowledge of the precise control flow followed
by the current execution. This increased knowledge allows the dynamic analysis
to be more precise than a static analysis in some cases; as, for example, with the
program on page 93. The second advantage lies in the ability of sound informa-
tion flow monitors to run some “safe” executions of an “unsafe” program while
still guarantying the confidentiality of secret data. In order to take into account
all indirect flows (flows originating in control statements) dynamic analyses rely
on static analyses of some, but not all, unexecuted pieces of code.

This paper proposes to increase the precision of such dynamic information
flow analyses. This is done by taking advantage, at the static analysis level, of
the dynamic nature of the overall analysis. To do so, when statically analyzing
an unexecuted piece of code, the current program state is taken into account in
order to reduce the program space to analyze. The following piece of code is a

http://www.msr-inria.inria.fr/~gleguern/

Precise Dynamic Verification of Confidentiality 83

motivating example for this work. It corresponds to the body of the main loop
of an Instant Messaging (IM) program. This one has the appealing “movie-like”
feature of displaying messages characters by characters as they are typed.

1 c := getCharFromKeyboard ();
2 tmp := tmp + ((i n t) c);
3 i f (tmp > ((i n t) u s e r S e c r e tK e y)) {

4 tmp := 0;

5 i f (to = " s e x y P i r a t e ") { c := s p e c i a l C h a r }
6 };

7 send (to , c)

This IM program is a malware developed by “sexyPirate”. When someone
uses this software to communicate with a user other than sexyPirate, everything
goes as expected and no secret is revealed. However, if a user communicates with
sexyPirate using this IM then information about the user’s secret key is leaked to
the pirate. When the integer value of the characters typed by the user since the
last time tmp has been reset to 0 reaches the integer value of the user’s secret key,
a special character (that sexyPirate is able to distinguish) appears on the pirate’s
screen. Therefore, by iterating the process, sexyPirate is able to get an accurate
approximation of the user’s secret key. Any sound static analysis would reject
this program; and therefore, all its executions. One of the advantages of dynamic
information flow analysis, if it is precise enough, is to allow use of this program
for communicating with users other than sexyPirate, while still guarantying the
confidentiality of the secret key in any case. However, none of the previous work
are precise enough. When statically analyzing lines 4 and 5, no knowledge about
the value of the variable to is taken into account. Therefore, the overall dynamic
analysis will always consider that the value of c may be modified; which implies
a flow from userSecretKey to c. With such dynamic analyses, line 7 must then
be corrected in order to prevent any potential leakage of the value of the secret
key to the outside world. In the work proposed in this paper, the static analysis
used for lines 4 and 5 takes into account the run time value of the variable to.
This allows the overall dynamic analysis proposed to detect that there is no flow
from userSecretKey to c whenever to is different from sexyPirate. Therefore, it
allows one to use this IM program for communicating with any user different
from sexyPirate; while still preserving the confidentiality of the user’s secret key
even when trying to use this program to communicate with sexyPirate if the
correction mechanism is applied carefully [4, 7].

The next section defines various notions used in this paper and introduces the
principles of the dynamic analysis proposed in this paper. Section 3 formalizes
the dynamic information flow analysis whose main properties are exposed in
Sect. 4. Before presenting related works in Sect. 6, the main benefits of dynamic
information flow analyses are exposed in Sect. 5. Finally, Sect. 7 concludes.

84 Gurvan Le Guernic

2 Definitions and Principles

A direct flow is a flow from the right side of an assignment to the left side.
Executing “x := y” creates a direct flow from y to x. An explicit indirect flow
is a flow from the test of a conditional to the left side of an assignment in the
branch executed. Executing “if c then x := y else skip end” when c is true

creates an explicit indirect flow from y to x. An implicit indirect flow is a flow
from the test of a conditional to the left side of an assignment in the branch
which is not executed. Executing “if c then x := y else skip end” when c is
false creates an implicit indirect flow from y to x.

At any execution step, a variable or expression is said to carry variety [2,
Sect.1] if its value is not completely constrained by the public inputs of the
program. In other words, a variable or expression carries variety if its value is
influenced by the private inputs; therefore, if it may have a different value at
this given execution step if the values of the private inputs were different.

