
Proceedings of the
Third Workshop on Semantic Wikis

– The Wiki Way of Semantics
5th European Semantic Web Conference

Tenerife, Spain, June 2008

edited by Christoph Lange

June 2, 2008

Preface

Dear Reader,
almost two years have passed since the last Semantic Wiki workshops in 2006. In the

meantime, more than 200 researchers and practitioners have subscribed to our mailing
list1. Many of the ideas developed in 2006 have been evaluated in practical scenarios, and
many of the implementations that had been in a prototype stage then have matured and
now serve as an infrastructure for follow-up projects. Wikis, including non-semantic ones,
have become more ubiquitous as “weapons of mass collaboration”2 than ever, which calls
for tapping these sources of knowledge in a systematic way. New scientific challenges are
found in the larger Semantic Web context and then met and investigated in the controlled
testbed of a Semantic Wiki, or they are found in semantic wikis themselves. Semantic
Wikis contain in an integrated fashion many of the core challenges of the Semantic
Web community: authoring, versioning, interlinked data, semantic browsing, semantic
annotating, semantic diffs, semantic search and getting overview. In a Semantic Wiki,
all of these are part of a coherent whole, of a tool that must still remain lightweight and
easy to use.
We wish to thank all authors who spent their nights and days contributing to this

topic and thereby made this workshop possible. The high number of good submissions
made the work for the programm committee members even more difficult – thank you all
for your work. Many thanks also to the ESWC organisation team, which set the stage
for this workshop as one out of 12. Let us continue to bring the lively wiki spirit to the
Semantic Web and enjoy reading the proceedings.

Galway, June 2008
Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli and Max Völkel

1swikig@aifb.uni-karlsruhe.de
2Don Tapscott and Anthony D. Williams, “Wikinomics”

iii

http://www.aifb.uni-karlsruhe.de/mailman/listinfo/swikig

Contents

Preface iii

Programme vi

Towards an Interlinked Semantic Wiki Farm
Alexandre Passant and Philippe Laublet 1

Ad-Hoc Knowledge Engineering with Semantic Knowledge Wikis
Jochen Reutelshöfer, Joachim Baumeister, and Frank Puppe 15

Hypertext Knowledge Workbench
Max Völkel 33

Mathematical Semantic Markup in a Wiki: The Roles of Symbols and Notations
Christoph Lange 47
Poster (SWiM – A Semantic Wiki for Mathematical Knowledge Management) . 61

A Real Semantic Web for Mathematics Deserves a Real Semantics (Position
Paper)
Pierre Corbineau, Herman Geuvers, Cezary Kaliszyk, James McKinna, and Freek
Wiedijk 62

Flyspeck in a Semantic Wiki – Collaborating on a Large Scale Formalization of
the Kepler Conjecture
Christoph Lange, Sean McLaughlin, and Florian Rabe 67

Using Attention and Context Information for Annotations in a Semantic Wiki
Malte Kiesel, Sven Schwarz, Ludger van Elst, and Georg Buscher 82

RDF Authoring in Wikis
Florian Schmedding, Christoph Hanke, and Thomas Hornung 87

AceWiki: Collaborative Ontology Management in Controlled Natural Language
Tobias Kuhn 94
Poster . 99

Next-Generation Wikis: What Users Expect; How RDF Helps
Axel Rauschmayer 100

iv

Poster (RDF Editor Hyena) . 105

Integrating a Wiki in an Ontology Driven Web Site: Approach, Architecture and
Application in the Archaeological Domain
Andrea Bonomi, Alessandro Mosca, Matteo Palmonari, and Giuseppe Vizzari 106

Extending the Makna Semantic Wiki to support Workflows
Karsten Dello, Lyndon Nixon, and Robert Tolksdorf 119

SWOOKI: A Peer-to-peer Semantic Wiki
Charbel Rahhal, Hala Skaf-Molli, and Pascal-Molli 124

A Generic Corporate Ontology Lifecycle
Markus Luczak-Rösch and Ralf Heese 126
Poster . 132

Descriptive Schema: Semantics-based Query Answering
Sau Dan Lee, Patrick Yee, Thomas Lee, David W. Cheung, and Wenjun Yuan 133
Poster . 135

Property Clustering in Semantic MediaWiki – Define Your Own Classes and
Relationships
Gero Scholz 136

BOWiki: Ontology-based Semantic Wiki with ABox Reasoning
Joshua Bacher, Robert Höhndorf, and Janet Kelso 140

v

vi

Programme

09:00 – 10:30 Session 1
09:00 – 09:15 Opening Ceremony

Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max
Völkel

09:15 – 10:00 Keynote: The KiWi Project – Knowledge in a Wiki
Peter Dolog, Aalborg University

10:00 – 10:20 Best Paper: Towards an Interlinked Semantic Wiki Farm
Alexandre Passant and Philippe Laublet
—discussion—

10:30 - 11:00 Coffee Break

11:00 - 13:00 Session 2: Lightning Panels
a group of short talks on related topics,
≈ 15 min. per full paper, 5 min. per short paper,
followed by a joint discussion

11:00 – 11:40 Knowledge Management
Ad-Hoc Knowledge Engineering with Semantic Knowledge
Wikis
Jochen Reutelshöfer, Joachim Baumeister, and Frank Puppe
Hypertext Knowledge Workbench
Max Völkel
—discussion—

11:40 – 12:30 Applications in Mathematics
Mathematical Semantic Markup in a Wiki: The Roles of Sym-
bols and Notations
Christoph Lange
A Real Semantic Web for Mathematics Deserves a Real Seman-
tics (Position Paper)
Pierre Corbineau, Herman Geuvers, Cezary Kaliszyk, James
McKinna, and Freek Wiedijk
Flyspeck in a Semantic Wiki – Collaborating on a Large Scale
Formalization of the Kepler Conjecture
Christoph Lange, Sean McLaughlin, and Florian Rabe
—discussion—

12:30 – 12:50 Annotation
Using Attention and Context Information for Annotations in a
Semantic Wiki
Malte Kiesel, Sven Schwarz, Ludger van Elst, and Georg
Buscher
RDF Authoring in Wikis
Florian Schmedding, Christoph Hanke, and Thomas Hornung
—discussion—

vii

12:50 – 14:00 Lunch

14:00 – 15:10 Session 3: Lightning Panels
14:00 – 14:20 Alternative Interfaces

AceWiki: Collaborative Ontology Management in Controlled
Natural Language
Tobias Kuhn
Next-Generation Wikis: What Users Expect; How RDF Helps
Axel Rauschmayer
—discussion—

14:20 – 14:50 Other Application Areas
Integrating a Wiki in an Ontology Driven Web Site: Approach,
Architecture and Application in the Archaeological Domain
Andrea Bonomi, Alessandro Mosca, Matteo Palmonari, and
Giuseppe Vizzari
Extending the Makna Semantic Wiki to support Workflows
Karsten Dello, Lyndon Nixon, and Robert Tolksdorf
—discussion—

14:50 – 16:00 Session 4: Demo/Poster Session
SWOOKI: A Peer-to-peer Semantic Wiki
Charbel Rahhal, Hala Skaf-Molli, and Pascal-Molli
A Generic Corporate Ontology Lifecycle
Markus Luczak-Rösch and Ralf Heese
Descriptive Schema: Semantics-based Query Answering
Sau Dan Lee, Patrick Yee, Thomas Lee, David W. Cheung, and
Wenjun Yuan
Property Clustering in Semantic MediaWiki – Define Your Own
Classes and Relationships
Gero Scholz
BOWiki: Ontology-based Semantic Wiki with ABox Reasoning
Joshua Bacher, Robert Höhndorf, and Janet Kelso
including demos of systems presented earlier in talks
. . . and other demos/posters

viii

16:00 – 16:30 Coffee Break (poster/demo session open to visitors)

16:30 – 18:00 Session 5: Interactive
16:30 – 16:45 Discussion on Standardisation and Interoperability: Problem

Statement
16:45 – 17:45 Teamwork
17:45 – 18:00 Concluding Remarks

18:00 – 19:00 Joint Dinner (continuing teamwork discussions)

19:00 – 20:00
Nepomuk Nexus: Reception and Presentation

20:45 SemWiki 2008 Social Event

Organisation

• Christoph Lange

• Sebastian Schaffert

• Hala Skaf-Molli

• Max Völkel

ix

x

Towards an Interlinked Semantic Wiki Farm

Alexandre Passant1,2, Philippe Laublet1

1 LaLIC, Université Paris-Sorbonne,
28 rue Serpente,

75006 Paris, France
firstname.lastname@paris4.sorbonne.fr

2 Electricité de France Recherche et Développement,
1 avenue du Géneral de Gaulle,
92141 Clamart Cedex, France
firstname.lastname@edf.fr

Abstract. This paper details the main concepts and the architecture
of UfoWiki, a semantic wiki farm – i.e. a server of wikis – that uses
form-based templates to produce ontology-based knowledge. Moreover,
the system allows different wikis to share and interlink ontology instance
between each other, so that knowledge can be produced by different and
distinct communities in a distributed but collaborative way.

Key words: semantic wikis, wiki farm, linked data, ontology popula-
tion, named graphs, SIOC

1 Introduction

During the last few years, various Web 2.0 services and principles - such as blog-
ging, wikis, social tagging and social networking - gained interest in corporate
environments, leveraging tools that people are more and more used to in their
personal life to the enterprise [1]. On the other hand, Semantic Web [2] technolo-
gies are used in different business information systems to enrich data integration,
querying and browsing, thanks to powerful means to represent knowledge like
ontologies and standards to model or query data as RDF and SPARQL.

While some consider Web 2.0 and Semantic Web as being opposite concepts
with different origins and goals, we believe as others [3] that these two views
should - and even must - be combined to offer easy-to-use but powerful services
to end-users. Thus, information systems should benefit from usability and social
aspects of Web 2.0 and also from data formalisms of the Semantic Web. It
will provide to end users means to collaboratively build, maintain and re-use
ontology-based data, a task often dedicated to knowledge management experts,
especially in organizations.

