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Abstract. A proof method is described which combines compositional proofs of inter-
leaved parallel programs with the intuitive and highly automatic strategy of symbolic
execution. As logic we use an extended variant of Interval Temporal Logic that al-
lows to formulate programs directly in the Simple Programming Language (SPL). The
notation includes a complex interleaving operator. The interactive proof method we
use for temporal properties is symbolic execution with induction. Here, we show how
to combine this proof method with an assumption-guarantee approach to decompose
proofs for safety properties. We demonstrate the application of this technique with a
producer-channel-consumer case study. 1

1 Introduction

Verification of concurrent systems is an important topic, as, in comparison to
sequential programs, the system execution is much more complex. Validation of
concurrent systems by testing is very difficult and often not feasible, as there
are many more test cases and it is hard to reproduce tests. But also formal
verification of concurrent systems is complicated, because reasoning over all
possible execution traces tends to result in a huge state space which makes
automatic and interactive verification very difficult.

To avoid reasoning over the complete concurrent system, a common tech-
nique is compositional reasoning. The basic idea of this technique is, to split the
system into several subcomponents. Then, the overall property is proved only
with corresponding properties of the subcomponents. This idea was first formu-
lated by Dijkstra [1]. In compositional reasoning the proof is often done with a
compositional theorem. Such a theorem provides a number of proof obligations,
which have to be fulfilled, so that the overall property is valid. Ideally, these proof
obligations contain only single subcomponents and properties of these subcom-
ponents, but not the complete system itself. This results in several proofs of
feasible size.

A common compositional proof technique is the assumption-guarantee
paradigm, which was introduced by Jones [2] and by Misra & Chandy [3]. The
basic idea of this paradigm is, that each component can make specific assump-
tions to its environment in order to guarantee a specific behavior. An overview
of recent works on compositionality in general can be found e.g. in de Roever
et. al. [4] or Furia [5].

1 This work has been funded by the DFG program INOPSYS II, under contract number Re 828/6-3.
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Symbolic execution, on the other hand, is a successful technique for interac-
tive verification of sequential programs (e.g. Dynamic Logic [6, 7]). It is a very
intuitive strategy for programs as the proof advances step by step similar as
most humans do it when trying to understand a program [8, 9]. Furthermore, it
can be automated to a large extend. Balser [10] presented an ITL2-based logic
with calculus that allows the symbolic execution of concurrent systems. This
calculus was integrated into the interactive theorem prover KIV [12]. Arbitrary
specification languages can be nested into this logic and thus making it unnec-
essary to translate a system specification into a special specification language
for formal verification. Even more important is that the interleaving in this logic
is compositional. That means, it is possible to replace a subcomponent with an
abstraction of the component in a concurrent proof. While this feature simplifies
concurrent proofs, it is still necessary to use symbolic execution on the whole
parallel system in order to prove a property. A compositional theorem for this
method would make it possible to prove properties of concurrent systems by
reasoning only over single subcomponents at a time.

The goal of this paper is to present an assumption-guarantee rule for the
logic presented in [10]. This would enable us to fully use the advantages of both
techniques, compositional reasoning and symbolic execution, as well as the tool
support, which is available for this logic.

We assume that the reader has at least basic knowledge in temporal logic
and sequent calculus. The remainder of the paper is structured as follows: A
short overview of our logic is given in Section 2. The compositional theorem we
use is presented in Section 3, its application is shown in Section 4 on a producer-
channel-consumer case study. Section 5 concludes the paper with related work
and an outlook.

2 Temporal Logic Framework

In the following an informal overview over the used temporal logic calculus is
given. The formal semantic is described in [13] and [10]. The calculus is inte-
grated into the interactive theorem prover KIV. The temporal logic framework is
a variant of ITL [11, 14] that is extended by explicitly including the behavior of
the environment into each step. The basis for ITL are finite or infinite sequences
π of valuations, which are called intervals. Valuations in π are called states. Each
state is described by a first-order predicate logic formula over dynamic variables
v, which also can be primed v′ or double primed v′′. The relation between v and
v′ is called system transition, whereas the relation between v′ and v′′ environ-
ment transition. The value of v′′ in a state must be equal to the value of v in
the next successive state. Thereby the system and the environment transition
alternate. A selection of the supported temporal operators are:

2 Interval Temporal Logic, introduced by Moszkowski [11]
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◦ϕ there is a next state and it satisfies ϕ
last the current state is the last state
�ϕ ϕ holds always from now on in every state

ϕunlessψ either ϕ holds always from now on in every state
or ψ holds in any state and ϕ holds in every state before

⌈v⌉ frame assumption, only variables in v are modified
ϕ1 ‖ ϕ2 interleaving

Further, programs are written in a SPL (Simple Programming Language) [15]
like program syntax. The selection of the used SPL-operators are:

x := t assignment awaitψ synchronization
ϕ1|ϕ2 parallel assignment whileψ doϕ loop
ϕ1;ϕ2 sequential composition

Semantically, a program describes a set of traces. Therefore, it is possible
to embed programs into temporal formulas. This can be used for the parallel
composition of programs with the tl-interleaving operator.

2.1 Symbolic Execution

A typical sequent in proofs about interleaved programs has the form P, Γ ⊢ ∆.
Here, P is the interleaved program, Γ contains a temporal formula that describes
the environment behavior and a first order formula for the current variable
assignment, while ∆ contains the temporal property which has to be shown.

Symbolic execution on the following example sequent is done in two steps:

m := m+ 1;< prog >, �m′ = m′′, m = 2 ⊢ ∆

First, all temporal and program formulas are rewritten to a so called first-
next form, which encodes the transition to the next state in a predicate logic
formula. For this, the following rule3 is used:

m′ = m+ 1, ◦ < prog >, m′ = m′′, ◦�m′ = m′′, m = 2 ⊢ ∆

m := m+ 1;< prog >, �m′ = m′′, m = 2 ⊢ ∆
(prenex)

This rule separates propositons about the current state from propositions
about all following states. So after application of prenex each formula is either a
first-order formula, describing the first state in the trace or a temporal formula
with a leading next-Operator, that describes the remaining trace.

Now it is possible to advance one step in the trace. In all first-order formulas,
unprimed and primed variables are replaced by new static variables, while the
double primed variables are replaced by their unprimed version. Further, all

3 Note that rules in the sequent calculus are read bottom-up, with the conclusion at the bottom and
the corresponding proof obligations on the top part.
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next-operators of temporal formulas are eliminated. In the example, this is done
by the following rule-application:

M1 = M0 + 1, < prog >, M1 = m′, �m′ = m′′, M0 = 2 ⊢ ∆

m′ = m+ 1, ◦ < prog >, m′ = m′′, ◦�m′ = m′′, m = 2 ⊢ ∆
(tl-step)

This results in the following sequent after simplification:

< prog >, �m′ = m′′, m = 3 ⊢ ∆

The rules for symbolic execution of formulas in the succedent are very similar.
In KIV these rules, prenex, tl-step and simplification, are combined to a single
complex rule called step.

2.2 Executing Interleaved Programs

To execute two interleaved formulas a first transition from one or the other for-
mula is executed. After this, execution continues with interleaving the remaining
formulas. For example, if there are two interleaved programs in the antecedent
m := 1; . . . ‖ n := 2; . . . , Γ ⊢ ∆ this formula is executed by symbolically exe-
cuting either program first. For this, the following rule is used:

m := 1; (. . . ‖ n := 2; . . .), Γ ⊢ ∆

n := 2; (m := 1; . . . ‖ . . .), Γ ⊢ ∆

m := 1; . . . ‖ n := 2; . . . , Γ ⊢ ∆
(interleaved left)

Furthermore the following equation holds for the interleaving operator

last ‖ φ ↔ φ

which can be used to eliminate terminated programs. In the case that one of the
programs is blocked, only the other program is executed.

One important feature of our interleaving operator is that it is compositional.
This means, that the following rule can be applied:

⊢ ϕ1 → ϕ2 ϕ2 ‖ ψ, Γ ⊢ ∆

ϕ1 ‖ ψ, Γ ⊢ ∆
(comp)

This feature is very important for the proofs of the theorems in chapter 3 and
for abstraction in general.

Note, that our interleaving operator also supports features like fairness and
blocking. These features and the general case, where the interleaving operator
contains arbitrary temporal formulas, are also described in detail in [16] or [10].
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2.3 Induction and Sequencing

The basic idea to proof safety properties is to advance in the interval until a
valuation is reached that was considered earlier in the interval, so that a loop
was executed. If it can be proven that the property is true before and during
the loop so it is invariant, then the proof can be finished with an inductive
argument. A special rule start induction is used to generate a suitable induction
hypothesis.