A “safe” execution is a noninterfering execution. In this article, as commonly
done, noninterference is defined as the absence of strong dependencies between
the secret inputs of an execution and the final values of some variables which
are considered to be publicly observable at the end of the execution. For every
execution of a given program P, two sets of variable identifiers are defined. The
set of variables corresponding to the secret inputs of the program is designated
by S(P). The set of variables whose final value are publicly observable at the end
of the execution is designated by O(P). No requirements are put on S(P) and
O(P) other than requiring them to be subsets of X (the domain of variables). A
variable x is even allowed to belong to both sets. In such a case, in order to be
noninterfering, the program P would be required to, at least, reset the value of x.
In the following definitions, we consider that a program state may contain more
than just a value store. This is the reason why a distinction is done between
program states (X) and value stores (σ).

Definition 1 (V -Equivalent States).
Let V be a set of variables. Two program states X1 and X2, containing the value
stores σ1 and σ2 respectively, are V -equivalent with regards to a set of variables

V , written X1
V
= X2, if and only if the value of any variable belonging to V is

the same in σ1 and σ2:

X1
V
= X2 ⇐⇒ ∀x ∈ V : σ1(x) = σ2(x)

Definition 1 states a formal relation among program states. This relation de-
fines equivalence classes of program states with regard to a given set of variables.
If two program states are V -equivalent, it means that it is impossible to distin-
guish them solely by looking at the value of the variables belonging to the set

Precise Dynamic Verification of Confidentiality 85

V . This relation is used to define the confidentiality property which is verified
by the dynamic analysis presented in this paper.

Definition 2 (Noninterfering Execution).
Let ⇓s denote a big-step semantics. Let S(P) be the complement of S(P) in the
set X. For all programs P, program states X1 and X ′

1, an execution with the
semantics ⇓s of the program P in the initial state X1 and yielding the final state
X ′

1 is noninterfering, written ni(P, s, X1), if and only if, for every program states
X2 and X ′

2 such that the execution with the semantics ⇓s of the program P in
the initial state X2 yields the final state X ′

2:

X1
S(P)
= X2 ⇒ X ′

1

O(P)
= X ′

2

Definition 2 states that an execution is safe — i.e. it has the desired con-
fidentiality property — if any other execution started with the same public
(non-secret) values yields a final program state which is O(P)-equivalent to the
final program state of the execution analyzed. It means that, by looking only
at the final values of the variables observable at the end of the execution, it is
impossible to distinguish this execution from any other execution whose initial
program state differs only in the values of the secret inputs. Therefore, for such
an execution, it is impossible to deduce information about the secret inputs of
the program by looking solely at the values of the publicly observable outputs.

The dynamic analysis is based on a flow and state sensitive static analysis.
During the execution, every variable is associated a tag which reflects the fact
that the variable may or may not carry variety — i.e. may or may not be
influenced by the secret inputs of the program. A tag store in the program state
keeps track of those associations. The dynamic analysis treats directly the direct
and explicit indirect flows. For implicit indirect flows, a static analysis is run on
the unexecuted branch of every conditional whose test carries variety.

The static analysis is context sensitive. An unexecuted branch P is analyzed
in the context of the program state at the time the test of the conditional, to
which P belongs, has been evaluated. The static analysis is then aware of the
exact value of the variables which do not carry variety. During the analysis, the
context (value store and tag store used for the analysis) is modified to reflect loss
of knowledge (in fact, only the tag store is modified). The static analysis does
not compute the values of variables. Therefore, when analyzing an assignment to
a variable x, the context of the static analysis is modified to reflect the fact that
the static analysis does not anymore have knowledge of the precise value of the
variable x. When analyzing a conditional whose test value can be computed in
the current context (using only the values of the variables whose tag is ⊥), only
the branch designated by the test is analyzed. As the value of any variable which
does not carry variety depends only on the public inputs, branches which are not

86 Gurvan Le Guernic

designated by the test value would never be executed by any execution started
with the same public inputs as the monitored execution. Implicit indirect flows
and explicit indirect flows must be treated with the same precision in order
to prevent the creation of a new covert channel [7]. This particular point is
discussed in Sect. 4. As the static analysis detects implicit indirect flows more
accurately than context insensitive analyses, explicit indirect flows can also be
treated more accurately.

The next section formalizes the mechanisms presented above. It presents a
monitoring semantics incorporating a dynamic noninterference analysis.