In this paper we will describe a semantic wiki-farm system, i.e. a wiki server
where communities can setup new wiki instances, called UfoWiki – Unifying
Forms and Ontologies in a Wiki – that aims to achieve this goal, currently in

1

2 Alexandre Passant, Philippe Laublet

use at EDF R&D3. The paper is organized as follows. First, we will briefly intro-
duce the limits of classical wikis and various implementations of semantic wikis
designed to enhance wiki features thanks to semantics. Then we will introduce
the features and the architecture of our semantic wiki farm, as well as novelties
compared to current semantic wikis systems, especially the way we combine data
and meta-data to keep some information about the knowledge created from wiki
pages. We will then describe how people can use one wiki to create ontology
instances thanks to form-based templates and emphasize on how the system in-
terlinks data from one wiki to another one but also allows to re-use external
data. We will then show how created data can be reused to provide advanced
features in a single wiki but also for the complete wiki farm.

2 Wikis and Semantic Wikis for Knowledge Management

2.1 Limits of Traditional Wikis

Among the numerous practices and tools that became popular thanks to Web 2.0,
wikis offer new and interesting possibilities regarding collaborative knowledge
management. Pages versioning, open plus non-hierarchical editing, hyperlinks
and back-links provide useful services to gather and build knowledge within
communities and business environments or in open environments as the Web.

Nevertheless, traditional wikis suffer from the difficulty for computers to ex-
ploit and reuse the knowledge they contain. A reader could learn from a wiki
that EDF is a company that produces nuclear energy in France but a software
agent will not be able to easily answer queries like ”Is EDF located in France
?” or ”List all companies known in that wiki” without natural language pro-
cessing algorithms. Indeed, wikis deal with documents and not with machine-
understandable representations of real-world concepts and objects, as a reader
does when browsing or editing a page. So, a wiki will model that ”There are
some hyper-links between a page titled EDF, a page titled France and a page ti-
tled nuclear energy”, but will not be able to deduce anything about the nature of
those different objects and their relationships, since pages do not carry enough
semantics about the knowledge they contain (Fig. 1).

2.2 The Semantic Web and Ontologies for Better Wikis

To bridge this gap between documents and machine-readable knowledge about
real world objects, data must be described in a way software agents interpret
and understand uniformly in order to reuse it efficiently. Ontologies [4] and the
Semantic Web are effective ways to do so, since they provide common data struc-
tures, vocabularies and languages for modeling and querying domains of interest
and related individuals. During the last few years and since the first SemWiki
workshop [6] various semantic wikis prototypes have been built, combining wiki

3 Electricit de France, aka EDF, is the leading energy company in France, its R&D
department involves about 2000 researchers

2

Towards an Interlinked Semantic Wiki Farm 3

Documents
(wiki level)

France

EDF

Nuclear
energy hyperlink

hyperlink

Real wold
(human mind level)

EDF
Company

France

Country

Nuclear
energy

is A

is A

produces

Knowledge
perception

gap

located in

Fig. 1. The gap between documents and real-world knowledge

features and Semantic Web technologies. While tools use different ways to pro-
duce this machine-readable data thanks to efforts of their community of users,
they all share the common goal of providing value-added services from advanced
pages browsing to query answering or even reasoning upon the created dataset.

Systems such as Semantic MediaWiki [7] or SemperWiki [8] require to use a
special wiki syntax or to directly embed RDF in order to add semantic annota-
tions to wiki pages. While this is an open approach in the spirit of wiki principles,
this can lead to semantic heterogeneity problems since any user can use its own
vocabulary to add annotations in a document, making them difficult to re-use.
A system like IkeWiki [9] combines plain-text feature of wikis and a dedicated
triples-based form interface to help users annotating content by re-using existing
ontologies, while OntoWiki [10] can be used as a complete ontology instances
editor, with a user-friendly interface that offers different views and browsing and
editing interfaces over existing data. Yet, most of those systems require users to
have some knowledge about the Semantic Web at a certain time when using it,
since they have to deal with namespaces or URIs. This makes the tools difficult
to use for people that are not aware of such models, as in business environments
where people need to focus on how to use the tools rather than on how he is
being build, i.e. benefit from Semantic Web technologies without having to learn
them.

In these tools, semantic annotations are mainly used to create and maintain
ontology instances and relationships between them, as well as properties, thus
providing a real-world and machine-readable representation of the content de-
scribed inside the pages. They can help to enhance browsing capabilities of the
wiki, by suggesting related pages sharing similar instances or listing all pages
featuring a certain property as does Semantic MediaWiki. Moreover, new ways
to browse the data are available, like in OntoWiki that features map and calen-
dar view of existing data, while some tools provide a back-end RDF store that

3

4 Alexandre Passant, Philippe Laublet

allows to query data from the whole wiki and embed query results in wiki pages.
Finally, some tools also feature inferencing capabilities in order to deduce new
knowledge from the current state of the wiki and thus enrich user experience
in discovering new knowledge. For example, IkeWIki and OntoWiki can list all
instances of a given type taking into account instances of various subclasses.
Eventually, it seems important to reference DBpedia [12], a project that aims to
represent Wikipedia content in RDF, as well as other semantic wikis, like Sweet-
Wiki [11] which does not focus on ontology population but on using semantic
web technologies to let users tag their pages and organize those tags, focusing
on pages meta-data rather than modeling content of those pages.

3 Modeling a Semantic Wiki Farm

3.1 Main Features of the System

Regarding various aspects of semantic wikis that have been mentioned before, we
created UfoWiki, a new semantic wiki farm system - i.e. a wiki server designed
to setup and host several wikis - based on the following features, that will be
described in the rest of the paper:

– Ontology-based knowledge representation. Data created from wiki pages is
represented in RDF and is based on a set of ontologies defined by adminis-
trators of the wiki in order to avoid semantic heterogeneity problems of data
modeling;

– Usability. In extent of the previous point and in order to let users easily
produce that ontology-based data, we focused on a combination of plain-
text and intuitive forms to edit wiki pages, so that users do neither confront
to a new syntax or to Semantic Web modeling principles;

– Interlinking data While each wiki of the farm acts independent (regarding
users that can access it, topics, and modeled knowledge), the system allows
different wikis to exchange and interlink their data even if they do not share
hyperlinks between each other, thanks to a common knowledge base for the
whole system;

– Modeling both data and meta-data. While our approach mainly focuses on
modeling knowledge contained within wiki pages, we also separately repre-
sent the complete wiki server meta-data (wikis, users, pages, tagging actions
...) in RDF, combined with links between those two distinct levels of repre-
sentation.

– Immediate reuse of formalized data. RDF data created among the wikis must
be immediately reusable to enhance browsing and querying capabilities of
the system, either for a single wiki or the complete farm. Our system uses
inline macros, that can provide semantic back-links in the wiki.

3.2 Global architecture

To achieve these goals, our system involves different components. The first part
of the architecture consists in a set of ontologies that are used to model RDF

4

Towards an Interlinked Semantic Wiki Farm 5

data from the wikis, whether it is data about the pages or about their content.
For the latter, ontologies must be defined in RDFS or OWL depending on the
needs of the knowledge field of the wiki. Regarding the RDF description of
wiki pages and user actions, we are using the SIOC ontology [13] and its type
module4, a model to describe social media meta-data with unified semantics.
We also model tags and tagging actions using the Tag Ontology [14] and the
MOAT ontology [15], so that people can give machine-understandable meanings
to their tags, especially using URIs of ontology instances created within other
wiki pages. Since for all wiki page, data and meta-data are produced within
two distinct RDF documents - so that one can export independently each level
of representation - we extended the SIOC ontology with a specific property,
embedsKnowledge in order to formally represent in RDF the link between a wiki
page (described in RDF) and the data embedded in it (Fig. 2). This property
provides a way to link any instance of sioc:Item - and its subclasses - to the
URI of a named graph [16], i.e. in practice the URL of a document that contains
a set of RDF triples.

Then, the system features its web interface to create wikis, manage wiki
forms and browse and edit wiki pages. This interface uses Drupal and is mainly
based on a fork of the flexinode module5 to let wiki owners define their forms.
Each form is related to a given class - e.g. people (related to foaf:Person) or
software project (doap:Project) - and each part of the form (a field or a set of
fields) can be related to an ontology property and also to a given class, which is
used for the autocompletion features of the system. Thus, the editing interface
of each wiki combines plain-text and structured parts in order to easily manage
the creation of RDF statements according to the ontologies it uses, as we will
see on the next section.

The last component of the system is the knowledge base of the wiki farm,
storing all created RDF statements thanks to a triple-store, using the 3store6

API. By storing in real-time all RDF data as well as ontologies in a single place,
it offers querying capabilities for the complete data and meta-data of all the
wikis, but nevertheless keeps a trace of each statement thanks to its named
graphs compliance, so that queries can involve the complete wiki farm data or
only data of a given wiki. This store also manages basic inference capabilities
(subclasses and subproperties) and supports SPARQL [5] and some SPARUL
patterns (SPARQL update7) in order to query and update data created from the
wiki pages.Moreover, since all wikis of the wiki farm share the same knowledge
base, by querying and updating a single RDF store, data can be re-used across
wikis. Thus, an ontology instance created in a given wiki can be linked to an
ontology instance from another one, even if there is not direct hyperlink between
the pages that embeds this knowledge. It allows our system to create knowledge
on a distributed way, even between various communities that do not share the

4 http://rdfs.org/sioc/types
5 http://drupal.org/modules/flexinode
6 http://threestore.sf.net
7 http://jena.hpl.hp.com/~afs/SPARQL-Update.html

5

6 Alexandre Passant, Philippe Laublet

same wiki but that produce information about the same ontology instances (Fig.
4).

