
Using JavaScript RDFa Widgets for Model/View
Separation inside Read/Write Websites

Sebastian Dietzold, Sebastian Hellmann and Martin Peklo

Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany,

{dietzold|hellmann}@informatik.uni-leipzig.de

Abstract. As more and more websites start to embed RDFa content in
their web application view, the need arises to provide a more extensive
way for viewing and editing this semantic content independently from the
remainder of the application. We present a JavaScript API that allows
the independent creation of editing widgets for embedded RDFa, which
adds a new edge to Web development in the context of the Semantic
Web. As an addition, the API also provides sound update methods that
allow on-the-spot model synchronization between client and server.

1 Introduction

Future web applications will use more and more client side application logic to
obtain fast and responsive user interfaces. While it is currently possible to use
semantic technologies at the backend, web application developers can bene�t
greatly from a way to preserve semantics between the server and the client. Es-
pecially functionalities such as extensive editing, including type veri�cation, can
be implemented more e�ciently (i.e faster and without additional requests) on
the client side. By using RDFa [1] or Microformats [3], semantically enriched
data can be transferred back and forth and e.g. JavaScript enables the modi�-
cation on the client side. To return semantic data from the client side back to
the server, developers need APIs to modify both the semantic model and the
corresponding view from the RDF model in a consistent and independent way.

We present an RDF-API for JavaScript (rdfapi-js1), which uses an RDFa
parser to create a JavaScript object as an in-memory representation of the RDF
model from the website. The API gives developers the methods to modify the
in-memory model, roll out the changes to the (X)HTML view and report them
back to the server. Furthermore, RDFa widgets are used to create custom edit-
ing functions based on the local model in the (X)HTML representation. These
widgets give a degree of independence to developers, since it is now possible
to add appropriate editing widgets based on the semantic content of the RDFa
enhanced website without interfering with the development of the view of the
application. This greatly improves maintainability and customization. A useful

1 rdfapi-js is available at http://powl.svn.sf.net/viewvc/powl/trunk/rdfapi-js/



implication we would also like to mention is the redundancy of creating sepa-
rate views for editing, because updating can often be solved with the proposed
widgets.

2 API Overview

The RDF-API for JavaScript implements the RDF JSON speci�cation proposal
from the Talis n2 Wiki2 for data representation and allows for RDF manipulation
methods. The RDF model is extracted by a modi�ed version of the parser from
the RDFa Javascript implementation3 provided by the W3C.

The added methods can be grouped as follows:

Statement modi�cation: These methods are used to modify the content of the
model. We have implemented methods for adding one or more statements to a
model and for deleting one or more statements from the model.

Namespace management: Since RDFa incorporates the use of namespaces, meth-
ods on in-memory models for adding, deleting and applying namespaces are
needed. The Talis RDF JSON speci�cation proposal does not include name-
space declarations, so we have added this to our object noti�cation. We have
implemented methods for adding and deleting namespaces as well as for con-
verting models from quali�ed names to full URIs (and back) according to the
current namespace declarations.

Model comparison and check: These methods are used to check the consistency
of a given model and to compare two models and produce a statement di� for
the update service. At this time, we do not care about bnodes in the di�, e.g.
by using blank node enrichment [6] or minimum self-contained graphs [5]. This
could be added in the future.

We complete the rdfapi-js by adding a small set of administration methods
for counting, (X)HTML output and debugging.

3 Usage in a Semantic Wiki

We use rdfapi-js in our semantic wiki application OntoWiki [2]. OntoWiki is able
to handle plugins for the visualization of resources from speci�c RDF schema
(e.g. a FOAF person). These plugins are simple templates which have access to
the attributes of the resource that is to be rendered. Without rdfapi-js, plugin
developers have the choice to develop either a special edit template or let users
edit the attributes with the generic table-edit view. With rdfapi-js, a new option
is to enable view templates for inline editing just by adding RDFa markup.