3 The Monitoring Semantics

The dynamic information flow analysis and the monitoring semantics are de-
fined together in Fig. 1. An example of the behavior of this analysis on a given
execution is presented in the companion technical report [6]. Information flows
are tracked using tags. At any execution step, every variable has a tag which
reflects whether this variable may carry variety or not. The static analysis used
for the analysis of some unexecuted branches is characterized in Fig. 2.

The language studied is an imperative language for sequential programs
whose grammar follows. In this grammar, 〈ident〉 stands for a variable iden-
tifier. 〈expr〉 is an expression of values and variable identifiers. Expressions in
this language are deterministic — their evaluation in a given program state al-
ways results in the same value — and are free of side effects — their evaluation
has no influence on the program state.

〈prog〉 ::= skip

| 〈ident〉 := 〈expr〉
| 〈prog〉 ; 〈prog〉
| if 〈expr〉 then 〈prog〉 else 〈prog〉 end

| while 〈expr〉 do 〈prog〉 done

A program expressed with this language is either a skip statement (skip)
which has no effect, an assignment of the value of an expression to a variable,
a sequence of programs (〈prog〉 ; 〈prog〉), a conditional executing one program
— out of two — depending on the value of a given expression (if statements),
or a loop executing repetitively a given program as long as a given expression is
true (while statements).

3.1 A Semantics Making Use of Static Analysis Results

Let X be the domain of variable identifiers, D be the semantics domain of values,
and T be the domain of tags. In the remainder of this article, T is equal to

Precise Dynamic Verification of Confidentiality 87

{>,⊥}. Those tags form a lattice such that ⊥ @ >. > is the tag associated to
variables that may carry variety — i.e. whose value may be influenced by the
secret inputs.

The monitoring semantics described in Fig. 1 is presented as standard infer-
ence rules for sequents written in the format:

ζ, tpc ` P ⇓M ζ ′

This reads as follows: in the monitoring execution state ζ, with a program
counter tag equal to tpc, program P yields the monitoring execution state ζ ′.
The program counter tag (tpc) is a tag which reflects the security level of the
information carried by the control flow. A monitoring execution state ζ is a pair
(σ, ρ) composed of a value store σ and a tag store ρ. A value store (X → D)
maps variable identifiers to values. A tag store (X → T) maps variable identifiers
to tags. The definitions of value store and tag store are extended to expressions.
σ(e) is the value of the expression e in a program state whose value store is σ.
Similarly, ρ(e) is the tag of the expression e in a program state whose tag store
is ρ. ρ(e) is formally defined as follows, with FV(e) being the set of free variables
appearing in the expression e:

ρ(e) =
⊔

x∈FV(e)

ρ(x)

The semantics rules make use of static analyses results. In Fig. 1, application
of a static information flow analysis to the piece of code P in the context ζ is
written: [[ζ ` P]]]G . The analysis of a program P in a monitoring execution state ζ
must return a subset of X. This set, usually written X, is an over-approximation
of the set of variables which are potentially defined in an execution of P in the
context ζ. This static information flow analysis can be any such analysis that
satisfies a set of formal constraints which are stated in Sect. 3.2.

The monitoring semantics rules are straightforward. As can be expected, the
execution of a skip statement with the semantics given in Fig. 1 yields a final
state equal to the initial state. The monitored execution of the assignment of
the value of the expression e to the variable x yields a monitored execution
state (σ′, ρ′). The final value store (σ′) is equal to the initial value store (σ)
except for the variable x. The final value store maps the variable x to the value
of the expression e evaluated with the initial value store (σ(e)). Similarly, the
final tag store (ρ′) is equal to the initial tag store (ρ) except for the variable x.
The tag of x after the execution of the assignment is the least upper bound of
the program counter tag (tpc) and the tag of the expression computed using the
initial tag store (ρ(e)). ρ(e) corresponds to the level of the information flowing
into x through direct flows. tpc corresponds to the level of the information flowing
into x through explicit indirect flows.