Semantic Web layer

Document layer
(wiki level)

Wiki page
A

RDF
description
of objects
embedded
in page A

RDF
meta-data
about page

A

Wiki page
B

RDF
description
of objects
embedded
in page B

RDF
meta-data
about page

B

HTML hyperlink

produces
producesproduces produces

Semantic
relationships

between objects

semantic link
semantic link

User 1

User 2

RDF
Store

edit

edit

Storage

Meta-data
ontologies

(SIOC, DC ...)
Data-modeling

ontologies
(SKOS, Domain
ontologies ...)

uses
uses

Fig. 2. Architecture of one wiki from the wiki-farm

4 Maintaining and interlinking ontology instances
between wikis

4.1 Using forms to create and maintain ontology instances

As most semantic wikis, our system automatically creates one main ontology
instance for each wiki page, based on the page title. While some wikis do not
explicitly assign them a given type and other rely on the page category to define
it, our system uses the class assigned to the page form to define it. Regarding
definition of properties and relationships of each instance, we use a mix of plain-
text and forms in the wiki editing interface, thus separating plain-text content
from content to be modeled in RDF, as the Semantic Forms extension8 for
Semantic Wiki or Freebase9 can do. When creating the page, translation from
wiki content to RDF data is then automatically done thanks to the mappings
defined by wiki administrators between the form and a set of ontologies. We
think that this combination of plain-text and forms to ease the modeling of
RDF data (Fig. 3) has numerous advantages:

8 http://www.mediawiki.org/wiki/Extension:Semantic_Forms
9 http://www.freebase.com

6

Towards an Interlinked Semantic Wiki Farm 7

– First, as fields are defined by the wiki owner for each type of page and so
for each class, users know what kind of knowledge is relevant for the wiki
regarding a given page and can focus on essential aspects in this context;

– Moreover, as we kept a simple WYSIWYG field for each page, any other
relevant information can be added there. It can also help to participate in
evolution of the model itself when regular patterns appear, even if the model
must be edited manually in this case;

– Users can benefit from autocompletion features, suggesting possible related
instances by querying the RDF store with on-the-fly SPARQL queries, thanks
to AJAX technologies;

– At last, in our system, this approach allows to create complex relationships
and ontology instances inside a single page. While most semantic wikis allow
only to create relationships between existing objects, a form part can cor-
respond to a dedicated class in our system, offering better ways to manage
complex ontologies population. Moreover, in the page meta-data represen-
tation, we distinguish the main instance and the embedded ones, using two
subproperties of sioc:topic we especially created to achieve this distinc-
tion.

Inline macro

Simple
autocomplete

field

Complex
instance field

Fig. 3. Wiki editing interface

While each page corresponds to a given ontology instance, instances are also
created for each filled relationship field where a class has been assigned. Then,
if one later decides to create a wiki page for these instances, properties will be
added to the existing ones. Moreover, when instances are not used anymore in
any wiki, i.e. do not have any property, they are automatically removed from the

7

8 Alexandre Passant, Philippe Laublet

RDF store to avoid orphan instances. From these aspects, the wiki really acts
as a collaborative ontology population tool, beneficing from Web 2.0 features to
provide this task. An instance can be created by a user, modified by another,
then linked to a third one by another one and even can disappear from the
knowledge base if a fourth user edit the page that contains its only reference
and removes it.

4.2 Interlinking data between wikis

As we saw in the previous section, our system allows various pages of a given
wiki to add information about a single ontology instance. For example, we can
create an instance in a wiki page and add a relationship from another instance
in a different page than the one that creates it. Yet, our system goes further
by allowing two different and disconnected wikis to manage information about
the same instance in a distributed way, but keeping the trace of which wiki -
and which page - helped to create the information. Thanks to the combination of
named graphs and the embedsKnowledge property we introduced before, the wiki
farm can consider either the whole RDF graph, or subgraphs of RDF statements
related to a given wiki only (Fig. 4).

Such a scenario might be useful in some corporate environments, where peo-
ple do not want to allow anyone to access their wiki, but agree on sharing some
expertise and data with others. By exporting only some parts of the wiki page
in RDF (i.e. the instances and properties created from some fields of the form
page), our model allows the webpage itself to be hidden to not-authorized peo-
ple while the RDF statements can be exported and become available to a larger
community. Moreover, due to our technical architecture that uses SPARQL and
SPARUL, the system allows wikis that are distributed on a network (and not
from the same wiki farm) to exchange data and interlink it the same way, in case
they share a single common RDF database. The system currently do not deal
with inconsistency between data from different wikis. We think that this issue
should be dedicated to some reasoning engine, that would check inconsistency
between produced statements thanks to OWL axioms defined in the ontologies.

Moreover, instead of querying the complete knowledge base, queries can be
restricted to data created from a single wiki by using this kind of SPARQL query:

select ?page ?title
where {
graph ?data {
:EDF ?predicate ?object

} .
?page :embedsKnowledge ?data ;
rdf:type sioct:WikiArticle ;
dc:title ?title ;
sioc:has_container <http://example.org/wiki/6> .

<http://example.org/wiki/6> a sioct:Wiki .
}

8

Towards an Interlinked Semantic Wiki Farm 9

This process of combining the two levels of representation can also be used
in the autocompletion field, by restricting the autocompletion SPARQL queries
to data created from a single wiki, rather than to the whole RDF statements.

athena:EDF

http://sws.geonames.org/
3017382

geonames:locatedIn

Wiki page A

embedsKnowledge

athena:EDF

athena:NuclearEnergy

athena:produces

Wiki page B

embedsKnowledge

RDF
Backend

sioct:WikiArticle

sioct:WikiArticle
rdf:type

rdf:type

athena:EDFgeonames:locatedIn

http://sws.geonames.org/
3017382 athena:NuclearEnergy

athena:produces

stores stores

merges

Wiki A

Wiki B

Fig. 4. Interlinking and merging data from different wikis

4.3 Interlinking wiki data with external knowledge

Our system also allows to connect our data to external, publicly available, RDF
data. At the moment, a single plug-in is available, to reuse the GeoNames10

ontology and knowledge base. Each time a form field corresponds to a place and
is assigned to the geonames:Feature class, the system queries the GeoNames
webservice11 to retrieve the URI of the given instance. Thus, the updated local
instances can be linked to external resources, beneficing from a global connection
between our data and efforts of communities that help to build such knowledge
base. Moreover, we not only link to the URI but also crawl the related RDF
file to put in in the wiki knowledge base. Thus, it allow the system to provide
geo-location features to end users, without the need for them to type the exact
location (i.e. latitude and longitude) of each instance (eg: a people or a company),
as they would have done using systems like Semantic MediaWiki and its Semantic
Layers extension12.

10 http://www.geonames.org
11 http://ws.geonames.org
12 http://s89238293.onlinehome.us/w/index.php?title=Main_Page

9

10 Alexandre Passant, Philippe Laublet

In the future, we plan to implement new wrappers and linkage systems for
other RDF data, especially ways to link to DBpedia extracted knowledge, which
can help to provide additional information about instances created within the
wikis, and also contribute to the expansion of the Linked Data Web [17]. Re-
garding this latest point, linking to data from references datasets can help RDF
data from our system to be more easily found on the Semantic Web, thanks to
lookup services such a Sindice [18] that help to retrieve all resources using and
linking to a given URI.

5 Using created data

5.1 Inline macros

The main feature to enhance wiki browsing capabilities in our system is the
use of inline macros, similar to inline queries of Semantic Mediawiki. Those
macros are defined by wiki administrators themselves, using SPARQL and PHP
to render the results and are then called by users in wiki pages with simple
hooks. Since all data are based on a set of predefined ontologies, queries can be
written without having to deal with semantic heterogeneity problems, as people
that would have use different property names for the same one, e.g. isLocatedIn
versus has location. The system then runs the query over the RDF store when
the page loads, so that query results are always up-to-date. While queries can
be complex, users simply type function names, with some arguments if needed,
to use it in wiki pages. For example, [onto|members] will be translated in a
query that will retrieve all people that are member of the organization described
in a wiki page (Fig. 3, Fig. 5). Such queries take inference capabilities of the
system into account, so that, for example, if they must list all organizations
instances described in the wiki, they will also lists companies or associations if
they have been defined as subclasses of the first one in the ontology. Finally, the
administrator can decide that the macro will render a link to add new page in
the wiki to create an instance of a given type, thus facilitating the process of
creating new data.

Inline macro
result featuring

new page
creation link

Inline macro
result

Fig. 5. Browsing an enhanced wiki page

10

Towards an Interlinked Semantic Wiki Farm 11

Moreover, macros can take into account the way we combine modeling of data
and meta-data in RDF export of wiki pages, so that a wiki can display a list
of pages from another wiki for a given query, as the previous SPARQL snippet
showed. It allows one wiki to benefit from the effort of another community done
in another wiki.

More generally, such queries can be seen as a way to move from classical wiki
back-links to semantic back-links, as we bridged the gap between documents and
Semantic Web formalized data. While a typical wiki could list thanks to its back-
link feature that an organization page has an incoming link from a people page,
our system takes advantage of the data formalism to be more specific about the
nature of this link, mentioning that this company employs that person, going
from the document to the data layer.

5.2 Advanced data view

Finally, those macros can display results according other rendering inter-faces,
such as Google Maps, in case the needed geo-location information is available in
the RDF store thanks to the integration of the GeoNames lookup service. Thus,
while the result is similar to what can be done with the map view of OntoWiki,
users do not have to manually enter the coordinates of each instance (e.g. a
company) but simply fill a ”City, (State), Country” field, that will be used to
retrieve the appropriate RDF data - including coordinates - from GeoNames an
add it in our knowledge base. Here, we clearly see the benefit of using the same
model (i.e. the GeoNames ontology) than an existing RDF dataset to include
data from external services at zero-cost. The Fig. 6 displays the output map of
a macro that retrieves the location of a given association and all of its members
from a single wiki interlinked with GeoNames data in a single SPARQL query.

Fig. 6. Map view of the wiki data

11

12 Alexandre Passant, Philippe Laublet

5.3 Semantic search

Another feature of the system is a dedicated semantic search engine, taking
into account existing instances described within the wiki (or used in a semantic
tagging process) rather than plain-text only when retrieving data. When a user
search for a given term in the wiki farm, the system first finds the list of all
instances related to this label, using (1) rdfs:label that can have be defined
thanks to the wiki pages and dedicated forms and (2) the moat:Tag instances
that contains this term within their label and that are linked to existing instances
thanks to a related moat:Meaning. Thus, if a user type the search term ”France”,
the system will ask the user if he requires information about”EDF” (since it has
”Electricit de France” as a tag) but also, of course, the ”France” concept.

Then, the system will list independently:

– All wiki pages - for each wiki, identified by their name - that have this
instance as a main topic;

– All wiki pages where the instance is an ”alternative” topic (i.e. an instance
created within a page);

– All wiki pages ”tagged” (thanks to MOAT) with this instance.

Thus, it offers various meta-data representation of the wiki.

Fig. 7. Semantic search results example

Moreover, while we do not currently provide user friendly interface to gen-
erate new queries or macros, advanced users can run SPARQL queries over the
RDF data.

