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Abstract. Many safety- and security-critical systems are real-time systems and, as a
result, tools and techniques for verifying real-time systems are extremely important.
Simulation and testing such systems can be exceedingly time-consuming and these
techniques provide only probabilistic measures of correctness. There are a number of
model-checking tools for real-time systems. However, they provide formal verification
for models, not programs. To increase the confidence in real-time programs written in
real-time Java, this paper takes a modelling approach to the design of such programs.
First, models can be mechanically verified, to check whether they satisfy particular
properties, by using current real-time model-checking tools. Then, programs are de-
rived from the model by following a systematic approach. To illustrate the approach we
use a nontrivial example: a gear controller.

1 Introduction

Real-time [1] is a broad term used to describe applications that have timing
requirements. Many safety- and security-critical systems are real-time systems
and, as a result, tools and techniques for verifying real-time systems are ex-
tremely important. The traditional ways of ensuring that real-time systems
operate correctly have been simulation and testing. However, in many cases
these techniques are exceedingly time-consuming and provide only probabilistic
measures of correctness. Formal methods advocate the use of mathematical rea-
soning as an alternative; one of the most promising of these methods has been
model-checking [2].

There are a number of model-checking tools for real-time systems [3–6].
However, they provide formal verification for models, and no systematic ap-
proach for deriving programs from those models. This means it is still necessary
to show that the programs that implement those models satisfy the properties
as well.

Real-time systems have to generate their output within a finite and predica-
ble time. Therefore, the specification of the language in which real-time systems
are implemented is as important as verifying such systems. Real-Time Specifi-
cation for Java (RTSJ) [1] was proposed in January 2002. Sun has developed a
simulator, Java Real-Time System (Java RTS) 2.0 [7], for simulating real-time
Java code that is compliant with the RTSJ.

To verify real-time Java code which is compliant with the RTSJ, an approach
based on JPF (Java PathFinder) [8] has been proposed by Lindstrom et al. [9].
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JPF is a Java model-checker which has a state-exploring JVM (Java Virtual
Machine) at its core. However, the approach based on JPF to verify real-time
Java code has not been implemented yet, and it only supports properties that
are specified as normal Java assertions, without timing constraints.

A real-time model is a simplified representation of a real-time system. Mod-
els focus on system behaviour and abstract many details of programs [10]. More
importantly, these models can be verified mechanically with real-time model-
checkers. This paper investigates a modelling approach to design real-time pro-
grams written in RTSJ, by means of an industrial example. In this approach,
Timed Automata [11] are used as the modelling language, since Timed Automata
have well-defined mathematical properties and a simple graphical representation.
Moreover, Timed Automata can capture both qualitative and quantitative fea-
tures of real-time systems [12]. The next step is to mechanically verify the model
using the UPPAAL model-checker [4]. UPPAAL has a graphical user interface;
it is well-used and well-supported. After verifying the model, a mapping between
the model features and RTSJ are used to derive the RTSJ code from the model.
This approach can increase the confidence in the correctness of the program.

In this paper, we present an initial application of the proposed approach
to a nontrivial example. The RTSJ code for this example is derived by hand,
following the systematic approach. The current mapping we propose does not
deal with timing constraints on specific time values (rather than lower- or upper-
bounds) which are described in Section 3. We have also left the mapping of a
number of challenging Timed Automata features for future work.

In the next section, theories and languages that have been proposed for
modelling real-time systems and related work on real-time model-checking are
reviewed. In Section 3, we investigate an approach to implement the behaviour
exhibited by real-time models in RTSJ. A realistic industrial case study, a gear
controller [13], is used as an example in this section. Section 4 provides the
verification result of the gear controller and discusses the limitations of our
approach, and Section 5 concludes the paper.

2 Background

Traditional formalisms for temporal reasoning deal with the qualitative aspect
of time, that is, the order of certain system events (an example of a qualitative
time property is: event A occurs before event B). However, real-time systems
often require quantitative aspects of time. This means they need to consider the
actual difference in time between certain system events.