88 Gurvan Le Guernic

ζ, tpc ` skip ⇓M ζ

(σ, ρ), tpc ` x := e ⇓M (σ[x 7→ σ(e)], ρ[x 7→ ρ(e) t tpc])

ζ, tpc ` P h ⇓M ζh ζh, tpc ` P t ⇓M ζ′

ζ, tpc ` P h ; P t ⇓M ζ′

ρ(e) = ⊥ σ(e) = v (σ, ρ), tpc t ⊥ ` P v ⇓M ζ′

(σ, ρ), tpc ` if e then P true else P false end ⇓M ζ′

ρ(e) = > σ(e) = v (σ, ρ), tpc t > ` P v ⇓M (σv, ρv)

[[(σ, ρ) ` P¬v]]]G = X ρe = (X× {>}) ∪ (X× {⊥})
(σ, ρ), tpc ` if e then P true else P false end ⇓M (σv, ρv t ρe)

ρ(e) = ⊥ σ(e) = false

(σ, ρ), tpc ` while e do P l done ⇓M (σ, ρ)

ρ(e) = ⊥ σ(e) = true

(σ, ρ), tpc t ⊥ ` P l ; while e do P l done ⇓M ζ′

(σ, ρ), tpc ` while e do P l done ⇓M ζ′

ρ(e) = > σ(e) = true

(σ, ρ), tpc t > ` P l ; while e do P l done ⇓M (σ′, ρe)

(σ, ρ), tpc ` while e do P l done ⇓M (σ′, ρ t ρe)

ρ(e) = > σ(e) = false

[[(σ, ρ) ` P l ; while e do P l done]]]G = X

ρe = (X× {>}) ∪ (X× {⊥})
(σ, ρ), tpc ` while e do P l done ⇓M (σ, ρ t ρe)

Fig. 1. Rules of the monitoring semantics

The monitored execution of a conditional whose test expression does not
carry variety (ρ(e) = ⊥) follows the same scheme as with a standard semantics.
For a conditional whose test expression e carries variety, the branch (P v) desig-
nated by the value of e (v) is executed and the other one (P¬v) is analyzed. The
final value store is the one returned by the execution of P v. The final tag store
(ρ′) is the least upper bound of the tag store returned by the execution of P v

and a new tag store (ρe) generated from the result of the analysis of P¬v (X).
By definition, ρ t ρ′ is equal to λx.ρ(x) t ρ′(x). The new tag store (ρe) reflects
the implicit indirect flows between the value of the test of the conditional and
the variables (X) which may be defined in an execution of P¬v. In ρe, the tag of

Precise Dynamic Verification of Confidentiality 89

a variable x is equal to the initial tag of the test expression of the conditional
(ρ(e)) if and only if x belongs to X; otherwise, its tag is ⊥.

3.2 The Static Analysis Used

Fig. 2 defines some constraints characterizing a set of static analyses which
can be used by the dynamic noninterference analysis. The result X of a static
analysis of a given program (P) in a given context (ζ) is acceptable for the
dynamic analysis only if the result satisfies those rules. This is written in the
format: X |= (ζ ` P). In the definitions of those rules, {[Strue, Sfalse]}t

v returns
either the set Strue, the set Sfalse or the union of both depending on the tag t
and the boolean v. Its formal definition follows.

{[Strue, Sfalse]}t
v =

{
Strue ∪ Sfalse iff t = >
Sv iff t = ⊥

∅ |= ((σ, ρ) ` skip)

{x} |= ((σ, ρ) ` x := e)

X |=
“

(σ, ρ) ` P
h ; P

t
”

iff there exist Xh and Xt such that:

Xh |= ((σ, ρ) ` Ph)

let ρ′ = ρ t ((Xh ×>) ∪ (Xh ×⊥)) in Xt |= ((σ, ρ′) ` Pt)

X = Xh ∪ Xt

X |=
`

(σ, ρ) ` if e then P
true else P

false end
´

iff there exist Xtrue and Xfalse such that:
Xtrue |= ((σ, ρ) ` Ptrue)
Xfalse |= ((σ, ρ) ` Pfalse)

X = {[Xtrue, Xfalse]}ρ(e)

σ(e)

X |=
“

(σ, ρ) ` while e do P
l done

”
iff there exists Xl such that:

let ρ′ = ρ t ((Xl ×>) ∪ (Xl ×⊥)) in Xl |= ((σ, ρ′) ` Pl)

X = {[Xl, ∅]}ρ(e)

σ(e)

Fig. 2. Constraints on the static analysis results

90 Gurvan Le Guernic

4 Properties of the Monitoring Semantics

Section 3 formally defines the dynamic information flow analysis proposed in this
article. In the current section, this dynamic noninterference analysis is proved to
be sound with regard to the enforcement of the notion of noninterfering execution
given in Definition 2. This means that, any monitor enforcing noninterference
using this dynamic analysis would be able to ensure that: for any two monitored
executions of a given program P started with the same public inputs (variables
which do not belong to S(P)), the final values of observable outputs (variables
which belong to O(P)) are the same for both executions.