Symbolic execution can lead to many paths, that have to be explored. Often
two different paths lead to same configurations (two sequent have the same
configuration if all temporal logic formulas are the same). To minimize the proof
effort a rule called sequencing is used, that allows to close a open premise when
there exists another premise with the same configuration, but with more general
predicate logic formulas.

3 Compositional Theorem

Most assumption/guarantee based compositional proof techniques use a special

operator similar to the ”while-plus” operator
+

_ presented in [17]. Informally,

the term A
+

_ G means, that if A holds up to step i, then G must hold up to
step i+ 1. This operator enables the formulation that a component violates its
guarantee G only after its assumption A is violated. It is needed to break the
circularity of the used compositional rule.

Assumptions and guarantees can be formulated with propositional predicates
over unprimed and primed variables (e.g. Cau and Collette [18]). We use the same
approach, but for the assumptions we use predicates over primed and doubly
primed variables. In this way it can be formalized which steps are allowed for the
components and which steps are allowed for the environment. This also allows

to use a standard TL operator unless as
+

_ operator, i.e.:

A
+

_ G := Gunless (G ∧ ¬A)

With these preliminaries we are able to construct a compositional theorem:

Theorem 1. If:

i. for all i = 1, . . . , n: Mi ⊢ Ai(v
′, v′′)

+

_ Gi(v, v
′)

ii. for all i = 1, . . . , n: Gi(v1, v2) ⊢ G(v1, v2) ∧
∧

j∈{1..n}∧j 6=iAj(v1, v2)

iii. for all i = 1, . . . , n: Ai(v1, v2) ∧ Ai(v2, v3) ⊢ Ai(v1, v3)
iv. A(v1, v2) ⊢

∧
i∈{1..n}Ai(v1, v2)

then:
M1 ‖ . . . ‖Mn ⊢ A(v′, v′′)

+

_ G(v, v′)
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Fig. 1. Proof Graph for Theorem 1

Premise i is a temporal logic sequent while premise ii - iv contain only
predicate logic formulas. These four proof obligations have the following informal
meaning:

i. All components must sustain their guarantee as long as the assumption holds.
These are the only proof obligations which require a temporal logic proof.

ii. The guarantee of each component preserves the global guarantee and does
not violate the assumptions of all other components.

iii. The assumptions of all components are transitive. With this property, the
components assumption is preserved even if other components make several
steps.

iv. All component assumptions hold if the global assumption holds. Therefore,
no component assumption is violated in the environment-step.

Proof (Outline).
The theorem was formally proven with the theorem prover KIV by using the

ITL calculus described in section 2. As first step the proof for two components
was done by symbolic execution of two abstract and interleaved components. The
simplified proof graph4 for this first step is depicted in figure 1. The premises i-iv
of theorem 1 are used as lemmas for this proof. Premises ii-iv are applied by the
KIV simplifier on predicate logic premises, which are all closed automatically by
KIV. These simplifier steps are omitted in figure 1 for the sake of brevity.

The proof starts with the sequent M1 ‖ M2 ⊢ A(v′, v′′)
+

_ G(v, v′) (node 1).
M1 and M2 are abstract programs that have arbitrary behavior. At first both

4 The rules apply Induction and Sequencing refer both to another node in the proof tree, as explained
in section 2. Therefore we depict proofs as graphs. The nodes that are referred by the rules apply

Induction and Sequencing are represented by dashed arrows and pointed arrows respectively.
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programs are replaced with their assumption-guarantee formulas of premise i of

the theorem via the rule comp, so node 2 has the following sequent: A1(v
′, v′′)

+

_

G1(v, v
′) ‖ A2(v

′, v′′)
+

_ G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′) Here, the step rule is
applied for symbolic execution. In the following, only the nodes 3-5 are described,
as the other three premises of node 2 are symmetrical to these nodes.

In node 3 the first parallel component has terminated, so it must be shown

that A2(v
′, v′′)

+

_ G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′) holds. This can by done using
step and apply induction.

In node 4 the first component has made a normal step (i.e. it is neither ter-
minated nor blocked). The case distinction discerns if A1(v

′, v′′) holds (node 7)

in this step or not (node 6). Node 6 has the sequent ¬A1(v
′, v′′) ‖ A2(v

′, v′′)
+

_

G2(v, v
′) ⊢ A(v′, v′′)

+

_ G(v, v′). Here, in the next step there are three possibili-
ties:

– The left component makes a step (not depicted in the graph, as it can be
closed automatically by the simplifier).