12

Towards an Interlinked Semantic Wiki Farm 13

6 Conclusion and future works

In this paper, we described a prototype of wiki that combine structure and
Semantic Web modeling capabilities to produce ontology-based and machine-
readable data in a collaborative way. We showed how various wikis could be
used to model and interlink knowledge about ontology instances in an open and
distributed way. We finally showed how such knowledge can be used to enrich
functionalities of the wiki. While this system combines some features that already
exist in various prototypes, it focuses on usability for end-users, as well as, from
the technical side, a way to model and link both data and meta-data, offering
capabilities to view different levels of annotation, either from a single wiki or for
the complete set of wikis.

The system is currently in use at EDF R&D, where users have created more
than 200 instances from various lightweight ontologies. We extensively use the
GeoNames integration, making the geo-location feature easy to integrate in order
to provide new and interesting ways to browse the wiki content. Inline macros
are also useful for end-users since they allow to easily find instances and related
wiki pages. For example, we included a macro that lists, in a page dedicated to
some company, all other organizations working on the same topics.

Regarding our future works, we will concentrate on adding new value-added
functionalities to the wiki for end-users to ease the discovery of relevant infor-
mation from the set of RDF data, as faceted browsing, as well as interlinking
with other existing datasets. We will also focus on how to formalize wiki pages
versioning in RDF, in order to see how statements about a given resource can
evolve during its lifetime and track more precisely each change of information
on a given ontology instance.

Acknowledgements

We would like to thanks the ID-Net team from EDF R&D for their input on the
current experiments about our wiki farm.

References

1. McAfee A. P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan
Management Review, 47 (3), pp 21-28 (2006).

2. Berners-Lee T., Hendler J., Lassila O.: The Semantic Web. Scientific American, 284
(5), pp 34-43 (2001)

3. Heath T., Motta E.: Ease of interaction plus ease of integration: Combining Web2.0
and the Semantic Web in a reviewing site. Journal of Web Semantics 6 (1) (2008)

4. Gruber T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. Formal Ontology in Conceptual Analysis and Knowledge Representation.
Guarino N., Poli R. (eds). Kluwer Academic Publishers, Deventer, The Netherlands
(1993)

13

14 Alexandre Passant, Philippe Laublet

5. Prud’hommeaux E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation 15 January 2008, http://www.w3.org/TR/rdf-sparql-query/

(2008).
6. Schaffert S., Vlkel M., Decker S.: First Workshop on Semantic Wikis: From Wiki to

Semantics (SemWiki2006]) at the 3rd Annual European Semantic Web Conference
(ESWC), Budva, Montenegro (2006)

7. Krötzsch M., Vrandecic D., Völkel M.: Semantic MediaWiki. Proceedings of the 5th
International Semantic Web Conference, ISWC 2006, Athens, GA, USA, November
5-9, 2006, pp 935-942 (2006)

8. Oren E.: SemperWiki: A Semantic Personal Wiki.: Proceedings of Semantic Desktop
Workshop at the ISWC2005, Galway, Ireland (2005)

9. Schaffert S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management.
1st International Workshop on Semantic Technologies in Collaborative Applications
(STICA’06) (2006)

10. Auer S., Dietzold S., Riechert T.: OntoWiki - A Tool for Social, Semantic Collabo-
ration. Proceedings of 5th International Semantic Web Conference 2006 pp 736-749
(2006)

11. Buffa M., Gandon F.L., Sander P., Faron C., Ereteo G.: SweetWiki: a semantic
wiki. Journal of Web Semantics 6 (1) (2008)

12. Auer S., Bizer C., Lehmann J., Kobilarov G., Cyganiak R., Ives Z.: DBpedia: A
Nucleus for a Web of Open Data. Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007), Busan,
South Korea pp 715-728 (2007)

13. Breslin J.G., Harth A., Bojars U., Decker S.: Towards Semantically-Interlinked
Online Communities. Proceedings of the 2nd European Semantic Web Conference
(ESWC ’05), LNCS vol. 3532, pp. 500-514, Heraklion, Greece (2005)

14. Newman R.: Tag Ontology Design. http://www.holygoat.co.uk/projects/tags/
(2005)

15. Passant A., Laublet P.: Meaning Of A Tag: A collaborative approach to bridge the
gap between tagging and Linked Data. Proceedings of the Linked Data on the Web
(LDOW2008) workshop at WWW2008, Beijing, China (2008)

16. Carroll J., Bizer C., Hayes P., Stickler P.: Named Graphs, Provenance and
Trust. Proceedings The Fourteenth International World Wide Web Conference
(WWW2005), Chiba, Japan (2005)

17. Bizer C., Heath T., Ayers D., Raimond Y.: Interlinking Open Data on the Web.
Poster, 4th Annual European Semantic Web Conference (ESWC2007), Innsbruck,
Austria (2007)

18. Tummarello G., Oren E., Delbru R.: Sindice.com: Weaving the Open Linked Data.
Proceedings of the 6th International Semantic Web Conference and 2nd Asian Se-
mantic Web Conference (ISWC/ASWC2007), Busan, South Korea 547–560 (2007)

14

Ad-Hoc Knowledge Engineering with
Semantic Knowledge Wikis

Jochen Reutelshoefer, Joachim Baumeister and Frank Puppe

Institute for Computer Science, University of Würzburg, Germany
email: {reutelshoefer,baumeister,puppe}@informatik.uni-wuerzburg.de

Abstract. A couple of semantic wikis have been proposed to serve as
collaborative knowledge engineering environments – however, the knowl-
edge of almost all systems is currently based on the expressiveness of
OWL (Lite/DL). In this paper we present the concept of a semantic
knowledge wiki that extends the capabilities of semantic wikis by strong
problem-solving methods. We show how problem-solving knowledge is
connected with standard ontological knowledge using an upper ontol-
ogy. Furthermore, we discuss different possibilities to formalize problem-
solving knowledge, for example by semantic knowledge annotation, struc-
tured text and explicit markups.

1 Introduction

Recently, different approaches of semantic wikis have been presented as applica-
tions especially designed for the distributed engineering of ontological knowledge,
for example see IkeWiki [1] and OntoWiki [2]. Such systems are used to build
ontologies of a specific domain in a collaborative manner and use the well-known
metaphor of wikis as the primary user interface. New concepts are usually de-
fined by creating a new wiki page with the name of the concept. Properties of
the new concept are described by semantically annotating text phrases of the
particular wiki page. The semantic extension of wikis allows for a richer set
of possible applications when compared to standard wikis: due to the seman-
tic annotation of content the user is able to semantically search for ontological
concepts and/or related concepts. Furthermore, a semantic wiki can be browsed
in a semantic way; for example, users can click on semantically relevant (and
probably personalized) links that are placed appropriately.

Based on the expressiveness of OWL (Lite/DL) the defined ontologies are
able to capture a wide range of general knowledge but lack in the possibility
to represent active problem-solving knowledge that is necessary to generate and
drive a (semi-)automated problem-solving session with a user. Such knowledge
typically relates the class of findings – provided as user inputs and describing
the current problem – with the class of solutions that are derived for the given
problem description. In previous work we presented the concept of knowledge
wikis as an extension of standard wikis adding the possibility to capture, main-
tain, and share explicit problem-solving knowledge [3, 4]. The presented concept

15

provided strong support to represent explicit knowledge like rules and models,
but was not able to capture ontological knowledge beyond subclass hierarchies
of solutions and part-of hierarchies of input groups/inputs.

In this paper we describe the (refined) concept of semantic knowledge wikis
that are interpreted as an extension of semantic wikis. Besides basic ontological
knowledge – such as the definition of classes, taxonomic and user-defined proper-
ties – a semantic knowledge wiki is able to represent problem-solving knowledge
that is applied on selected classes of the ontology. The problem-solving knowl-
edge can be seen as an external knowledge source for changing the values of
concept instances; for example in most of the cases the state of a solution in-
stance is set to the value “established”. Beyond that it is not intended that the
problem-solving knowledge interacts with other knowledge defined in the ontol-
ogy. In future work, we will consider the exchanging semantics of problem-solving
knowledge with the knowledge defined in the ontology, as for example it is cur-
rently done in the context of the RIF working group1. In summary, a semantic
knowledge wiki represents a distributed knowledge engineering environment not
only representing semantic relations between the concepts of an ontology but
also explicit derivation knowledge.

In contrast to trained knowledge engineers – well educated in knowledge rep-
resentation and reasoning – we adress experienced users to act as “ad-hoc knowl-
edge engineers”. For this reason, the provided interfaces and markups of the
wiki need to be as simple as possible in order to lower the barriers of knowledge
acquisition. Furthermore, in running projects we experienced the requirement
to handle a mixed granularity of the represented knowledge. An interesting re-
search question is to find a collection of suitable markups that can cope with
the different types of knowledge and its granularity, respectively.

In this paper, we first describe the basic concepts of a semantic knowledge
wiki by introducing an upper ontology for problem-solving. This ontology repre-
sents the basic classes and properties that are used in a typical problem-solving
process. Moreover, this ontology is used as the basis in every new wiki project,
since newly defined concepts are implicitly or explicitly aligned to classes of the
upper ontology. We also introduce different types of markups for the definition
of problem-solving knowledge. The markups take into account that knowledge
can be “formalized” in many different ways, ranging from explicit models and
rule bases to semantically annotated text or structured text phrases.

2 An Overview of KnowWE

As discussed above every (semantic) wiki page describes a distinct concept to-
gether with formalized properties linking the entity with other classes. In a
knowledge wiki we also capture the problem-solving knowledge that is neces-
sary for deriving the particular concept. Then, every wiki page embeds not only
semantically annotated text and multimedia but also explicit problem-solving
knowledge.
1 RIF WG wiki: http://www.w3.org/2005/rules/wiki/RIF Working Group

16

As a typical use case, the user of a semantic knowledge wiki can browse the
contents of the wiki in a classic web-style –possibly using semantic navigation
and/or semantic search features. Moreover, he/she is also able to start an in-
teractive interview where giving a problem description. Based on these inputs
an appropriate list of solutions is presented that are in turn linked to the wiki
pages representing these particular concepts. Thus, every solution represented
in the wiki is considered during a problem-solving process. Instead of using an
interactive interview mode the user can enter findings inline by clicking on inline
answers embedded in the normal wiki page. These inline answers are generated
based on the semantic annotations made in the article.

In the following we briefly describe the processes of capturing and sharing
knowledge in the semantic knowledge wiki KnowWE [3].

