
Proceedings of the
4th International Workshop on

Scripting for the
Semantic Web
(SFSW 2008)

Co-located with 5th European Semantic Web Conference

June 1-5, 2008, Tenerife, Spain.

Workshop Co-Chairs’ Message
SFSW 2008 - Workshop on Scripting for the Semantic Web

Scripting languages such as PHP, JavaScript, Ruby, Python, Perl, JSP and
ActionScript are playing a central role in current development towards
flexible, lightweight web applications following the AJAX and REST
design paradigms. These languages are the tools of a generation of web
programmers who use them to quickly create server and client-side web
applications. Many deployed Semantic Web applications from the FOAF,
RSS/ATOM, blog and wiki communities, as well as many innovative
mashups from the Web 2.0 and Open Data movements are using scripting
languages and it is likely that the process of RDF-izing existing database-
backed websites, wikis, weblogs and CMS will largely rely on scripting
languages.

The workshop brings together developers of the RDF base infrastructure
for scripting languages with practitioners building applications using
these languages. Last years Scripting for the Semantic Web workshop in
Innsbruck, Austria focused on the role of scripting languages in the
process of populating the Web with linked RDF data as well as to
showcase applications that consume RDF data from the Web. The special
focus of this years workshop is the creation of Semantic Web data
through social interactions as well as applications that integrate socially-
created data across communities. As in the last two years the workshop
includes a Scripting Challenge, which awards a prize to the most
innovative semantic web application developed in a scripting language.

We would like to thank the organizers of ESWC conference for
supporting the workshop. We especially thank all members of the SFSW
program committee for providing their expertise and giving elaborate
feedback to the authors and Talis for providing the Scripting Challenge
prize. Last but not least, we hope that you will enjoy the workshop and
the whole conference.

Chris Bizer, Freie Universität Berlin, Germany
Sören Auer, University of Pennsylvania, USA

Gunnar Aastrand Grimnes, DFKI, Germany
Tom Heath, Open University, UK

SFSW 2008 Program Committee

• Benjamin Nowack, semsol, Germany
• Claudia Müller, University of Potsdam, Germany
• Dan Brickley, Semantic Web Vapourware, UK
• Danny Ayers, Talis, UK
• David Aumüller, Universität Leipzig, Germany
• Denny Vrandecic, AIFB, Universitat Karlsruhe, Germany
• Edd Dumbill, Useful Information Company, United Kingdom
• Eero Hyvönen, Helsinki University of Technology (TKK), Finland
• Elias Torres, IBM, USA
• Eyal Oren, Free University Amsterdam, Netherlands
• Giovanni Tummarello, DERI, NUI Galway, Ireland
• Gregory Williams, Rensselaer Polytechnic Institute, USA
• Jens Lehmann, Universität Leipzig, Germany
• Laurian Gridinoc, KMi, The Open University, UK
• Leigh Dodds, Ingenta, United Kingdom
• Libby Miller, Joost, United Kingdom
• Masahide Kanzaki, Keio University, Japan
• Matt Biddulph, Dopplr, United Kingdom
• Michael Hausenblas, Joanneum Research, Austria
• Morten Høybye Frederiksen, MFD Consult, Denmark
• Nadeem Shabir, Talis, UK
• Richard Cyganiak, DERI, NUI Galway, Ireland
• Sandro Hawke, W3C/MIT, USA
• Santtu Toivonen, Idean Enterprises, Finland
• Sean Palmer, Independent Developer, United Kingdom
• Sebastian Dietzold, Universität Leipzig, Germany
• Sebastian Schaffert, salzburg research, Austria
• Stefan Dietze, KMi, The Open University, UK
• Uldis Bojars, DERI, NUI Galway, Ireland
• Vlad Tanasescu, KMi, The Open University, UK

Table of Contents

XSLT+SPARQL: Scripting the Semantic Web with SPARQL
embedded into XSLT stylesheets
Diego Berrueta, Jose Emilio Labra and Ivan Herman

Publishing and Using Ontologies as Mash-Up Services
Kim Viljanen, Jouni Tuominen and Eero Hyvönen

Cooking HTTP content negotiation with Vapour
Diego Berrueta, Sergio Fernández and Iván Frade

The Talia library platform - Rapidly building a digital library on
Rails
Daniel Hahn, Michele Nucci and Michele Barbera

Scripting User Contributed Interlinking
Michael Hausenblas, Wolfgang Halb and Yves Raimond

World of WebCraft - Mashing up World of Warcraft and the Web
Knud Möller

Neologism: Easy Vocabulary Publishing
Cosmin Basca, Stéphane Corlosquet, Richard Cyganiak, Sergio
Fernández and Thomas Schandl

Microblogging: A Semantic Web and Distributed Approach
Alexandre Passant, Tuukka Hastrup, Uldis Bojars and John Breslin

Using JavaScript RDFa Widgets for model/view separation inside
read/write websites
Sebastian Dietzold, Sebastian Hellmann and Martin Peklo

RDF in JSON
Keith Alexander

Semantic Scripting Challenge Submissions

XSLT+SPARQL: Scripting the Semantic Web

with SPARQL embedded into XSLT stylesheets

Diego Berrueta1, Jose E. Labra2, and Ivan Herman3

1 Fundación CTIC
Gijón, Spain

diego.berrueta@fundacionctic.org
2 Departamento de Informática
Universidad de Oviedo, Spain

labra@uniovi.es
3 Centre for Mathematics and Computer Sciences (CWI)

Amsterdam, the Netherlands
Ivan.Herman@cwi.nl

Abstract. Scripting the Semantic Web requires to access and transform
RDF data. We present XSLT+SPARQL, a set of extension functions for
XSLT which allow stylesheets to directly access RDF data, indepen-
dently of any serialization syntax, by means of SPARQL queries. Using
these functions, XSLT stylesheets can retrieve, query, merge and trans-
form data from the semantic web. We illustrate the functionality of our
proposal with an example script which creates XHTML pages from the
contents of DBpedia.

1 Introduction

The semantic web has adopted RDF as its preferred data model for resource de-
scription. However, the document web is based on markup languages like XML
and HTML. Transforming data and gluing between the two worlds with the
current set of tools is not always easy. In particular, XSLT [16] and the newer
XQuery [10] have been around since 1999 and 2007 respectively, and they o�er
excellent functionality to query and transform XML documents into other for-
mats. Although they do not directly produce RDF data, indeed they can output
RDF serialized in RDF/XML or N3.

However, the inverse transformation, from RDF to XML, is insu�ciently
covered by the current tool set. Most popular web scripting languages, such as
Python and PHP, have their own non-standard APIs for accessing RDF data
(conversely, there are standardized APIs for XML, such as DOM and SAX).
This is an hindrance to the use of these scripting languages with RDF.

Unfortunately, standard languages such as XSLT and XQuery are inappropri-
ate for this task. Even if RDF data can be apparently addressed as XML through
its RDF/XML serialization syntax [5], a second analysis reveals that this is only
possible in a very controlled environment in which the serialization is specially
produced under certain constraints, or normalized in a previous step [2].

We propose XSLT+SPARQL, an extension to the XSLT function set to em-
bed SPARQL SELECT and ASK queries in the XPath selection expressions.
This makes it possible to process RDF data directly within the RDF model, i.e.,
regardless of any particular serialization syntax. We believe XSLT+SPARQL can
contribute to the semantic web by providing a new platform for scripting and
transforming RDF into XML, which is often the last processing step of many se-
mantic web scripts. XSLT+SPARQL can easily produce XHTML reports, SVG
graphs, SOAP messages or, more generally, any valid XSLT output format (XML
or text documents). Moreover, developers can exploit the expressivity of XSLT
to create complex scripts that combine, �lter and transform data retrieved from
di�erent web sources or even from remote SPARQL endpoints.

The rest of the paper is organized as follows. Next section examines related
work prior to the description of XSLT+SPARQL in Section 3. Implementation
is brie�y discussed in Section 4, and a use case is presented in Section 5. The
discussion in Section 6 concludes the paper.

2 Related work

After a number of proposals from di�erent groups [15], W3C �nally came with
SPARQL [17], a �exible query language for RDF. There are two companion
speci�cations: the query protocol [13] and a XML Schema to represent the re-
sults [6]. Many have observed that the latter makes SPARQL results tractable
with XSLT stylesheets in order to generate XML (XHTML, RSS...) from RDF
data. This approach is indeed useful for simple tasks, where a single SPARQL
query is enough to extract all the relevant data from an RDF graph, but it falls
short for complex transformations. Nevertheless, this technique has been sug-
gested as a mechanism to implement the �lowering� operation of semantic web
services grounding (cf. section 4.2 of [3]).

The most direct precedent to our work is [19]. The authors of the Topia
project introduce a multi-stage processing architecture that consumes RDF and
XML data with XSLT stylesheets. They use XSLT extension functions to query
a Sesame RDF repository [11] using RDQL [18], RQL and SeRQL, three RDF
query languages which preceded in time to SPARQL. In this sense, our work is
an updated version of theirs, but in addition to the change of the language, there
are other di�erences. Our queries return binding tables (for SELECT queries)
or just Boolean results (for ASK queries), while Topia queries return sub-graphs
(sets of triples) serialized in XML.

More recently, XSPARQL [2] has been proposed to unify SPARQL and
XQuery in a single language that extends both of them. XQuery and XSLT
are W3C recommendations with an important overlap in their functionality.
XSPARQL is built on top of the XQuery syntax and semantics. On the other
hand, XSLT+SPARQL retains the XSLT syntax and processing model and ex-
ploits the extensibility of the XPath function set. The two proposals transform
between RDF and XML in both directions, and both can read and produce RDF
serialized in di�erent syntaxes (Turtle or RDF/XML).

3 Description of XSLT+SPARQL

XSLT+SPARQL exploits the extensibility mechanism provided by the host lan-
guage, to introduce a number of extension functions. They are grouped in two
di�erent namespaces.

3.1 Basic query functions

The core functionality of XSLT+SPARQL is provided by just two functions:

1. sparql:sparql(query [, documentUrl, ...])

2. sparql:sparqlEndpoint(query, endpointUrl)

These functions execute a SELECT or ASK query (CONSTRUCT and DE-
SCRIBE queries are not allowed because they return RDF/XML documents,
which are notoriously di�cult to handle in XSLT). The �rst function executes
the query locally, while the second one sends a request to a remote SPARQL
endpoint and retrieves the results. The documents pointed by the (potentially
empty) list of URLs are merged with the ones referred by the �FROM� clauses
of the query to create the default graph.

3.2 Advanced functions

Some applications may need to e�ciently execute multiple queries against the
same dataset, or even to build custom datasets by merging multiple graphs.
To address the requirements of these applications, a second set of extension
functions is de�ned in a di�erent namespace:

1. sparqlModel:parseString(serializedRdf [, serializationSyntax])

2. sparqlModel:readModel(documentUrl [, serializationSyntax])

3. sparqlModel:readModel(nodeset)
4. sparqlModel:mergeModels(firstModel, secondModel, ...)

5. sparqlModel:sparqlModel(query, model)

The �rst three functions read RDF data from di�erent sources: (1) a string;
(2) a document pointed by a URL; or (3) any fragment of the XSLT input tree,
the result tree �only in XSLT 2.0� or even the XSLT stylesheet itself. When
the input is a string or a web document, an optional parameter selects the
RDF serialization syntax to be parsed (N3 [7], Turtle, RDF/XML, GRDDL [14],
RDFa [1]). These three functions return a handler for an in-memory local RDF
model that can be used in the next functions.

The �mergeModels� function combines any number of input models into a new
one. Due to the functional character of XSLT, it is not possible to do �in-place�
modi�cations of a model, therefore this function returns a new model with the
result of combining the data. Consequently, scripts that require to merge data
from a sequence of sources cannot iterate through the sequence, but have to

be re-casted as recursive templates using well-known patterns from functional
programming.

Finally, the �fth function executes a SPARQL query over an in-memory
model. Any �FROM� or �FROM NAMED� clause in the query is ignored.

Together, these advanced functions bring great �exibility to the developer,
and also a performance boost to execute multiple queries against the same
dataset, avoiding the need for repeated parsing of the input documents.

4 Implementation

We have implemented the above functions in Java as an extension for Apache
Xalan4, an open-source XSLT processor, although it should be easy to adapt
our code to other XSLT processors. Our implementation uses the Jena frame-
work [12] to manage RDF documents, and to execute queries locally and re-
motely. We note that a pure XSLT implementation of �sparql:sparqlEndpoint�
is also possible using the �document� function of XSLT. However, due to the lack
of control on how that function performs HTTP content negotiation, the pure
XSLT implementation may be unable to query some endpoints �notably, DBpe-
dia's endpoint� when certain XSLT processors are used. On the other hand, our
Java-based implementation can manage content negotiation to retrieve RDF or
XML documents as needed, therefore it can access the Linked Data web [8,9].

A limitation of our current implementation concerns the �sparql:sparql� and
�sparqlModel:mergeModels� functions, which do not accept an arbitrary number
of arguments, due to the inability of Xalan 2.7 to access Java5 vararg methods
using re�ectivity. Particularly, the former accepts zero or one document URLs,
and the latter merges exactly two models.

5 Use case: DBpedia to XHTML

Practical use of XSLT+SPARQL is demonstrated by a sample script (Figure 1)
that extracts data from DBpedia [4] and creates a simple report in XHTML.
The stylesheets contains only two templates. The �rst one e�ciently accesses
DBpedia data through its public SPARQL endpoint (i.e, the script does not
retrieve the RDF dataset, but just the results of the query in XML format).
The second one generates XHTML mark-up for each row of the results bindings
table.

The functionality of XSLT+SPARQL goes far beyond this small example.
More complex examples can be found in the project web page5.

6 Conclusions and future work

We presented XSLT+SPARQL, a simple extension for XSLT to embed SPARQL
queries in XPath expressions, making it possible to process RDF data from

4 http://xml.apache.org/xalan-j/
5 http://berrueta.net/research/xsltsparql

<xsl:variable name="query">

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX cat: <http://dbpedia.org/resource/Category:>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?person ?img

WHERE { ?person skos:subject cat:Spanish_actors .

?person rdfs:label ?name .

?person foaf:depiction ?img .

FILTER (lang(?name)="es") }

ORDER BY ?name

</xsl:variable>

<xsl:template match="/">

<html> <body>

<h1>Spanish Actors</h1>

<xsl:apply-templates select="sparql:sparqlEndpoint(

$query, 'http://dbpedia.org/sparql')"/>

</body> </html>

</xsl:template>

<xsl:template match="results:result">

<xsl:value-of select="results:binding[@name='name']"/>

 <xsl:attribute name="src">

<xsl:value-of select="results:binding[@name='img']"/>

</xsl:attribute>

</xsl:template>

Fig. 1. An XSLT+SPARQL stylesheet to create a XHTML page with data extracted
from DBpedia by querying its SPARQL endpoint.

XSLT stylesheets without bothering with the tricky RDF/XML serialization.
XSLT+SPARQL is a new standards-based platform to write declarative scripts
for the semantic web. It is straightforward to use for developers experienced in
XML and RDF technologies because it does not require to learn a new language
or processing model. Furthermore, it can be implemented by re-using current
XSLT processors.

The usage of XSLT+SPARQL has been illustrated by means of a sample
application to create XHTML reports from DBpedia data. We envisage the
usage of XSLT+SPARQL in a wide variety of scenarios. They mainly involve
transforming RDF data into other formats which are more suitable for human
consumption. However, more complex semantic web agents can be developed
as well. For instance, we are working on a semantic web crawler/browser that

collects relevant information about a subject from di�erent linked data sources
and creates a comprehensive report in XHTML.

We are also considering new additions to the current set of functions. One
area of particular interest would be to add support for RDFS and OWL reason-
ing.

References

1. B. Adida and M. Birbeck. RDFa primer 1.0. Working draft, W3C, March 2007.
2. W. Akhtar, J. Kopecky, T. Krennwallner, and A. Polleres. XSPARQL: Traveling

between the XML and RDF worlds and avoiding the XSLT pilgrimage. Technical
Report 2007-12-14, DERI Galway, 2007.

3. R. Akkiraju and B. Sapkota. Semantic annotations for WSDL and XML schema
- usage guide. Working group note, W3C, 2007.

4. S. Auer, C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak, and Z. Ives. DBpedia:
A nucleus for a web of open data. In International Semantic Web Conference,
2007.

5. D. Beckett. RDF/XML syntax speci�cation (revised). Recommendation, W3C,
February 2004.

6. D. Beckett and J. Broekstra. SPARQL query results XML format. Recommenda-
tion, W3C, January 2008.

7. T. Berners-Lee. Notation 3. Available at http://www.w3.org/DesignIssues/

Notation3.html, 1998.
8. D. Berrueta and J. Phipps. Best practice recipes for publishing RDF vocabularies.

Working draft, W3C, 2007.
9. C. Bizer, R. Cyganiak, and T. Heath. How to publish linked data on the web?, Jul

2007.
10. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: An XML query language. Recommendation, W3C, 2007.
11. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture

for storing and querying RDF. In International Semantic Web Conference, 2002.
12. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.

Jena: implementing the semantic web recommendations. In 13th international

World Wide Web conference Alternate track papers, 2004.
13. K. G. Clark. SPARQL protocol for RDF. Recommendation, W3C, January 2008.
14. D. Connolly. Gleaning Resource Descriptions from Dialects of Languages

(GRDDL). Recommendation, W3C, September 2007.
15. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query

languages. In Third International Semantic Web Conference, Hiroshima, Japan,
2004.

16. M. Kay. XSL transformations (XSLT) version 2.0. Recommendation, W3C, 2007.
17. E. Prud'hommeaux and A. Seaborne. SPARQL query language for RDF. Recom-

mentation, W3C, January 2008.
18. A. Seaborne. RDQL - a query language for RDF. Member submission, W3C,

January 2004.
19. J. van Ossenbruggen, L. Hardman, and L. Rutledge. Towards smart style: com-

bining RDF semantics with XML document transformations. Technical Report
INSE0303, CWI, October 2003.

Publishing and Using Ontologies
as Mash-Up Services

Kim Viljanen, Jouni Tuominen, and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Helsinki University of Technology and University of Helsinki

P.O. Box 5500, 02015 TKK, Finland
first.last@tkk.fi, http://www.seco.tkk.fi

Abstract. The Semantic Web is based on using ontologies for enabling
semantically disambiguated data exchange between distributed systems
on the web. This requires efficient means for publishing ontologies on
the web to ensure the availability, sharing and acceptance of the ontolo-
gies. Support services are needed for utilizing ontologies easily and cost-
effectively in applications and legacy systems lacking ontology support.
To address these vital needs, this paper presents the ONKI ontology
service which provides ready-to-use “mash-up” functionalities, such as
semantic disambiguation, concept finding and concept fetching as ready-
to-use web widgets for adding ontology support to e.g. HTML forms
using JavaScript. Two implementations of the ONKI Server are pre-
sented: ONKI-SKOS for ontologies presented in the Simple Knowledge
Organization System (SKOS) language and ONKI-Geo for geographical
ontologies with a map interface. The presented ONKI systems are oper-
ational on the web, used in the National Finnish Ontology Service. They
have been successfully used in several pilot applications.

1 Ontologies as Web 2.0 Services

The Semantic Web1 introduces a metadata layer on top of the World Wide Web
infrastructure for describing its content and services in an explicit, machine
“understandable” way using ontologies [1–3]. When such content is available,
semantically aware applications for e.g. searching and browsing the distributed
content can be created, as demonstrated in e.g. various semantic portals [4–
6]. Many ontologies have been created and are available online in RDF(S) and
OWL form today. For example, the Swoogle2 [7] search engine index contains
over 10,000 ontologies on the web.

One of the main lessons learned in our work on creating semantic portals [5,
8, 9, 6] is that metadata in data sources, such as museum databases, are often
syntactically heterogeneous and contain spelling errors, are semantically ambigu-
ous, and are based on different vocabularies [10]. This results in lots of tedious
syntactic correction, semantic disambiguation, and ontology mapping work when
making the contents semantically interoperable, and when publishing them on
1 http://www.w3.org/2001/sw/
2 http://swoogle.umbc.edu/

the Semantic Web. A natural solution to this problem would be to enhance
legacy cataloguing and content management systems (CMS) with ontological
annotation functions so that the quality of the original data could be improved
and errors fixed in the content creation phase. However, implementing such on-
tological functions in existing legacy systems may require lots of work and thus
be expensive, which creates a severe practical hindrance for the proliferation of
the Semantic Web.

This relates to the more general challenge of the Semantic Web today: on-
tologies are typically published as files without support for using them in appli-
cations. Each application tends to re-implement similar functions for utilizing
ontologies, such as semantic autocompletion and disambiguation [11], browsing
and finding concepts, and populating ontologies. It is like re-creating map ser-
vices from scratch in different geographical web applications, rather than using
available services such as Google Maps3, Yahoo Maps4, or Microsoft Live Search
Maps5. We argue that ontologies should be published as lightweight shared ser-
vices which can be easily utilized in legacy systems using a mash-up approach in
the same spirit as e.g. Google Maps, Yahoo Maps and Freebase6 are used today.
This approach for publishing ontologies means, that generic, shared function-
alities are combined with specific applications using lightweight scripting and
programming technologies such as Ajax7.

In the following, we first outline the requirements of mash-up ontology ser-
vices and present the implementation of a generic mash-up ONKI Ontology
Service and framework which is currently used in the National Ontology Service
in Finland8. We then present two implementations of ontology specific server
implementations conforming to the ONKI Service framework: ONKI-SKOS for
general SKOS9 ontologies and ONKI-Geo [12] for geographical ontologies. Af-
ter this, utilization of ONKI services in an external application is discussed by
presenting two application scenarios. Finally, contributions, results, and lessons
learned are summarized, and directions for further research outlined.

2 Requirements of a Mash-Up Ontology Service

The national semantic web infrastructure model being built by the FinnONTO
project in Finland [13] argues that ontology services are needed for three major
user groups: 1) Ontology developers need a collaborative ontology development,
versioning, and publishing environment for ontologies [14]. 2) Content indexers
need services for finding the desired annotation concepts and for transporting
the corresponding URIs and other data from the ontology service into external

3 http://maps.google.com/
4 http://maps.yahoo.com/
5 http://maps.live.com
6 http://code.google.com/p/freebase-suggest/
7 http://en.wikipedia.org/wiki/Ajax (programming)
8 http://www.yso.fi
9 http://www.w3.org/2004/02/skos/core/

applications. 3) Information searchers need services for finding and disambiguat-
ing keyword meanings, and for transporting the corresponding URIs into search
engines and other applications. In this paper we focus on the problem of sup-
porting content indexing in applications and legacy systems.

Ontology servers are intended for managing ontologies, providing support
for designing, choosing and accessing ontologies [15–17]. However, compared to
previous work on ontology servers, we propose the idea of creating ontology
services which can easily be used in applications. This requires the following
features:

Mash-up integration support. Ontology servers should support runtime inte-
gration of the functionalities to applications and legacy systems, especially for
annotation and semantic search.