– The right component makes a step and A2(v
′, v′′) is violated too (node 11).

This can be closed automatically by another step.
– The right component makes a step and A2(v

′, v′′) holds (node 12). This
premise can be closed by induction.

Node 7 contains exactly the same sequence as node 2, therefore induction can
be applied.

Node 5 treats the case if the left component is blocked. Here, three cases are
possible:

– Both assumptions A1(v
′, v′′) and A2(v

′, v′′) are violated (node 8). This can
be closed automatically via step rule.

– Only the assumption A1(v
′, v′′) is violated (node 9). This is the same case as

in node 6, therefore sequencing can be applied.
– A1(v

′, v′′) holds and the right component has made a step (node 10). This
case is covered in node 13, therefore sequencing can be applied.

This proof can be extended to n components by induction over the number
of components. The initial induction case for one component can be shown by
another temporal induction (similar to node 3 in the proof above). The inductive
step can be proved by using the proof for two components as lemma to reduce n
components to n−1 components. Then the induction hypotheses can be applied.

Usually the construction of a modularization rule is very difficult because of
mutual dependencies. One interesting thing in our framework is that symbolic
execution and tool support can not only be used to prove the modularization
theorem, it actually helps to find the correct premises for the rule. To do so,
the proof is as above, but without using the premises ii-iv as lemmas (as we
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want to find them at this point). Then we try to close all open premises that
contain temporal logic formulas, which results in a similar proof graph as shown
in figure 1, but with several additional open premises that contain only predicate
logic sequents. So to find the correct premises for the modularization theorem are
a minimal set of generic predicate logic formulas from which all open sequents
can be shown. By this technique a semantic analysis of the parallel operator is
not necessary.

Extended Modularization Rule While this first rule may be useful for very simple
systems it must be improved to be usable for more complex cases. First, a vari-
able initialization in the temporal logic proofs (obligations i) is needed. Second,
applications of this first rule show, that the guarantees are often redundant.
Especially it is often necessary to have an invariance property. This invariant
can be used to express the relation between the initial state and all suceeding
states. Similar techniques for these additions are used e.g. in [18].

So, using the additional predicates I(v) for the invariant, Init(v) for the
initial values of the global system and a family of predicates Init i(v) for the
initial values for every system component leads to an extended version of the
compositional rule:

Theorem 2. If:

i. for all i = 1, . . . , n:

Mi, I(v), Init i(v) ⊢ Ai(v
′, v′′)

+

_ Gi(v, v
′)

ii. for all i = 1, . . . , n:
Gi(v1, v2) ∧ I(v1) ⊢ G(v1, v2) ∧

∧
j∈{1..n}∧j 6=iAj(v1, v2) ∧ I(v2)

iii. for all i = 1, . . . , n:
Ai(v1, v2) ∧Ai(v2, v3) ∧ I(v1)) ⊢ Ai(v1, v3)

iv. A(v1, v2) ∧ I(v1) ⊢
∧

i∈{1..n}Ai(v1, v2) ∧ I(v2)
v. for all i = 1, . . . , n:
Ai(v1, v2) ∧ I(v1) ∧ Init i(v1) ⊢ Init i(v2)

vi. Init(v1) ⊢
∧

i∈{1..n} Init i(v1) ∧ I(v1)

then:
M1 ‖ . . . ‖Mn, Init(v) ⊢ A(v′, v′′)

+

_ G(v, v′)

The informal meaning of the proof obligation of this theorem are as follows:

i. These obligations are mostly the same, except that we can now assume the
invariant and the initial condition for the respective component in the an-
tecedent.

ii. - iv. These obligations are mostly the same as in the previous rule, except
that the predicate I can now be assumed in the antecedent. Also, we have to
show in obligations ii. and iv., that the invariant is preserved by the guarantee
of each component and the global assumption.
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Fig. 2. Producer-Channel-Consumer (ProChaCon)

v. Here it is shown, that the initial condition of a component is preserved by its
assumption.

vi. This obligation establishes the invariant and the initial conditions of the
components.