Theorem 1 proves that the dynamic analysis is sound with regard to infor-
mation flow detection. Any variable, whose tag at the end of the execution is ⊥,
has the same final value for any executions started with the same public inputs.

Theorem 1 (Detection Soundness).
For all programs P and states (σ1, ρ1), (σ′1, ρ′1), (σ2, ρ2) and (σ′2, ρ′2):

(σ1, ρ1), ⊥ ` P ⇓M (σ′1, ρ′1)
(σ2, ρ2), ⊥ ` P ⇓M (σ′2, ρ′2)
∀x /∈ S(P). σ1(x) = σ2(x)
∀x ∈ S(P). ρ1(x) = >

 ⇒
(
∀x. (ρ′1(x) = ⊥) ⇒ (σ′1(x) = σ′2(x))

)

Proof (Proof summary). The detailed formal proof can be found in the companion
technical report [6]. The proof aims at showing that the invariant which relates
the fact, for every variable, of having a ⊥ tag and not carrying variety — i.e. not
being influenced by the secret inputs — is preserved during the execution. The
invariant preservation is obvious for skip statements. If the tag of a variable
x after an assignment of e to x is ⊥, then it means, first, that the control flow
does not carry variety (tpc = ⊥) and therefore that, with similar public inputs,
the assignment will always be executed. It also means that the expression does
not carry variety and the invariant property is preserved by the execution of
assignments. For sequence statements, if the invariant is preserved by the first
and second statements then it is preserved by the sequential execution of both
statements. If the tag of the condition of a branching statement is ⊥, then any
execution started with the same public inputs evaluates the same branch as the
execution monitored. As, by induction, the execution of the branch preserves the
invariant, the invariant is also preserved. If the condition’s tag is >, as the tag of
the control flow (tpc) is updated to >, all the variables assigned to in the branch
have a tag of >. Additionally, any variable which may have been assigned to in
the other branch are in the set returned by the static analysis, therefore their
tag also becomes>. Hence, the invariant relating ⊥ and not carrying variety is
preserved by the execution of a branching statement. If the tag of the condition
of a loop is ⊥ then, if its value is false the loop is equivalent to a skip and the

Precise Dynamic Verification of Confidentiality 91

invariant is preserved. If the tag of a true condition is ⊥, the proof follows by
induction. If the condition’s tag is > then, for the same reasons as the case for
branching statements, the tag of all the variables whose value may be modified
by the loop becomes >. Therefore, the invariant property is preserved by loops.

More informally, theorem 1 compares any 2 executions which are such that:
any public inputs (x /∈ S(P)) have the same initial value, and any secret input
have an initial tag of > in order to let the dynamic analysis know that their
content is secret. Theorem 1 states that if the final tag of a variable is ⊥ —
therefore, that the analysis considers its value to be safely accessible — then
the final values of this variable for both executions — any 2 executions which
have the same public inputs — are the same. Therefore, an attacker, who looks
at the final value of a variable whose final tag is ⊥, sees the same value for all
the executions which have different secret inputs but the same public inputs.
Hence, an attacker does not learn anything about the secret inputs by observing
the final values of variables whose final tag is ⊥. Therefore, to sanitize the final
state of an execution, it is sufficient to “securely” (as will be explained in the
following discussion) reset the value of observable variables (O(P)) whose final
tag is >.

As shown by Le Guernic and Jensen [7], if the correction of “bad” information
flows is done without enough care, the correction mechanism itself can become
a new covert channel carrying secret information. Indeed, theorem 1 states that
the final value of a variable, whose final tag is ⊥, is not influenced by the value
of the secret inputs. However, if the final tag of a variable is influenced by the
values of the secret inputs, then it means that for some secret input values the
final tag of this variable will be ⊥ and for other secret input values it will be
>. Hence, it means that, for some secret input values, the correction mechanism
will reset the final value of the variable; and for other secret input values, the
final value of the variable will not be reset. Therefore, by checking if the final
value of this variable has been reset or not, an attacker can learn information
about the secret input values. Theorem 2 proves that, for the analysis presented
in this paper, the final tag of a variable does not depend on the secret inputs of
the program. Therefore, any variable belonging to O(P) whose final tag is not
⊥ can safely be reset to a default value without creating a new covert channel.