2.1 Knowledge Capture

Semantic annotations and knowledge is edited in the mandatory edit pane of the
wiki together with standard wiki content like text and pictures. At the moment

Fig. 1. Editing a wiki article of the knowledge wiki KnowWE: A rule base is embedded
into the standard wiki text (bottom of the edit pane) and semantic annotations are
made in the first paragraph of the text.

KnowWE proposes the textual acquisition of annotations and knowledge in the
edit pane, thus a collection of textual markups for annotations and knowledge

17

is required. For a new solution a corresponding wiki page with the solution’s
name is created. The wiki page includes describing text in natural language
and the explicit knowledge for deriving the solution. In this paper, we introduce
the concept of distributed knowledge engineering with knowledge wikis, and we
demonstrate the methods and techniques using the toy application of a sports
advisor wiki. The running example considers a wiki providing knowledge about
different forms of sports, both in textual and in explicit manner. Explicit knowl-
edge can be used to derive an appropriate form of sport for interactively entered
(user) preferences. Besides such a simple recommendation application the wiki
can be used for a variety of tasks briefly sketched in the case study.

For example, in Figure 1 we see the edit pane of an article describing the
form of sports “Swimming”: Standard text is semantically annotated by the par-
ticular properties explains and isContradictedBy for which their meaning is
described in the following. Additionally, the first part of a formalized rule base
is shown at the bottom of the edit pane. Here, knowledge for deriving and ex-
cluding the solution “Swimming” is defined. Besides rules derivation knowledge
can be formalized in different manners, for example, explicit set-covering mod-
els, structured texts, semantic knowledge annotations. We discuss the different
markups in the rest of the paper.

(a)

(b)

(c)

Fig. 2. Possible interfaces for a problem-solving session: interview mode (a) and in-
place answers (b). Derived solutions are presented immediately in the wiki (c).

When saving a wiki article the included knowledge is extracted and compiled
to an executable knowledge base. In consequence, we arrive at one separate
knowledge base for each wiki article capturing the derivation knowledge for the
corresponding concept of the article. With the increasing number of wiki articles
the number of knowledge bases will also increase. As we see in the next section
the concepts created in the wiki are naturally aligned due to the upper ontology

18

of the knowledge wiki. Furthermore, the developers are encouraged to reuse
a pre-defined application ontology which is build on the fixed upper ontology.
However, ad–hoc defined findings not corresponding to the application ontology
can be easily aligned by expressing alignment rules, that match these concepts
with concepts of the application ontology.

2.2 Knowledge Sharing

Besides standard ways of knowledge sharing in (semantic) wikis like (semantic)
searching and browsing we provide two ways for a more interactive knowledge
sharing in knowledge wikis: first, every wiki page can generate an interactive
interview from the included knowledge base by asking questions represented by
the findings used in the knowledge base, as for example depicted in Figure 2 a.
Second, semantic annotations in text are used to offer inline answers, i.e., click-
able text in the article asking for meaningful facts corresponding with the high-
lighted text, cf. Figure 2 b. In both ways a new finding instance is entered into
the knowledge wiki corresponding to the clicked finding object. The instance is
propagated to the knowledge wiki broker that in turn derives solutions based on
the entered findings. The propagation paths of the broker are depicted in Fig-
ure 3. The entered finding instances are propagated to the broker which aligns

Blackboard

Broker

Wiki Article 1

Knowledge Service [KS1]

Knowledge Base 1

. . .

aligned inputs aligned solutions

align

update
propagate

Application
Ontology

inputs

solutions

Upper
Ontology

Wiki Article n

Knowledge Service [KSn]

Knowledge Base n

propagate

Fig. 3. Blackboard architecture for the distributed problem–solving of the knowledge
wiki KnowWE.

the findings to a global application ontology (building on an upper ontology)
and then files the aligned instances to a central blackboard. Also, the broker
notifies all knowledge bases contained in the wiki for the new fact added to the
blackboard and gives the possibility to derive solutions based on the currently
available facts. Derived solutions are also propagated by the broker as new facts.
With the use of this simple broker/blackboard architecture we are able to allow
for a distributed problem-solving incorporating the multiple knowledge bases of

19

the wiki. Therefore, all solutions represented in the knowledge wiki can be de-
rived at any page; already derived solutions are presented at the right pane of the
wiki as for example shown in Figure 2 c. Here, the solutions ”Cycling” and ”Jog-
ging” were derived as the most appropriate solutions, even though the findings
were entered on the page describing the solution ”Swimming”. The presented
example can be seen as a specialized case of semantic navigation.

In comparison to our previous work [5], we focus on the knowledge acquisition
issues of a semantic knowledge wiki: we discuss an upper ontology as an enabling
technology for problem-solving and semantic annotation, and we introduce al-
ternative ways to enter problem-solving knowledge into a wiki, for example by
using semantic annotations and structured texts using NLP techniques.

3 An Upper Ontology for Classification Tasks

Studer et al. [6] introduced in detail how the input data and output data of
problem-solving methods is structured by specific ontologies. Similarly, we in-
troduce an upper ontology for the classification problem class used in semantic
wiki context. The upper ontology is the foundation of every new wiki project.
The upper ontology includes the general definitions of findings and solutions
that are the basic elements of a problem-solving task. A new wiki project main-
tains an application ontology by creating specific findings and solutions that are
subclassing the concepts of the upper ontology.

3.1 Concepts and Properties of the Upper Ontology

In the following we describe an upper ontology for problem-solving that is used
in the semantic knowledge wiki KnowWE. An excerpt of the upper ontology is
shown in Figure 4 a; we omitted less important concepts like textual inputs and
values for clarity. All unlabeled associations denote subClassOf relations.

The concept Input plays a key role and allows to describe the world state as a
set of variables. Inputs are grouped by the concept Questionnaire to structure in-
puts into meaningful clusters. The two main subclasses of Input are InputChoice
and InputNum to define variables with discrete (named) values and numerical
value ranges, respectively. Accordingly, a corresponding value subclassing Value
is assigned to each Input. The concept Solution denotes a special type of a one-
choice input that is not entered by the user but derived by a knowledge base,
thus representing the final output of a problem-solving session. The value range
of a solution is restricted to the possible values Established, Suggested, Unde-
fined, and Excluded for expressing the current derivation state of the particular
solution.

A concrete problem-solving session is represented by an instance of the con-
cept PSSession where a knowledge consumer describes his/her current problem
by entering the values of the corresponding observed inputs. The reasoning pro-
cesses of different users are completely independent from each other as each user
is describing his own specific problem instance. The assignment of a value to a

20

(b)

(a)

Fig. 4. a) The upper ontology of the semantic knowledge wiki KnowWE. b) a part of
the input definitions (WikiFindings page) of a sports advisor demo.

corresponding input is captured by the concept Finding, depicted at the top of
Figure 4 a.

The proposed knowledge wiki allows for a free and general use of various,
alternative knowledge representations to actually derive the concrete solutions
defined in the application ontology. For this reason, derivation knowledge is rep-
resented in the upper ontology only in a very general manner, as depicted in
the left lower corner of Figure 4 a. For the specification of problem-solving rela-
tions we introduce the general object properties explains and isContradictedBy
with Solution as the domain and LogicExpression as its range: The abstract con-
cept LogicExpression is subclassed by CompositeExpression, which allows fo the
composition of logical expressions over findings by the subclasses Conjunction,
Disjunction, and Negation. The semantics of the properties explains and isCon-
tradictedBy are described more detailed in the context of the XCL knowledge
representation (eXtensible Covering List) in Section 4.

3.2 Creation and Maintenance of the Application Ontology

The concrete inputs and solutions of a new wiki application are defined in the
application ontology. With the two special wiki pages WikiFindings and Wiki-

21

Solutions the structure of the application ontology is maintained: The (user)
inputs together with their values are defined in the article WikiFindings using
the special textual markup Kopic. Within this tag we textually define new in-
puts and their corresponding values together with questionnaires grouping the
particular inputs. Defined solutions and inputs of the application ontology are
automatically subclassing the corresponding concepts of the upper ontology. Fig-
ure 4 b shows a part of the input hierarchy of the sports advisor demo already
mentioned before. With one dash we denote a new input followed by its type
definition, for example [oc] for one-choice inputs and [num] for specifying nu-
meric inputs. For choice inputs the possible values are listed in the following lines
with an additional preceding dash. Analogously, the solutions of the application
ontology are organized in the article WikiSolutions. In summary, the application
ontology is created and modified in a wiki-like way, i.e., by editing the wiki pages
WikiFindings and WikiSolutions.

For the knowledge engineering task we propose an evolutionary process model
as introduced by Fischer [7]: at the beginning of a project an initial effort – called
seeding phase – has to be made to create a simple but usable basic application
ontology. In the working progress the ontology is extended and restructured in
cyclic evolutionary growth and reseeding phases.

4 Simple Knowledge Representations for Ad-Hoc
Knowledge Engineers

In the previous section we introduced an upper ontology for problem-solving
representing the basis of an application ontology. This application ontology de-
fines the specific inputs and solutions of the particular application domain. As
mentioned earlier, every wiki page is able to capture problem-solving knowledge
relating defined inputs with the corresponding solution of the particular wiki
page. Since we aim to motivate experienced user to act as ad-hoc knowledge en-
gineers the problem-solving knowledge needs to meet the following requirements:

1. easy to understand and formalize,
2. a compact and intuitive textual representation,
3. yields a transparent and comprehensible inference process.

This will help to break down the initial barriers when

1. making personal knowledge explicit,
2. inserting it into a wiki page text,
3. and finally evaluating the created knowledge.

As complexity in knowledge representation and inference constitutes a major
barrier for contribution we face the trade-off between simplicity and expressive-
ness. Beneath simplicity, we have to make an open world assumption concerning
the derivation knowledge for a solution concept. During the development process
only a part of the total imaginable/retrievable amount of knowledge is present
in the knowledge wiki. Thus, it is desirable that any subset of the (fictional)

22

complete knowledge can be used to derive the best possible results with respect
to the given subset. Further, this subsets of course need to be extensible easily. A
knowledge representation meeting this requirements needs to be based on small
knowledge units which are to a great extend independent of each other. On the
one hand this characteristics enables to build very small but already working
knowledge bases which then can be extended subsequently step by step. On the
other hand the knowledge bases show some robustness with respect to the dele-
tion of small parts and redundant definitions by accident or ignorance which is
important within the scope of “ad-hoc knowledge engineering”.