Proof (Sketch). This theorem was also formally proven with KIV. The proof for
theorem 2 and 1 are very similar. However, it must be shown for theorem 2 that
Init1(v), Init2(v) and I(v) holds in the first state. To do that, a case distinction
is used before the first step (node 2 in figure 1). The cases where one of the
formulas Init1(v), Init2(v) and I(v) does not hold can be proved via step and
induction, similar to node 8 in figure 1.

4 Case Study

In this section an example for applying the introduced theorem is presented.
After an introduction of the producer-channel-consumer case study (short
”ProChaCon”) and its specification the formulation of the assumption-guarantee
(short ”AG”) properties is described. The section closes with a description of
the proofs of some of the proof obligations.

ProChaCon consists, as the name implies, of three interleaved components,
depicted in Figure 2. Usually the values of the producer component are derived
from an application or another component. For our task it is sufficient to gener-
ate them randomly. These values are sent using a classical two-way-handshake
protocol [19] to the channel component. The channel is again divided into a
receiver and a sender component. Both are connected through a buffer in which
the incoming values are stored. The receiver is responsible to store the incom-
ing values into the buffer and the senders job is to forward the buffered values.
Thereto, the receiver attaches the incoming value to the buffer-list and the sender
transmit the first value of the list as long as the buffer is not empty. The buffered
values are transmitted to the consumer component, which processes the received
values in an arbitrary way. The history of sent and received values is modeled by
inserting history lists on certain points, e.g plist, also depicted in Figure 2. They
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producer:

begin

while true do

await cha.sig =cha.ack;
a := [?];
cha:= mkch(a, cha.sig, cha.ack) ;
cha:= mkch(cha.data,

¬ cha.sig, cha.ack)|
plist := plist + a

end;

consumer:

begin

while true do

await chb.sig 6=chb.ack;
b := chb.data;
chb := mkch(chb.data,

chb.sig,chb.ack)|
clist := clist + b

end;

channel:

begin

1 while true do

2 await cha.sig 6=cha.ack;
3 c := cha.data;
4 cha := mkch(cha.data,

cha.sig,¬cha.ack)|
elista := elista + c ;

5 chbuf := chbuf + c|
elistb := elistb + c

end;

begin

while true do

await chbuf6= [];
d:= chbuf.first|
chbuf := chbuf.rest|
slista := slista + chbuf.first;

await chb.sig = chb.ack;
chb := mkch(d, chb.sig,chb.ack);
chb := mkch(chb.data,

¬chb.sig,chb.ack),
slistb := slistb + d

end;

Fig. 3. SPL Representation of ProdChaCon

are implemented as atomic assignments attached to the accordant program step.
A specification of the components with SPL is shown below in Figure 4.

First some abbreviatory notations are described that will be used in the
following. The sets of all used unprimed, primed and doubleprimed variables are
denoted with V , V ′ and V ′′. As mentioned in the introduction a step consists of
a system step and an environment step. In the following it is often necessary to
express that a component only change a set of variables L. This is formulated
by a frame assumption, which corresponds to the formula

⌈L⌉ :⇔
∧

w∈V \L w
′ = w

which states that all program variables except L are unchanged. Here, L is a
subset of V. Further, during the environment step some variables are unchanged.
This is formulated with the following predicate

Unchangedenv(L) :⇔
∧

w∈Lw
′ = w′′.

The verified property is “The list of received values is always a prefix of
the list of the sent values”. In other words, only values that have been sent are
received and the order is unchanged. So for the overall guarantee the formula
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clist ⊑ plist → clist′ ⊑ plist′ is used, where ⊑ is the prefix operator. The global
assumption states that all variables are unchanged by the environment. This
leads to the following proof obligation for the complete system.

Unchangedenv(V )
+
→ (clist ⊑ plist → clist′ ⊑ plist′)

The system uses, as mentioned, a classical handshake to transmit values.
Therefore, the involved components have to guarantee at least that they fulfill
their part accurate. Sending components must guarantee that they transmit a
value only if it is their turn and that the history-lists are updated in a correct
way, formally expressed in Handshakesend.

Handshakesend(ch, hlist) :⇔
(ch.sig 6=ch.ack → (ch = ch′∧hlist = hlist′))

∧ (ch.sig =ch.ack∧ch′.sig =ch′.ack) →hlist = hlist′)
∧ (ch.sig =ch.ack∧ch′.sig 6=ch′.ack) →hlist + ch.data = hlist′

Analogously Handshakereceive express that the receiver has to guarantee that
values are only received if the handshake variables are unequal. The history
list is updated if the handshake variables signalizing that a value was received
successfully and the next value can be transmitted.