Timed Automata [11] provide a formalism for the modelling and verification
of real-time systems. Examples of other formalisms are Timed Petri Nets [14],
Time Petri Nets [15], Timed Process Algebras [16], and Real-time Logics [17].
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Model-checking of Timed Automata representations has become popular for
the analysis of real-time systems [18]. In the last decade, there have been a num-
ber of tools developed based on Timed Automata to model and verify real-time
systems, notably Kronos [3], UPPAAL [4], RT-Spin [5] and MOCHA [6]. Timed
Automata can capture both qualitative and quantitative features of real-time
systems [12]. For instance, liveness, fairness and nondeterminism are qualitative
features and bounded response and timing delays are quantitative features that
can be captured with Timed Automata. Timed Automata also have well-defined
mathematical properties and a simple graphical representation.

A Timed Automaton is a finite-state automaton extended with a finite set
of real-valued variables modelling clocks. Timed words in a Timed Automaton
are infinite sequences in which a real-valued time of occurrence is associated
with each symbol [11]. Each clock can be reset to zero with the transitions of
the automaton, and keeps track of the time elapsed since the last reset. The
transitions of the automaton put certain constraints on the clock values. A tran-
sition may be taken only if the current values of the clocks satisfy the associated
constraints.

Figure 1 shows the Timed Automata used by the UPPAAL model checker
for a clutch specified by Lindahl et al. [13]. The UPPAAL Timed Automata [19]
extends Timed Automata with a number of additional features such as bounded
integers, arrays and urgent locations, as discussed in Section 3.

 

Fig. 1. Timed Automaton representing Clutch

The Clutch provides services to open or close the clutch in 100 to 150µs. In
the case that opening or closing the clutch takes more than 150µs, the clutch will
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stop in an error state. This example will later be used to illustrate our proposed
approach.

Channels in Timed Automata are used to synchronize and communicate.
For Channel CName, CName? represents receiving a message and CName! repre-
sents sending a message. In Figure 1, a message is sent via OpenClutch! and two
messages are received via ClutchIsOpen? and ClutchIsClosed?. OpenClutch?,
ClutchIsOpen! and ClutchIsClosed! are in another Timed Automaton not
shown in Figure 1. Timer is a clock and Timer==150 is a guard. A guard in
UPPAAL is a side-effect-free statement which evaluates to a boolean. The tran-
sition from the Opening to the ErrorOpen can be taken if and only if Timer==150
is enabled. In the Opening state, Timer<=150 is an invariant. The Automaton
needs to leave Opening before this invariant is violated.

3 From Models To Implementations

A Model is a simplified representation of the system. We use Timed Automata
to describe models. These models represent the behaviour of real-time programs
written in RTSJ and they can be verified mechanically with the UPPAAL model-
checker. Then, we apply our approach on these models to design real-time pro-
grams which still satisfy the properties. Figure 2 shows an overview of this
model-based approach, which is similar to the model-based approach proposed
by Magee and Kramer to design concurrent Java programs from FSP models [10].

 

Fig. 2. Architecture
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3.1 RTSJ

Real Time Specification of Java (RTSJ) [1] was introduced in January 2002.
RTSJ is designed to support both hard and soft real-time applications. RTSJ
adds several features to Java, such as Clocks, Time, Scoped Memory Areas
which provide guarantees on allocation time, Fixed Priority Scheduling Policy,
Asynchronous Events and Real-Time Threads.

Figure 3 shows part of the RTSJ code for the clutch Timed Automaton
discussed in Section 2. The details of mapping the Clutch Timed Automaton to
the real-time Java code are described in Section 3.3.

Clutch is a real-time thread. Two classes, NonHeapRealtimeThread and
RealtimeThread, are defined in RTSJ to support real-time threads. Non-heap
real-time threads are not targeted by the garbage collector [1].

ClutchClock is declared as a clock. Clocks in RTSJ are derived from an
abstract class called Clock. There are three types of clocks in RTSJ:

– A “monotonic” clock progresses at a constant rate, suitable for timeouts.
– A “countdown” clock can be reset to zero, paused or continued.
– A “CPU execution time” clock counts the amount of time that is being

consumed by a particular thread.

MaxTimeClutch and CurrentTime are a relative and absolute time respectively.
In RTSJ, time is defined by three classes:

– a duration measured by a particular clock is ”relative” time;
– “absolute” time is a time relative to some epoch, such as system start-up

time;
– “rational” time is a subclass of relative time to represent the rate of certain

event occurrences.