2 http://n2.talis.com/wiki/RDF_JSON_Specification
3 http://www.w3.org/2006/07/SWD/RDFa/impl/js/



The following steps describe an examplary editing process:

1. The complete page with RDFa markup and the link to the rdfapi-js and a
control script are created on the server and transferred to the client.

2. The client receives the page and loads the rdfapi-js as well as the application
control script through a script-link.

3. rdfapi-js parses the page and creates an in-memory model from the RDFa
markup.

4. An onclick handler is added next to every RDFa Literal found in the page.
5. By clicking on the event handler, an editing widget is displayed as an overlay

to the existing page (see Fig.1).

Fig. 1. An RDFa enhanced vCard: plain (left), with highlighted statements and widget
(right)

6. The user submits the new value to the widget. The widget modi�es the in-
memory model by using statement modi�cation methods of rdfapi-js. These
API methods apply the changes to the in-memory model as well as modify
the (X)HTML view.

7. The modi�ed in-memory model triggers a new submit button which enables
the user to submit the change request to the server. If pressed by the user, a
statement di�erence is calculated and transferred to the server via an asyn-
chronous HTTP request to an update service. The current implementation
sends two JSON models to the server, one with the statements which have
to be deleted, another with the statements which have to be created on the
server. The execution of these atomic add / delete actions is left to the server
update interface.

Widgets are not limited to the editing of plain literals. According to the in-
memory model, di�erent widgets can be loaded (e.g. for dates or geo locations).
The idea of such widgets is to achieve independence from the page template so
that a growing widget library can enhance every application which uses rdfapi-js.

4 Conclusion and Future Work

The presented API includes methods for customized client-side edit widgets to
modify embedded RDFa. It tackles the synchronization of a locally changed



RDF model with the model on the server. The main advantage is the separa-
tion of edit functions from the data view. Widgets can be created for di�erent
datatypes and properties. These widgets add new possibilities for �exible user
interaction. The API is included in OntoWiki, but can be used in other Seman-
tic Web applications as well. Without making a promising statement, we have
already considered to propose the API as a full alternative to an editing view.
However, the problems that have to be overcome are numerous such as multi-
user synchronization, security and user validation. Although solutions for these
problems have to be provided, they are clearly out of the scope of this API, since
these problems have to be solved on the server side.

Future work includes the improvement of the di� computation algorithm
to support bnodes and the enhancement of the widget library with a set of
widgets for common attributes. The (X)HTML rollout of in-memory changes is
currently limited to plain literals and resource relations. This limitation has to
be resolved in order to support more complex RDFa markup. To generalize the
editing process, future work should include support for SPARUL [4] queries in
addition to transferring JSON model objects for change requests.

References

1. Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in
XHTML: Syntax and Processing. W3C Working Draft, W3C, 2008. http://www.

w3.org/TR/rdfa-syntax/.
2. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki - A Tool for Social,

Semantic Collaboration. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, The
Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC

2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume 4273 of Lecture
Notes in Computer Science, pages 736�749. Springer, 2006.

3. Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the semantic web.
In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin,
editors, Proceedings of the 15th international conference on World Wide Web, WWW

2006, Edinburgh, Scotland, UK, May 23-26, 2006, pages 865�866. ACM, 2006.
4. Andy Seaborne and Geetha Manjunath. SPARQL/Update � A language for updat-

ing RDF graphs. Technical report, Hewlett-Packard, January 2008. V4.
5. Giovanni Tummarello, Christian Morbidoni, Reto Bachmann-Gmür, and Orri Er-

ling. RDFSync: E�cient Remote Synchronization of RDF Models. In Karl Aberer,
Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B.
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, 6th Interna-

tional Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007

+ ASWC 2007, Busan, Korea, November 11-15, 2007, volume 4825 of Lecture Notes
in Computer Science, pages 537�551. Springer, 2007.

6. Max Völkel, Carlos F. Enguix, Sebastian Ryszard Kruk, Anna V. Zhdanova, Robert
Stevens, and York Sure. SemVersion - Versioning RDF and Ontologies. Technical
report, AIFB, University of Karlsruhe, 2005.