The producer component has to guarantee two things. First, that only inter-
nal variables and the handshake channel are changed. Second, that the hand-
shake protocol is implemented correctly. The producers environment assumption
A1 states that the environment does not change the internal variables as long
as the producer could transmit a value. This is captured in G1 and A1.

G1(V, V
′) :⇔⌈ a,cha,plist⌉∧ Handshakesend(cha,plist)

A1(V
′, V ′′) :⇔Unchanged env(a,plist)∧ (ch′

a.sig =ch′
a.ack→ch′

a =ch′′
a))

The AG of the consumer can be formalized analogously:

G4(V, V
′) :⇔⌈ b, chb,clist⌉ ∧ Handshakereceive(chb, clist)

A4(V
′, V ′′) :⇔Unchanged env(b,clist)∧ (ch′

b.sig 6= ch′
b.ack→ch′

b =ch′′
b ))

In a similar way the AGs for both channel components (channelrec,
channelsend) can be formalized. They need additional guarantees, because they
pass the values via a buffer. That this is done correctly is formalized by the two
guarantees Buffer in and Buffer out.

Buffer in(buffer, hlistin, valuein) :⇔

(hlistin = hlist′in ∧ buffer = buffer′)
∨ ( hlistin + valuein = hlist′in

∧ buffer + valuein = buffer′)



Compositional Proofs with Symbolic Execution 23

Buffer out(buffer, hlistout) :⇔

hlistout + buffer = hlist′out + buffer′

The complete guarantee for channelrec consists of the statements that
channelrec only changes its internal variables, that the receiver part of the hand-
shake protocol is implemented in a correct way and that the component writes
into the buffer correctly. Additionally, the component needs to guarantee that
the prefix property also holds between both internal history lists. As assumption
it can be presumed that the environment does not change the internal variables
and the channel is not changed as long as channelrec can receive a value. That
leads to the following AG.

G2(V, V
′) :⇔ ⌈ c, cha, chbuf, rlista, rlistb⌉

∧ Handshakereceive(cha, rlista)
∧ Buffer in(chbuf, rlistb, c)
∧ rlist′b ⊑ rlist′a

A2(V
′, V ′′) :⇔ Unchangedenv(c, rlista, rlistb)

∧ (ch′
a.sig 6=ch′

a.ack → ch′
a =ch′′

a))

The AG of the other channel component (channelsend) can be formalized
analogously with Buffer out and Handshakesend.

The system always has to be in a correct state. In other words the buffers have
to be empty or at least have to be filled in a non-conflicting way. This is expressed
as an invariant. Theoretically, it is also possible to put all these into the AGs
of the components, but it is more concise to have only local properties there.
Therefore statements consisting of variables of more than one component are
separated within an invariant, which expresses the connection of the components.
First it states that depending on the handshake variables the two neighbor
history lists are either equal or they differ in the value that is set in the data
field.

I 1(V ) :⇔ ( cha.sig = cha.ack → elista = plist)
∧ (cha.sig 6=cha.ack → elista + cha.data = plist)
∧ (chb.sig = chb.ack → clist = slistb)
∧ (chb.sig 6=chb.ack → clist + chb.data = slistb)

For the channel it is stated that all values that were written into the buffer
are either still in the buffer or were already send to the consumer component.
This is formalised with slist + chbuf = elistb. Additionally, some prefix properties
are needed to show the overall property:

I 2(V ) :⇔ clist ⊑ slistb ∧ slistb ⊑ slista ∧ slista ⊑ elistb

∧ elista ⊑ elista ∧ elista ⊑ plist
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The overall invariant I (V ) is I 1(V ) ∧ I 2(V ). The only needed initial infor-
mation is, that the history-lists of both channel components are equal. This is
formulated with init2 ≡ (rlista = rlistb) and init3≡(slista = slistb).