3.2 Model-based approach

An overview of the mapping for different features and expressions in UPPAAL
Timed Automata is shown in Tables 1 and 2. The details of the mapping are
provided in Section 3.3.

3.3 Mapping Details

Timed Automaton: Every Timed Automaton is mapped to a non-heap real-
time Java thread. As non-heap real-time Java threads are not targeted by the
garbage-collector, programs using such threads have no non-determinism due
to garbage-collection delays or memory allocations. Each thread has a state
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1.public class Clutch extends NonHeapRealTimeThread{

2. public void run(){

3. Environment env = new Environment();

4. Clock ClutchClock = Clock.getRealtimeClock(); // Timer

5. RelativeTime MaxTimeClutch = new RelativeTime(0,150);

6. RelativeTime MinTimeClutch = new RelativeTime(0,100);

7. AbsoluteTime CurrentTime = ClutchClock.getTime();

8. String state = "Closed";

9. while(true){

10. if(state == "Closed"){

11. if(env.IsReadyOpenClutch){

12. env.IsReadyOpenClutch = false;

13. env.ChannelAcknowledgeOpenClutch = true;

14. CurrentTime = ClutchClock.getTime();

15. state = "Opening";

16. continue;

17. }

18. }

19. if(state == "Opening"){

20. if(((ClutchClock.getTime().subtract(CurrentTime)).compareTo(MaxTimeClutch) >= 0)){

21. env.ErrStat = 2;

22. state = "ErrorOpen";

23. continue;

24. }

25. if(((ClutchClock.getTime().subtract(CurrentTime)).compareTo(MinTimeClutch) > 0)){

26. env.ChannelAcknowledgeClutchIsOpen = false;

27. env.IsReadyClutchIsOpen = true;

28. while(!env.ChannelAcknowledgeClutchIsOpen);//busy loop

29. state = "Open";

30. continue;

31. }

32. }

33. if(state == "Open"){...}

34. if(state == "Closing"){...}

35. }/*while*/

36. }/*run*/

37.}/*class*/

Fig. 3. Potential RTSJ code corresponding to Clutch Timed Automata

Table 1. Features Mapping Table

Feature Description Currently supported Mapped to

Timed Automaton a finite-state machine Yes Real-time Thread
extended with clock variables

Broadcast channels that are not Yes A variable in the
channels blocking Environment class
Binary channels are declared Yes Two variables in the
synchronisation as chan c Environment class
Urgent time is not allowed to Yes Resetting the value
location pass in an urgent location of the Clock
Urgent delays must not occur No
synchronisation if its channel is enabled
Committed a state that Partially Using RTSJ Priorities
location cannot delay
Initialisers used to initialise Yes Assignments in the

integers and arrays thread constructor
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Table 2. Expressions Mapping Table

Expression Description Currently supported Mapped to

Assignment an expression with Yes An assignment in RTSJ
a side-effect

Guard a side-effect free expression Partially An if condition
associated with a transition

Invariant a side-effect free expression Partially An if condition except for
associated with a state time invariants

variable that is initialised to the initial state of the Automaton. The behaviour
for the Automaton is encoded in an infinite loop in the thread run method.
This loop contains several if statements on the state variable and each if

statement contains the behaviour of the Timed Automaton in a state with at
least one outgoing edge. As an example, Figure 3 shows the real-time thread
corresponding to the Clutch Timed Automaton. Inside the run method of the
Clutch thread in Figure 3, the string variable state represents the state, which
is initialised to Closed. The infinite while loop contains four if statements
corresponding to the four states with at least one outgoing edge: Closed, Open,
Closing and Opening.

Global Variables and Broadcast Channels: To model global variables, one
additional class, Environment, is introduced to implement the environment.
The Environment contains global variables as static variables and all threads
that need to access global variables create an instance of the Environment ob-
ject. Broadcast Channels are considered as global variables, since they are non-
blocking. For example, inside the run method of the Clutch thread in Figure 3,
an instance of Environment is created to access the shared variable, ErrStat.