Theorem 2 (Correction Soundness).
For all programs P and states (σ1, ρ1), (σ′1, ρ′1), (σ2, ρ2) and (σ′2, ρ′2):

(σ1, ρ1), ⊥ ` P ⇓M (σ′1, ρ′1)
(σ2, ρ2), ⊥ ` P ⇓M (σ′2, ρ′2)
∀x /∈ S(P). σ1(x) = σ2(x)
∀x ∈ S(P). ρ1(x) = >
ρ1 = ρ2

 ⇒
(
ρ′1 = ρ′2

)

92 Gurvan Le Guernic

Proof (Proof summary). The detailed formal proof can be found in the companion
technical report [6]. In order to be able to use induction, a generalization of the
theorem stated above is proved with two differences in its statement: program
counters (tpc) must only be the same for the two executions and variables whose
tag is ⊥ must have the same value in both executions instead of the hypotheses
based on S(P). The case for skip is direct. For assignments, the only tag modified
is the one of the variable assigned. As the two tag stores are initially equal, ρ1(e)
is equal to ρ2(e). Therefore, both tag stores are equal after the execution of the
assignment. The case for sequences goes by induction. For if statements, if the
same branch is executed then by induction the theorem holds. If two different
branches are executed then the tag of the program counter is >. Therefore, the
tag of every assigned variable becomes >. Additionally, the unexecuted branch is
analyzed and the tag of every variable which may have been assigned to is set to
>. Fig. 2 constrains the analysis to make the same choices as the execution with
regard to which subbranches to ignore and which ones to analyze. Therefore, the
set of variables returned by the analysis of the unexecuted branch is exactly the set
of variables whose tag would have been set to > by an execution of this branch.
Therefore, whatever branch is executed or analyzed, the same set of variables
have their tag set to >. Hence, the final tag stores are equal after the execution
of the if statement. For while statements, if the condition evaluates to the same
value then the inductive hypothesis implies that the theorem holds. Otherwise,
it means that its tag is >. Therefore the final tag store is the least upper bound
of the initial tag store and a new tag store ρe. This new tag store is either the
tag store returned by the execution of the while statement (executing the body
at least once) with program counter tag (tpc) equal to > or the analysis of the
same statement. As for if statements, in both cases the tags of the exact same
set of variables are set to >. Hence, the theorem holds.

5 Benefits of Monitoring Compared to Static Analyses

Monitoring an execution has a cost. So, what are the main benefits of nonin-
terference monitoring compared to static analyses? The first concerns the pos-
sibility that a monitoring mechanism can be used to change the security policy
for each execution. In the majority of cases, running a static analysis before ev-
ery execution would be more costly than using a monitor. The second reason is
that noninterference is a rather strong property. Many programs are rejected by
static analyses of noninterference. In such cases it is still possible to use a mon-
itoring mechanism with the possibility that some executions will be altered by
the monitoring mechanism. However behavior alteration is an intrinsic feature of
any monitoring mechanism. Monitoring noninterference ensures confidentiality
while still allowing testing with regard to other specifications using unmonitored
executions as perfect oracle — at least as perfect as the original program.

Precise Dynamic Verification of Confidentiality 93

There are two main reasons why it is interesting to use a noninterference
monitor on a program rejected by a static analysis. The first one is that a
monitoring mechanism may be more precise than static analyses because during
execution the monitoring mechanism gets some accurate information about the
“path behavior” of the program. As an example, let us consider the following
program where h is the only secret input and l the only other input (a public
one).

1 i f (t e s t 1 (l)) then tmp := h e l se skip end;
2 i f (t e s t 2 (l)) then x := tmp e l se skip end;
3 output x

Without information on test1 and test2 (and often, even with), a static analysis
would conclude that this program is unsafe because the secret input information
could be carried to x through tmp and then to the output. However, if test1 and
test2 are such that no value of l makes both predicates true, then any execution
of the program is perfectly safe. In that case, the monitoring mechanism would
allow any execution of this program. The reason is that, l being a public input,
only executions following the same path as the current execution are taken care
of by the monitoring mechanism. So, for such configurations where the branching
conditions are not influenced by the secret inputs, a monitoring mechanism is
at least as precise as any static analysis — and often more precise.