I

ST

aIST

ST

aIAll proof obligations were formally proven with KIV. To give an
impression of the proof effort for the components, we describe as ex-
ample proof of the temporal logic proof obligation i for channelrec,
which is as follows:

M2, I(V ), Init2(V ) ⊢ A2(V
′, V ′′)

+
→ G2(V, V

′)

The proof graph for this obligation is shown on the right side. In
the beginning we start induction, explained in section 2.3. Initially
the program is in position 1 (the numbers refer to the program of
page 21). The while-loop could be evaluated, so that the program
is in position 2. Executing the first step leads to a case distinc-
tion. Either the await-statement could be evaluated to true and
the program is on position 3 or to false and the program remains
at position 2. In the second branch induction is applied, as the sequent has not
changed. In the first branch further steps are executed till the program is again
at position 1, which has been encountered before. In this case induction is ap-
plied and the proof is finished. The other three temporal logic proof obligations
can be verified analogously without additional effort.

The proofs for the predicate logic proof obligations are straight forward. They
start with a case distinction of the conjunctions on the right side of the sequence.
All premises can then be closed by the simplifier of KIV automatically.

All in all the reuse of the AGs is very high, for example every component
that uses a handshake protocol has to fulfill the handshake guarantees. Only the
invariant depends on the property we want to verify. All proofs are simple and
can be automated to a large extend. One reason for this is, that the components
are no longer interleaved after modularization and so symbolic execution leads
to only few new cases.

5 Related Work and Summary

In summary, we have presented a method how to use symbolic execution together
with compositional reasoning. As basis for our work we use an ITL variant [10]
that supports symbolic execution. Furthermore it provides a compositional inter-
leaving operator, which allows us to formulate an assumption-guarantee theorem
and prove it on syntactic level. The logic is fully integrated into the interactive
theorem prover KIV and all proofs where done within this tool. A further advan-
tage of our logic is the possibility to directly include multiple system description
languages into the logic formalism, e.g. SPL which is used in this work. Other
languages that were also successfully integrated into the logic are Statemate
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and UML statecharts [20, 21] as well as Asbru, a language used for the verifica-
tion of medical protocols [22]. The tool support and the syntactic nature of the
theorem simplifies adaption of the theorem to particularities of these languages
(e.g. to have better support for events in statecharts). The ability of symbolic
execution of programs and statecharts supports intuitive and understandable
proofs. To our knowledge this is the first work combining symbolic execution
with compositional reasoning.

Our compositional theorem is inspired by the work of Abadi and Lamport

[17]. They introduced the
+

_ operator and a theorem which is suitable for safety
and liveness properties. In comparison to our work they use conjunction for
the composition of components. While conjunction is a more elementary oper-
ator than our interleaved operator, all components must be specified as stutter
equivalent components. To achieve this, their components must be specified in
a special formula in normal form, while we are able to specify the components
directly in various description languages. Due to the inclusion of the double
primed variables we have a stuttering mechanism directly in our semantics.

We use a similar technique for defining assumptions and guarantees as Cau
and Collette [18]. Their theoretical work is more general as the described theorem
can be adapted to state based as well as message based systems. Compared to
this our focus was to provide a calculus and tool support for our technique.

Solanki et. al. [23] use compositional reasoning together with ITL. They use
an AG variant that allows guarantees to be formulated in ITL. As tool they
use (ana)Tempura [14, 11]. This technique is applied to a semantic web service
description.

In a paper by Zwiers et. al. [24] invariants and preconditions are integrated
in a compositional framework for concurrency. Joseph and Pandya [25] integrate
invariants in a framework for total correctness. They use CSP-like distributed
programs. Moszkowski [26] uses ITL for a compositional specification and proof
technique. Further work about compositionality are e.g. Pnueli [27], Stirling [28]
or Woodcock and Dickinson [29].

The producer-channel-consumer case study is a standard example for compo-
sitional reasoning. Pnueli [30] described a producer-channel-consumer example
already 1986 formally with temporal logic. Abadi and Lamport [17] also used this
example to illustrate how to specify components of concurrent systems. In their
example they show that two N-element queues can be composed to an (2N+1)-
element queue. Jonsson and Tsay [31] use the same example and property.
The producer-channel-consumer example is also verified by Breitling et. al. [32],
where streams for modelling the communicationare are used and Rock et. al. [33]
in combination with TLA for specification.

Next steps are to apply our approach on liveness properties. First experi-
ments in this direction were very promising. Another interesting topic would

be to integrate an objectlevel
+

_ operator similar to [17]. This would allow us
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to use more complex assumption guarantee properties without abandoning the
advantages of our approach: symbolic execution and tool support with various
system description languages.
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