Semantic autocompletion and disambiguation. Efficient search functionalities
are important when trying to find the semantically correct concepts from large
ontologies. Text search boosted up with semantic autocompletion and disam-
biguation functionalities [11] supports the user in finding the right concept by
giving constant feedback of the query, and by helping in disambiguating the
intended concept meaning.

Concept fetching. When using ontologies in combination with other appli-
cations, the idea of “copying” or “transferring” concepts between applications
is important. We propose a concept fetching functionality for moving concept
URIs from the ontology server to the target application, such as a legacy cat-
aloguing system or CMS. To support legacy systems, indexing terms (concept
labels) should be possible to use instead of URIs even though this may create
disambiguation and mapping problems e.g. between ontology versions due to
potentially less specific identifiers than the URIs.

Concept collecting. Usually no single concept describes all the aspects of
the entity that is being described with a certain metadata property such as
dc:subject. Therefore, it should be possible to collect multiple concepts from the
ontology server and return these as a combination value in a specific metadata
field to the legacy system.

Domain-specific user interfaces. The concepts of an ontology are typically
visualized as an abstract graphical tree or graph visualization of the currently
selected concept with its semantic vicinity [18]. Complementing this, we propose
providing domain-specific interfaces, such as a map interface for geographical
ontologies, when applicable.

3 ONKI Ontology Service

The ONKI Ontology Service is a general ontology library and framework that
provides functionalities for accessing the ontologies using ready-to-use mash-
up web widgets as well as application interfaces for humans and machines for
doing, e.g., content indexing, concept disambiguation, searching and fetching.
The service is based on ontology and domain specific implementations of ONKI
Servers which conform to the ONKI interfaces. This means that it is possible to

provide a single mash-up web widget to access all ontologies but at the same time
provide domain-specific user interfaces and technical implementations optimized
for ontologies of different sizes, modelling languages, etc.

The ONKI Widget (Figure 1) is a ready-made user interface widget for using
the ONKI Service in content annotation (indexing). It enables the user, e.g. a
content annotator, to find the correct ontological concepts and their URIs and
then transfer the URIs and the concept labels to their own content manage-
ment application. Such a simple means for getting the URIs and to use them in
applications is crucial for enabling the content creation on the Semantic Web.

In the following, the JavaScript and Direct Web Remoting (DWR)10 based
implementation of the widget is described which is intended to be used for ex-
tending HTML forms with ontology functionalities. However, the proposed solu-
tion is more general because in the case of other user interface technologies such
as Java Swing, the ONKI Web Service11 interface could be used to implement
user interface technology specific implementations of the ONKI Widget.

Fig. 1. ONKI Concept Search Widget.

Part 1 of Figure 1 shows the default components of the widget. The ontol-
ogy selector can be used to change the ontology used in search or to select all
ontologies as target for the search. The search field is used for finding concepts
using text queries. In part 2 of Figure 1 the user is typing a search string to
the autocompletion search field which dynamically performs a query after each
input character (here “s-h-i-p-...”) to the ONKI service and returns the concepts
whose labels match the string, given the language selection. The results of the
query are shown in the web widget’s result list below the input field. In the case
of synonym terms, the preferred label of a concept will be presented. For exam-
ple, when searching for an (outdated) term “birch sugar”, the system returns
“birch sugar → xylitol” which means that “xylitol” is the preferred term.

When a desired concept is selected from the result list, it’s URI and label are

10 http://getahead.org/dwr
11 http://www.w3.org/TR/ws-arch/

put in the widget’s concept collector (Part 3 in Figure 1) for further usage such as
submitting the content to the server application or accessing the collector from
an application specific JavaScript program. The idea of the concept collector can
be compared to the idea of shopping carts in web stores. In the example, the
concept “ship travel” has been put into the concept collector.

The language of concept labels used in matching the query string can be
chosen by using the language selector. The choice of languages depends on the
ontology selected. For example, for YSO, English and Swedish are supported
in addition to Finnish, and the Finnish Geo-ontology12 can be used in Finnish,
Swedish, and in three dialects of Sami spoken in Lapland. It is possible to use
all languages simultaneously.

If the user doesn’t know what to type in the text search field, the alternative
of using a browsing interface is available by using the domain specific ONKI
Browser (“Open ONKI Ontology Browser” button). The ONKI Browser can also
be used for disambiguating homonym terms, i.e. concepts with identical labels,
by aiding the user to inspect the context of the concepts. When the desired
concept has been found using the ONKI Browser, the concept’s URI and label
are fetched into the application by pressing the ”Fetch concept” button on the
ONKI Browser page corresponding to the concept. Two implementations of the
ONKI Browser are presented in the next section of the paper.

The web widget can be integrated into an HTML Form with two lines of
JavaScript code. The following code line loads the ONKI JavaScript library and
should be added into the HEAD section of the HTML page:

<script type="text/javascript"
src="http://www.yso.fi/onki.js"></script>

Using the library, ordinary HTML form input fields can be extended with
ONKI functionality by declaring the onkeyup event handler for the field. For ex-
ample, adding the General Finnish Upper Ontology YSO to a example dc:subject
field is done as follows:

<input id="dc:subject" onkeyup="onki[’yso’].search()" />

As a result, when a page is accessed, the user interface is enhanced with
ontology support. The widget provides a default concept collector (Part 3 in
Figure 1) which shows the fetched concepts in the widget’s user interface and
stores them in hidden input fields. When the form is submitted, the values of
the hidden input fields can be processed by the target application in the same
way as any HTML form submissions.

The ONKI Widget can be customized by configurations and by implement-
ing callback functions. Configuration possibilities include disabling the menus
for selecting ontologies and the language, the search field, or the “Open ONKI
Browser” button. The widget can also be configured to restrict the search to con-
cepts of certain type or belonging to a specific subtree of an ontology. Addition-
ally, CSS styling can be used for configuring the appearance of the widget. The
12 http://www.seco.tkk.fi/ontologies/suo/

ONKI Widget’s callback functions enable application specific implementations
of e.g. the concept collector or the concept search result list using JavaScript.

The ONKI API includes the following methods:

– search(query, lang, maxHits, type, parent) - for searching for ontological con-
cepts. Returns a list of hits.

– getLabel(URI, lang) - for fetching a label for a given URI in a given language.
– getAvailableLanguages() - for querying for supported languages of an ontol-

ogy. Returns a list of languages.

By implementing these methods, any system can be added to the ONKI Ser-
vice to be used via the general ONKI Service functionalities such as the ONKI
Widget. This is demonstrated by the case implementations presented below.
Thus, the ONKI Service is not tied to a single ONKI Server implementation.

4 Two domain specific ONKI Server implementations

Two domain-specific ONKI Servers have been implemented conforming to the
general ONKI service functionalities described in the previous section. ONKI-
SKOS is intended for lightweight ontologies and ONKI-Geo [12] for geographical
ontologies. In the following these two systems are shortly described.

4.1 ONKI-SKOS Server for SKOS Vocabularies

ONKI-SKOS is a general ontology service supporting thesaurus-like ontologies
especially in content indexing. ONKI-SKOS can be used to browse, search and
visualize any vocabulary conforming to the SKOS recommendation, and also
RDF(S) and OWL ontologies with additional configuration. ONKI-SKOS does
simple reasoning, e.g. transitive closure over class and part-of hierarchies. The
implementation has been tested using various ontologies, e.g. the General Finnish
Upper Ontology YSO, containing 20,000 concepts.

ONKI-SKOS Browser (Figure 2) is the graphical user interface of ONKI-
SKOS. It consists of three main components: 1) concept search with semantic
autocompletion, 2) concept hierarchy and 3) concept properties. When typing text
to the search field, a query is performed to match the concepts’ labels. The result
list shows the matching concepts, which can be selected for further examination.
The search can be further narrowed by restricting the search to concepts of a
certain type or to a desired subtree of the ontology.

When a concept is selected in ONKI-SKOS Browser, its concept hierarchy is
visualized as a tree structure, and its properties are shown as a table. Various
configuration properties are specified to enable ONKI-SKOS to process the on-
tologies as desired. The configurable properties include the ontological properties
used in concept hierarchy generation, the properties used to label the concepts,
the concept to be shown in the default view and the default concept type used
in restricting the searches.

Fig. 2. ONKI-SKOS Browser.

ONKI-SKOS Server is implemented as a Java Servlet using the Jena Semantic
Web Framework13, the DWR library and the Lucene14 text search engine.

4.2 ONKI-Geo Server for Geographical Ontologies

ONKI-Geo [12] is an ontology service specialized for geographical data. It was de-
veloped for the Finnish Place Ontology SUO (Suomalainen Paikkaontologia) [19]
which currently has been populated with 1) place information from the Geo-
graphic Names Register (GNR) provided by the National Land Survey of Fin-
land15 and with 2) place information from the GEOnet Names Server (GNS)16

maintained by the National Geospatial-Intelligence Agency (NGA) and the U.S.
Board on Geographic Names (US BGN). GNR contains about 800,000 multi-
lingual resources of natural and man-made features in Finland, including data
such as place type or feature type and the coordinates of a place. The GNS
register contains similar information about 4,100,000 places around the world.

The ONKI-Geo Browser (Figure 3) is intended for annotating resources us-
ing unambiguous place identifiers (URIs) or coordinates for arbitary points or
polygons. Using unambiguous place identifiers is useful e.g. due to homonymous
place names: there are hundreds of places in Finland with the name “Isosaari”
(“Big Island”). The ONKI-Geo Browser contains several facets for narrowing
the search to find the intended place instance: A polygon can be drawn in the
map interface for making a search on all places in the selected area. The other
facets are an ontology of geographic features (e.g., lake, city, etc.), the languages
of the place names, and a place name search with autocompletion. The system
uses Google Maps widgets for visualizating the places.
13 http://jena.sourceforge.net/
14 http://lucene.apache.org/java
15 http://www.maanmittauslaitos.fi/
16 http://earth-info.nga.mil/gns/html/

Fig. 3. ONKI-Geo Browser. Search can be constrained by using the facets on the left
or by drawing a polygon on the map. By pushing the “Select” button in the left bottom
corner, the concept or selected coordinate information is transferred into the mash-up
widget.

5 Integrating ONKI with Application Systems

In the following we describe use cases of the ONKI system.

5.1 Integrating ONKI with a Cataloguing System

To demonstrate how to add ONKI functionalities to a legacy system, we created a
simple web form (part 1 of Figure 4) presenting the MuseumFinland [5] metadata
fields [20]. By adding the ONKI Concept Search Widget to the fields, ontologies
can be used in annotating museum collection items. Part 2 of Figure 4 depicts
the original form after adding the widgets.

After this the form can be used for creating semantic metadata. If the un-
derlying system does not support URIs, the system has to be modified to handle
this kind of information. Alternatively the ONKI Widget can be configured to
return concept labels instead of URIs.

5.2 An Annotation Editor Based on ONKI Ontology Services

SAHA17 [21, 22] is a generic annotation system supporting distributed collab-
oration in creating annotations, and hiding the complexity of the annotation
schema and the domain ontologies from the annotators. SAHA adapts to differ-
ent metadata schemas, which makes it suitable for different applications. Support
for using ontologies is based on ONKI ontology services (Figure 5). The system

17 http://www.seco.tkk.fi/services/saha/

1. The form without the ONKI widgets 2. The form after adding the ONKI widgets

Fig. 4. A museum cataloguing system before and after integrating the ONKI widgets.

is being tested in various practical semantic portal projects such as HealthFin-
land [6] and CultureSampo [23].

The metadata field elements are implemented using the ONKI widget, as dis-
cussed above. Depending on the field, different ONKI servers are used as specified
in the SAHA configuration. In this case the Finnish General Upper Ontology
YSO [24], published as an ONKI service18, is used for selecting annotation con-
cepts. SAHA can also make use of the automatic text extraction component
POKA19 in extracting potential annotation concepts from web resources [21],
and populating the SAHA concept collector with them.

Annotations created with SAHA are stored in a centralized database, from
which they can be retrieved for editing or to be used in applications such as
semantic portals. It is possible to view and edit existing annotations by read-
ing the metadata fields in corresponding widget collectors. Furthermore, SAHA
supports population of its own annotation ontologies by new resources. In this
way, different users creating annotations collaboratively can share new resources
created by anyone, e.g., instances of new works of art or other artifacts.

6 Discussion

The main contribution of this paper is to present the idea of publishing ontolo-
gies as mash-up services that can be integrated in a lightweight fashion to legacy
systems on the user interface level. To demonstrate the applicability of the idea,
we presented the ONKI service and two implementations of the ONKI inter-
face: the general ontology server ONKI-SKOS and the geographical ontology
server ONKI-Geo. The two ONKI implementations also demonstrated the idea
of creating domain specific user interfaces to better support the usage of different

18 http://www.yso.fi/onto/yso/
19 http://www.seco.tkk.fi/tools/poka/

ONKI-SKOS server
ontology

SAHA annotation editor

Dynamic inclusion

of the ONKI Widget

link
ONKI Browser

Fig. 5. ONKI integrated with the SAHA annotation editor.

types of ontologies. A practical contribution of the paper was to introduce the
idea of concept fetching between applications and the need for concept collecting
when using an ontology server for annotation purposes. Finally, semantic auto-
completion was proposed and implemented in the user interface components to
provide an efficient method for finding and disambiguating concepts.

A lesson learned from implementing the concept fetching functionality as
a web browser application was that special tricks are needed to transfer data
between browser windows loaded from different domains20. Security being an
important concern, we suggest that browsers should provide some standardized
solution for communication between domains.

The widget is currently being developed for supporting other tasks where on-
tological concepts need to be searched and fetched, such as ontological content
search. Future work includes researching how the autocompletion concept search
could help even more in disambiguation the concepts without forcing the user
to open the ONKI Browser with all information about the concepts. In future,
other user interface environments than HTML and the web browser could be
supported, such as Java Swing. The ONKI API does not currently use RDF for
returning the content to the Widget to make it easier to handle the content with
JavaScript. However, in future RDF might be used. Finally, according to our
vision of a national ontology service, the ontologies in such a service should be
extensively and mutually interlinked to support creating cross-domain applica-
tions. Therefore, the question of how to support developing and using mutually
interlinked ontologies should be researched.

20 Since the ONKI-Browser is located in a different domain than the ONKI-Widget,
the communication between them was solved as follows: the Widget opens a new
browser window, which contains the ONKI-Browser in an IFRAME. The selected
concept URI is returned from the ONKI-Browser by changing the fragment identifier
of the window with the IFRAME, which can be accessed by the Widget.

Acknowledgments

We thank Ville Komulainen for his work on the first version of the ONKI server,
and Robin Lindroos and Tomi Kauppinen for collaboration in ONKI-Geo devel-
opment. Our research is a part of the National Semantic Web Ontology Project
in Finland21 (FinnONTO) 2003–2007 funded by the Finnish Funding Agency for
Technology and Innovation (Tekes) and 36 companies and public organizations.

References

1. Gruber, T.R.: A translation approach to portable ontology specification. Knowl-
edge Acquisition 5(2) (June 1993) 199–220

2. Staab, S., (eds.), R.S.: Handbook on ontologies. Springer-Verlag (2004)

3. Fensel, D.: Ontologies: Silver bullet for knowledge management and electronic
commerce (2nd Edition). Springer-Verlag (2004)

4. Reynolds, D., Shabajee, P., Cayzer, S.: Semantic Information Portals. In: Pro-
ceedings of the 13th International World Wide Web Conference on Alternate track
papers & posters, New York, NY, USA, ACM Press (May 2004)

5. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: Museumfinland—Finnish museums on the semantic web. Journal
of Web Semantics 3(2) (2005) 25

6. Hyvönen, E., Viljanen, K., Suominen, O.: Healthfinland—Finnish health informa-
tion on the semantic web. In: Proceedings of the 6th International Semantic Web
Conference (ISWC 2007), Busan, Korea, Springer-Verlag (Nov 2007)

7. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
CIKM ’04: Proceedings of the thirteenth ACM international conference on In-
formation and knowledge management, New York, NY, USA, ACM Press (2004)
652–659

8. Sidoroff, T., Hyvönen, E.: Semantic e-goverment portals - a case study. In: Proceed-
ings of the ISWC-2005 Workshop Semantic Web Case Studies and Best Practices
for eBusiness SWCASE05. (Nov 2005)

9. Känsälä, T., Hyvönen, E.: A semantic view-based portal utilizing Learning Ob-
ject Metadata (August 2006) 1st Asian Semantic Web Conference (ASWC2006),
Semantic Web Applications and Tools Workshop.

10. Hyvönen, E., Salminen, M., Kettula, S., Junnila, M.: A content creation process
for the Semantic Web (2004) Proceeding of OntoLex 2004: Ontologies and Lexical
Resources in Distributed Environments, May 29, Lisbon, Portugal.

11. Hyvönen, E., Mäkelä, E.: Semantic autocompletion. In: Proceedings of the first
Asian Semantic Web Conference (ASWC 2006), Beijing, Springer-Verlag, New York
(August 4–9 2006)

12. Kauppinen, T., Henriksson, R., Sinkkilä, R., Lindroos, R., Väätäinen, J., Hyvönen,
E.: Ontology-based disambiguation of spatiotemporal locations. In: 1st interna-
tional workshop on Identity and Reference on the Semantic Web (IRSW2008), 5th
European Semantic Web Conference 2008 (ESWC 2008), Tenerife, Spain. (June
1-5 2008) forthcoming.

21 http://www.seco.tkk.fi/projects/finnonto/

13. Hyvönen, E., Viljanen, K., Tuominen, J., Seppälä, K.: Building a national se-
mantic web ontology and ontology service infrastructure—the finnonto approach.
In: Proceedings of the European Semantic Web Conference ESWC 2008, Springer
(June 1-5 2008)

14. Komulainen, V., Valo, A., Hyvönen, E.: A tool for collaborative ontology devel-
opment for the semantic web. In: Proc. of the International Conference on Dublin
Core and Metadata Applications (DC 2005). (Nov 2005)

15. Ahmad, M.N., Colomb, R.M.: Managing ontologies: a comparative study of ontol-
ogy servers. In: ADC ’07: Proceedings of the eighteenth conference on Australasian
database, Darlinghurst, Australia, Australia, Australian Computer Society, Inc.
(2007) 13–22

16. Ding, Y., Fensel, D.: Ontology library systems: The key to successful ontology
reuse. In: Proceedings of SWWS’01, The first Semantic Web Working Symposium,
Stanford University, USA. (2001) 93–112

17. Komulainen, V.: Public services for ontology library systems. Master’s thesis,
University of Helsinki, Department of Computer Science (January 2007)

18. Eklund, P., Roberts, N., Green, S.: Ontorama: Browsing rdf ontologies using a
hyperbolic-style browser. In: First International Symposium on Cyber Worlds,
CW02, Theory and Practices, IEEE Press. (2002) 405–411

19. Kauppinen, T., Henriksson, R., Väätäinen, J., Deichstetter, C., Hyvönen, E.:
Ontology-based modeling and visualization of cultural spatio-temporal knowledge.
In: Developments in Artificial Intelligence and the Semantic Web. Proceedings of
the 12th Finnish AI Conference STeP 2006. (October 26–27 2006)

20. Viljanen, K., Tuominen, J., Känsälä, T., Hyvönen, E.: Distributed semantic con-
tent creation and publication for cultural heritage legacy systems. In: Proceedings
of 2008 IEEE International Conference on Distibuted Human-Machine Systems,
IEEE Press (2008)

21. Valkeapää, O., Alm, O., Hyvönen, E.: Efficient content creation on the semantic
web using metadata schemas with domain ontology services (system description).
In: Proceedings of the European Semantic Web Conference ESWC 2007, Innsbruck,
Austria, Springer (June 4–5 2007)

22. Valkeapää, O., Hyvönen, E.: A browser-based tool for collaborative distributed
annotation for the semantic web. In: Proceedings of the Semantic Authoring and
Annotation Workshop, 5th International Semantic Web Conference. (November
2006)

23. Hyvönen, E., Ruotsalo, T., Häggström, T., Salminen, M., Junnila, M., Virkkilä,
M., Haaramo, M., Mäkelä, E., Kauppinen, T., , Viljanen, K.: Culturesampo–finnish
culture on the semantic web: The vision and first results. In Robering, K., ed.:
Information Technology for the Virtual Museum. LIT Verlag, Berlin. (Nov 2007)

24. Hyvönen, E., Viljanen, K., Mäkelä, E., Kauppinen, T., Ruotsalo, T., Valkeapää,
O., Seppälä, K., Suominen, O., Alm, O., Lindroos, R., Känsälä, T., Henriksson,
R., Frosterus, M., Tuominen, J., Sinkkilä, R., Kurki, J.: Elements of a national
semantic web infrastructure—case study finland on the semantic web (invited pa-
per). In: Proceedings of the First International Semantic Computing Conference
(IEEE ICSC 2007), Irvine, California. (September 2007) IEEE Press.

Cooking HTTP content negotiation with Vapour

Diego Berrueta1, Sergio Fernández1 and Iván Frade2

1 Fundación CTIC
Gijón, Asturias, Spain

{diego.berrueta,sergio.fernandez}@fundacionctic.org
http://www.fundacionctic.org/

2 Universidad de Oviedo
Oviedo, Asturias, Spain
ivan.frade@gmail.com

http://www.uniovi.es/

Abstract. The Semantic Web is built upon distributed knowledge pub-
lished on the Web. But this vision cannot be implemented without some
basic publishing rules to make the data readable for machines. Publi-
cation of RDF vocabularies must receive special attention due to their
important role in the Semantic Web architecture. In this paper we de-
scribe a scripting web-based application that validates the compliance
of a vocabulary against these publication rules. Practical experimenta-
tion allows to illustrate and to discuss some common problems in the
implementation of these rules.

1 Introduction

The Semantic Web is a big container, a universal medium for data, information
and knowledge exchange. However the Semantic Web is not only about putting
data on the Web, there are some publishing rules. Tim Berners-Lee outlined
four basic principles [2] to publish Linked Data on the Web [5]. These rules
describe how URIs must be used as names for things, and how to provide useful
information on these things and other related ones. Although there are guidelines
to coin adequate URIs for things [11], there is still the need to provide the best
representation of the information for each request depending on each kind of
client agent, human or software.

Web documents are retrieved using mainly the HTTP [8] protocol. This pro-
tocol provides a mechanism known as content negotiation. By means of content
negotiation, it is possible to serve Web content in the format or language pre-
ferred by the requester (if it is available, obviously). Using transparent content
negotiation in HTTP [9] has many benefits [12], and it can be implemented using
different techniques in the Apache web server, as we describe in more detail in
Section 2 of this paper. Section 3 introduces a scripting application that pro-
vides help and guidance to implement correctly and to debug HTTP content
negotiation. In Section 4 the compliance of some of the most used vocabularies
in the Semantic Web is evaluated with respect to the publishing rules. Finally,
Section 5 presents some conclusions and future work.