Considering the concrete problem-solving process of a knowledge consumer
we need to regard that it is unpredictable which exact subset of inputs is actu-
ally observable, as real world situations are often diverse and wicked. Thus, it is
desirable to design the knowledge and the inference process in a way, that each
subset of entered findings will yield appropriate solution ratings. Of course, in
this case a confidence value based on the size of the entered finding set needs
to be presented along with the resulting solution states. To cope with these
challenges we provide the wiki user a simplified but easily extensible version
of set-covering models [8], called eXtensible Coverings Lists (XCL). In our ap-
proach the extensible-covering model of a solution basically consists of a set of n
findings. The weighting of the findings set to 1/n as default and we use the indi-
vidual similarity function. Apriori, the resulting function for a solution rating is
therefore restricted to m/n, where m is the number of correct findings and n the
number of total findings defined by the model. The possible result spans a real
range from [0, 1] which is partitioned into four disjoint intervals representing the
corresponding values of a solution ValueSolutionEstablished, ValueSolutionSug-
gested, ValueSolutionUnclear, and ValueSolutionExcluded. Obviously, there is a
crucial lack of sensitivity concerning single findings, which is bounded by 1/n.
To improve the limited expressiveness we introduced several extensions to this
simple finding list, for example combined findings and exclusion knowledge. In
the following section XCL and its textual markup is explained in more detail.

4.1 Embedding Simple Knowledge in Wiki Texts

We present three different textual markups to integrate simple knowledge as
described above in standard wiki texts. To demonstrate the similarities and
differences of the markups we define knowledge in each way for the solution
Swimming corresponding to the sports advisor demo.

eXtensible Covering Lists (XCL) The most compact representation of the
covering knowledge is its formalization as an eXtensible Covering List that is
wrapped in a Kopic tag. As noted earlier the Kopic tag can be placed anywhere
in the wiki article and is also used to define other classes of knowledge like
the solutions and findings of the application ontology. The names of the inputs
and the corresponding values are matched against the definitions made in the
application ontology found in the WikiFindings article (cf., Figure 4b). In the

23

following example an XCL model for the solution Swimming is shown. Each line
represents a positive coverage of the finding by the solution and is called explains
relation. The order of the listed findings is not relevant for the inference process
and thus is arbitrary. If the domain knowledge is already available as informal
text, then it denotes a simple task to transfer the key findings described in the
text into basic findings contained in an XCL.

1 ¡Kopic id=‘‘Swimming scmodel’’¿

2 ¡XCL-section¿

3 Swimming –

4 medium = water,

5 Type of sport = individual,

6 Training goals ALL –endurance, stress reduction˝,

7 Running costs = medium,

8 Trained muscles = upper part,

9 Trained muscles = back

10 ˝

11 ¡/XCL-section¿

12 ¡/Kopic¿

During the inference process the best rated solution is chosen. A solution is
rated by comparing the findings defined in the XCL against the findings entered
by the user. The rating of a solution is expressed by its covering score. As
mentioned before, this numeric score is mapped to four predefined solution states
Unclear (default), Suggested, Establised and Excluded.

The basic XCL representation can be extended in multiple ways: Besides
the simple listing of findings shown above the XCL representation offers fur-
ther elements to extend/refine the expressiveness and selectivity of the covering
model that are briefly discussed in the following (the textual markup is given in
paratheses):

Exclusion knowledge [--]: This marks a relation such that the derivation of
the solution becomes impossible to be positively derived when the relation
is fulfilled. This type of relation is called isContradictedBy and it sets the
state of the solution to Excluded when fulfilled. Such a constraining relation
is defined by two minus signs in brackets ([--]) at the end of the relation
line, as for example shown in line 7 of the markup shown below.

Required relations [!]: Relations can be marked as required by using a
bracket containing an exclamation mark ([!]). Then a solution can only be
established as a possible output when all required relations are fulfilled, i.e.,
the corresponding findings were positively entered by the user. An example
is shown in line 2 in the following markup.

Sufficient relations [++]: By adding a bracket with two plus signs ([++]) to a
relation we define this solution to be a sufficient relation. Then, the solution
is always established if the corresponding finding is fulfilled. We call this

24

relation isSufficientlyDerivedBy. It is important to know that contradicting
relations are dominating sufficient relations.

Adding weights [num]: In the initial version every explains relation is
equally important when compared to the other relations of the XCL, thus
having the default value 1. The default value can be overridden for relations
in order to express their particular importance. In the textual notation the
weight is then entered in brackets at the end of the relation definition, for
example [2] to double weight a relation. See line 8 in the following markup
for a further example.

Logical operators (AND, OR): A complex relation can be created by combining
relations by logical operators. For example in line 2 of the model shown below
the findings medium = water and Type of sport = individual are connected
by the logical or-operator (OR). The resulting knowledge demands that either
medium = water or Type of sport = individual needs to be observed to fullfil
the relation. The three basic operators of propositional logic or, and and not
can be used.

Threshold values: When rating a solution the numeric covering score is
mapped to a solution state. The mapping function is defined by the threshold
values (establishedThreshold and suggestedThreshold). In most cases
the internal default threshold values are adequate, but for distinct solutions
they can be overriden as shown in line 12-13 of the following example model.
In the example, 70% of the expected and observed findings need to be cor-
rectly observed to set the solution tot the state Established, and 50% to set
the solution to the state Suggested (higher states overwrite lower states).
Further, with minSupport we specify how many percent of the findings de-
fined in the XCL model need to be entered by the user in order to activate
the solutions rating process.

25

The following markup shows a refined version of the previous model of the so-
lution Swimming using the described elements. Essentially, the already defined
relations were mostly refined by relational extensions like sufficient, contradicting
and necessary properties.

1 ¡Kopic id=‘‘Swimming scmodel’’¿

2 ¡XCL-section¿

3 Swimming –

4 medium = water OR Type of sport = individual [!],

5 My favorite sports form = swimming [++],

6 Training goals ALL –endurance, stress reduction˝,

7 Favorite color IN –red, green, blue˝,

8 Running costs = medium,

9 Running costs = nothing [--],

10 Trained muscles = upper part [2],

11 Trained muscles = back [2],

12 Physical problems = skin allergy [--],

13 Type of sport = group [--],

14 ˝[establishedThreshold = 0.7,

15 suggestedThreshold = 0.5,

16 minSupport = 0.5

17]

18 ¡/XCL-section¿

19 ¡/Kopic¿

Although the presented representation is experienced to be compact and
intuitive for most of the users, it is clearly separated from the remaining text
of the wiki article, which usually describes the same concept and its knowledge
in natural language. This separation increases the risk of “update anomalies”,
for example if users are modifying or extending the wiki article but not the
corresponding part of formalized knowledge. Therefore, a tighter integration of
formal knowledge and informal text of a wiki article is desirable, and for this
aim we introduce two possible approaches in the following.

Inline Annotation Many semantic wikis use inline annotation techniques to
describe semantic properties between concepts of the ontology, for example Se-
mantic MediaWiki [9]. Using special properties of the upper ontologies like
explains and isContradictedBy we are able to capture set-covering knowl-
edge by evaluating semantic annotations. The following example shows sentences
describing the solution “Swimming”, where text phrases are annotated by the
property explains for defining positive set-covering relations and the property
isContradictedBy for the definition of exclusion rules. For example, the first
two lines state a relation between the solution Swimming (the concept of the
page) and the finding Medium = in water: the first expression after the open-
ing brace and before the ¡=¿ is the textual part of the sentence, that will be

26

rendered in the view mode of the article, shown in Figure 2 b. The phrase before
¡=¿ can be omitted; then the preceding word before the annotation is highlighted
and related to the corresponding relation. The following part of the annotation
states the name of the property (e.g., explains, isContradictedBy) followed
by two colons. After that, the actual finding related to the solution concept is
specified, i.e., the range of the given property. In the topic view the annotated
text can be used as an interview method with inline answers. In this case the
input of a set-covering relation is posed as question to the knowledge consumer
as shown in Figure 2 b.

1 Swimming is the most common form of [water sports ¡=¿ explains::

2 Medium = in water]. Swimming is good for successfully [reducing

3 stress or to train endurance ¡=¿ explains:: Training Goals =

4 stress alleviation OR Training Goals = endurance]. It only

5 should be avoided when [cardio problems ¡=¿ isContradictedBy::

6 Physical restrictions = cardio problems] are present. Further,

7 Swimming is quite inexpensive [explains:: Running Costs = low].

The semantic annotation of existing sentences means less knowledge acqui-
sition workload compared to the explicit markups introduced before. Although,
standard wiki text is tightly integrated with formal knowledge the readability of
the text suffers from annotations as shown above.

Structured Text A more radical approach is to omit semantic annotations
when possible and to use NLP techniques for annotating distinct parts of the wiki
text. In the context of our work, we are able to use “structured texts” since 1) the
available text needs to be mapped to a rather simple knowledge representation,
and 2) we can employ the given application ontology as background knowledge
for the concept extraction task. This is very similar to the approach of the
DBpedia project2 described by Auer et al. [10] which uses the article structure of
wiki pages to formalize knowledge about the described topic. Instead of creating
RDF-triple we want to generate problem-solving knowledge for the classification
task. The key problem here is the matching of the natural language expressions
to the concepts of the application ontology.

Using this technique we assume, that a distinct block of a wiki article is
tagged as a “structured text”. Then, this block is parsed in order to identify
findings for which set-covering relations are created. In a first step we are working
with semi-structured texts (e.g. bullet lists, tables). In the following example
in Figure 5 a we show a bullet list in standard wiki syntax, where each line
contains one (combined) finding explaining the solution Swimming. While the
inline annotations expect exact matches we applied some lightweight linguistic
methods for matching findings in structured texts, for example simple string
matching combined with stemming and synonym lists already lead to fairly good

2 DBpedia: http://www.dbpedia.org

27

results. In the simplest case we can identify an input name that is defined in
the application ontology together with a corresponding value name, for example
as found in line 5 of Figure 5 a: the text phrase “when low risk of injuries is
desired” yields the finding “risk of injury = low”. The finding defined by this
input-value-pair tuple can be added as a set-covering relation of the solution
Swimming. Sometimes only an input is listed and humans implicitly refer to
a default value of this input, especially for inputs only having “yes” and “no”
as possible values (e.g. “practiced outdoor”). For this type of input we assume
“yes” as the default value when creating set-covering relations. For other inputs
the default answer needs to be defined in the application ontology, otherwise the
finding cannot be completely identified. Another popular case is appearance of
the value name in the line as the only indicator of a finding, for example in line 2
in water. If the corresponding input can be clearly identified due to the unique

(b)(a)

Fig. 5. a) Wiki syntax of a bullet list in structured text, b) automatically annotated
text phrases in a semi-structured text.

name of the found value, then we automatically generate a relation accordingly.
We often can disambiguate the occurrence of such a finding, since most of the
times humans only reduce the text to the value name if this would not result in
an ambiguity. All identified findings are implicitly annotated and can be used to
provide inline answers as shown for example in Figure 5 b.