The second reason lies in the granularity of the noninterference property.
Static analyses have to take into consideration all possible executions of the
program analyzed. This implies that if a single execution is unsafe then the pro-
gram (thus all its executions) is rejected. Whereas, even if some executions of a
program are unsafe, a monitor still allows this program to be used. The unsafe
executions, which are not useful, are altered to enforce confidentiality while the
safe executions are still usable. For example, the program on page 83 being inter-
fering, any static noninterfering analysis rejects this program. Therefore, users
would be advised not to use this program at all. However, using a noninterfer-
ence monitor, it is possible to safely use this program. When communicating
with any user other than sexyPirate, monitored executions of this program have
their normal behavior. When communicating with sexyPirate, monitored execu-
tions are safely detected as potentially interfering and can therefore be corrected
to prevent any secret leakage. Of course, when attempting to communicate with
sexyPirate, executions of this program are altered and it is therefore not possi-
ble to communicate with sexyPirate. However, this is the desired behavior of a
noninterference monitor when confidentiality is more important than the service
provided by the program.

94 Gurvan Le Guernic

6 Related Work

The vast majority of research on noninterference concerns static analyses and
involves type systems [13, 15]. Some “real size” languages together with secu-
rity type system have been developed (for example, JFlow/JIF [11] and Flow-
Caml [14]).

Dynamic information flow analyses [1, 3, 19, 20] are not as popular as static
analyses for information flow, but there has been interesting research. For exam-
ple, RIFLE [17] is a complete run-time information flow security system based
on an architectural framework and a binary translator. Masri et al. [10] present
a dynamic information flow analysis for structured or unstructured languages.
Venkatakrishnan et al. [18] propose a program transformation for a simple de-
terministic procedural language that ensures a sound detection of information
flows. Trishul [12] is an interesting implementation of a Java Virtual Machine
integrating a dynamic information flow control mechanism. Yoshihama et al. [21]
propose a Java Architecture for Web Applications with “direct” and “explicit
indirect” information flow control abilities (as they acknowledge, they do not
handle “implicit indirect” flows). One of the main interest of those works is the
size of the language addressed. However, none of those five later works prove that
the correction mechanisms of “bad” flows proposed do not create a new covert
channel that can reveal secret information — see, e.g., [7] — or even, for some
of them, that the detection mechanism is sound with regard to their notion of
information flow. In fact, those analyses and correction mechanisms are likely to
create a new covert channel. Theorem 2 proves that a correction mechanism of
“bad” flows can be based on the dynamic analysis proposed in this paper as the
results of the dynamic analysis are the same for every executions started with
the same public inputs. More recently, Shroff, Smith, and Thober [16] proposed a
dynamic information flow analysis which tracks direct flows and collects indirect
flows dynamically. The information collected about indirect flows is transferred
from one execution to another using a cache mechanism. After an undetermined
number of executions, the analysis will know about all indirect flows in the pro-
gram and thus will then be sound with regard to the detection of all information
flows. This information about indirect flows can be precomputed using a static
analysis at the cost of a decrease of precision. Using this approach they are able
to handle a language including alias and method calls.

Contrary to common assumption, none of the related works on dynamic in-
formation flow analysis known to the author take enough context information
into account to detect that the program on page 83 is noninterfering when using
it to communicate with users other than sexyPirate. For example, the transfor-
mation of Venkatakrishnan et al. [18] updates the security label of c with the
security label of the condition on line 3 before executing line 7. Therefore, at
line 7, c is always considered as secret even if the user is not communicating

Precise Dynamic Verification of Confidentiality 95

with sexyPirate. When executing the assignment of line 5, the program counter
of Shroff et al.’s work [16] contains a reference to the program point of line 3
and therefore is added to the set of source of implicit flows to c. Consequently,
any complete implicit dependency cache contains a reference to the implicit flow
from line 3 to line 7. As the test of line 3 is always executed, Shroff et al.’s work
always considers line 7 as displaying secret information. The dynamic analy-
sis proposed in this paper is able to detect the noninterfering behavior of the
program on page 83 when communicating with someone other than sexyPirate.