2 Content negotiation with Apache: Recipes

Nowadays, the Apache HTTP Server is the most used Web server3, and it pro-
vides three different approaches to implement content negotiation4:

Type Map: Explicit handlers are described in a file (.var) for each resource.
The necessary configuration is quite complicated and tedious, therefore this
method is hardly used.

MultiViews: Based in the MIME-type and names of the files in a direc-
tory, MultiViews serves the most appropriate file in the current directory
when the requested resource does not exist. It returns an additional header
(Content-Location) to indicate the actual location of the file. This method
can be extended using the Apache module mod mime to associate handlers to
new file extensions. However, this solution has a quite important problem:
it only works if the files exist in the same directory.

Rewrite request: Probably because the two alternatives above do not pro-
vide an easy solution, the most widely used method is one which was not
specifically designed to implement content negotiation. This mechanism uses
the module mod rewrite in order to rewrite the request according to some
ad-hoc rules. As a result, requests (for objects that are not known to be in-
formation resources) are redirected using the HTTP 303 status code, to the
URI of the appropriate content depending on the format requested. Obvi-
ously, some time is lost with the extra HTTP round-trip, but it is negligible
for many applications, as well as mandatory according the httpRange-14
resolution from the TAG5.

There is some ongoing work by W3C on Best Practice Recipes for Publishing
RDF Vocabularies [3], a document which contains several recipes that advice on
how to publish RDF/OWL Vocabularies using mod rewrite. This “cookbook”
provides step-by-step instructions to publish vocabularies on the Web, and gives
example configurations designed to address the most common scenarios.

However, the Recipes are not perfect, and there is at least one important
issue to be solved6. Tim Berners-Lee reported that “the recipe for responding
to an accept header only responds to a header which EXACTLY matches [the
rule antecedent]”. For those requests which contain values for the Accept header
such as text/* or application/rdf+xml;q=0.01, where wildcards or q-values
are used, the actual representation served by the rules proposed in the Recipes
might differ from the expected one. This is a serius problem of the Recipes, but
it can be easily solved using a script at server-side.

3 http://www.netcraft.com/survey/ (retrieved 13/Mar/2008)
4 http://httpd.apache.org/docs/2.0/content-negotiation.html
5 http://www.w3.org/2001/tag/issues.html#httpRange-14
6 http://www.w3.org/2006/07/SWD/track/issues/58 (retrieved 13/Mar/2008)

3 Vapour: a scripting approach to debug content
negotiation

The previous section has shown that a correct implementation of content nego-
tiation is not an easy task. Futhermore, manually testing an implementation is
not complex, but it is long and cumbersome. Although it can be done with tools
such as cURL7, this process is not handy, specially for intensive or repetitive
tests against a vocabulary.

Fig. 1. Example of a report summary made by Vapour.

In order to facilitate the task of testing the results of content negotiation
on a vocabulary, we developed a web-based application called Vapour8. This
application provides a service that makes multiple requests to a set of URIs
and runs a test suite specifically designed to check the responses of the server
against the best practices defined in the Recipes. Tests are executed against
the vocabulary URI, a class URI and a property URI (the latter two can be
automatically detected). Based on the input parameters, the application provides
a pointer to the specific recipe, in case the user wants to learn more on how to
configure the web server. Vapour stores all assertions into an in-memory RDF
store, using a combination of EARL [1], HTTP Vocabulary [10] and an RDF
representation of the best practices of the Recipes. Thus Vapour can provide the

7 Richard Cyganiak’s explanation of how to use cURL to debug con-
tent negotiation, blog post available at: http://dowhatimean.net/2007/02/

debugging-semantic-web-sites-with-curl
8 http://vapour.sourceforge.net/

reports both in HTML and in RDF, using content negotiation. The HTML view
displays a clean and concise pass/fail report of each set of tests (Figure 1), as well
as a detailed explanation of its findings that includes a graphical representation
of the HTTP dialog. Needless to say, the examples included in the Recipes are
successfully validated by Vapour.

The application is written in Python, and it uses common Python libraries
such as urllib, httplib, web.py and RDFLib. Scripting languages such as Python
allow an agile development of applications in a short time with little resources.
Source code of Vapour is available on SourceForge9, and an online demo of the
service is also available10.

Fig. 2. High level architecture of Vapour.

As depicted in Figure 2, Vapour has a simple and functional design that
fulfils the objectives of the project. There are three components:

cup is the web front-end. It uses the web.py framework and the Cheetah tem-
plate engine, and it provides a web interface that allows the user to interact
with other components of the application in a simple way. The architecture
has been designed to allow other kind of interfaces. For instance, a command
line interface is also provided.

teapot is the core of the application. It launches HTTP dialogs (with and with-
out content negotiation) to evaluate the response status code and content-
type. Teapot requests the URI of the vocabulary, and also the URIs of a
class and a property from the vocabulary. All the resulting assertions are
inserted into the RDF store.

strainer is the module in charge of generating the reports for each test per-
formed by the application. It queries the RDF model using SPARQL to get

9 http://sourceforge.net/projects/vapour/
10 http://idi.fundacionctic.org/vapour

the result and trace of each test, and it produces a report in XHTML or
RDF/XML. For the XHTML reports, we also use Cheetah templates.

The service can be deployed as a normal CGI in Apache or using a Python
web framework. We reviewed the security of the application avoiding some com-
mon problems in this kind of applications, such as limiting requests per client.

4 Experimental results

Practical experimentation illustrates some common problems of how content
negotiation is implemented, and enables the discussion on these problems. We
checked some RDFS and OWL vocabularies published on the web. We chose the
most frequently used vocabularies, in terms of number of instances, according
to the last scientific study [7]. However, this ranking is aging (2004), so we also
included some newer vocabularies, such as SKOS, DOAP and SIOC, which are
also popular according to more up-to-date sources11.

Table 1. Ratio of passed tests / total tests for a list of widely used vocabularies in the
semantic web.

Namespace Accept Accept Default
RDF HTML response

http://www.w3.org/1999/02/22-rdf-syntax-ns# 3/3 N/A RDF/XML
http://www.w3.org/2000/01/rdf-schema# 3/3 N/A RDF/XML
http://xmlns.com/foaf/0.1/ 3/3 3/3 HTML
http://purl.org/dc/elements/1.1/ 2/2 0/2 RDF/XML
http://www.w3.org/2003/01/geo/wgs84 pos# 3/3 0/3 RDF/XML
http://rdfs.org/sioc/ns# 3/3 0/3 RDF/XML
http://www.w3.org/2004/02/skos/core# 3/3 3/3 RDF/XML
http://usefulinc.com/ns/doap# 3/3 0/3 RDF/XML
http://purl.org/rss/1.0/ 1/3 0/3 HTML
http://semantic-mediawiki.org/swivt/1.0# 0/3 0/3 text/plain

Table 1 summarizes the results of running Vapour against a list of ten pop-
ular vocabularies of the semantic web. These results provide an approximation
to the quality of the publication of vocabularies on the web. All the vocabular-
ies were retrieved on 12/Mar/2008. For each vocabulary, the vocabulary URI, a
class URI and a property URI were tested (except for Dublin Core, which does
not have any class). The results show that most vocabularies are correctly pub-
lished as RDF. However, it is significant that most vocabularies do not correctly
provide HTML representations of the resources, even if they are available. Addi-
tionally, some vocabularies return an incorrect MIME type, such as text/plain
or application/xml.
11 See the ranking at http://pingthesemanticweb.com/stats/namespaces.php (retrieved

12/Mar/2008) by PingTheSemanticWeb.com [6]

5 Conclusions

Content negotiation is a powerful technique. Although the basic mechanism is
simple, it is often badly implemented. Vapour is useful to debug and to provide
advice on how to solve common problems, as well as to provide quality assurance
in the best possible way.

The application presented in this paper is fairly simple, but it actually helps
to debug the implementation of content negotiation in web servers. It is par-
ticularly interesting that Vapour provides the results also in RDF . Using this
machine-readable format, it should be easy to build another service on top of
Vapour, and to use these data for other tasks, such as a service to check the
compliance of a specific collection of vocabularies published on the Web.

Current best practices (and consequently, Vapour) should probably be up-
dated to cover new methods to publish RDF data, such as RDFa [4] embedded
in XHTML pages. In the future, we would like to extend Vapour to cover more
generic validations in Linked Open Data scenarios, and to help webmasters to
better understand some common implementation issues.

References

1. S. Abou-Zahra. Evaluation and Report Language (EARL). Working draft, W3C,
2007.

2. T. Berners-Lee. Linked Data Design Issues. Available at http://www.w3.org/

DesignIssues/LinkedData.html, 2006.
3. D. Berrueta and J. Phipps. Best Practice Recipes for Publishing RDF Vocabular-

ies. Working draft, W3C, 2008.
4. M. Birbeck, S. Pemberton, and B. Adida. RDFa Syntax, a collection of attributes

for layering RDF on XML languages. Technical report, W3C, 2006.
5. C. Bizer, R. Cyganiak, and T. Heath. How to Publish Linked Data

on the Web. Available at http://www4.wiwiss.fu-berlin.de/bizer/pub/

LinkedDataTutorial/, 2007.
6. U. Bojars, A. Passant, F. Giasson, and J. Breslin. An Architecture to Discover and

Query Decentralized RDF Data. In 3rd Workshop on Scripting for the Semantic
Web, 2007.

7. L. Ding, L. Zhou, T. Finin, and A. Joshi. How the Semantic Web is Being Used:
An Analysis of FOAF Documents. In 38th International Conference on System
Sciences, January 2005.

8. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616: Hypertext Transfer Protocol - HTTP/1.1. RFC, IETF, 1999.

9. K. Holtman and A. Mutz. Transparent Content negotiation in HTTP. RFC, IETF,
1998.

10. J. Koch, C. A. Velasco, and S. Abou-Zahra. HTTP Vocabulary in RDF. Technical
report, W3C, 2007.

11. L. Sauermann and R. Cyganiak. Cool URIs for the Semantic Web. Working draft,
W3C, 2007.

12. S. Seshan, M. Stemm, and R. Katz. Benefits of Transparent Content Negotiation
in HTTP. In Proceedings of the IEEE Globcom 98 Internet Mini-Conference, 1998.

The Talia library platform
Rapidly building a digital library on Rails

Michele Nucci1, Daniel Hahn2, and Michele Barbera2

1 Semedia Group - 3mediaLabs
Università Politecnica delle Marche

mik.nucci@gmail.com
2 NET7 - Pisa

hahn@netseven.it

Abstract. Talia is a web-based distributed digital library and publish-
ing system, designed for scholarly research in philosophy. Talia is based
on semantic web technology; it’s being developed with the Ruby on Rails
web framework.
Rails is a relatively new environment, which allows developers to eas-
ily create well-structured web applications. By combining its power with
semantic web technology and leveraging on existing solutions like Ac-
tiveRDF, it is possible to quickly create a full-featured semantic library
platform, from scratch, in a short time.
Talia does not aim at creating new semantic web technology as such, but
at providing practical solutions for embedding the existing technology in
modern web applications.
This paper focuses on a few select features of Talia to show the possibil-
ities.

1 Project

Discovery3 is a European project to create an extensive online library for philoso-
phers. The four content partners of the project will provide tens of thousands
digitised and annotated pages, so that the project will start with a large body
of material.

Philosophers usually work in a traditional, print-and-paper based way. How-
ever, finding all relevant publications on a topic is difficult and acquiring copies
is yet another matter. This is especially true for original manuscripts, which can
be notoriously hard to acquire [1].

By creating a comprehensive resource with original manuscripts and sec-
ondary writings, we can provide an invaluable tool to the scholarly research
community.

Discovery will be based on Philosource, a federation of interlinked online
libraries. The libraries currently use the Hyper platform. Hyper was created for
the preceding HyperNietzsche project (now NietzscheSource4).
3 http://www.discovery-project.eu/
4 http://www.nietzschesource.org/

The Hyper platform was developed specifically for a Nietzsche library. Par-
ticular assumptions about Nietzsche are hardcoded into the application, and the
codebase is not flexible enough to be a viable long-term solution for the project.
It will be superseded by the Talia platform described in this paper.

In the humanities, the text itself is the subject of study. Talia aims to provide
an integrated library system that offers tools to work with original content. This
is in marked contrast to citation systems like CiteSeer5, CiteULike6 or even
online archives like arXiv7. These focus on bibliographical metadata, the actual
content is not more than an opaque, downloadable document.

Talia provides a tight integration between a semantic backend store and
a powerful interface toolkit, making it unlike existing “infrastructure” library
systems, such as BRICKS [2] or Fedora8. These provide a backend on which an
interface has to be built from scratch. The JeromeDL system [3] is somewhat
similar to Talia, but aimed at a different audience.

2 Requirements and Technology

Within the Discovery project, Talia does not exist in a vacuum – it’s a means
to an end. There are a number of features and components that must be imple-
mented in Talia to make the software useful within the project:

– Users expect that the User interface contains all features that are already
present on the Hyper platform.

– Metadata and ontology support is essential. Each group of scholars will
create their own domain ontology to order their material.

– A Remote Federation API has to be implemented to allow automatic
bidirectional references between documents in different libraries.

– Publication and Workflow. Scholars will be able to publish new results
online. Talia must offer a number of workflow models for peer-reviewed pub-
lication.

A speedy development is also essential, since the existing content has to be
migrated in the second year of the project and Talia must be running for the
project to succeed.

The rapid development of Talia would not be possible without leveraging
existing technology, both from commercial web development and semantic web
research.

– Ruby on Rails9 is a web development framework that has been picking
up a lot of pace recently. It uses the Model-View-Controller [4] pattern and
allows Developers to create full-featured web applications with a minimal
amount of code. It’s available under the MIT license [5].

5 http://citeseer.ist.psu.edu/
6 http://www.citeulike.org/
7 http://arxiv.org/
8 http://www.fedora-commons.org/
9 http://www.rubyonrails.com/

– ActiveRDF10 [6] is a Ruby toolkit that provides an object-RDF mapping
for a number of existing RDF triple stores.

– An RDF store is central to the application. During development the Red-
land RDF11 engine is used, but Talia can work with any storage that is
supported by ActiveRDF. The development team will also provide a setup
for the Sesame12, store which supports inferencing.

– Of course Talia will also need “normal” web application features, like user
sign-on and permission management.

As a general rule, Talia tries to avoid any unnecessary complexity. This is
also true for the use of RDF metadata:

– Talia is schema-agnostic. Ontology descriptions may be used by the system;
however the software does not rely on their presence. It also doesn’t attempt
to enforce any kind of schema rules on the RDF data.

– Talia does not attempt to do any inferencing on the RDF data. If this is
needed, it will be the responsibility of the RDF store.

– Talia tries not to use specialised RDF store features, in order to be compat-
ible with any RDF endpoint.

3 RDF storage and querying

Talia uses a hybrid RDBMS/RDF store solution in the storage backend. A re-
lational database as a highly reliable, transaction-aware storage for the critical
data. It is kept in sync with an RDF datastore for advanced semantic features,
which may range from SPARQL queries to inferencing, depending on the type of
the store. Using a standard RDF store also provides an easy way to interoperate
with semantic web software.

The hybrid design is feasible because a Talia library has relatively static
content. Data access will mostly be read-only, the few modifications can be
easily synchronised without much overhead for the system.

Talia provides a simple API that hides most of the internal workings of the
data store. Each document is represented as an object of type Source; the object
provides access provides access to all properties of the document, no matter if
defined as RDF or not. Listing 1.1 shows an example of this API.

Listing 1.1. Basic Operations on a document
document = TaliaCore : : Source . new("http :// u r l . com/my_document")
document . workf low_state = 2 # non−r d f proper ty
document . dcns : : t i t l e << "My␣ f i r s t ␣document" # RDF proper ty
author . i n v e r s e . dcns : : c r e a t o r # " inve r s e "
Replace t r i p l e
document . dcns : : t i t l e . r ep l a c e ("My␣ f i r s t ␣document" , "New␣name")
document . dcns : : t i t l e . remove # remove t r i p l e s

10 http://www.activerdf.org/
11 http://librdf.org
12 http://www.openrdf.org/

The interface borrows heavily from the ActiveRDF interface, and ActiveRDF
is used in the backend to connect to the RDF store. However, ActiveRDF was
designed mostly as an easy read interface for web applications. The library was
substantially refactored to improve the data manipulation capabilities (such as
deleting triples). Other modifications were made to make it easier to call the
library indirectly as part of a backend, instead of directly as a part of a script.

3.1 Queries

Talia provides an unified query interface for both database and RDF meta-
data, as shown in listing 1.2. For normal queries, the interface hides most of
the complexity and automatically decides wether to use a RDF/SPARQL or an
RDBMS/SQL query on the backend.

Listing 1.2. Querying for documents
The f o l l ow i n g w i l l do a query on the RDF s t o r e
TaliaCore : : Source . f i nd (: a l l , N : :DCNS. Creator => "Danie l ")
The f o l l ow i n g w i l l LIMIT a query t ha t uses RDF and DB data
TaliaCore : : Source . f i nd (: a l l , N : :DCNS. Creator => "Danie l " ,

: workf low_state => 2 , : l im i t => 5)

During development we found that the SPARQL [7] query language is not al-
ways best suited for web applications, where large result sets are usually broken
down into individual pages. This is usually done by using the LIMIT, OFFSET
and COUNT operators to retrieve the overall size and a subset of the (possi-
bly huge) result set. This method requires, however, that whole query can be
executed as a single statement.

SPARQL does not provide an easy way express OR statements in a single
query (for example “subtype OR supertype”), and it’s filter mechanism is highly
inefficient for large result sets. A straightforward COUNT implementation is
also missing from the standard. Another problem is that in different RDF stores
the SPARQL specifications is implemented to various extents, making it difficult
to provide a store-agnostic solution.

Early versions of Talia also encountered the problem of reconciling “mixed”
queries that use both the database and the RDF store. With the new hybrid
design it will be possible to answer each query either from the RDF data or the
database. This will allow the backend engine to select the query language best
suited for the job.

The built-in query mechanism is optimised for compatibility with a number
of RDF stores and RDBMS. If this is too limiting the developer has the choice
issue queries (either SQL or SPARQL) directly and access store-specific features.

3.2 Ontologies

As mentioned, Talia’s core functionality does not rely on an ontology description.
Still, if one is needed, it can easily be loaded into the RDF store and queried
from Talia.

Talia provides a SourceClass abstraction to represent RDF classes and to
navigate the ontology hierarchy, as shown in listing 1.3. The user may also re-
trieve metainformation from the ontology, supertypes or subtypes of a class.

Listing 1.3. Navigating the ontology
Get the f i r s t r d f type and ge t sub− and sup e r c l a s s e s
f i r s t_ c l a s s = document . rdf_types . f i r s t
sup = f i r s t_ c l a s s . supertypes

4 Semantic UI templates

Source objects can be used in HTML templates to create a web representation a
document. Talia uses Rails’ standard rhtml templates that contain HTML with
embedded ruby code. Listing 1.4 show a simple template that renders a HTML
snippet with some properties from the RDF store.

Listing 1.4. Sample rendering template
<p> The cur rent document i s <%= document . r d f s : : label . f i r s t %>
i t ’ s authored by <%= document . dcns : : c r e a t o r . j o i n (" , ␣") %> </p>

Talia needs a rich user interface for each document type. Unlike many seman-
tic web applications that use an “auto-generated” generic interface for semantic
metadata, Talia needs to provide specialised views depending on the RDF type
of a resource.

A automatic semantic template engine is built into Talia to do just that.
Listing 1.5 shows a simple example; the site developer simply passes the Source
object to the source_snippet UI widget, and the semantic template engine does
the rest.

Listing 1.5. Rendering a document with a semantic template
<% my_document = Tal iaCore : : Source . new(ur l ,

N : :MYONT: : the_type) %>
<%= widget (: source_snippet , : source => my_document) %>

When the template engine renders a document, it will look at the document’s
RDF type and attempt to find a template which has a name that matches
the namespace and name of one of those types. In the example the document
has the type myont:the_type; if the template engine finds a template named
_myont_the_type.rhtml it will use it to render the document. Otherwise it will
fall back to a default template.

The template engine allows the UI templates to be easily created by profes-
sional web designers who don’t know semantic web concepts. In the final web
application, template selection happens automatically and it’s very easy to add
new templates. By providing a sensible default template, the engine is still able
to deal with elements of new and unknown types.

5 Conclusions

This paper showed a quick glimpse of Talia’s semantic web features and demon-
strated how semantic web development can be made a breeze by combining the
power of an existing framework with a dynamic RDF store API.

More semantic web features will be included in future version, like semantic
links between remote libraries, user-created metadata and integration with the
DBin desktop application.

Talia is freely available from its home page13, the page also contains some in-
structions and additional documentation for the software. There’s also an online
demo of the current development version14.

Acknowledgements

This work has been supported by Discovery, an ECP 2005 CULT 038206 project
under the EC eContentplus programme.

The authors wish to thank Eyal Oren and the ActiveRDF team for their
work and support.

References

1. D’Iorio, P.: Nietzsche on new paths: The hypernietzsche project and open scholar-
ship on the web. In Fornari, C., Franzese, S., eds.: Friedrich Nietzsche. Edizioni e
interpretazioni. Edizioni ETS, Pisa (2007)

2. Risse, T., Kneẑevic, P., Meghini, C., Hecht, R., Basile, F.: The bricks infrastructure
- an overview. In: The International Conference EVA, Moscoww (2005)

3. Kruk, S., Woroniecki, T., Gzella, A., Dabrowski, M., McDaniel, B.: Anatomy of a
social semantic library. In: European Semantic Web Conference. Volume Sematic
Digital Library Tutorial. (2007)

4. Reenskaug, T.: MVC Xerox Parc 1978-79. http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc-index.html (1979 [accessed March 2008])

5. MIT: MIT License. http://www.opensource.org/licenses/mit-license.php ([accessed
March 2008])

6. Oren, E., Debru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-Oriented
Semantic Web Programming. In: 16th International World Wide Web Conference
(WWW2007), Banff, Alberta, Canada. (8-12 May, 2007) 817–823

7. : SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/
(January 2008 [accessed March 2008])

13 http://trac.talia.discovery-project.eu/
14 http://demo.talia.discovery-project.eu/ - note that this site may not always

be online

Scripting User Contributed Interlinking

Michael Hausenblas1, Wolfgang Halb1, and Yves Raimond2

1 Institute of Information Systems and Information Management,
JOANNEUM RESEARCH, Steyrergasse 17, 8010 Graz, Austria

firstname.lastname@joanneum.at
2 Centre for Digital Music,

Queen Mary, University of London, UK
yves.raimond@elec.qmul.ac.uk

Abstract. When building a linked-data dataset for humans and ma-
chines, a range of issues emerges. In this paper we discuss our findings
regarding the implementation of riese (http://riese.joanneum.at), the
RDFized and interlinked version of the Eurostat data. The contribution
of our work is twofold: On the one hand we propose a new way of cre-
ating semantic links, labelled as User Contributed Interlinking, on the
other hand we discuss integration issues regarding Ajax and embedded
RDF-metadata.