28

4.2 Knowledge Representations in Explicit Markup

Although in various forms extensible the XCL representation has limited expres-
siveness for some type of domain knowledge.

1 ¡Rules-section¿

2 // Abstraction rule r1 for body mass index calculation

3 IF (Height ¿ 0) AND (Weight ¿ 0)

4 THEN BMI = (Weight / (Height * Height))

5

6 // Derivation rule r2 for solution Running

7 IF (”Training goals” = endurance)

8 AND (”BMI”¡30) AND NOT(”Physical Problems” = knees)

9 THEN Running = SUGGESTED

10 ¡/Rules-section¿

In order to allow for the creation of complex knowledge relations we pro-
vide further knowledge representations to be used by more experienced users.
The textual markup of alternative representations was introduced in [5]. In the
context of this paper we briefly show the definition of rules for the derivation
of abstractions – for example to be used for concept mapping – and rules for
the derivation of solutions. The rules section shown above contains two rules
taken from the sports demo. The first calculates the body mass index (BMI)
and the second rule sets the solution Running to the value Suggested. In addi-
tion, we provide decision trees and several table-based representations for rules
and set-covering relations.

5 Case Studies

We have implemented the presented approach with the system KnowWE [3], a
semantic knowledge wiki, that is still under lively development. For an extensive
evaluation of the applicability of our system we made a student based case study
considering the creation of knowledge wikis with a group of 45 students. Within
about three weeks 11 recommendation systems with a total amount of about
700 knowledge bases containing rules an set-covering relations were created.
Beyond further student projects, the system is currently used in the context
of the BIOLOG Europe project (http://www.biolog-europe.org). Its purpose
is the integration of socioeconomic and landscape ecological research results
in order to produce a common understanding of the effects of environmental
change on managed ecosystems. Inter- and trans-disciplinary research projects
with economists yielded socioeconomic knowledge on how the biodiversity can
be supported in managed agro-ecosystems. The research results are present in
the form of large amounts of (unstructured) knowledge on landscape diversity
of life with respect to the given landscape structures, management decisions and
their progression [11], for example described in papers, data sheets, and further
multimedia content.

29

The project wiki LaDy (for ”Landscape Diversity”) aims to support domain
specialists and interested people to collect and share knowledge in the context of
the BIOLOG project. The knowledge appears at different levels of detail rang-
ing from textual descriptions and multimedia to formal knowledge covering the
effects on landscape diversity. Typically user inputs consider the description of
the investigated landscape, whereas solutions are defined with respect to the
biodiversity of various taxa, different ecosystem services and management deci-
sions. At the moment, the knowledge wiki is under development incorporating
ecological domain specialists distributed all over germany.

The participating domain specialists have neither background in knowledge
representation nor in ontology engineering, and therefore the interfaces need to
be as simple and intuitive as possible. In the various kick-of meetings we learned
that a simple set-covering list representation was experienced to be intuitive
and suitable for the first steps. After some simple examples the requirements of
the users concerning the expressiveness usually grew, and in many cases these
requirements could be covered by extended covering lists as shown for example
in the following. In Figure 6 a, the solution High plant diversity is defined
by a set-covering list of constrained findings, where the second item (line 3–5)
is a complex finding combining a list of atomic findings by a disjunction and a
conjunction (simplified example shown).

In other cases we offered to transform the existing knowledge to a rule base,
since the largest degree of expressiveness can be provided by a rule-based repre-
sentation. An excerpt for a rule base is shown in Figure 6 b where the value of
management productivity is defined in correspondence of inputs such as genetic
diversity and optimized soil retention. Providing a platform for both, exchang-
ing textual knowledge and implementing explicit rules on ecosystem behaviour,
LaDy provides a service to condense and to communicate knowledge needed for
an efficient management of ecosystem services.

6 Conclusions

We have introduced the concept of a semantic knowledge wiki with the im-
plementation KnowWE that extends the known OWL-based expressiveness of
other semantic wikis by active problem-solving capabilities. Whereas related ap-
proaches provide strong support to capture ontological knowledge – for example
see [1, 2] – our main goal is to make the engineering of executable problem-solving
knowledge as simple as possible thus supporting the formation of ad-hoc knowl-
edge engineers. For this reason, we presented an upper ontology connecting on-
tological knowledge with strong problem-solving knowledge, and we introduced
different possible ways to formalize problem-solving knowledge, for example se-
mantic knowledge annotations, (semi-)structured texts, and explicit knowledge
markups.

In the future we are planning to improve the power of natural language to
be used as direct input for knowledge acquisition, incorporating more linguistic
methods and controlled languages. Related work is reported by the Attempto

30

(a)

(b)

Fig. 6. a) Excerpt of a simplified version of a set-covering model for deriving “High
plant diversity” b) rules describing the value of management productivity depending
on inputs such as genetic diversity and optimized soil retention.

project [12], where Attempto Controlled English (ACE) uses a knowledge repre-
sentation that is equivalent to first order logic and is also being combined with a
wiki technology in the system AceWiki. Besides more sophisticated methods to
formalize knowledge we have further research questions that need to be adressed
in the future: In a distributed setting existing methods and tools for the evalua-
tion and the refactoring need to be reconsidered and refined in order to facilitate
the maintenance and quality of an evolving semantic knowledge wiki.

References

1. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Manage-
ment. In: STICA’06: 1st International Workshop on Semantic Technologies in
Collaborative Applications, Manchester, UK (2006)

2. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic
Collaboration. In: ISWC’06: Proceedings of the 5th International Semantic Web
Conference, Berlin, Springer (2006) 736–749

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE – Community–based
Knowledge Capture with Knowledge Wikis. In: K-CAP ’07: Proceedings of the
4th International Conference on Knowledge Capture, New York, NY, USA, ACM
(2007) 189–190

31

4. Baumeister, J., Puppe, F.: Web-based Knowledge Engineering using Knowledge
Wikis. In: Proceedings of Symbiotic Relationships between Semantic Web and
Knowledge Engineering (AAAI 2008 Spring Symposium). (2008)

5. Baumeister, J., Reutelshoefer, J., Puppe, F.: Markups for Knowledge Wikis. In:
SAAKM’07: Proceedings of the Semantic Authoring, Annotation and Knowledge
Markup Workshop, Whistler, Canada (2007) 7–14

6. Studer, R., Eriksson, H., Gennari, J., Tu, S., Fensel, D., Musen, M.: Ontologies and
the Configuration of Problem-Solving Methods. In: Proc. of the 10th Knowledge
Acquisition for Knowledge-based Systems Workshop, Banff. (1996)

7. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Captur-
ing and Evolving Knowledge in Domain–Oriented Design Environments. Auto-
mated Software Engineering 5(4) (1998) 447–464

8. Reggia, J.A., Nau, D.S., Wang, P.Y.: Diagnostic Expert Systems Based on a Set
Covering Model. Journal of Man-Machine Studies 19(5) (1983) 437–460

9. Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic MediaWiki. In: ISWC’06:
Proceedings of the 5th International Semantic Web Conference, LNAI 4273, Berlin,
Springer (2006) 935–942

10. Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting
Semantics from Wiki Content. In: The Semantic Web: Research and Applications.
(2007) 503–517

11. Otte, A., Simmering, D., Wolters, V.: Biodiversity at the Landscape Level: Recent
Concepts and Perspectives for Multifunctional Use. Landscape Ecology 22 (2007)
639–642

12. Kuhn, T.: AceRules: Executing Rules in Controlled Natural Language. In: Pro-
ceedings of First International Conference on Web Reasoning and Rule Systems.
Volume 4524 of LNCS. (2007) 299–308

32

Hypertext Knowledge Workbench?

Max Völkel

FZI Forschungszentrum Informatik
Universität Karlsruhe (TH), Germany

voelkel@fzi.de, http://www.fzi.de/ipe/

Abstract. This paper presents a tool for semantic personal knowledge
management called Hypertext Knowledge Workbench (HKW), an edi-
tor and browser for semantic personal knowledge models. The tool is
designed to be used by a single person to manage her personal notes
about any topic that seems relevant. Existing wikis and semantic wikis
represent content as pages with a title and content. Hypertext-based
Knowledge Workbench (HKW) offers a more powerful yet simple to use
conceptual model and allows entering and using knowledge in different
degrees of granularity and formality.

1 Introduction

In 1958, Peter F. Drucker [8] was among the first to use the term knowledge
worker for someone who works primarily with information or one who develops
and uses knowledge in the workplace.

Frand and Hixon [10] were among the first to use the term Personal Knowl-
edge Management (PKM) in an academic context, followed by [2, 18]. Higgison
[12] defines personal knowledge management as “managing and supporting per-
sonal knowledge and information so that it is accessible, meaningful and valuable
to the individual; maintaining networks, contacts and communities; making life
easier and more enjoyable; and exploiting personal capital”.

Polanyi [24] makes a distinction between explicit knowledge encoded in arte-
facts such as books or web pages, and tacit knowledge which resides in the
individual. Concerning explicitness of knowledge, Nonaka and Takeuchi [20] dis-
tinguish two kinds of explicitness: explicit and tacit. Later works [6, 19] conclude
that external and internal (tacit) knowledge are two extremes on a spectrum.
Maurer [17] states that knowledge resides in the heads of people and the com-
puter can only store “computerized knowledge” which is to be understood as
“shadow knowledge”, a “weakish image” of the real knowledge. In PKM, we of-
ten deal with knowledge that is somewhere in the middle of these extremes. E. g.
note-taking is a core activity of PKM. An individual creates an external repre-
sentation for internal concepts. Later, the external representation is internalised

? Acknowledgments: Research reported in this paper has been financed by the EU
in the Social Semantic Desktop project NEPOMUK (IST-FP6-027705, http://
nepomuk.semanticdesktop.org).