7 Conclusion

This article addresses the problem of information flow verification and correction
at run time in order to enforce the confidentiality of secret data. The confiden-
tiality property to monitor is expressed using the property of noninterference be-
tween secret inputs of the execution and its public outputs. The language taken
into consideration is a sequential language with assignments and conditionals
(including loops). The main difference between the monitoring mechanism pro-
posed in this article and the ones of related works lies in the static analysis used
to detect implicit indirect flows. The static information flow analyses used by
the dynamic analysis proposed in this article are sensitive to the current pro-
gram state. This allows the overall dynamic information flow analysis to increase
the precision of the detection of implicit and explicit indirect flows. In Sect. 4,
the proposed noninterference monitor is proved to be sound both with regard
to the detection of information flows and with regard to their correction when
necessary.

Acknowledgments: The author is grateful to Anindya Banerjee, Gérard Boudol,
Thomas Jensen, Andrëı Sabelfeld and David Schmidt for their helpful feedback
on an earlier version of this work.

Bibliography

[1] J. Brown and T. F. Knight, Jr. A minimal trusted computing base for dynamically ensuring
secure information flow. Technical Report ARIES-TM-015, MIT, 2001.

[2] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS Operating
Systems Review, 11(5):133–139, 1977.

[3] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, 1974.
[4] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses. PhD

thesis, Kansas State University, 2007.
[5] G. Le Guernic. Automaton-based Confidentiality Monitoring of Concurrent Programs. In Proc.

Computer Security Foundations Symp.. IEEE, 2007.
[6] G. Le Guernic. Precise dynamic verification of noninterference. Technical report, INRIA, July

2008. http://hal.inria.fr/inria-00162609/fr/.
[7] G. Le Guernic and T. Jensen. Monitoring Information Flow. In Proc. W. on Foundations of

Computer Security, pages 19–30. DePaul University, 2005.
[8] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based Confidentiality Moni-

toring. In Proc. Annual Asian Computing Science Conf., volume 4435 of LNCS, 2006.
[9] J. Leyden. Trojan planted on US Consulate website. The Register, Sept. 2007.

[10] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging insecure information flows. In
Proc. Int. Symp. on Software Reliability Engineering, pages 198–209. IEEE, 2004.

[11] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. Symp. Principles
of Programming Languages, pages 228–241, 1999.

[12] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual machine based
information flow control system for policy enforcement. In Proc. W. on Run Time Enforcement
for Mobile and Distributed Systems, volume 197, pages 3–16, 2007. Elsevier.

[13] F. Pottier and S. Conchon. Information flow inference for free. In Proc. Int. Conf. on Functional
Programming, pages 46–57. ACM Press, 2000.

[14] F. Pottier and V. Simonet. Information flow inference for ML. ACM Trans. on Programming
Languages and Systems, 25(1):117–158, 2003.

[15] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas
in Communications, 21(1):5–19, 2003.

[16] P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency monitoring to secure information
flow. In Proc. Computer Security Foundations Symp.. IEEE, 2007.

[17] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis,
M. Vachharajani, and D. I. August. RIFLE: An architectural framework for user-centric
information-flow security. In Proc. Int. Symp. on Microarchitecture, 2004.

[18] V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct runtime enforce-
ment of non-interference properties. In Proc. Int. Conf. on Information and Communications
Security, volume 4307 of LNCS, pages 332–351. Springer-Verlag, 2006.

[19] C. Weissman. Security controls in the adept-50 timesharing system. In Proc. AFIPS Fall Joint
Computer Conf., volume 35, pages 119–133, 1969.

[20] J. P. L. Woodward. Exploiting the dual nature of sensitivity labels. In Proc. Symp. Security and
Privacy, pages 23–31, 1987.

[21] S. Yoshihama, T. Yoshizawa, Y. Watanabe, M. Kudoh, and K. Oyanagi. Dynamic information
flow control architecture for web applications. In Proc. European Symp. on Research in Computer
Security, volume 4734 of LNCS, pages 267–282. Springer-Verlag, 2007.

http://hal.inria.fr/inria-00162609/fr/

Author Index

Amjad, Hasan, 3

Bäumler, Simon, 12

Balser, Michael, 12

Barthe, Gilles, 1

Bogan, Sebastian, 56

Bornat, Richard, 3

Bubel, Richard, 28

Cock, David, 44

Daum, Matthias, 56

Dörrenbächer, Jan, 56

Duke, Roger, 71

Hähnle, Reiner, 28

Hakimipour, Niusha, 71

Heiser, Gernot, 2

Le Guernic, Gurvan, 82

Nafz, Florian, 12

Reif, Wolfgang, 12

Schmitt, Peter H., 28

Strooper, Paul, 71