1 Motivation

In early 2007 the Linking Open Data (LOD) community project has been launched
within the W3C Semantic Web Education and Outreach (SWEO) group. The
LOD community project bootstraps the Semantic Web by publishing datasets
in RDF [1] on the Web. By creating large numbers of typed links between
datasets [2, 3] Semantic Web application development is fostered.

Several issues emerge when building an LOD dataset; from the schema level—
that is how to map from, e.g., a relational schema to an RDF Schema—to the
proper and meaningful assignments of URIs to entities. One key success factor is
the used interlinking method. Several approaches exist for semantically linking
data.

With riese (“RDFizing and Interlinking the EuroStat Data Set Effort”) [4]
we have contributed to the LOD cloud by adding the Eurostat data. The im-
plementation of riese heavily depends on scripting languages such as PHP and
JavaScript. In this paper we report on our findings when implementing the riese
dataset. We introduced a new way of enriching datasets called “User Contributed
Interlinking” (UCI), which is a Wiki-style approach enabling users to add seman-
tic (that is: typed) links between data items on a URI-basis.

The paper is structured as follows: In section 2 we briefly introduce the LOD
principles and discuss the current state of the LOD datasets. Then, in section 3
we explain the riese implementation, including its UCI-interface and Web 2.0
issues. In 4 we discuss the generalisation of the UCI. Finally, we conclude our
findings in section 5.

2 A Linking Open Data Overview

According to Tim Berners-Lee3 it is desirable to interlink datasets, thus allowing
the discovery of more data. Interlinking is one of the key factors that made the
(hypertext) Web so successful. The same principle holds for the Semantic Web;
rather than creating (untyped) hyperlinks between different documents, semantic
links are used to interlink data items from different sources.

SW
Conference

Corpus

DBpedia RDF Book
Mashup

DBLP
Berlin

Revyu

Project
Guten-
berg

FOAF
profiles

Geo-
names

Music-
brainz

Magna-
tuneJamendo

World
Fact-
book

DBLP
Hannover

SIOC
profiles

Sem-
Web-

Central

Euro-
stat

ECS
South-
ampton

BBC
Later +
TOTP

Doap-
space

Open-
Guides

Gov-
Track

US
Census
Data

W3C
WordNet

flickr
wrapprWiki-

company

Open
Cyc

lingvoj

Onto-
world

BBC
John
Peel

Flickr
exporter

Audio-
Scrobbler QDOS

updated

RKB
Explorer

NEW!
riese

NEW!

Fig. 1. The Linking Open Data dataset cloud in early 2008.

The Linking Open Data (LOD) project [2] is an open, collaborative effort
carried out in the realm of the W3C SWEO4 community projects initiative.
Notable landmarks within the LOD community project include the publication
of common, real-world datasets such as Wikipedia, Geonames and Musicbrainz.
Currently, the project includes over 30 different datasets (cf. Fig. 1, by courtesy
of Richard Cyganiak5), ranging from rather centralised ones (such as DBpedia)
to those that are very distributed (cf. the FOAF-o-sphere).

From one billion triples and 250k links in mid-2007 the LOD dataset has
grown to over two billion triples and 3 million links in early 2008, representing
a steadily growing, open implementation of the Linked Data principles detailed
below. It should be noted that we do not view this dataset as a fixed, delineated

3 http://www.w3.org/DesignIssues/LinkedData.html
4 http://www.w3.org/2001/sw/sweo/
5 http://richard.cyganiak.de/2007/10/lod/

or closed entity, but rather a snapshot of a major data ecosystem within the
Semantic Web at this point in time.

Linked Data Principles The linked data principles read as follows:

1. All items should be identified using URI references (URIrefs)6, which implies
that ideally no blank nodes are used7;

2. All URIrefs should be dereferenceable—using HTTP URIs allows looking up
the items identified through URIrefs; see also the so called “http-range-14
TAG finding”8);

3. When looking up an URIref—that is, a property is interpreted as a hyperlink—
it leads to more data, which is usually referred to as the follow-your-nose
principle [5];

4. Links to other URIrefs should be included in order to enable the discovery
of more data.

Interlinking [6] describes how to publish linked data, and further discusses the
two basic approaches for creating links to other datasets. Generally speaking,
the RDF links can either be set manually or generated by automated linking
algorithms for large datasets. For the latter case Raimond et.al. [7] have shown
that simple interlinking algorithms produce rather poor results.

Naive approaches trying to perform a simple literal lookup are likely to fail;
for instance, when trying to interlink data from the geographical domain with
Geonames it is possible to do a simple literal lookup using the search facility
provided by Geonames. However, when querying for the city Vienna almost 20
results will be returned as there exist that many cities named Vienna around the
world. Advanced approaches such as described in [7] are needed to disambiguate
similar matches and finally create appropriate interlinks. Still, there is no guar-
antee that the automatically generated interlinks are truly relevant. Moreover
the automated process is also restricted to predefined datasets implying that
only a subset of the data available on the Semantic Web is considered when
looking for potential interlinks.

3 riese: Scripting LOD for humans and machines

With riese (launched in early 2008), we aim at offering a Semantic Web version
of the publicly accessible data provided by the Eurostat data source, for both
humans and machines. We currently serve some 3.6 million RDF triple in total,
including the interlinking to Geonames data. There is ongoing work to cover
the total Eurostat data (yielding some 4 billion RDF triple) and extending the
interlinks to DBpedia, WordNet and other LOD data sets.

In Fig. 2 the riese system architecture is depicted. The data from Eurostat is
converted into RDF/XML using SWI-Prolog, and dumped into the file system.
6 http://www.w3.org/TR/rdf-concepts/#section-Graph-URIref
7 http://iandavis.com/blog/2007/03/bnodes-out
8 http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html

This is to say that for each table—in tab separated values (TSV) format—
from the Eurostat download9 a corresponding RDF/XML (content.rdf) file,
holding the statistical data, exists. The riese core schema is modelled using RDF-
Schema [8] and comprises three main classes: riese:Dataset, riese:Item and
riese:Dimension. A dataset is the logical container of either more sub-datasets
(related via skos:narrower) or data items. We refer to [4] for further details on
the modelling issues of the schema.

An Apache 2 Server along with a set of PHP scripts is used to render the
pages in XHTML+RDFa [9]. The riese front-end is very light-weight; some 450
LOC in PHP and ca. 130 LOC in JavaScript were necessary to create a pleasant
yet functional Web-based user interface.

Fig. 2. The system architecture of riese.

Additional to the statistical data available for both humans and machines,
riese offers another novel feature: we have implemented a User Contributed In-
terlinking (UCI) interface, discussed in the following.

9 http://europa.eu/estatref/download/everybody/

3.1 UCI in riese

The User Contributed Interlinking (UCI) part of riese, the UCI-interface, can
be understood as an agent in the sense of [10]. The UCI-interface allows to list,
add, and remove user-contributed semantic links from each of the statistical data
items10.

Operation Query String

list semantic links of the
data item sURI

?src=sURI

add a semantic link to the
data item sURI

?src=sURI&property=pURI&target=tURI

remove a semantic link from
the data item sURI

?src=sURI&property=pURI&target=tURI&remove

Table 1. Supported operations of the UCI-interface.

The operations supported by the current version of the UCI-interface are
listed in Table 1. Note that the base service URI http://riese.joanneum.
at/interlinking/uci-interface.php is assumed. With an additional format
parameter the output format can be controlled. The default format is XHTML,
an RDF/XML representation can be obtained using format=RDF.

To avoid concurrent editing a simple lock mechanism has been implemented.
In case two users simultaneously want to add a semantic link to a data item, an
according “please-hold-the-line” message is displayed.

It has to be noted that the UCI data is kept in a separate document—that
is, a separate RDF/XML document, uci-store.rdf, per data item—in order
to allow updates independently from statistical-data updates.

1 @PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .
2 @PREFIX foaf: <http :// xmlns.com/foaf /0.1/ > .
3 @PREFIX riesed: <http :// riese.joanneum.at/data/>.
4

5 <riesed:economy >
6 rdfs:seeAlso <http :// www.unece.org/Welcome.html > ;
7 foaf:topic <http :// dbpedia.org/resource/Economy > .

Listing 1.1. An example result from a UCI query.

To obtain, for example, an RDF representation of the UCI data for the
data item http://riese.joanneum.at/data/economy, one would use the query

10 http://riese.joanneum.at/data/

string ?src=http://riese.joanneum.at/data/economy/&format=RDF. The re-
sult (rendered in RDF/N3 for better readability, here) would then be as shown
in listing 1.1.

The HTTP-GET-interface of the UCI itself contains some 270 lines of code
(LOC) in PHP, extensively making use of the RAP library11.

UCI User Interface On the client side we have implemented an user interface
that controls the UCI-interface using Ajax (the UCI-UI). The Yahoo! User In-
terface Library (YUI)12 has been utilised for panels, events, etc. but also for
the asynchronous communication. The UCI data is merged into the UCI user
interface at rendering time. Fig. 3 shows the UCI user interface “launch pad”:
For each data item a user may choose to add semantic links using the “I know
more” button, effectively launching the UCI-UI.

Fig. 3. UCI in riese - I.

In Fig. 4 the main UCI panel is depicted. Users can view, add, and remove
semantic links with it. Note how the subject of the RDF statement is implicitly
set to the data item from which it has been fired. Currently three semantic link
types (properties) are supported (owl:sameAs, rds:seeAlso, and foaf:topic).
We decided to control this part of the RDF statement as well strictly to (i) make
it easier to use for the average user from the street, and (ii) to avoid issues when
following-your-nose. Finally, the object of the RDF statement is the open part
of the UCI data. With open we mean that is is up to the user to determine what
URI to paste in. However, people are encouraged to use URIs pointing to RDF

11 http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/
12 http://developer.yahoo.com/yui/

Fig. 4. UCI in riese - II.

(or GRDDL-able) resources. The UCI implementation is still in an early stage;
further investigations both regarding scalability and usability are under way.

3.2 Issues in Web (2.0) Environments

Issues with embedded metadata and Ajax As described in [11] issues such as
the do-not-repeat-yourself principle, the locality of structured data, or self-
containment of descriptions need to be addressed when embedding metadata
in (X)HTML. As these are generic issues, they are not limited to a specific
methodology or technology, such as microformats13, eRDF14, or RDFa. For a
deeper discussion of these issues the reader is referred to [12].

We have encountered issues with the in-place creation of RDFa in the utilised
Ajax framework (YUI). Whenever rendering the metadata—expressed in RDFa,
in our case—directly in the DOM, a non-DOM-based extractor is not aware of the
RDF, hence unable to make use out of it. Take for example the RDFaDistiller15,
a REST-based, conforming RDFa-processor. When RDFaDistiller fetches the
content from a data item it is not able to access the DOM-only parts, hence they
are lost. This seems to be a general problem when using embedded metadata
along with dynamic content. We are not aware of a fix allowing a generic solution.
We note, however, that for example in a Last Call comment to RDFa this is
has been recorded as a known issue to be addressed in future versions of this
standard16.

Access of Semantic Web data sources Another integration issue turned out to be
the access of RDF-based resources. The use case in riese reads as follows: When
new data is available, one way to signal this is to subscribe to a news feed. We

13 http://microformats.org/
14 http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
15 http://www.w3.org/2007/08/pyRdfa/
16 http://www.w3.org/2006/07/SWD/track/issues/114

chose Atom [13] as the news feed format, as an corresponding RDF vocabulary
(AtomOwl [14]) exists.

1 <body about="http :// riese.joanneum.at/updates" instanceof="awol:Feed">
2 <div rel="awol:title" instanceof="awol:Content">
3 updates
4 </div >
5 <div id="main -updates">
6 <ul rel="awol:entry" instanceof="awol:Entry">
7 <li rel="awol:title" instanceof="awol:Content">
8 Compensation of employees - NACE J-K -

Current prices - Millions of euro - SA :
9

10
11 http :// riese.joanneum.at/data/na075
12
13
14

Listing 1.2. An AtomOwl data update example in XHTML+RDFa.

On the riese updates page (http://riese.joanneum.at/updates/) the data
news feed is made available in AtomOwl. The AtomOwl feed in turn is serialised
as XHTML+RDFa; see listing 1.2 for an excerpt of the updates page.

Using AtomOwl over XHTML+RDFa allows both humans and machines to
consume the data updates properly. A human user directly accessing the page
is able to view the updates, a Semantic Web agent capable of understanding
XHTML+RDFa can process the feed entries for its purposes. A real-world ex-
ample of how to use the AtomOwl-feed is provided in the following. In this
experiment we have programmed SPARQLBot17 to access and query the Ato-
mOwl embedded in the riese updates page. SPARQLBot offers a Web-based
interface to define commands, which in turn maps to a SPARQL query (shown
in listing 1.3).

1 PREFIX aowl: <http :// bblfish.net/work/atom -owl /2006 -06 -06/# >
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3

4 SELECT DISTINCT ?headline ?feed WHERE {
5 ?feed rdf:type aowl:Feed ;
6 aowl:entry ?entry .
7 ?entry aowl:title ?eTitle .
8 ?eTitle aowl:body ?headline .
9 }

10 LIMIT 10

Listing 1.3. A SPARQL query for data updates on riese.

17 http://semsol.org/semcamp/sparqlbot

Eventually, the same procedure can be applied to other scenarios, for exam-
ple, when attempting to consume news feeds in an online news-reader, such as
netvibes.com. It can be seen that certain indirections are necessary, however we
are confident that with the growing support of Semantic Web technologies—as
recently indicated by Yahoo!18—the burdens are likely to vanish.

4 Towards Generalising User Contributed Interlinking

With the User Contributed Interlinking (UCI) we have proposed a novel ap-
proach for creating high-quality interlinks by relying on the users. The UCI ap-
proach is motivated by the observation that generic, template-based algorithms
(such as described in [7]) are limited regarding the quality of the typed links.

For large datasets such as riese where the entire European statistics are
brought to the Semantic Web it might appear impractical at first sight to man-
ually generate interlinks to other datasets. It is obvious that it is not feasible
to have one person dedicated to manually looking for adequate related sources.
However, by applying the Wiki-principle we want to initiate a crowdsourcing
process that encourages users to contribute to linked datasets with similar en-
thusiasm as they already show in the case of Wikipedia. It has to be noted that
the proposed UCI-feature is in an early stage of development and the first of its
kind. The current implementation as it can be found in riese is meant to boot-
strap the community-involvement in the area of linked datasets. It should be
adapted to other datasets as well. Based on the experiences gained with the first
release of UCI the system and the related processes will be refined. User accep-
tance is the critical success factor of UCI and therefore we aim at implementing
as many of the best practices of Wikipedia as possible.

Sanger [15] was actively involved in the beginning of Wikipedia and has
identified several factors that led to the great success of the platform such as
openness and ease of editing. By inviting everybody to contribute we clearly
highlight the openness of UCI. In addition we are working on enhancing the
user experience by constantly improving the user interface design and keeping
the user requirements at an absolute minimum as for instance no registration is
required for using the UCI.

One of the disadvantages of common Wikis as identified in [16] is the lim-
itation that “Wiki content is generally not available in a machine-processable
format”. With UCI we directly address this issue as the target outcome RDF is
machine-processable per se. There are nevertheless still challenges left, such as
reaching a critical mass of contributors by providing appropriate incentives or
addressing data provenance issues. However, we would like to see a conversion
of the strong community-engagement from Web 2.0 to the Semantic Web and
contribute to the initiation of this transformation by providing useful tools such
as the UCI.

As a next step, we have prototypically implemented a generalised UCI in a
demonstrator called irs (which is for interlinking of resources with semantics).
18 http://www.ysearchblog.com/archives/000527.html

Fig. 5. A demonstrator for a generalised UCI: irs.

The irs demonstrator—implemented with ARC19—is available for testing pur-
poses at http://143.224.254.32/irs/. A screen shot of irs is shown in Fig. 5;
it enables users to create semantic links (currently owl:sameAs, rds:seeAlso,
and foaf:topic), to ask about existing links and to preview the (RDF) content.
Further, a simple version of provenance tracking is offered: By placing the state-
ments into a named graph (default is http://example.org/#unknown), one can
track down who stated what. A simple off-the-shelf SPARQL-endpoint is also
available in irs.

5 Discussion and Conclusion

While the Semantic Web itself may be regarded as a (backbone) infrastructure,
developers of Semantic Web applications have to be aware of issues arising with
it.

In this paper we have presented a Wiki-style approach for user contributed
(semantic) interlinking (UCI) in general, along with a discussion of tangible

19 http://arc.semsol.org/home

results. First we have implemented the UCI within riese, the RDFized and inter-
linked version of the European statistics. We have also addressed issues emerging
from using Semantic Web technologies in Web 2.0 (Ajax) environments.

With UCI we have showcased an approach potentially increasing the end-
user involvement in the Semantic Web. The acceptance of such features by the
community is crucial, hence we will keep working on improving the tools in order
to provide an enjoyable user experience.

Due to the usage of scripting languages, an efficient and effective development
of riese (and irs, alike) was made possible. The feature-testing cycle was kept
to a minimum; from a developer’s perspective it was possible to focus on the
important issue: functionality rather than configuration and heavy framework-
study.

Acknowledgements

The research reported in this paper was carried out in two projects: the “Knowl-
edge Space of semantic inference for automatic annotation and retrieval of multi-
media content” (K-Space) project20, partially funded under the 6th Framework
Programme of the European Commission, and the “Understanding Advertising”
(UAd) project21, funded by the Austrian FIT-IT Programme.

The authors would further like to thank the following people for their lively
input, discussions and support in implementation issues: Danny Ayers, Benjamin
Nowack, Tom Heath, and Richard Cyganiak.

References

1. G. Klyne, J. J. Carroll, and B. McBride. RDF/XML Syntax Specification (Re-
vised). http://www.w3.org/TR/rdf-concepts/, 2004.

2. C. Bizer, T. Heath, D. Ayers, and Y. Raimond. Interlinking Open Data on the
Web (Poster). In 4th European Semantic Web Conference (ESWC2007), pages
802–815, 2007.

3. G. Tummarello, R. Delbru, and E. Oren. Sindice.com: Weaving the Open Linked
Data. In The Semantic Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, pages 552–565, 2007.

4. W. Halb, Y. Raimond, and M. Hausenblas. Building Linked Data For Both Humans
and Machines. In WWW 2008 Workshop: Linked Data on the Web (LDOW2008),
Beijing, China, 2008.

5. L. Sauermann, R. Cyganiak, and M. Völkel. Cool URIs for the Semantic Web. W3C
Editor’s Draft, W3C Semantic Web Education and Outreach Interest Group., 2007.

6. C. Bizer, R. Cyganiak, and T. Heath. How to Publish Linked Data on the Web.
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/,
2007.

20 http://kspace.qmul.net/
21 http://www.sembase.at/index.php/UAd

7. Y. Raimond, C. Sutton, and M. Sandler. Automatic Interlinking of Music Datasets
on the Semantic Web. In WWW 2008 Workshop: Linked Data on the Web
(LDOW2008), Beijing, China, 2008.

8. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, RDF Core Working Group, 2004.

9. B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML: Syn-
tax and Processing. W3C Working Draft 21 February 2008, W3C Semantic Web
Deployment Working Group, 2007.

10. D. Ayers. Graph Farming. IEEE Internet Computing, 12(1):80–83, 2008.
11. B. Adida. hGRDDL: Bridging microformats and RDFa. Web Semantics: Science,

Services and Agents on the World Wide Web, 6(1):54–60, 2008.
12. M. Hausenblas, W. Slany, and D. Ayers. A Performance and Scalability Metric

for Virtual RDF Graphs. In 3rd Workshop on Scripting for the Semantic Web
(SFSW07), Innsbruck, Austria, 2007.

13. M. Nottingham and R. Sayre. The Atom Syndication Format. RFC 4287, Network
Working Group, 2005.

14. D. Ayers and H. Story. AtomOwl Vocabulary Specification . Namespace Document,
Atom Owl Working Group, 2006.

15. L. Sanger. The Early History of Nupedia and Wikipedia: A Memoir. In C. DiBona,
M. Stone, and D. Cooper, editors, Open Sources 2.0: The Continuing Evolution.
O’Reilly, 2005.

16. D. E. O’Leary. Wikis: ’From Each According to His Knowledge’. Computer,
41(2):34–41, 2008.

World of WebCraft — Mashing up World of
Warcraft and the Web

Knud Möller

Digital Enterprise Research Institute, National University of Ireland, Galway
knud.moeller@deri.org

Abstract. This short paper presents World of WebCraft, a set of tools
which together allow players of the MMORPG World of Warcraft to
generate photoblog-like Web representations of their in-game avatars.
This is achieved by periodically logging information of the location of
the avatar during the game, matching this information with in-game
screenshots and then uploading them to Flickr, using machine-tags as
annotations. Finally, an additional Web application uses the machine-
tagged pictures to generate the photoblog. The tools are implemented
using a combination of Lua and Ruby (two scripting languages), as well
as Objective-C.

1 Introduction

So-called MMORPGs (Massively Multiplayer Online Role-playing Game) such as
World of Warcraft (WoW) are online games in which players take the role of a fic-
titious, often mythical character (their avatar), explore a vast imaginary world,
solve quests, battle enemies, and thus gain riches, knowledge and new skills
within the game. Unlike traditional single-player games, an important factor in
MMORPGs is the fact that players don’t just interact with computer-generated
and -controlled characters, but instead with the avatars of other human players
who are online at the same time. In this way, players can form groups and tackle
situations in which a single player would have failed. It is the interaction with
others that lets these online games transcend simple computer games and move
into the realm of online social networks (OSN), an area that is more commonly
associated with platforms such as FaceBook, LinkedIn or Flickr: “At its essence
WoW is a social network; like minded people come together online to share a
common experience and make connections”[!] [6].

Users often choose to establish online identities in a number of different
online social networking sites. Unfortunately, these sites tend to be closed, and
their data not interlinked. E.g., this author has accounts on Flickr, FaceBook,
LinkedIn, Xing, Twine, YouTube and probably others he has already forgotten
about. Semantic Web technologies like FOAF1 and SIOC2, as well as the very

1 http://www.foaf-project.org/
2 http://www.sioc-project.org/

http://www.foaf-project.org/
http://www.sioc-project.org/

recent and prominent Social Graph API3 by Google have been proposed to
cure this problem and connect the various online identities of a person into a
whole [4,3]. Ignoring all potential problems which may occur when attempting
to integrate data from all these different services together, their nature as Web
services at least defines a general strategy for doing so: a person’s identity on
each site can be referenced by their profile identity URL, which can then be
related using a vocabulary such as FOAF. In the case of MMORPGs however,
this is not the case. While they do take place on the internet, they are not
located on the Web. Consequently, a player’s avatar also doesn’t have a natural
Web URL which could function as a reference.