Binary synchronisation: In order to model a synchronous channel C, two
boolean variables are introduced, IsReadyC and ChannelAcknowledgeC. The
variable IsReadyC is set to true by the sender to inform the receiver that a new
message is put in the channel C and receiver sets this boolean to false whenever it
reads a new value from the channel variable. The ChannelAcknowledgeC ensures
that the sender will not progress until the receiver receives the message. When-
ever the sender sets its channel variable, it also sets the ChannelAcknowledgeC

to false and will not continue until this variable is true again. Receiver sets
this ChannelAcknowledgeC to true when it has read the message. The initial
value of ChannelAcknowledgeC and IsReadyC are true and false respectively.
In Figure 3, the clutch is the receiver for the OpenClutch channel. A tran-
sition from Closed to Opening is taken when a new message is put in the
OpenClutch channel (line 11). When the clutch receives the OpenClutch mes-
sage, it sets IsReadyOpenClutch to false to be ready for the next message and
also sets ChannelAcknowledgeOpenClutch to true to inform the sender that it
received the message (lines 12 and 13). On the other hand, the clutch is the
sender for the ClutchIsOpen channel. It sets the IsReadyClutchIsOpen and
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ChannelAcknowledgeClutchIsOpen variables (lines 26 and 27) and it waits un-
til the receiver receives this message (line 28).

Urgent Locations: Time is not allowed to pass when the system is in an urgent
or committed location. For a Timed Automaton, this is semantically equivalent
to a location with incoming edges resetting the Timed Automaton clock and
labelled with the invariant Clock<=0. However, interleavings with normal states
are allowed. To model urgent locations we will add an assignment that saves the
value of the clock after all lines of code that lead to an urgent location and then
set back the clock to this value when the program leaves the code corresponding
to such a location. However, the discrepancy between model and code must be
noted and analysed. This feature does not occur in the gear-controller example.

Urgent Synchronisation: In an Urgent Synchronisation, if a synchronisation
transition on an urgent channel is enabled, delays must not occur. In RTSJ,
a priority scheduler is defined and the priority of an object that extends the
Schedulable class can be set. However, even running the object with the highest
priority will take some amount of time after it is enabled. The problem is even
more challenging when the model contains more than one Urgent Synchronisa-
tion. We have not dealt with this feature as it did not occur in the gear-controller
example.

Committed Locations: Committed Locations are urgent Locations that can
not be delayed when they are enabled. Therefore, the discrepancy between model
and code must be noted and analysed. This feature occurred in one Automaton,
Controller, of our example [13]. The RTSJ code for this Automaton is available
online [20].

Clocks: Each instance of a clock in a Timed Automaton is mapped to a clock
in RTSJ. To check an upper- or lower-bound on a clock, a relative time is declared
in Java for each bound. In addition, every thread contains an absolute time and
a clock. To check the time elapsed from a particular moment, the absolute time
is set to the current value of the clock. Then, the difference between the current
value of the clock and the absolute time will be checked with the corresponding
relative time. For example, a clock, two relative times and an absolute time
are introduced for timing issues in Figure 3 (lines 4-7). In the Clutch Timed
Automaton, when the transition from Closing to Opening is taken, the clock
will be reset. The corresponding code for this action is shown in line 14, in
which the absolute time CurrentTime is set to the current value of the clock
ClutchClock. Therefore, the time elapsed from this moment will be measured.
Inside the else statement, the program checks if the time is more than 100µs
(line 25).

Guards: A transition from one state to another state can be taken if and
only if the guard on the transition is enabled. A Guard is translated to an if

statement. The code inside the if block corresponds to the transition updates
(assignments). In Timed Automata constraints on the value of the clocks or
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clock differences are only compared to integer expressions; guards over clocks
are essentially conjunctions [19]. Line 20 in Figure 3 indicates that if the time
elapsed since the last time at which the variable CurrentTime is set is equal to
or more than the relative time MaxTimeClutch, 150, the ErrStat will be set to
2 and the state will be set to ErrorOpen. However, in the Timed Automaton,
the guard on the transition from the Opening to the ErrorOpen is Timer==150
and not Timer >= 150. Since there is no guarantee that the thread will execute
this code at exactly one time, we need to be more flexible in the code than in the
model. However, in this case, rather than noting and analysing the difference
between model and code, we can actually modify (re-engineer) the model to
match the code and then repeat the analysis of the properties we want to check
on the modified model.