This paper presents a strategy and (partial) implementation to overcome the
barrier between the online, but non-Web world of MMORPGs and traditional
OSNs. Taking the popular game World of Warcraft and the photo sharing site
Flickr as an example, we will show how various technologies play together to
generate a World of WebCraft — a mashup of World of Warcraft and the Web.

2 Architecure

Figure 1 shows a high-level overview of the approach taken for World of Web-
Craft. In this section, we will first describe the overall idea, and then focus each
of the individual components in turn.

"TravelLogger" addon

World of WebCraft"World of FlickrCraft"
Desktop Application

Linked Open Data

query

query

WoW Screenshots

Fig. 1: World of WebCraft High-level Architecture

3 http://code.google.com/apis/socialgraph/

http://code.google.com/apis/socialgraph/

In our setup, players can take screenshots of gameplay, which will automati-
cally be tagged with information such as who the player is, when the screenshot
was taken and where in the game world. This is possible by exploiting the dy-
namic nature of WoW’s game engine, which allows it to write plugins (usually
referred to as addons) to extend the game’s functionality and user interface. A
plugin called “TravelLogger” will periodically record the players position in the
world. After finishing a gaming session, a player can use the World of FlickrCraft
desktop application to match up screenshots and log entries, and then upload
the tagged screenshots to Flickr. While automatic tagging is useful in itself —
it alleviates the player of the tedious task of manual tagging —, the tagged
screenshots can now be used to generate a Web presence of the player’s avatar
through the World of WebCraft Web application4. By simply supplying their
Flickr profile URL, the player enables World of WebCraft to generate an pho-
tographic online diary for their avatar — a photoblog for an orc! Alternatively,
the player can also provide a link to their FOAF profile, given that it in turn
points to their Flickr profile. Finally, World of WebCraft will make the avatar’s
photoblog accessible on a stable, meaningful URL and provide the diary data
in a variety of formats (e.g., as RDF to contribute to the Web of Linked Open
Data [1,2]).

2.1 TravelLogger — Using the World of Warcraft API with Lua

Almost all user interface elements in World of Warcraft (with the obvious ex-
ception of the 3D graphics) — windows, buttons, chat panes, etc. — are imple-
mented on top an engine which is based on the dynamic scripting language Lua5.
Interaction between the UI and the game itself is handled through an events sys-
tem. Almost anything that can happen in the game world — the player or any
other object moves, monsters attack, spells are being cast, items sold and chat
messages sent, etc. — will fire an event, which can be registered and acted upon
by the Lua engine. WoW producer Blizzard have decided to open this system
up for external developers. This makes it possible to write plugins (or addons)
for WoW which can interact with the game events, extend the user interface,
etc. A comprehensive documentation for the WoW API is available through
http://www.wowwiki.com/World_of_Warcraft_API.

The TravelLogger addon, which was developed as part of the World of Web-
Craft project, is a simple, light-weight plugin which makes use of the extensible
WoW-engine to create a log of the avatar’s movements through the game world.
The plugin can be started and stopped from within the game using command
\tlog. While running, the plugin will call the methods GetPlayerMapPosition,
GetZoneText and GetSubZoneText in intervals of five seconds, to query both
the precise geographical coordinates of the avatar, as well as a human-readable
description of the approximate location (the zone and subzone). This data will

4 http://www.kantenwerk.org/wowc/
5 http://www.lua.org/

http://www.wowwiki.com/World_of_Warcraft_API
http://www.kantenwerk.org/wowc/
http://www.lua.org/

{ ...
 {
 [time"] = "2008-03-04 22:40:18",
 ["zone"] = "Eversong Woods",
 ["xcoord"] = "46.41",
 ["ycoord"] = "45.57",
 ["subZone"] = "Falconwing Square",
 },
 {
 ["time"] = "2008-03-04 22:40:23",
 ["zone"] = "Eversong Woods",
 ["xcoord"] = "45.82",
 ["ycoord"] = "45.00",
 ["subZone"] = "Dawning Lane",
 },
... }

(a) Lua Table

<plist version='1.0'>
 ...
 <key>2008-03-04 22:40:18</key>
 <dict>
 <key>time</key>
 <string>2008-03-04 22:40:18</string>
 <key>zone</key>
 <string>Eversong Woods</string>
 <key>xcoord</key>
 <string>46.41</string>
 <key>subZone</key>
 <string>Falconwing Square</string>
 <key>ycoord</key>
 <string>45.57</string>
 </dict>
 ...
</plist>

(b) Property List XML

Fig. 2: The Travel Log in Lua and XML format

then be written out to a log file as a Lua table (see Fig. 2a). For security rea-
sons, WoW only allows plugins to write in very specific locations of the file
system, which follow the pattern below. Also, it is only possible to write Lua
data structures (and not, e.g., a more common format such as XML).

WTF/Account/$ACCOUNT_NAME/$SERVER_NAME/

$AVATAR_NAME/SavedVariables/$PLUGIN_NAME.lua

Even though there are now millions of registered WoW players and even
more avatars, the $SERVER_NAME (which server is the player currently on) and
$AVATAR_NAME together uniquely identify an avatar and can therefore later be
used by World of WebCraft to mint a URI for this particular avatar.

2.2 World of FlickrCraft — A Ruby-based Screenshot Uploader

WoW is very restrictive in the actions it allows plugins to perform outside the
game. It is for example not possible to write arbitrary files, let alone open a
network connection. For this reason, if we want to get any data out of the game
and onto the Web, we have to do so from outside the game. In our approach,
we use a dedicated desktop application called “World of FlickrCraft” (or just
FlickrCraft) for OS X to to parse and interprete the output of the TravelLogger
plugin described in Sect. 2.1, match the log with a number of in-game sreenshots
specified by the player and upload the screenshots to Flickr.

The application is implemented using a mixture of the Lua, Ruby and Objective-
C (ObjC) languages, each chosen for specific tasks. Native OS X application
development is based on the Cocoa libraries6, which are implemented in large
parts in ObjC (an dynamic OO extension to C, heavily inspired by SmallTalk).

6 http://developer.apple.com/cocoa/

http://developer.apple.com/cocoa/

However, through language bridges, it is also possible to access the full stack of
Cocoa libraries through other languages such as Python or Ruby. For the bene-
fit of fast prototyping, we have chosen Ruby over ObjC for the development of
FlickrCraft, except in a few border cases.

In the remainder of the section, we will go through the individual steps of
the application.

Parsing the Log File Since the output of TravelLogger is a Lua data structure,
we have chosen Lua itself to parse and transform it to a format more accessible
to the Cocoa libraries. From within the application, a Lua script process will
be started, which parses the log and generate an XML structure from it (in the
Property List format used throughout Cocoa), as shown in Fig. 2b. The output
of the script is then piped back into FlickrCraft.

Matching Screenshots with Log Entries The player can now select a number of
screenshots they have taken during the game (which probably show them ac-
complishing heroic feats or other noteworthy actions) and drag & drop them
onto FlickrCraft. Based on the creation date attributes of the image files, the
application will then perform a simple algorithm to select the log entry which is
closest in time for each image. The image will be thus be associated with a num-
ber of tags, which consist of the zone, subZone, xcoord and ycoord attributes
of the log entry, as well as the server and avatar name, which are extracted from
the path of the log file.

Uploading to Flickr As a final step, FlickrCraft then uploads the selected screen-
shots to Flickr, using then ObjectiveFlickr7 wrapper for the Flickr API. Two
things are important during this phase: (i) the file creation dates are injected
into each image file as the value of the EXIF8 DateTimeOriginal attribute, in
order for these dates to be picked up by Flickr after the upload, (ii) the tags
are added both as simple tags (using just the values of the attribute value pairs
from the log entries), but also as machine tags [5], which are Flickr’s light-weight
implementation of RDF-like metadata. Fig. 3 shows the uploaded screenshot in
Flickr, along with both its simple and machine tags. The property names for
the latter consist of a (not further specified) wowc namespace and the attribute
names taken from the log file.

2.3 Photoblogs for Avatars with World of WebCraft

World oF WebCraft (or WebCraft) is a Web application, wich, by harvesting the
machine tags uploaded to Flickr through FlickrCraft, allows users to generate a
Web representation of their WoW avatars. The application follows a very sim-
ple series of steps: (i) The user is requested to provide their Flickr profile URL.
(ii) WebCraft will then query Flickr for any pictures of this user which are tagged

7 http://lukhnos.org/objectiveflickr/blog/
8 http://www.exif.org/

http://lukhnos.org/objectiveflickr/blog/
http://www.exif.org/

simple tags

machine tags

Fig. 3: Simple and Machine Tags in Flickr

with machine tags in the wowc namespace. (iii) The information in the tags, as
well as the URLs of the images, are stored internally. (iv) For each avatar, a URL
following the schema http://kantenwerk.org/wowc/$SERVERNAME/$AVATARNAME
is minted. (v) Under this URL, the avatar’s photoblog will be served in differ-
ent formats (depending on the request sent to the server): JSON, an Exhibit
webpage based on the JSON output, and as an RDF graph.

3 Conclusion and Future Work

We have presented an approach for mashing up the popular MMORPG World
of Warcraft with the photo sharing service Flickr. Additionally, the World of
WebCraft application exposes the data that a player wishes to publicise about
their in-game avatars in a variety of formats, thus making it possible to link
and mash up WoW with the Web. This opens up WoW’s inherent, but largely
untapped nature of an online social network.

Using the Exhibit framework, we visualise WoW data and screenshots as a
timeline. By making use of Exhibit’s map view and the GoogleMaps API, it
would be possible to extend World of WebCraft to include a visual overview
of where each in-game screenshot has been taken. A good example of how the
GoogleMaps API is used on WoW data is http://mapwow.com/.

Acknowledgements

The work presented in this paper was supported (in part) by the Ĺıon project supported

by Science Foundation Ireland under Grant No. SFI/02/CE1/I131 and (in part) by the

European project NEPOMUK No FP6-027705.

http://mapwow.com/

References

1. T. Berners-Lee. Linked data, 2006. http://www.w3.org/DesignIssues/

LinkedData.html.
2. C. Bizer, R. Cyganiak, and T. Heath. How to publish linked data on the Web, 2007.

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/.
3. U. Bojārs, J. G. Breslin, A. Finn, and S. Decker. Using the Semantic Web for linking

and reusing data across Web 2.0 communities. Web Semantics, 6(1):21–28, 2008.
4. J. G. Breslin, A. Harth, U. Bojārs, and S. Decker. Towards Semantically-Interlinked

Online Communities. In The 2nd European Semantic Web Conference (ESWC ’05),
Heraklion, Greece, Proceedings, LNCS 3532, pages 500–514, May 2005.

5. A. S. Cope. Machine tags, January 2007. http://www.flickr.com/groups/api/

discuss/72157594497877875/.
6. A. LaFauce. What can social networks learn from World of

Warcraft?, March 2008. http://www.socialtimes.com/2008/01/

what-can-social-networks-learn-from-world-of-warcraft/.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://www.flickr.com/groups/api/discuss/72157594497877875/
http://www.flickr.com/groups/api/discuss/72157594497877875/
http://www.socialtimes.com/2008/01/what-can-social-networks-learn-from-world-of-warcraft/
http://www.socialtimes.com/2008/01/what-can-social-networks-learn-from-world-of-warcraft/

Neologism: Easy Vocabulary Publishing

Cosmin Basca1, Stéphane Corlosquet1, Richard Cyganiak1, Sergio Fernández2

and Thomas Schandl1

1 Digital Enterprise Research Institute
National Univerisity of Ireland, Galway

Galway, Ireland
{firstname.surname}@deri.org

2 Fundación CTIC
Gijón, Asturias, Spain

sergio.fernandez@fundacionctic.org

Abstract. Creating, documenting, publishing and maintaining an RDF
Schema vocabulary is a complex, time-consuming task. This makes vo-
cabulary maintainers reluctant to evolve their creations quickly in re-
sponse to user feedback; it prevents use of RDF for casual, ad-hoc data
publication about niche topics; it leads to poorly documented vocab-
ularies, and contributes to poor compliance of vocabularies with best-
practice recommendations. Neologism is a web-based vocabulary editor
and publishing system that dramatically reduces the time required to
create, publish and modify vocabularies. By removing a lot of pain from
this process, Neologism will contribute to a generally more interesting,
relevant and standards-compliant Semantic Web.

1 Introduction

Anyone who wants to publish information as RDF on the Semantic Web first
faces the choice which RDF Schema vocabulary or OWL ontology to use. Some
areas, such as social networks (FOAF), online communities (SIOC) or general
document metadata (DC) are covered by established vocabularies. Outside of
these domains, registries like SchemaWeb3 and search services like Falcons Con-
cept Search4 assist in the task of finding vocabularies for niche topics, but what
they find might be of insufficient quality, or might not cover all required terms,
and at present many areas of interest are not covered by any vocabulary at all.

In summary, most efforts to publish information on the Semantic Web first
require an effort to create, extend or modify an RDF Schema vocabulary or OWL
ontology. But this is a complex and time-consuming task in itself. It involves:

– Creating the formal specification of the vocabulary in RDFS or OWL,
– writing documentation that is clear and helpful for users of the ontology,
– keeping both documents in sync as the vocabulary evolves,

3 http://www.schemaweb.info/
4 http://iws.seu.edu.cn/services/falcons/conceptsearch/

– archiving older versions of the documents,
– defining and maintaining mappings to related vocabularies,
– configuring the web server in accordance with W3C best practices [3].

In this paper we present an online vocabulary editor and publishing system
based on Drupal5, implemented in PHP and ActionScript, which will support
vocabulary authors in the tasks above and thereby dramatically reduce the time
required to create, publish and modify vocabularies. The work presented in this
paper is in progress.

2 The value of vocabularies

We define vocabularies as simple, “lightweight” ontologies, such as FOAF, DC,
SIOC and SKOS. They usually comprise less than 50 terms. Expressivity is lim-
ited to RDF Schema plus selected OWL features, e.g. inverse functional prop-
erties and class disjointness. Their value is in providing common terminology
for exchanging information between programs. The actual information is in the
RDF instance data that is expressed with the vocabulary’s terms, while in more
complex ontologies, the actual information lies in the definitions of the classes
and properties. A vocabulary is created by publishing a description of its terms
in natural using HTML or formal using RDFS/OWL language. Since classes
and properties are identified by URIs, it is considered a good practice to make
these URIs resolvable [2, 3]. This enables clients to look up definitions of the
vocabulary terms, with the following benefits:

– Information publishers can refer to a specification. This is important to cre-
ate interoperability around a vocabulary. The top ten most popular vocab-
ularies of 20066 all have a such a specification.

– RDF-aware tools such as data browsers (e.g. Tabulator [2]), SPARQL query
builders and RDF instance editors can use the formal specification to improve
the user experience, e.g. by showing friendlier labels and comments, listing
available terms and providing widgets appropriate to a property’s data type.

– Inference can be performed to increase recall when performing queries or
lookups against RDF data, which is especially useful when terms are mapped
to other vocabularies. Systems that use such techniques are the Tabulator
data browser [2] and the Sindice semantic lookup index [6].

3 Current approaches to vocabulary publishing

Vocabulary maintenance with text editors and custom scripts. Many popular
vocabularies such as FOAF and SIOC are maintained by a process involving
hand-authoring of RDF and HTML files and custom scripts, e.g. SpecGen7. Of-
ten, complex custom Apache configurations are employed to follow best practices
regarding content negotiation, MIME types and resolvable URIs [3].
5 http://drupal.org/
6 http://ebiquity.umbc.edu/resource/html/id/196/
7 http://sioc-project.org/specgen

Fig. 1. A vocabulary page in Neologism, as it appears to an authenticated user.

Offline ontology editors. OWL ontology editors such as Protégé [5], TopBraid
Composer8 and SWOOP9 can be used to create the formal specification of a vo-
cabulary. While being great tools for knowledge engineering professionals, these
applications have a steep learning curve and they intimidate casual users. They
use a file-based, offline model, where ontology files are stored on the local user’s
computer. Remote publishing, if supported at all, is an after-thought.

Web-based systems. OntoWiki [1] provides basic ontology editing, but its main
focus is the display and editing of RDF instance data. MyOntology [7] focuses
on collaborative editing in a larger community, in the hope of creating rich
knowledge bases, while creation of simple vocabularies typically does not involve
many collaborating users. Knoodl10 is a hosted service with strong community
features and an easy-to-use vocabulary editor, but it does not publish created
vocabularies with resolvable URIs or according to best-practice guidelines.

Areas for improvement. We identify four points where we can simplify the pro-
cess: (i) Instant web-based publishing instead of file-based offline editing. (ii)
Focus on a limited subset of RDFS and OWL. (iii) No instance editing or brows-
ing. (iv) Handling of HTTP details like URI management, content negotiation
and redirects within the web-based application.

4 Easier vocabulary publishing with Neologism

Neologism11 is a web-based vocabulary editor and publishing platform designed
to address these issues. It is currently being implemented and will soon be re-
leased as an open-source project. This section presents Neologism’s current state.

Public interface. To non-authenticated users on the Web, Neologism presents
a very simple interface: a homepage that lists one or more vocabularies, and
for each of them a vocabulary page containing some general information about
the vocabulary (Figure 1), followed by the descriptions of all its classes and
properties.
8 http://www.topbraidcomposer.com/
9 http://www.mindswap.org/2004/SWOOP/

10 http://knoodl.com/
11 http://neologism.deri.ie/

Fig. 2. A form for editing a class.

Editor. After a vocabulary maintainer logs in, additional links become visible on
the vocabulary page and allow adding new terms, as well as editing of existing
terms. Terms are created and edited through a web form (Figure 2). The form
allows entry of an ID (to become part of the term’s URI), label, comment,
subclasses, subproperties, domain, range, disjoint classes, inverse properties, and
marking a property as inverse functional. Authenticated users can also create
new vocabularies and modify the vocabulary metadata.

Overview diagram. The vocabulary page provides access to a diagram that shows
the vocabulary’s classes and their relationships (Figure 3). The vocabulary
maintainer can arrange the diagram into a sensible layout and then save its
current state which will henceforth be shown to all users.

RDFS output, URIs and content negotiation. The URIs identifying classes and
properties are always generated by appending the hash character and the term’s
ID to the URI of the vocabulary page. This makes sure that the vocabulary
page is returned when these URIs are resolved. HTTP requests to the vocabulary
page are subject to content negotiation. Web browsers will see the HTML variant
shown in Figure 1. RDF-aware clients will receive the RDFS/OWL specification,
either in RDF/XML or N3 syntax. In a nutshell, Neologism publishes standards-
compliant vocabularies on the Web without requiring any additional effort on
the part of vocabulary maintainers.

Implementation. Neologism is implemented in PHP as a Drupal module. Drupal
reduces development time by providing many features for free, such as account
management. It also makes integration with a larger Drupal-based site very easy,
for example to provide a news blog and discussion forum for each vocabulary. All

Fig. 3. The vocabulary overview diagram.

data is stored in a MySQL database. RAP12 is used to serialize RDF/XML and
N3. The PHP Content Negotiation library13 is used instead of the usual Apache
rules to implement content negotiation, and Vapour14 was used to validate its
correctness. The overview diagram is implemented using Adobe Flex and coded
in ActionScript; the ObjectHandles and Tweener libraries are used for animation
and object handling.

5 Future Work

Hosted Neologism service. Currently, vocabulary maintainers must install Neol-
ogism on their own webspace. A central hosted service, which could be easily
built on the Drupal platform, would remove this barrier.

Branching and revision tracking. Neologism does not yet offer revision control.
Some desirable features for vocabulary revision control are: archival of all prior
versions; grouping of several small edits into a single version to avoid putting
the vocabulary into an inconsistent intermediate state; publishing changes as a
draft before accepting them as a new version.

12 http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/
13 http://ptlis.net/source/php-content-negotiation/
14 http://vapour.sourceforge.net/

Plugin system. We intentionally kept the set of supported class and property
annotations small to simplify the user experience, and don’t support many pos-
sible further annotations, such as OWL cardinality constraints, plural and in-
verse labels15, multilingual labels or associating Fresnel lenses [4] with classes
and properties. Such additional annotations could be supported through plugins
that are installed by vocabulary maintainers.

Consistency checking. Neologism doesn’t check the created vocabulary for con-
sistency. This can become an issue when a vocabulary is integrated with several
external vocabularies. A solution could be the integration of an external reason-
ing service that performs consistency checks and is invoked through an API over
the Web.

6 Conclusion

We have shown a web-based vocabulary publishing system that simplifies the
process of creating, publishing and maintaining RDF vocabularies by (i) instant
web-based publishing, (ii) focus on a limited subset of RDFS and OWL, (iii)
avoiding instance editing or browsing, and (iv) handling URI management and
HTTP content negotiation. We hope that the presented system will encourage
the creation of new vocabularies and thereby contribute to a generally more
interesting, relevant and standards-compliant Semantic Web.

References

1. S. Auer, S. Dietzold, and T. Riechert. OntoWiki, a tool for social, semantic collab-
oration. The Semantic Web - ISWC 2006, 4273/2006:736–749, 2006.

2. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, , and D. Sheets. Tabulator: Exploring and Analyzing Linked Data on the
Semantic Web. In The 3rd International Semantic Web User Interaction Workshop
(SWUI06), 2006.

3. D. Berrueta and J. Phipps. Best Practice Recipes for Publishing RDF Vocabularies.
Working Draft, W3C, 2008.

4. C. Bizer, R. Lee, and E. Pietriga. Fresnel, a Browser-Independent Presentation
Vocabulary for RDF. In International Semantic Web Conference 2006, 2006.

5. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL
Plugin: An open development environment for semantic web applications. The
Semantic Web ISWC 2004, 3298/2004:229–243, 2004.

6. E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello.
Sindice.com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies, 3(1), 2008.

7. K. Siorpaes and M. Hepp. myOntology: The marriage of ontology engineering and
collective intelligence. In ESWC 2007 Workshop Bridging the Gap between Semantic
Web and Web 2.0, 2007.

15 http://www.wasab.dk/morten/2004/03/label

Microblogging: A Semantic and Distributed
Approach

Alexandre Passant1, Tuukka Hastrup2, Uldis Bojārs2, John Breslin2

1 LaLIC, Université Paris-Sorbonne,
28 rue Serpente, 75006 Paris, France

firstname.lastname@paris4.sorbonne.fr
2 DERI, National University Of Ireland,

Galway, Ireland
firstname.lastname@deri.org

Abstract. While microblogging has quickly gained a lot of interest in
the Web 2.0 community, it still has not been leveraged to the Semantic
Web unlike blogs and wikis. This paper describes the features, methods
and architecture of a distributed Semantic Web microblogging system,
as well as the implementation of an initial prototype of this concept
that provides ways to leverage microblogging with the Linked Data Web
guidelines.

Key words: Microblogging, Semantic Web, Web 2.0, SIOC, Data Porta-
bility, Linked Data Web

1 Introduction

Microblogging is one of the recent social phenomena of Web 2.0. It fills a gap
between blogging and instant messaging, allowing people to publish short mes-
sages on the web about what they are currently doing. As a simple and agile
form of communication in a fluid network of subscriptions, it offers new pos-
sibilities regarding lightweight information updates and exchange. Yet, current
microblogging services are centralised and confined, and efforts are still to be
made to let microblogging be part of the Social Semantic Web [5]. This is in
stark contrast to blogs and wikis that can already be considered as components
of the Semantic Web after a lot of work leveraging their data and metadata in
machine-readable formats with projects like SIOC [6] and systems like Semantic
MediaWiki [16].

In this paper, we introduce the main idea and a first implementation of dis-
tributed microblogging systems, enabled by Semantic Web technologies and pro-
viding machine-processable views of microblogging content and metadata. This
way microblogging can become part of the Semantic Web as Linked Data [3].
First, we introduce classical microblogging and some of the issues it raises. Sec-
ond, we see how Semantic Web can help in getting rid of these issues and what
it can offer that traditional services could not achieve. Especially, we see how
metadata and data can be represented using Semantic Web technologies to in-

firstname.lastname@paris4.sorbonne.fr
firstname.lastname@deri.org

2 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

terlink multiple services and related datasets. Third, we describe the functions
of our prototype for distributed semantic microblogging and give an overview
of the current source code of the system. Finally, we conclude with ideas for
future work and with thoughts on connections between this paper and projects
like data portability on Web 2.0 on one hand and relationships with existing
microblogging services such as Twitter1 on the other hand.

2 Overview of microblogging

2.1 Why microblogging?

After blogging that let people put their thoughts online to an open audience,
podcasting where people record it and even videoblogging (also known as vlog-
ging) where they deliver messages in video, microblogging enabled anyone to
exchange short messages within their community or simply to write in brief to
the general public on the Web. This new form of blogging allows individuals to
publish brief text updates using a multitude of various communication channels
such as text messages from cell phones, instant messaging, e-mail and the Web.
The simplicity of publishing such short updates in various situations and in a
fluid social network based on subscriptions and response posts makes microblog-
ging a groundbreaking communication method that can be seen as a hybrid
of blogging, instant messaging and status notifications, and that some already
studied from a social point of view [11]. Moreover, this way of publishing can be
extended with more advanced communication means like video recording, as in
Seesmic2, which is considered a video microblogging service.

This communication method is also promising for corporate environments
in facilitating informal communication, learning and knowledge exchange. Its so
far untapped potential can be compared to that of company-internal wikis some
years ago. Microblogging can be characterised by rapid (almost real-time) knowl-
edge exchange and fast propagation of new information. For a company, this can
mean real-time Q&As and improved informal learning and communication, as
well as status notifications, e.g. about upcoming meetings and deliveries. Yet, po-
tential for microblogging in corporate environments still has to be demonstrated
with real use cases, which we hope to happen in the next years, as already was
the case for blogging, wikis and other Enterprise 2.0 [12] services.

Nevertheless, microblogging is currently mostly used by technically-minded
Web users and bloggers. Twitter is one of the largest microblogging services
and the value of microblogging is manifested by its popularity - now ranked at
website number 635 in the world - and by Google’s recent acquisition of Jaiku3,
another leading microblogging service. Microblog-type publishing can also be
setup on personal services, since for example the WordPress blogging software
1 http://twitter.com
2 http://seesmic.com
3 http://jaiku.com

http://twitter.com
http://seesmic.com
http://jaiku.com

Microblogging: A Semantic and Distributed Approach 3

offers a dedicated template interface (Prologue4) that lets people publish this
kind of short and real-time updates. However, there is no aggregation for personal
microblogs that would take into account the special characteristics of it as a new
medium.

2.2 Current issues

While microblogging gained a lot of interest on the Web and quickly became one
of the main knowledge management schemes in the Web 2.0 world, like blogs or
wikis, it also raises various issues.

First, most microblogging services act as closed worlds like, actually, most
of Web 2.0 services: only a few of them allow interlinking with other services.
For example, merging your latest blog posts or your Flickr pictures with your
Twitter updates cannot be done, except using simple HTML links between them,
or using RSS. RSS provides syndication, i.e. real-time export of latest updates for
a given user, but cannot be used to retrieve the complete update history at any
later time. Moreover, those services do not expose their metadata in a way that
could be easily reused. Twitter has adopted microformats for describing follower
(subscriber) lists, but there is no simple way to retrieve metadata about the
complete updates of any user (e.g. who did the update and when). One solution
would be to combine the RSS feed of latest updates with the XML export of
each update. Some scripts could then map them to Semantic Web vocabularies
and URIs with potential use of external data, as SWAML [9] does to find people
URIs5. Yet, the process can be quite complex, and since it is based on RSS, only
the latest updates would be available.

In addition to these metadata concerns, the content of the updates does
not carry any semantics, making its reuse difficult. Twitter users have adopted
certain short-hand conventions in their writing called hash tags6, but their se-
mantics are not readily machine-processable thus raising the same ambiguity and
heterogeneity problems that tagging causes. For example, the hash tag #paris
could mean various things (cities, people etc.) depending on the context, and
so cannot be automatically processed by computers. This lack of data formal-
ism also makes finding relevant content difficult. While some services provide
plain-text search engines, there is no way to answer queries like ”What are the
latest updates talking about a programming language” or ”What is happening
now within ten kilometres from here”.

Finally, one issue with current services is their centralised architecture. Most
services do not act in a client–server way, but require users to post their updates
on a given platform, which is the same for publishing and reading data. This
means that most of the time, published data belongs to the publishing site, and
cannot be automatically reused on multiple microblogging sites, or even re-used
locally for other purposes. It can also be a problem to private communities, since
4 http://wordpress.com/blog/2008/01/28/introducing-prologue/
5 http://www.wikier.org/blog/using-sindice-to-get-the-best-uri-for-a-person
6 http://hashtags.org/

http://wordpress.com/blog/2008/01/28/introducing-prologue/
http://www.wikier.org/blog/using-sindice-to-get-the-best-uri-for-a-person
http://hashtags.org/

4 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

users need to rely on an external service where they cannot completely control
privacy and security.

We believe that the Semantic Web is an elegant solution to opening these data
from proprietary silos and to providing machine-processable data and metadata
to microblogging as well as to delivering an open and distributed environment
for microblogging, as we will expose in the next section.

3 Architecture of a semantic microblogging service

3.1 Metadata modelling

In order to model the metadata of a microblogging service, we rely on two widely
used ontologies on the Social Semantic Web: FOAF [7] and SIOC.

As expected, the former is used to model microbloggers and their properties
(name, email etc.). Using FOAF allows the reuse of an existing URI for a person
that wants to start microblogging, instead of creating a new identity URI. More-
over, since some Web 2.0 services already offer FOAF export, either directly as
LiveJournal7 or thanks to external services as Flickr [13], people can reuse their
existing URI from these services without having to dig in RDF modelling. Yet,
in case the person needs for any reason to create a new instance of foaf:Person,
Linked Data principles allow them to identify uniquely with an already existing
profile via a owl:sameAs link.

While FOAF aims to model the people aspect, SIOC is used to define the
related user contexts, providing a way to identify a user account on a given mi-
croblogging service. The SIOC model provides for one person subscribing to var-
ious services, i.e. a single foaf:Person can be connected to various sioc:User.
This employs the distributed architecture of the Semantic Web to enable people
to consolidate their identity across a network of services.

In addition to the account aspect, SIOC is used to model the microblog-
ging service itself and the updates of any user. In order to do so, we extended
the SIOC types module8 [4] with two new types: sioct:MicroblogPost and
sioct:Microblog, as respective subclasses of sioc:Item and sioc:Container,
thus allowing a Microblog to contain (using sioc:container of) instances of
MicroblogPost. This also provides for modelling a microblog post with the same
SIOC and FOAF properties as blog posts and wiki pages. Moreover, having such
a class hierarchy of SIOC types allows people to access a dataset containing a
set of sioct:BlogPost, sioct:WikiArticle and sioct:MicroblogPost with
a single SPARQL query for all the data while leaving open the option to refine
their search by restricting the type of the items to be retrieved.

Thus, modelling metadata in a machine-readable format is the first step in
getting rid of proprietary data silos for microblogging content as it becomes
possible to merge it with other Web 2.0 content that has been described in
7 http://community.livejournal.com/ljfoaf
8 http://rdfs.org/sioc/types

http://community.livejournal.com/ljfoaf
http://rdfs.org/sioc/types

Microblogging: A Semantic and Distributed Approach 5

RDF. We can also rely on the connection between sioc:User and foaf:Person
to find relevant content, e.g. answer queries like ”List all my activity on the
Web during the first week of January”, something that could not be done with
non-semantic Web 2.0 data. To a large extent, this combination of FOAF and
SIOC can be used as a solution to the data portability issues9 since it relies on
machine readable and interlinked data models to represent people, user accounts
and data, as shown in Fig. 1

Fig. 1. FOAF and SIOC for data portability

3.2 Data modelling

While microblog posts are by nature relatively light in content, it is interesting
to identify some of the data they contain, which is one of the problematic areas
for current systems as mentioned earlier. While hash tags can be useful, there
is a need to describe some content more formally because of the problems of
plain text-only descriptions. Instead of plain text or tags, we think that using
URIs and RDF to model this data can be useful for two reasons: (1) we rely
on existing, unambiguous resource definitions to model the content and (2) we
open microblogging entries to the Linked Data Web in the case these URIs are
available on the Web and in the better case, already linked to other content,
providing a path to the Giant Global Graph [2].

9 http://dataportability.org

http://dataportability.org

6 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

Thus, there is a need to (semi-)automatically extract those URIs or con-
cepts from plain text or to let users annotate it similarly to what they can
already do on Twitter with hash tags, but with more powerful processing that
can extract and define URIs based on those tags. For example, rather than
writing ”Visiting #Eiffel Tower in #Paris”, someone could microblog ”Visiting
#dbp:Eiffel Tower in #geo:Paris France” so that the processor would be able
to extract the two hash tags and thanks to a predefined prefix mapping process,
query DBpedia [1] and GeoNames10 to retrieve URIs of the related concepts.
Thus, the updates would be automatically linked to existing URIs rather than
to simple and meaningless – from a software agent point of view – text strings.

Such a way to extract data and to interlink with existing URIs makes content
more easily searchable on the Semantic Web. Indeed, thanks to lookup services
such as Sindice [15] that crawl the web for RDF data and links between docu-
ments, one could be suggested to look at the update above when searching for
”Eiffel Tower”.

3.3 Distributed content

We want the microblogging system to be open and distributed, following the
spirit of the Web architecture. We envision a multitude of publishing services
and aggregation servers interacting which each other. A publishing service makes
the posts of one or more authors available on the Web in RDF. When a new
post is available, the service pings one or more aggregation servers, defined by
the user, with the URI of the post that is then retrieved by the servers. As
with blogs today, we expect some people to deploy their own publishing services
while others use public ones, as well as aggregation servers that can be public
or dedicated to private communities of interest.

An aggregation server receives pings from publishers and retrieves posts it
deems relevant for further use. The relevancy depends on the nature of the
aggregation function of each server. Some servers may have a strict list of sources
they aggregate while others try to provide inclusive views on the global activity
on the Web. In any case, the system is open for new aggregators to provide new
views. An open question is how publishers decide which aggregators to ping and
whether publishers should let aggregators subscribe to them.

3.4 Distributed aggregation

Aggregators function as super-peers in the network, taking the burden of follow-
ing publishers off the readers and making it simpler for publishers to announce
new posts. Pinging is essential to meeting the timeliness requirement without
excessive polling. In this sense it is a push technique, but since the posts are
already published, pinging results in a simpler interface and makes it cheaper
for aggregators to disregard posts from irrelevant sources.
10 http://geonames.org

http://geonames.org

Microblogging: A Semantic and Distributed Approach 7

If an aggregator disconnects and returns to the network, it may have missed
pings. In this situation, it may make sense to poll known publishers for new
content. This would be a typical situation for personal aggregators. Further,
aggregators would be able to crawl and readers to browse more posts as long as
the Linked Data principles are followed.

We can even envision intelligent readers, that will accept new posts only if
they are linked to relevant URIs. For example, we could setup a ”Travel mi-
croblogging” server that will accept only posts that contain links to one or more
URIs from the GeoNames dataset.

3.5 Users own their data

As a consequence of the distributed nature of the system, one feature of our
architecture is that people can really own their data. By self-hosting a publishing
service and then publishing to a microblog aggregator server, they keep all their
updates even if one service closes. Moreover, by hosting their data, people can
reuse it in other applications, including future microblogging servers they want
to publish to and any Semantic Web applications. They can also mash it up with
other RDF data they own or that is publicly available on the Web, or in case of
corporate microblogging, in their organisation.

We think that this feature is really important, especially from a user rights
and data portability point of view on the Web, following some thoughts that have
been expressed in ”A Bill of Rights for Users of the Social Web” [14]. Combining
the distributed architecture and this data ownership and reuse aspect, Fig. 2
provides an overview on the complete architecture of the process.

3.6 Security and privacy issues

The open and distributed nature of the architecture complicates the authentica-
tion requirements in some use cases. It is easy to publish posts in someone else’s
name or fill a public aggregator with spam. Moreover, aggregators may need to
authenticate to publishers if the posts are for a restricted audience only.

One solution is to require publishers to register using OpenID on an aggre-
gator server. The server delivers each registrant an API key (a password) for
publishing their content on that server. Relying on OpenID allows servers to
automatically discover the FOAF profile and the URI of a user11 as long as the
OpenID provider can offer FOAF autodiscovery12.

Combined with the use of the foaf:openid property that was recently in-
troduced in the FOAF specifications, this is a way to provide a lightweight
authentication and security layer, since the server can ensure that someone pub-
lishing on it is really the person identified by the FOAF URI. Of course, one
can deliver false information in a fake FOAF profile, thus additional strategies
11 http://apassant.net/blog/2007/09/23/retrieving-foaf-profile-from-openid/
12 http://wiki.foaf-project.org/Autodiscovery

http://apassant.net/blog/2007/09/23/retrieving-foaf-profile-from-openid/
http://wiki.foaf-project.org/Autodiscovery

8 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

Updates
stored
locally

Updates
stored
locally

Server
A

Server
B

Uldis

John

Sends updates

Subscribes to
public updates

Subscribes to
public updates

Sends updates
Local
RDF
store

Reuses data

Browses locally

Alex's
microblogging
client

Tuukka's
microblogging
client

Fig. 2. Global architecture of distributed semantic microblogging

such as a network of trust between community members or graph signing13 with
public-key cryptography (PGP) should be considered.

4 A prototype: SMOB

In order to demonstrate our thoughts, we have implemented SMOB14, a proto-
type of the publishing client and server web services for semantic microblogging.

4.1 Publishing Content

The publishing client is accessed as a web page that contains a small form field
for content. Submitting the form creates the post and makes it available on the
Web in RDF. Further, there are checkboxes for choosing which of the configured
aggregation servers are pinged about the new content, so that within the same
client, a user can decide that some update will ping a server while another update
will ping another server.

The publishing client is configured for its location, the list of servers it can
ping and the foaf:Person URIs of the author and related file. An existing FOAF
URI can be reused for this service, thus providing it a new sioc:User account
for this URI.
13 http://usefulinc.com/foaf/signingFoafFiles
14 http://code.google.com/p/smob/

http://usefulinc.com/foaf/signingFoafFiles
http://code.google.com/p/smob/

Microblogging: A Semantic and Distributed Approach 9

4.2 Reading content

Based on pings received from clients, the server loads all posts into its triple
store using SPARUL. SPARUL15 (or SPARQL/Update) is an update language
for RDF graphs and currently implemented in Jena, OpenLink Virtuoso as well
as partially in ARC2 within its SPARQL+ support. The server uses the LOAD
instruction to load all statements for any incoming URL of an RDF file (i.e. of
a microblogging item) into the triple store. Then, people can browse and read
the posts using a web interface that implements faceted browsing as shown on
Fig. 3. The posts are available as a sortable and groupable list, as an ordered
list, a timeline and on a map. We rely on Exhibit [10] to provide this interface,
and facets are created using metadata (author and date) but also data extracted
from the semantic hash tags as described before. Currently, we have implemented
two of those facets: (1) locations, which are mapped with the Google Maps view
of Exhibit thus providing a user-friendly geolocation interface for microblogging
(Fig. 4), and (2) topics, which can be based on DBPedia URIs.

Fig. 3. Latest updates rendered in Exhibit

4.3 Code overview

Our client is a simple 57-line PHP page that presents a submission form and
handles the received content. The content is wrapped in an RDF-XML document
using SIOC PHP Export API16 and saved as a file locally. The URI of the file
15 http://jena.hpl.hp.com/~afs/SPARQL-Update.html
16 http://wiki.sioc-project.org/index.php/PHPExportAPI

http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://wiki.sioc-project.org/index.php/PHPExportAPI

10 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

is then sent to the server(s) as a HTTP GET ping using CURL. The SIOC
PHP Export API implementation is 678 lines of PHP but fairly generic, and is
already used on other prototypes such as the DotClear weblogging exporter and
the currently in-development SIOC plugin for VBulletin forums. Using the API
offers a way to update with zero-cost to new version of the ontology in case it
changes.

Fig. 4. Map view of latest updates with Exhibit

The server uses ARC217 to store the data, since it supports the LOAD instruc-
tion in SPARQL+18, and relies on a single SPARQL query to render the JSON
file needed for Exhibit (assuming properties are single-valued):

SELECT ?post ?date ?content ?maker ?name ?depiction
WHERE {
?post rdf:type sioct:MicroblogPost ;
foaf:maker ?maker ;
sioc:content ?content ;
dct:created ?date .

?maker foaf:name ?name .
{ ?maker foaf:img ?depiction } union
{ ?maker foaf:depiction ?depiction }

} ORDER BY DESC(?date) LIMIT 20

The preprocessor for hash tags uses simple regular expressions and mappings
between prefixes, and URIs and services are mapped internally. It is less than
17 http://arc.semsol.org
18 http://arc.semsol.org/docs/v2/sparql+

http://arc.semsol.org
http://arc.semsol.org/docs/v2/sparql+

Microblogging: A Semantic and Distributed Approach 11

100 lines of code, excluded libraries, and can be easily deployed in shared hosting
environments, so that people can set-up their own service for their community.

5 Conclusions and future work

In this paper, we introduced the architecture and a first implementation of a
distributed semantic microblogging platform. While existing approaches to con-
vert microblogging services to RDF already exist for Twitter19 or Jaiku20, our
approach relies on a complete open and distributed view, using some standards
of the Social Semantic Web. Moreover, some parts of our work, as the hash tag
processing could be adopted to services such as Twitter to enable some semantics
in existing tools.

Some issues still remain to be resolved, such as data privacy, private aggre-
gation communities, and building personalised views and aggregation services
for public updates. For this latter point, we can imagine personal aggregators
based on the foaf:knows list of a user to automatically accept or reject new up-
dates. More generally, and since this field is quite new to the Semantic Web, we
think that microblogging can be one of the next steps of semantically-enhanced
blogging systems [8].

Acknowledgements

This material is based upon work supported by Science Foundation Ireland under
grant number SFI/02/CE1/I131. The authors of would like to thank Richard
Cyganiak of DERI Galway for his valuable comments about this paper.

References

1. Sören Auer, C. Bizer, G. Kobilarov, Jens Lehmann, R. Cyganiak, and Z. Ives.
DBpedia: A Nucleus for a Web of Open Data. 6th International Semantic Web
Conference, Busan, Korea, 2007.

2. Tim Berners-Lee. Giant Global Graph. http://dig.csail.mit.edu/

breadcrumbs/node/215, November 2007.
3. Chris Bizer, Richard Cyganiak, and Tom Heath. How to Publish Linked

Data on the Web. http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/

LinkedDataTutorial/, 20 July 2007.
4. Uldis Bojārs, John Breslin, Aidan Finn, and Stefan Decker. Using the Semantic

Web for Linking and Reusing Data Across Web 2.0 Communities. The Journal of
Web Semantics, Special Issue on the Semantic Web and Web 2.0 (Forthcoming),
2008.

19 http://sioc-project.org/node/262
20 http://sioku.sioc-project.org/

http://dig.csail.mit.edu/breadcrumbs/node/215
http://dig.csail.mit.edu/breadcrumbs/node/215
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://sioc-project.org/node/262
http://sioku.sioc-project.org/

12 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

5. John G. Breslin and Stefan Decker. Semantic Web 2.0: Creating Social Seman-
tic Information Spaces. In Tutorial in the 15th International World Wide Web
Conference (WWW 2006), Edinburgh, Scotland, May 2006.

6. John G. Breslin, Andreas Harth, Uldis Bojars, and Stefan Decker. Towards
Semantically-Interlinked Online Communities. In Proceedings of the Second Eu-
ropean Semantic Web Conference, ESWC 2005, May 29–June 1, 2005, Heraklion,
Crete, Greece, 2005.

7. Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Namespace
Document 2 Sept 2004, FOAF Project, 2004. http://xmlns.com/foaf/0.1/.

8. Steve Cayzer. What next for semantic blogging.from visions to applications. OCG
Verlag, 2006.

9. Sergio Fernández, Diego Berrueta, and Jose E. Labra. Mailing lists meet the
semantic web. In Dominik Flejter, editor, Procedings of SAW2007 Workshop, pages
45–52, 2007.

10. David Huynh, David Karger, and Rob Miller. Exhibit: Lightweight structured data
publishing. In 16th International World Wide Web Conference, Banff, Alberta,
Canada, 2007. ACM.

11. Akshai Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: Under-
standing microblogging usage and communities. Jul 2007. Simple description of
Twitter.

12. Andrew P. McAfee. Enterprise 2.0: The dawn of emergent collaboration. MIT
Sloan Management Review, 47(3):21–28, 2006.

13. Alexandre Passant. :me owl:sameas flickr:33669349@n00 . In Linked Data on the
Web (LDOW2008), 2008.

14. Joseph Smarr, Marc Canter, Robert Scoble, and Michael Arrington. A bill of rights
for users of the social web. http://opensocialweb.org/2007/09/05/bill-of-rights/,
4 September 2007.

15. Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving the
open linked data. In ISWC/ASWC, pages 552–565, 2007.

16. Max Völkel and Sebastian Schaffert, editors. SemWiki2006, First Workshop
on Semantic Wikis - From Wiki to Semantics, Proceedings, co-located with the
ESWC2006, Budva, Montenegro, June 12, 2006, volume 206 of CEUR Workshop
Proceedings. CEUR-WS.org, 2006.

http://xmlns.com/foaf/0.1/

Using JavaScript RDFa Widgets for Model/View
Separation inside Read/Write Websites

Sebastian Dietzold, Sebastian Hellmann and Martin Peklo

Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany,

{dietzold|hellmann}@informatik.uni-leipzig.de

Abstract. As more and more websites start to embed RDFa content in
their web application view, the need arises to provide a more extensive
way for viewing and editing this semantic content independently from the
remainder of the application. We present a JavaScript API that allows
the independent creation of editing widgets for embedded RDFa, which
adds a new edge to Web development in the context of the Semantic
Web. As an addition, the API also provides sound update methods that
allow on-the-spot model synchronization between client and server.