Dealing with non-determinism: A Timed Automaton can contain more than
one transition with an enabled guard. If a state contains more than one outgoing
edge with an enabled guard, one of them will be taken non-deterministically. Fol-
lowing the standard notion of refinement, an implementation can be more deter-
ministic than the model. However, if we want to implement the non-determinism
we can use a random variable in RTSJ. This feature occurred in one Automaton,
Interface, of our example [13]. The RTSJ code for this Automaton is available
online [20].

Invariants: The Automaton needs to leave a state before its state invariant
is violated. In other words, Timed Automaton must take one of the enabled
transitions if the current state invariant is violated. In RTSJ we cannot guar-
antee that the thread has a CPU before a certain time limit. However, we can
accumulate the upper-bound of the run time of RTSJ code. To accumulate this
run time upper-bound we can assign a fixed RTSJ run-time (based on the ver-
sion of RTSJ and the hardware we use) to each line of code. We can then add
these times to accumulate the run time of code corresponding to a state with an
invariant. In Figure 1, the Opening has a state invariant, Timer<=150. There-
fore, the clutch cannot stay in the Opening more than 150 ms and it needs to
go to either ErrOpen or Open before this invariant is violated. This invariant is
an assumption that should independently verified for a particular hardware and
version of the RTSJ to check opening the clutch should take no more than 150
ms. In other words, executing the code in lines 14-16, 19-20 and 25 or lines 14-16
and 19-21 in Figure 3 should take less than 150µs.

4 Verification result

To illustrate the applicability of the proposed method, we applied this approach
to the gear-controller [13]. The model presented by Lindahl et al. contains 5
Timed Automata with a total of 63 states and 83 transitions. We recreated this
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model and verified it with UPPAAL. However, the verification results were not
entirely consistent with the result provided by Lindahl et al. [13]. We had to add
the timing invariants on all states and increase the time bounds in the timing
properties to satisfy them. The RTSJ derived from the Timed Automaton had
5 Java threads, 1320 lines of code and 16 assumptions for 16 time invariants in
the model. The Timed Automata for the gear controller and the RTSJ code are
both available online [20].

We unintentionally made an error in the UPPAAL model (when the clutch
Automaton transitions from Opening to ErrOpen, we did not set ErrStat to 2).
As a result, one of the system properties was violated. This property required
the gear controller to notice that the clutch reached ErrOpen, before 300µs. UP-
PAAL detected this error and we fixed the model. We wanted to see whether
the same error would be detected in RTSJ. Therefore, we removed line 22 from
Figure 3. However, the error was not detected since the offending code was not
executed in the simulator as the timer never exceeds 150µs. Then, we changed
the invariant on Opening from 150µs to 50µs (line 20) and the error was de-
tected. This shows why the model-checking approach is useful, as it detected an
error in the model that is more difficult to detect in the code.

To demonstrate the discrepancy between the models, in which we make as-
sumptions about invariants, and the code, where lines of code take a certain
amount of time to execute, we changed the timing in both the model and imple-
mentation. In the original model, the invariant on the Opening state is 150µs
and the transaction to Open can only be made after 100µs. These properties are
used to prove that if the clutch transits to ErrOpen, then the gear controller
notices this before 300µs. We changed the invariant 150µs to 2µs and the guard
on transition to Open to 1µs. In the model this is still sufficient to prove the
gear controller notices the error before 4µs. However, if we make these changes
in the code, then the error is only detected after 50µs.

5 Conclusion

In this paper, a nontrivial real-time example, a gear controller, was used to
investigate a model-based approach to derive an RTSJ program from an UP-
PAAL model. We started from an existing UPPAAL Timed Automata for the
gear controller, model checked it and followed our systematic approach to derive
an RTSJ program from it. However, this approach has some limitations. As an
example, when the model contains specific time values, rather than upper- or
lower-bounds, it cannot be straightforwardly mapped to RTSJ code. Some other
features, such as urgent synchronisation, were also left for future work.
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