1 Introduction

Future web applications will use more and more client side application logic to
obtain fast and responsive user interfaces. While it is currently possible to use
semantic technologies at the backend, web application developers can bene�t
greatly from a way to preserve semantics between the server and the client. Es-
pecially functionalities such as extensive editing, including type veri�cation, can
be implemented more e�ciently (i.e faster and without additional requests) on
the client side. By using RDFa [1] or Microformats [3], semantically enriched
data can be transferred back and forth and e.g. JavaScript enables the modi�-
cation on the client side. To return semantic data from the client side back to
the server, developers need APIs to modify both the semantic model and the
corresponding view from the RDF model in a consistent and independent way.

We present an RDF-API for JavaScript (rdfapi-js1), which uses an RDFa
parser to create a JavaScript object as an in-memory representation of the RDF
model from the website. The API gives developers the methods to modify the
in-memory model, roll out the changes to the (X)HTML view and report them
back to the server. Furthermore, RDFa widgets are used to create custom edit-
ing functions based on the local model in the (X)HTML representation. These
widgets give a degree of independence to developers, since it is now possible
to add appropriate editing widgets based on the semantic content of the RDFa
enhanced website without interfering with the development of the view of the
application. This greatly improves maintainability and customization. A useful

1 rdfapi-js is available at http://powl.svn.sf.net/viewvc/powl/trunk/rdfapi-js/

implication we would also like to mention is the redundancy of creating sepa-
rate views for editing, because updating can often be solved with the proposed
widgets.

2 API Overview

The RDF-API for JavaScript implements the RDF JSON speci�cation proposal
from the Talis n2 Wiki2 for data representation and allows for RDF manipulation
methods. The RDF model is extracted by a modi�ed version of the parser from
the RDFa Javascript implementation3 provided by the W3C.

The added methods can be grouped as follows:

Statement modi�cation: These methods are used to modify the content of the
model. We have implemented methods for adding one or more statements to a
model and for deleting one or more statements from the model.

Namespace management: Since RDFa incorporates the use of namespaces, meth-
ods on in-memory models for adding, deleting and applying namespaces are
needed. The Talis RDF JSON speci�cation proposal does not include name-
space declarations, so we have added this to our object noti�cation. We have
implemented methods for adding and deleting namespaces as well as for con-
verting models from quali�ed names to full URIs (and back) according to the
current namespace declarations.

Model comparison and check: These methods are used to check the consistency
of a given model and to compare two models and produce a statement di� for
the update service. At this time, we do not care about bnodes in the di�, e.g.
by using blank node enrichment [6] or minimum self-contained graphs [5]. This
could be added in the future.

We complete the rdfapi-js by adding a small set of administration methods
for counting, (X)HTML output and debugging.

3 Usage in a Semantic Wiki

We use rdfapi-js in our semantic wiki application OntoWiki [2]. OntoWiki is able
to handle plugins for the visualization of resources from speci�c RDF schema
(e.g. a FOAF person). These plugins are simple templates which have access to
the attributes of the resource that is to be rendered. Without rdfapi-js, plugin
developers have the choice to develop either a special edit template or let users
edit the attributes with the generic table-edit view. With rdfapi-js, a new option
is to enable view templates for inline editing just by adding RDFa markup.

2 http://n2.talis.com/wiki/RDF_JSON_Specification
3 http://www.w3.org/2006/07/SWD/RDFa/impl/js/

The following steps describe an examplary editing process:

1. The complete page with RDFa markup and the link to the rdfapi-js and a
control script are created on the server and transferred to the client.

2. The client receives the page and loads the rdfapi-js as well as the application
control script through a script-link.

3. rdfapi-js parses the page and creates an in-memory model from the RDFa
markup.

4. An onclick handler is added next to every RDFa Literal found in the page.
5. By clicking on the event handler, an editing widget is displayed as an overlay

to the existing page (see Fig.1).

Fig. 1. An RDFa enhanced vCard: plain (left), with highlighted statements and widget
(right)

6. The user submits the new value to the widget. The widget modi�es the in-
memory model by using statement modi�cation methods of rdfapi-js. These
API methods apply the changes to the in-memory model as well as modify
the (X)HTML view.

7. The modi�ed in-memory model triggers a new submit button which enables
the user to submit the change request to the server. If pressed by the user, a
statement di�erence is calculated and transferred to the server via an asyn-
chronous HTTP request to an update service. The current implementation
sends two JSON models to the server, one with the statements which have
to be deleted, another with the statements which have to be created on the
server. The execution of these atomic add / delete actions is left to the server
update interface.

Widgets are not limited to the editing of plain literals. According to the in-
memory model, di�erent widgets can be loaded (e.g. for dates or geo locations).
The idea of such widgets is to achieve independence from the page template so
that a growing widget library can enhance every application which uses rdfapi-js.

4 Conclusion and Future Work

The presented API includes methods for customized client-side edit widgets to
modify embedded RDFa. It tackles the synchronization of a locally changed

RDF model with the model on the server. The main advantage is the separa-
tion of edit functions from the data view. Widgets can be created for di�erent
datatypes and properties. These widgets add new possibilities for �exible user
interaction. The API is included in OntoWiki, but can be used in other Seman-
tic Web applications as well. Without making a promising statement, we have
already considered to propose the API as a full alternative to an editing view.
However, the problems that have to be overcome are numerous such as multi-
user synchronization, security and user validation. Although solutions for these
problems have to be provided, they are clearly out of the scope of this API, since
these problems have to be solved on the server side.

Future work includes the improvement of the di� computation algorithm
to support bnodes and the enhancement of the widget library with a set of
widgets for common attributes. The (X)HTML rollout of in-memory changes is
currently limited to plain literals and resource relations. This limitation has to
be resolved in order to support more complex RDFa markup. To generalize the
editing process, future work should include support for SPARUL [4] queries in
addition to transferring JSON model objects for change requests.

References

1. Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in
XHTML: Syntax and Processing. W3C Working Draft, W3C, 2008. http://www.

w3.org/TR/rdfa-syntax/.
2. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki - A Tool for Social,

Semantic Collaboration. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, The
Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC

2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume 4273 of Lecture
Notes in Computer Science, pages 736�749. Springer, 2006.

3. Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the semantic web.
In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin,
editors, Proceedings of the 15th international conference on World Wide Web, WWW

2006, Edinburgh, Scotland, UK, May 23-26, 2006, pages 865�866. ACM, 2006.
4. Andy Seaborne and Geetha Manjunath. SPARQL/Update � A language for updat-

ing RDF graphs. Technical report, Hewlett-Packard, January 2008. V4.
5. Giovanni Tummarello, Christian Morbidoni, Reto Bachmann-Gmür, and Orri Er-

ling. RDFSync: E�cient Remote Synchronization of RDF Models. In Karl Aberer,
Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B.
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, 6th Interna-

tional Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007

+ ASWC 2007, Busan, Korea, November 11-15, 2007, volume 4825 of Lecture Notes
in Computer Science, pages 537�551. Springer, 2007.

6. Max Völkel, Carlos F. Enguix, Sebastian Ryszard Kruk, Anna V. Zhdanova, Robert
Stevens, and York Sure. SemVersion - Versioning RDF and Ontologies. Technical
report, AIFB, University of Karlsruhe, 2005.

RDF/JSON: A Specification for serialising RDF in
JSON

Keith Alexander

Talis Information Ltd, Knights Court, Solihull Parkway, Birmingham Business Park, B37 7YB,
United Kingdom

keith.alexander@talis.com

Abstract. This paper outlines the design of a data structure for RDF
serialisable in JSON, and describes why it is significant for developing with
RDF and scripting languages.

What is JSON

JSON (JavaScript Object Notation) is billed as a “lightweight data-interchange format”[1]. It is a
subset of Javascript, using its ”’object literal notation”’ and as such, can simply be evaled in
javascript, and parsed with little effort in most other languages. As a data-interchange format, it
has become increasingly popular as an alternative to XML. Its advocates generally cite its human-
readability and the ease of parsing as the main advantages. However, the key feature, I believe, is
that JSON data structures translate transparently into the native data structures universal to almost
all programming languages used today.

RDF in JSON?

At Talis, we provide a Semantic Web Technologies Platform, of which RDF is a core component.
We want to be able to provide the option of requesting RDF output from our services (for example,
from SPARQL CONSTRUCTs and DESCRIBEs) as JSON in order to make the data accessible in
scripting language environments without the overhead of an RDF/XML parser.

There are of course, other ‘light-weight’ serialisations, such as Turtle[2], for which parsers exist in
the most of the popular web scripting languages. Turtle, in fact, probably has the advantage of
greater human-readability over any JSON or XML serialisation. However, consumers of Turtle
still need to parse it into triples, and represent those triples in some kind of data structure. This is
the niche we see for RDF in JSON: a well-defined and commonly understood data structure for
representing RDF data that can be transparently serialised in JSON and passed easily between
server and client.

We found several existing approaches to the problem of representing RDF data in JSON:

Approaches to Representing RDF in JSON

Flat Triples Approach

These approaches represent the components of RDF triples in a readily understandable, and easily
serialisable fashion. The disadvantage is that it is difficult to access the data without an RDF model
API of some kind to iterate over the triples and pick out a property for you.

mailto:keith.alexander@talis.com
mailto:keith.alexander@talis.com

ARC[3] v.1’s RDF Parser Output
{
 "data" : [
 {
 "s" : { "type" : "uri" , "uri" : "http://example.org/about" } ,
 "p" : "http://purl.org/dc/elements/1.1/creator",
 "o" : { "type" : "literal", "val" : "Anna Wilder" }
 } ,
 {
 "s" : { "type" : "uri" , "uri" : "http://example.org/about" } ,
 "p" : "http://purl.org/dc/elements/1.1/title",
 "o" : { "type" : "literal", "val" : "Anna's Homepage", "lang" :
"en" }
 }
]
}

Resource-oriented Approach

This approach groups properties of resources together.
JDIL[4]

 {
 "@namespaces": {
 "dc":"http://purl.org/dc/elements/1.1/",
 "rss":"http://purl.org/rss/1.0/",
 "georss":"http://www.georss.org/georss/"
 },
 "@type":"rss:channel",
 "rss:items": [
 { "@type":"rss:item",
 "rss:title":"A visit to Astoria",
 "rss:description":"sample description",
 "dc:coverage":{
 "@id":"a0",
 "dc:title":"Astoria, Oregon, US",
 "georss:point":"46.18806 -123.83"
 }
 },
]
 }

This is a more transparently RDF-like format, and it looks fairly natural to read and write by hand.
However, several things make it difficult for scripting with:

• Namespace prefixes are used. This makes it pretty to read and write for humans, but difficult for
scripting consumption, since the script will in most cases not be able to know beforehand which
prefixes will be used for which namespaces, and hence will have to resolve all ‘Qnames’[5] to
full URIs.

• Resources can be nested - this makes it hard to find individual resources, as you do not know
where they are stored in the hierarchy

• Resource identifiers are JSON object properties - so to find a particular resource, you must
iterate over all the resources, checking for an “@id” key

http://example.org/about
http://example.org/about
http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/creator
http://example.org/about
http://example.org/about
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/
http://purl.org/rss/1.0/
http://www.georss.org/georss/
http://www.georss.org/georss/

Talis’s RDF/JSON specification

RDF/JSON represents a set of RDF triples as a series of nested data structures. Each unique
subject in the set of triples is represented as a key in JSON object (also known as associative array,
dictionary or hash table). The value of each key is a object whose keys are the URIs of the
properties associated with each subject. The value of each property key is an array of objects
representing the value of each property.

Blank node subjects are named using the Turtle a string conforming to the nodeID production in
Turtle. For example: _:A1

A triple (subject S, predicate P, object O) is encoded in the following structure:

{ "S" : { "P" : [O] } }

The object of the triple O is represented as a further JSON object with the following keys:

type
 one of 'uri', 'literal' or 'bnode' (required and must be lowercase)
value
 the lexical value of the object (required, full URIs should be used, not qnames)
lang
 the language of a literal value (optional but if supplied it must not be empty)
datatype
 the datatype URI of the literal value (optional)

The 'lang' and 'datatype' keys should only be used if the value of the 'type' key is "literal".

For example, the following triple:

<http://example.org/about> <http://purl.org/dc/elements/1.1/title>
"Anna's Homepage" .

can be encoded in RDF/JSON as:

{
 "http://example.org/about" :
 {
 "http://purl.org/dc/elements/1.1/title": [{ "type" : "literal" ,
"value" : "Anna's Homepage." }]
 }
}

Usage Examples

Accessing a Resource in a Graph

var resource = data[‘http://example.org/about’];
// resource is an object containing
// all the properties belonging to http://example.org/about

Accessing the title of a Resource

var title = data[‘http://example.org/about’][‘http://purl.org/dc/
elements/1.1/title’][0][‘value’];

http://example.org/about
http://example.org/about
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://example.org/about
http://example.org/about
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://example.org/about
http://example.org/about
http://example.org/about
http://example.org/about
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title

Iterating over a Graph

for(var uri in data){

 for(var property in data[uri]){

 for(var i=0; i<data[uri][property].length; i++){
 var s = uri;
 var p = property;
 var o = data[uri][property][i][‘value’];
 var o_type = data[uri][property][i][‘type’];
 var o_lang = data[uri][property][i][‘lang’];
 var o_datatype = data[uri][property][i][‘datatype’];
 }

 }

}

Design Constraints

We decided what we needed was a JSON structure for RDF that:

• expresses the whole RDF model (we didn’t want information loss just because a consumer had
requested JSON rather than XML or turtle)

• requires as little processing / control structures for common tasks, as possible.

As I mentioned above, the most compelling advantage of JSON is that it translates directly into
universal data structures. So what we tried to do is come up with the most useful default structure
for RDF data.

Design Decisions

An important goal was that the structure should be as consistent and predictable as possible,
making it easier for scripts to handle any data encoded as RDF/JSON.

• Resource-centric structure. There are various options for how to arrange RDF data into a
structure. The most common, from those that we found, are ”triple” structures, where the basic
unit is the triple, and ”resource” structures, where a resource’s properties are gathered up in one
unit. Technically, JDIL’s structure does not strictly enforce this unification of a resource’s
properties: since the resource identifier is a property of, rather than a key to, the resource object,
it is possible to spread the resource description across multiple object structures. It would, of
course, also be possible to structure the data according to one of the other basic components of
RDF - by property URI, or Object, for example - or to introduce named graphs as the top level
grouping for the data, and there are certainly use cases for which such structures would be better
suited. However a resource-centric structure makes things easier for most common tasks (such
as rendering descriptions in HTML, and accessing particular properties of a given resource.

• No nesting of resources. Although nesting resources can sometimes seem intuitive when
authoring by hand, it opens the serialisation up to a huge amount of variability, making it more
tedious for a script consuming the data to find a particular resource in the graph.

• Resource Descriptions should be identified by their URIs. In contrast to the JDIL format,
URIs are not ”properties” of a resource description, but the key to the resource description
(which consists of a hash object of properties and their values). In conjunction with no nesting,
this means that you access the properties of any given resource in the rdf/json object simply by

using the URI (or node ID) as a key. eg: data['http://example.org/#foo']. It also
enforces that all known properties of a resource are contained in the same

• No prefixes. While declaring prefixes to stand for namespace URIs seems natural enough in a
hand-authoring environment, and it can make the resulting document easier to read, we realised
it would also make it more difficult for consumers to use, since, in most situations the consumer
will not be able to know which prefixes will be used for which

• Property URIs are keys to an array of values - even if there is only one ‘object’ in the array. If
you knew in advance that a particular property only had one value, it might be simpler to access
it directly, rather than as the single item of an array. However, the (we think) more common case
is not knowing whether there is one or more than one values of a property, in which case it is
simpler to always deal with an array of objects.

Implementations

Our RDF/JSON specification already has several implementations, including, at the time of
writing:

• ARC PHP RDF toolkit http://arc.semsol.org/ (2008)
• Drupal RDF Module http://drupal.org/handbook/modules/rdf (2008)
• Raptor http://librdf.org/raptor/RELEASE.html#rel1_4_17 (2008)
• Triplr http://triplr.org (2008)

Benefits of Wider Adoption

Since JSON is not just a text format, but a ”serialised data structure”, RDF libraries can support it,
not just as format to parse from or output to, but also internally, as a data structure that can be
passed to, and returned by functions and methods, as ARC, and the Drupal RDF module do.

There are a few advantages to converging on a common data structure for RDF in code. One is that
it becomes easier to pass data between components; if I use library A to spider some RDF from the
web, and I need to use another library B to do some OWL reasoning, say, ordinarily, I would have
to reserialise the RDF data with library A so that I can pass it to library B, but if both libraries use
the same data structure, I can pass the data directly, without the parsing, re-serialising, and parsing
again. This in turn may mean that we don’t need such monolithic RDF API libraries, and can
encourage the development of more modular components.

Of course, our proposed RDF/JSON structure is not optimal for every task, but (given the
advantages of interoperability and familiarity) in such cases where the internal structure would
mainly be arbitrarily different, I would like to encourage RDF library developers to support our
RDF/JSON structure internally as well as externally.

The other big advantage for the RDF developer standardising on a common data structure is that
there is less mental overhead once you are familiar with that structure. You can use the same
algorithms for processing RDF in PHP, Javascript, Ruby, Perl and Python, and between library
components that use that structure too.

By using and supporting RDF/JSON, semantic web developers can encourage a code ecosystem
that will make programming with RDF easier across languages and libraries to wider audience of
developers.

http://example.org/#foo'%5D
http://example.org/#foo'%5D
http://arc.semsol.org
http://arc.semsol.org
http://drupal.org/handbook/modules/rdf
http://drupal.org/handbook/modules/rdf
http://triplr.org
http://triplr.org

References

1. JSON http://json.org/ (2008)
2. Turtle http://www.dajobe.org/2004/01/turtle/ (2007)
3. ARC PHP RDF toolkit http://arc.semsol.org/ (2008)
4. JDIL http://www.jdil.org/ (2007)
5. Namespaces in XML http://www.w3.org/TR/REC-xml-names/#dt-qualname (2006)
6. Drupal RDF Module http://drupal.org/handbook/modules/rdf (2008)
7. Raptor http://librdf.org/raptor/RELEASE.html#rel1_4_17 (2008)
8. Triplr http://triplr.org (2008)
9. RDF/JSON Specification http://n2.talis.com/wiki/RDF_JSON_Specification (2008)
10. RDF/JSON Brainstorming http://n2.talis.com/wiki/RDF_JSON_Brainstorming (2008)
11. Beckett, Dave: <XML/> without the X: The return of Template:Textual markup http://www.dajobe.org/

talks/200705-textual/ (2008)
12. Feigenbaum, Lee:Using RDF On the Web - a Vision http://thefigtrees.net/lee/blog/2007/01/

using_rdf_on_the_web_a_vision.html (2007)
13. Feigenbaum, Lee: Using RDF on the Web - a Survey http://thefigtrees.net/lee/blog/2007/01/

using_rdf_on_the_web_a_survey.html (2007)
14. Willison, Simon: Why JSON isn’t just for Javascript http://simonwillison.net/2006/Dec/20/json/ (2006)
15. Cyganiak, Richard: RDF/JSON http://dowhatimean.net/2006/05/rdfjson (2006)
16. Torres, E., Feigenbaum, Lee., Clark, K. G.: Serializing SPARQL Query Results in JSON http://

www.w3.org/TR/rdf-sparql-json-res/ (2007)
17. Wilson, G.: URF: A Semantic Framework alternative to RDF, XML, and JSON. http://www.urf.name/

(2008)

http://json.org
http://json.org
http://www.dajobe.org/2004/01/turtle/
http://www.dajobe.org/2004/01/turtle/
http://arc.semsol.org
http://arc.semsol.org
http://www.jdil.org
http://www.jdil.org
http://drupal.org/handbook/modules/rdf
http://drupal.org/handbook/modules/rdf
http://librdf.org/raptor/RELEASE.html#rel1_4_17
http://librdf.org/raptor/RELEASE.html#rel1_4_17
http://triplr.org
http://triplr.org
http://n2.talis.com/wiki/RDF_JSON_Specification
http://n2.talis.com/wiki/RDF_JSON_Specification
http://n2.talis.com/wiki/RDF_JSON_Brainstorming
http://n2.talis.com/wiki/RDF_JSON_Brainstorming
http://www.dajobe.org/talks/200705-textual/
http://www.dajobe.org/talks/200705-textual/
http://www.dajobe.org/talks/200705-textual/
http://www.dajobe.org/talks/200705-textual/
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_vision.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_vision.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_vision.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_vision.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_survey.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_survey.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_survey.html
http://thefigtrees.net/lee/blog/2007/01/using_rdf_on_the_web_a_survey.html
http://simonwillison.net/2006/Dec/20/json/
http://simonwillison.net/2006/Dec/20/json/
http://dowhatimean.net/2006/05/rdfjson
http://dowhatimean.net/2006/05/rdfjson
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.urf.name
http://www.urf.name

Semantic Scripting

Challenge Submissions

RDF2FS -- A Unix File System RDF Store
Michael Sintek and Gunnar Grimnes.

A Distributed Semantic Microblogging Platform
Alexandre Passant, Tuukka Hastrup, Uldis Bojars and John Breslin.

SPARQLBot - The Semantic Web Command Line
Benjamin Nowack.

MOAW -- URI's Everywhere
Laurian Gridinoc and Mathieu d'Aquin.

Ruby Semantic Web Pipes
Daniel Hahn and Michele Barbera.

The challenge prize is kindly provided by:

RDF2FS – A Unix File System RDF Store

Michael Sintek and Gunnar Aastrand Grimnes

DFKI GmbH, Knowledge Management Department
Kaiserslautern, Germany

firstname.lastname@dfki.de

1 Motivation

RDF2FS is a script that translates an arbitrary RDF graph into a directory struc-
ture in a (Unix) file system, which enables Semantic Web applications without
the need of having a dedicated RDF store. There are multiple reasons why such
an approach makes sense:

1. To access the RDF store (incl. simple queries), one can use the (scripting
and any other) language of one’s choice, as long as it has proper file system
support (incl. handling of symbolic links).

2. The RDF store can be browsed (and edited) with a normal file browser (see
screenshot).

3. Subversion showed that people are more comfortable with storing data in a
file system than in a dedicated database.

4. Our approach can also have a nice educational effect: “normal” file system
users and also “hackers” will be able to understand RDF more easily, without
ever seeing an RDF file.

5. If RDF is used as metadata for documents, one usually has two places where
metadata is stored: in the hierarchical directory structure where the docu-
ments are placed, and in the RDF metadata graph. This means that doc-
uments have to be “annotated” twice, by filing the documents into the in-
tended folders, and by creating the RDF metadata with a separate tool. Our
approach allows this do be done at one place and with only one tool that
everyone is using anyway: a file browser.

2 Mapping Sketch

RDF2FS maps an RDF graph to a target root directory r as follows:

– All resources s in the graph become sub-directories of the root directory:
r/s.

– For each triple < s, p, o >:
• if p is literal-valued, we create the file r/s/p (if it does not yet exist) and

append o to this file (i.e., each line of o is a value for the property p for
subject s)

• if p is object-valued, we create a directory r/s/p, and the object o be-
comes a symbolic link r/s/p/o → ../../o, i.e., it links back to that
resource on the root level (properties that are both literal- and object-
valued are not yet supported; this could easily be done with some naming
convention, but would make queries slightly more difficult)

– The names of the files and directories are not the full resource URIs but of
the format namespace-abbrev#localname. RDF2FS keeps a list of commonly
used namespace prefixes, such as rdfs, foaf, dc, etc., and will generate new
mappings for unknown namespaces.

3 Querying the Store

The appendix shows that all of the simple queries are easily supported using
standard POSIX file system utilities (such as find, grep, ...), including all com-
binations of statement queries, path expressions, and conjunctive queries.

4 Future Work

In a future version, RDF2FS should support to translate back from a file system
RDF store to an RDF file. Real files that correspond to resources and that
should be stored in these resource directories (e.g., in some ”.” file), are not yet
supported. Furthermore, mounting an RDF file via FUSE instead of translating
to an existing file system would allow more efficient storage (esp. in case of file
systems that do not handle many small files well), better handling of queries,
and checking for illegal operations.

5 Demo Details

The mapping is implemented twice, as a Java program and a Python script.
Either version will translate a set of RDF files into a bash-script that will
create the necessary directories, files, and symbolic links. Please download
http://www.dfki.uni-kl.de/∼sintek/SFSW2008/RDF2FS.tgz and follow the in-
structions in README.

Appendix: Bash Queries

Literal-valued properties

triple queries with one variable:

s p ?o -> cat s/p

echo ’** danbri-foaf.rdf#danbri foaf#name ?o’

cat danbri-foaf.rdf#danbri/foaf#name

?s p o -> grep -l o */p | $FIRST

(where $FIRST is an awk call that selects the first part of a path)

echo -e ’\n** ?s foaf#name "Dan Brickley"’

grep -l "Dan Brickley" */foaf#name | $FIRST

s ?p o -> grep -l o s/* | $SECOND

(where $SECOND is an awk call that selects the second part of a path)

echo -e ’\n** danbri-foaf.rdf#danbri ?p "Dan Brickley"’

grep -l "Dan Brickley" danbri-foaf.rdf#danbri/* | $SECOND

triple queries with two variables:

?s ?p o -> grep -l o */*

echo -e ’\n** ?s ?p "Dan Brickley"’

grep -l "Dan Brickley" */*

?s p ?o -> ls -1 */p

plus retrieval of literals (simply with cat)

echo -e ’\n** ?s foaf#name ?o’

for f in $(ls -1 */foaf#name); do

echo $(echo $f | $FIRST) \"$(cat $f)\"

done

s ?p ?o -> file pattern s/* plus retrieval of literals (and resources)

echo -e ’\n** danbri-foaf.rdf#danbri ?p ?o’

for f in danbri-foaf.rdf#danbri/*; do

if [-f $f]; then

echo $(echo $f | $SECOND) \"$(cat $f)\"

else # resources are just the files (links) in $f

echo $(echo $f | $SECOND) $(ls $f)

fi

done

Object-valued properties

triple queries with one variable:

s p ?o -> ls s/p

echo -e ’\n** danbri-foaf.rdf#danbri/foaf#knows ?o’

ls danbri-foaf.rdf#danbri/foaf#knows

... (left as excercise to the reader :-))

Path expressions:

s p1 _ p2 ?o -> cat s/p1/*/p2

echo -e ’\n** path: danbri-foaf.rdf#danbri foaf#knows ?_ foaf#name ?o’

cat danbri-foaf.rdf#danbri/foaf#knows/*/foaf#name

?s p1 _ p2 o -> grep -l o */p1/*/p2

echo -e ’\n** path: ?s foaf#knows ?_ foaf#name "Libby Miller"’

grep -l "Libby Miller" */foaf#knows/*/foaf#name | $FIRST

Conjunction:

?s p1 o1 AND ?s p2 o2

->

using intersection (realized with sort and uniq)

grep -l o1 */p1 | $FIRST | sort -u > tmp1

grep -l o2 */p2 | $FIRST | sort -u > tmp2

sort -m tmp1 tmp2 | uniq -d # = intersection

echo -e ’\n** ?s foaf#plan "Save the world" AND ?s uranai#bloodtype "A+"’

grep -l "Save the world" */foaf#plan | $FIRST | sort -u > tmp1

grep -l "A+" */uranai#bloodtype | $FIRST | sort -u > tmp2

sort -m tmp1 tmp2 | uniq -d

rm tmp1 tmp2

Output of this script:

** danbri-foaf.rdf#danbri foaf#name ?o

Dan Brickley

** ?s foaf#name "Dan Brickley"

anon-64848a97%3A1187e661172%3A-7ffb

danbri-foaf.rdf#danbri

** danbri-foaf.rdf#danbri ?p "Dan Brickley"

foaf#name

** ?s ?p "Dan Brickley"

anon-64848a97%3A1187e661172%3A-7ffb/foaf#name

danbri-foaf.rdf#danbri/foaf#name

** ?s foaf#name ?o

anon-64848a97%3A1187e661172%3A-7fde "Pastor N Pizzor"

...

anon-64848a97%3A1187e661172%3A-7ffb "Dan Brickley"

card#i "Tim Berners-Lee"

danbri-foaf.rdf#danbri "Dan Brickley"

** danbri-foaf.rdf#danbri ?p ?o

contact#nearestAirport anon-64848a97%3A1187e661172%3A-7ffc

foaf#aimChatID "danbri_2002"

foaf#archnemesis anon-64848a97%3A1187e661172%3A-7ffb

foaf#dateOfBirth "1972-01-09"

foaf#holdsAccount anon-64848a97%3A1187e661172%3A-7ffd anon-64848a97%3A1187e661172%3A-7ffe ...

foaf#homepage danbri.org#

foaf#img ns01#Image1.gif

foaf#jabberID "danbri@jabber.org"

foaf#knows anon-64848a97%3A1187e661172%3A-7fe6 ...

foaf#mbox mailto#danbri%40apocalypse.org mailto#danbri%40danbri.org ...

...

wot#keyid "B573B63A"

** danbri-foaf.rdf#danbri/foaf#knows ?o

anon-64848a97%3A1187e661172%3A-7fe6

...

card#i

** path: danbri-foaf.rdf#danbri foaf#knows ?_ foaf#name ?o

Damian Steer

...

Tim Berners-Lee

** path: ?s foaf#knows ?_ foaf#name "Libby Miller"

danbri-foaf.rdf#danbri

** ?s foaf#plan "Save the world" AND ?s vocab#uranaibloodtype "A+"

danbri-foaf.rdf#danbri

A Distributed Semantic Microblogging Platform

Alexandre Passant1, Tuukka Hastrup2, Uldis Bojārs2, John Breslin2

1 LaLIC, Université Paris-Sorbonne,
28 rue Serpente, 75006 Paris, France

firstname.lastname@paris4.sorbonne.fr
2 DERI, National University Of Ireland,

Galway, Ireland
firstname.lastname@deri.org

Abstract. The application showcases the ideas of a distributed, Semantic-
Web enabled microblogging architecture, providing a way to leverage this
new Web 2.0 practice to the Semantic Web.

Key words: Microblogging, SIOC, Data Portability, Linked Data Web

Microblogging is one of the recent social phenomena of Web 2.0 but unlike
blogs or wikis has not yet been leveraged to the Semantic Web. To achieve this
goal, we designed a semantically-enabled distributed architecture for semantic
microblogging, which relies on an open world of publishing clients and aggrega-
tion servers that exchange data modelled in RDF.

When users write microblog posts within their clients, RDF files are created
on the client webservers, describing the posts using FOAF [3] and SIOC [2], and
pushed live to a number of aggregation servers. Thus, the user really owns his
data and can reuse it locally for other purposes, either browsing or merging with
other RDF data, while aggregation servers are mainly dedicated to providing a
browsing interface for shared communities. To model updates, we extended the
SIOC types module [1] with a MicroblogPost class, as well as Microblog to
model the service itself.

Thanks to the use of existing libraries, the code of both the client and the
server is really light1. The client uses the SIOC PHP API2 to create the RDF
files from an HTML form submission, and is only 57 lines of code. This file is
pushed to some aggregation servers (chosed from the list of servers stored in the
client configuration file) using CURL. Regarding the server, we rely on ARC23

which provides a lightweight environment for developing RDF-based applica-
tions in PHP. The server uses the SPARUL LOAD instruction to store received
updates in the server backend store, and a single SPARQL query to render a
view of public updates. To make the interface fancier, we use Exhibit [4] to
display a faceted view of these latest updates. These facets include date and au-
thor but also some user-defined data. Indeed, the server features a preprocessor
1 http://code.google.com/p/smob/
2 http://wiki.sioc-project.org/index.php/PHPExportAPI
3 http://arc.semsol.org

firstname.lastname@paris4.sorbonne.fr
firstname.lastname@deri.org
http://code.google.com/p/smob/
http://wiki.sioc-project.org/index.php/PHPExportAPI
http://arc.semsol.org

2 Alexandre Passant, Tuukka Hastrup, Uldis Bojārs, John Breslin

that allows users to use some semantic hashtags in their updates. The current
implementation includes a GeoNames4 mapping, allowing users to use tags like
#geo:paris france to retrieve the URI of the related resource, thus providing
a way to leverage location-based microblogging to the Linked Data Web. Con-
sequently, this mapping permits the use of the geographical rendering part of
Exhibit, as shown on Fig. 1 Other simple topics can be extracted with a similar
processor and can also be linked to DBPedia with a given prefix.

Fig. 1. Geographical faceted browsing of updates with Exhibit

This material is based upon work supported by Science Foundation Ireland
under grant number SFI/02/CE1/I131.

References

1. Uldis Bojārs, John Breslin, Aidan Finn, and Stefan Decker. Using the Semantic
Web for Linking and Reusing Data Across Web 2.0 Communities. The Journal of
Web Semantics, Special Issue on the Semantic Web and Web 2.0 (Forthcoming),
2008.

2. John G. Breslin, Andreas Harth, Uldis Bojars, and Stefan Decker. Towards
Semantically-Interlinked Online Communities. In Proceedings of the Second Eu-
ropean Semantic Web Conference, ESWC 2005, May 29–June 1, 2005, Heraklion,
Crete, Greece, 2005.

3. Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Namespace Doc-
ument 2 Sept 2004, FOAF Project, 2004. http://xmlns.com/foaf/0.1/.

4. David Huynh, David Karger, and Rob Miller. Exhibit: Lightweight structured data
publishing. In 16th International World Wide Web Conference, Banff, Alberta,
Canada, 2007. ACM.

4 http://geonames.org

http://xmlns.com/foaf/0.1/
http://geonames.org

SPARQLBot: The Semantic Web Command Line
(Scripting Challenge Submission)

Benjamin Nowack

semsol, Bielefelder Str. 5, 40468 Düsseldorf, Germany
bnowack@semsol.com

Abstract. SPARQLBot is an RDF-driven agent that loads structured
information from the Web and reacts to user-defined questions and commands
via an IRC interface. The bot is implemented using a small number of PHP
scripts and ARC, an open-source PHP/MySQL-based RDF system for storage
and query functionality.

1 Motivation

SPARQLBot1 was developed during a single-day coding session to demonstrate a) the
potential of tools that support structured and linked Web data, b) the developer-
friendliness of SPARQL, and c) how very little custom code can be used to build
useful applications. It consists of three core user interface components: An HTML-
based command editor that simplifies the definition of custom bot operations, a long-
running process that listens to command calls on an IRC channel2, and a standard
SPARQL endpoint3 for simplified debugging of SPARQL Queries and HTTP-based
data access.

2 Implementation

SPARQLBot is built on top of two open-source toolkits. For core RDF functionality
(RDF storage, parsing, microformats extraction, querying, etc.), it uses ARC4, a light-
weight RDF toolkit written in PHP, and the user-facing applications are implemented
as Trice5 modules. Trice is a Web development framework that extends ARC with
session management, HTML forms processing, IRC access, themes, and similar
standard Web CMS functionality.

1 http://semsol.org/semcamp/sparqlbot, to be moved to http://sparqlbot.semsol.org/ soon
2 #sparqlbot on http://irc.freenode.net/
3 http://semsol.org/semcamp/sparqlbot/sparql, to be moved to

http://sparqlbot.semsol.org/bot/sparql soon
4 http://arc.semsol.org/
5 http://trice.semsol.org/

2 Benjamin Nowack

The SPARQLBot-specific code consists of only four custom PHP Classes (~25KB /
800 LOC altogether). A generic RequestHandler dispatches HTTP requests to the
three user-facing Sub-Handlers (the IRC ProcessHandler that implements the bot, a
Command Editor, and the SPARQL endpoint). Only very few commands had to be
built directly into the bot (e.g. "quit", or "smush"). As ARC supports LOAD,
INSERT, and DELETE via SPARQL, both read and write operations can be defined
using the command editor.

3 Examples: XFN Lookups

XFN6, the "Xhtml Friends Network" is a widely deployed microformat7 to specify a
person's social network in XHTML pages. SPARQLBot's RDF toolkit can convert
XFN markup to RDF triples and then make them accessible to SPARQL queries. The
code below shows the command's essential parts which can be defined using an
online form.

Command Pattern (a regular expression):

(.*)'s? (contact|friend|me)s

Triggered SPARQL Query ($i can be used for command matches):

SELECT DISTINCT ?name WHERE {
 {?res foaf:nick "$1"} UNION {?res foaf:name "$1"}
 ?res xfn:$2 [foaf:name ?name] .
}

Result Template ($var can be used for result bindings):

$nick, I found {$name, }

Example Conversation:

<bengee> sparqlbot, load http://twitter.com/bengee
<sparqlbot> 290 triples loaded in 4.9s seconds
<bengee> sparqlbot, smush
<sparqlbot> OK
<bengee> sparqlbot, Benjamin Nowack's contacts
<sparqlbot> bengee, I found Danny Ayers, Tom,
Gregory Williams, Arto Bendiken, Paul Miller, John
Breslin,Uldis Bojars, Alexandre Passant, ...

6 http://gmpg.org/xfn/
7 http://microformats.org/

MOAW – URI’s Everywhere

Laurian Gridinoc and Mathieu d’Aquin

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{l.gridinoc, m.daquin}@open.ac.uk

The manipulation of Semantic Web data is a relatively difficult and un-
friendly task, generally carried out only by experts or technology enthusiasts.
URIs of semantic resources for example are not really easy to manipulate, as
rich and friendly interfaces allowing to understand and reuse them are still re-
quired. Therefore, the current status of the integration of such technologies with
more traditional Web interfaces hampers their adoption by a broader public. Of
course, many initiatives are currently focusing either on building systems using
Semantic Web technologies in a way transparent to the user (e.g. Revyu.com1)
or in integrating semantic data in the traditional activities of the Web 2.0 user
(e.g. MOAT2).

MOAW (pronounce like mauve: ‖mõv‖) intends to provide a simple and
lightweight contribution to such initiatives. MOAW can be seen as a URI sug-
gestion tool, building on the “auto-completion” feature made popular by Web
2.0 websites and Google keyword suggestion. Basically, MOAW can be attached
to any text field (HTML input element) so that, while typing, suggestions of
URIs would appear that can be selected to replace the corresponding word (see
figure 1). The URIs suggested by MOAW are discovered thanks to Watson. Wat-
son3 can be seen as a search engine for the Semantic Web, crawling, indexing
and providing access to Semantic Web resources for applications.

One important strength of MOAW is that, thanks to the use of flexible tech-
nologies, it can be easily applied to any online Web form without having to edit
the corresponding webpage: URIs coming from virtually anywhere on the Web
can be reused virtually anywhere on the Web. In addition, as can be seen in fig-
ure 1, MOAW not only displays the suggested URIs, but also provides, thanks
to Watson, a rich description of each URI so that it can be properly understood
and selected by the user.

Underlying technologies: In practice MOAW takes the form of a bookmarklet :
a link is dragged onto the bookmarks of the client browser and, whenever this
bookmark is clicked, the Javascript code of MOAW is “injected” into the current
webpage. This procedure for “installing” MOAW is therefore relatively simple
and provides an homogeneous way to extend the capability of any web form, in
potentially any browser.4

1 http://revyu.com
2 http://moat-project.org/
3 http://watson.kmi.open.ac.uk
4 Note that the current prototype version only works with Firefox.

Fig. 1. MOAW suggesting URIs for “tom” on the Revyu.com website.

Once activated, MOAW will load the necessary scripts and libraries, and
attach the auto-completion feature to any “imput” field in the current web-
page. This feature is based on the JQuery auto-complete plugin5, that has been
customized to search and display URIs of entities from Watson. Searching and
retrieving rich description of URIs is realized through the Watson Javascript
library, which is based on AJAX for the communication with the Watson server.
Finally, the description of each URI (type, relations, link to Watson for “More...”
information) is displayed thanks to a JQuery tooltip plugin.6

What to do with it? The original motivation for the development of MOAW
was the possibility to easily bring URIs for the purpose of editing semantic
data in the (next) version of Tabulator.7 However, MOAW is a nice little tool
that can be used anywhere a web form is present and it makes sense to fill
it with URIs. It can be envisaged, for example, to use it for tagging resources
with URIs instead of terms in various systems (blogs, collaborative bookmarks,
etc.) Another interesting scenario can be, whenever HTML is edited online, to
facilitate the integration of RDFa annotations.

The current prototype corresponds to an early, untested implementation.
We intend to improve it both on the level of robustness and of the features
it provides. The source code can be retrieved from the web page of the project
(http://watson.kmi.open.ac.uk/MOAW) and is open to any form of contribution.
5 http://www.bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
6 http://bassistance.de/jquery-plugins/jquery-plugin-tooltip/
7 http://eprints.ecs.soton.ac.uk/14773/

Ruby Semantic Web Pipes
Semantic Web Pipes just got easier

Daniel Hahn2 and Michele Barbera2

NET7 Internet Open Solutions - Pisa
(hahn|barbera)@netseven.it

Ruby SemPipes are based on the Semantic Web Pipes proposed by Giovanni
Tummarello, Christian Morbidoni et. al. [1]. Semantic web pipes provide a mech-
anism similar to Yahoo! Pipes1, but work on semantic web data. They allow users
to filter and recombine semantic web data on the fly (more information can be
found in the cited work). The original Semantic Pipes also have some advanced
features that are not touched here, such as the revocation of triples.

Ruby SemPipes2. are an intentionally simple reimplementation of the Se-
mantic Web Pipes. They provide an easy “pipe description language” . Pipes
can easily be created and modified from a script or application, the definitions
are painless to read and they don’t require the pipe developer to manually edit
XML files or SPARQL queries.

To make things simple, Ruby SemPipes treat all RDF graphs as enumera-
tions of triples. A pipe itself is also an enumeration over it’s result set and any
enumeration of triples (including other pipes) can be used as an input for a pipe.

Using Eyal Oren’s ActiveRDF [2] library, it will be quite easy to provide
input adapters that connect to “real” RDF endpoints and perform SPARQL
queries. These adapters could then be used as input to a pipe. Conversely, output
adapters could re-write the result of a pipe to a common storage format, such
as RDF/XML.

The first implementation of Ruby SemPipes contains a merge, filter and
rewrite operator; a smushing operator is in the pipeline. The filter and rewrite
operators allow a simple but powerful filtering (or rewriting) of triples using
regular expression. In addition to the operators, pipes may also contain actions
which allow the developer to manipulate triples programmatically. All built-in
operators are themselves pipes written in the same way as user-created pipes.

Each pipe takes on ore more sets of RDF triples as an input; the pipe itself
will operate on the union (including duplicates) of the input sets – the merge
operator will actually just remove duplicates from the input.

Listing 1.1. Sample Pipe setup
module SemPipe

The f i r s t p ipe
def ine_pipe : new_pipe do

merged_tr ip les = merge (input)

1 http://pipes.yahoo.com/
2 The first experimental version is available via public svn from http://svn.talia.
discovery-project.eu/talia-intern/playground/ruby_pipes/trunk

Rewrite Tim Berners−Lee en t r i e s
r ew r i t t e n_t r i p l e s = r ewr i t e (merged_tr ip les) do

r ewr i t e : a l l ,
"<http :\/\/ dbpedia . org \/ r e sou r c e \/Tim_Berners−Lee>" ,
"<http ://www.w3 . org /People /Berners−Lee/ card#i>"

end

Remove a l l t r i p l e s d ea l i n g wi th A l i ce
s e l f . output = f i l t e r (r ew r i t t e n_t r i p l e s) do

r e j e c t : a l l "<http :\/\/ st rangewor ld . com\\/ Al i c e "
end

end

Define another p ipe
def ine_pipe : another_pipe do

temp = new_pipe (input)
s e l f . output = act i on (temp) do | input |

input . to_a << [@subject , @predicate , @object]
end

end

Use the p ipe
AnotherPipe . new(load_some_input) . each { | t r i p l e | puts t r i p l e }

end

Listing 1.1 shows a sample setup of two Ruby SemPipes. The first pipe merges
all input sets, then rewrites Tim Berners-Lee’s dbpedia URL with his own URL
and finally filters out all entries dealing with Alice. Pipes can be easily connected
using variables; the special variable input is used in the pipe description to
denote the pipe’s input. The self.output variable is used to assign a value to
the current pipe’s result set.

The second pipe shows that other pipes can be used just as easily as the
built-in operators. The pipe also contains a generic action that adds a (complete
random) triple to the graph.

Acknowledgements

This work has been supported by Discovery, an ECP 2005 CULT 038206 project
under the EC eContentplus programme. Of course we also like to acknowledge
the original work of Christian and Giovanni.

References
1. Morbidoni, C., Polleres, A., Phuoc, D.L., Tummarello, G.: Semantic web pipes.

Technical report, DERI (2007)
2. Oren, E., Debru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-Oriented

Semantic Web Programming. In: 16th International World Wide Web Conference
(WWW2007), Banff, Alberta, Canada. (8-12 May, 2007) 817–823

	Proceedings.pdf
	1
	2
	3
	4
	6
	9
	10
	11
	Microblogging: A Semantic and Distributed Approach
	Alexandre Passant, Tuukka Hastrup, Uldis Bojars, John Breslin
	Introduction
	Overview of microblogging
	Why microblogging?
	Current issues

	Architecture of a semantic microblogging service
	Metadata modelling
	Data modelling
	Distributed content
	Distributed aggregation
	Users own their data
	Security and privacy issues

	A prototype: SMOB
	Publishing Content
	Reading content
	Code overview

	Conclusions and future work
	References

	15
	16
	5
	12
	A Distributed Semantic Microblogging Platform
	Alexandre Passant, Tuukka Hastrup, Uldis Bojars, John Breslin
	References

	7
	8
	14