33

again to re-activate the knowledge in the individuals mind. If somebody writes
a short informal note to himself it is often completely meaningless to others.
The knowledge is thus not fully externalised – Yet such a note is an external
reminder about some knowledge that the author would otherwise forget. E. g. a
short note like “coffee” could mean anything from “buy coffee”, or “don’t forget
to have a coffee with an old friend next Tuesday” to “download and install the
latest source code management tool called coffee”. In HKW, knowledge can be
represented and organised within each note as well as by connections among
notes.

HKW is intended to serve as a personal log book for all kinds of knowledge.
E. g. it can be used to record ideas, bookmarks, text modules for or from docu-
ments, contact data of persons, notes on sport exercises, cocktail recipes, places
to travel to, list of friends who enjoy Chinese cuisine, favoured artists and their
interrelationships, nice restaurants, etc. These items often have relations that
cannot be represented in specialised tools, e. g. friends living in the cities where
I know a nice restaurant; text modules uses in which documents?; idea resulted
in which publication?; who knows more about this topic?; who has a record from
this rare music artist? The user can decide whether she represents e. g. a relation
between a person and a music artist as a tag, a link, typed link or just in natural
language. HKW is designed to relief the user from deciding “Will it be worth the
effort to take this note?” and “Where do I file this?” Authoring in HKW is “pay
as you go”, with very low initial costs yet expressive modelling abilities in the
same tool. A user can record any thought at low costs and might develop it later
into more structured, more linked, more important notes. HKW can represent
structured knowledge from any domain, because the relations and types can be
changed and extended by the user at runtime. Informal knowledge represented
as plain text or structured text needs no defined types and relations.

1.1 Existing Approaches

Existing approaches to personal note management are paper-based approaches
such as sticky-notes, paper notebooks, and a“Zettelkasten”[16]. The paper-based
approaches are hard to automate, e. g. in a Zettelkasten one has to traverse the
links from note card to note card manually. On paper it is especially costly to
change the content of notes or relations to other notes. Sometimes a complete
note has to be rewritten. Also there is no ability for full-text queries or semantic
queries.

There are many software-based approaches for note management; almost
all of them allow full-text search and a virtually unlimited amount of personal
notes. Unfortunately, search is not enough for PKM. As Barreau and Nardi [3]
point out, there is also a need to organize notes so that a note is even found if
the user was just querying for a related note or browsing to a certain folder or
category. On their desktop, users manage their content in files; these files are
organized in folders. Personal notes often have internal structure and relations
to other notes. These relations are hard to manage in plain text files and the file
system.

34

Software tools designed for knowledge management offer ways to
create links between notes. Such tools include blogs, wikis, PIM tools, mind map
tools, and desktop wikis. These tools offer better usability for quickly creating
structured content and linking it with exiting notes. However, if a knowledge
base grows to thousands of notes, mere store and retrieval reaches its limits.
E. g. which of your recipes were tasty when you tried but do not contain too
much chilli, because Dirk does not like chilli? You want to go to Heidelberg –
what was the name of the nice restaurant you went to together with Claudia last
summer? Or imagine you keep a diary where you occasionally note your running
times. Suddenly you weight more than the year before. Did you went running
less often than the year before? Most real-world use-cases are not restricted to
single domains, rather it is typical to have links across multiple domains (here:
recipes, people, travel, sports).

It is obvious that a system can support searching and browsing better, the
more structured, more formal the content is. However, requiring to formalise all
content is too expensive. Therefore plain ontology editors are not good PKM
tools. A system should let the user decide at each step how much formalisation
effort to put into the system. For numerical knowledge, spreadsheet applications
such as Microsoft Excel, are an example for the ability to formalise knowledge. A
user can either use a spreadsheet just like a sheet of paper or link different cells
into complex formulas. In a similar way, semantic wikis allow the same flexibility
for conceptual knowledge. A user can—but is not forced to—formalise link and
page types.

Semantic wikis are designed and used not only for collaborative use but
also for personal knowledge management (PKM) [21, 23]. Semantic wikis do
allow stepwise formalisation of content: First a page is created, then filled with
text, spell-corrected, structured, re-structured, and linked to other pages. Then
links are typed and pages linked to categories. Ironically, just like with paper-
based approaches, changing things is not that easy in semantic wikis. Tasks
such as moving content from one page to another or renaming a relation require
typically an administrator to run scripts over the database. Second, a common
use-case of PKM tools is the need to import knowledge from external sources.
In most semantic wikis, the import of semantic data needs to be represented by
artificially generated wiki syntax inserted into pages.

The Hypertext Knowledge Workbench (HKW) is different from se-
mantic wikis. HKW (a) is backed by a more flexible data model, (b) allows to
create and change formal statements easily, and (c) integrates authoring, struc-
turing and formalisation.

1.2 Outline

The remainder of this paper analyzes the conceptual model of wikis and semantic
wikis and compare it to the conceptual model of HKW, called Conceptual Data
Structures (CDS) (Sec. 2). In Sec. 3 we analyse the annotation abilities of CDS
compared to semantic wikis. We report on the HKW user interface in Sec. 4. In
Sec. 5 we compare CDS and HKW to related work before we conclude in Sec. 6.

35

2 Conceptual Models

A conceptual model is not to be confused with a technical data model. As an
analogy, compare the technical level of the file system, which consists of nodes,
blocks, node tables and file allocation tables, with the user-perceived model: A
strict tree containing folders and files.

Wikis have a simple conceptual model: Each page has a name, which is a
short string that can be typed on a keyboard and often be remembered by the
users. Attached to each page title is the wiki page content. Page content consist
of a longer string of characters which are interpreted by the wiki render engine
to produce HTML. Special syntax in the page content is interpreted as links to
other pages. Links are established by referring to other wiki page titles. Empty
wiki pages represent concepts with no description attached.

In semantic wikis, e. g. Semantic MediaWiki [14] (SMW), the user can state
link types and use a part of the page content itself as target of the semantic links.
However, it is not possible to link to these content snippets with another link.
The content snippets in SMW are not first-class entities.

The conceptual model of HKW — called Conceptual Data Structures
(CDS) — is a generalisation of that model. CDS [26, 27] consists of two layers:
The CDS data model and the CDS relation hierarchy. The semantics of CDS
re-use some of the semantics of RDFS [11]. Basically CDS uses sub-classes and
sub-properties, extended with inverse properties. The next two sections describe
the CDS data model and relation hierarchy. The complete CDS framework has
been implemented as Java API, available from http://cds.xam.de.

2.1 CDS Data Model

The CDS data model1 is a technical data model to represent knowledge. However,
most parts are intended to be directly exposed to the user as a conceptual model.

The conceptual model consists of six primitive types. Fig. 1 shows the techni-
cal data model with the conceptual parts shown in bold. We describe briefly how
the conceptual model works from a user’s perspective. This conceptual model is
exposed to the user in HKW.

Model A Model can be opened or saved, just like other documents. A Model is
a container for items. Such items might be items with content (i. e. Name-
Items, ContentItems, Relations, or Statements) or automatically appearing
triples.
Under the hood: Each Model has a URI. In RDF, each model is represented
as a Named Graph [4].

ContentItem These are simple text snippets, like the content of a wiki page
or a sheet of paper. One can write anything into such a note. The system
records automatically creation date, change date and author. One may use
wiki syntax to format the note, or link to NameItems by referring to their

1 It is the successor of the “Semantic Web Content Model” (SWCM) presented in [25]

36

Item (abstract)

Statement Relation

NameItem

source
target

inverse

0..1

0..n

relation

ContentItem

URI

Triple
Content

Representation
encoding : String
MIME-type : String
changeDate : xsd:Date
content : byte[]
author : URI

Model
contextURI : URI

Must have content
/\ content must be
unique within model

Fig. 1. CDS data model

name. Like a wiki page, a ContentItems content size can range from very
short to very long. It may also be the case that a ContentItem has no content.
Under the hood: Each item (i. e. NameItems, ContentItems, Relations, and
Statements) has a unique URI to reference it. Even if the content of an item
changes, the references remain the same. No content can appear outside of
Items. Each piece of content is thus addressable, which makes it easier to
record metadata and introduce versioning. Currently there is no versioning
of content. The representation of content is modelled after resources on the
web (c. f. [9]). All metadata is represented in Resource Description Frame-
work (RDF), binary content is stored in a separate content repository. RDF
can store binary data only inconveniently as xsd:base64Binary types.
Current triple stores are not designed to handle large byte streams.

NameItem A NameItem is just a name. It is like the title of a wiki page or the
name of a file within a folder. Like in a wiki, a NameItem must be unique
within a model. NameItems do not have any content (besides their name)
but it is easy to create links to other items. NameItems allows a user to jump
directly to certain entities in the knowledge model, similar to navigating to
a known wiki page. Other items can be reached indirectly through search or
browse actions.
Under the hood: Representing names as first class citizens is handy to allow
a user to rename e. g. a NameItem without having to change each State-
ment using it. A NameItem has three restrictions on its content: First, a
NameItem has always exactly one content attached to it. Second, a Name-
Item may have only simple textual content, i. e. no line breaks and no wiki
syntax. The content of a NameItem can easily be entered a human (possibly
using an auto-completion mechanism). The MIME-type of the content is
always “text/plain”. Third, this textual content must be unique within a

37

knowledge model: No two NameItems can have different URIs and the same
content. Formally, for two NameItems n1 and n2 the following holds:

n1.content = n2.content⇔ n1 = n2 (1)

All these constraints do not hold for ContentItems: They can be empty or two
items can have the same content. There may also be ContentItems having
the same content as a NameItem.

Relation A Relation describes the way two items are linked to each other. There
are many pre-defined relations, but one can create new relations as needed.
The built-in relation hierarchy is described in the next section. Each relation
always has an inverse relation defined, so one can view each link from both
sides. E. g. “Dirk knows Claudia” is the same as “Claudia is known by Dirk”,
if “knows” has the inverse “is known by”.
Under the hood: A Relation is a special kind of NameItem. This implies
there can not be two different relations having the same name. Each Rela-
tion p has a mandatory inverse Relation −p. The inverse of the inverse of a
Relation p is again p:

− (−p) = p (2)

In CDS each statement of the form (s, p, o) can additionally be rendered as
(o,−p, s) with −p being the inverse of p.

Triple A CDS Triple is like a semantic link in a wiki. It connects any two items
and denotes the type of the link by a Relation. Triples appear in the user
interface e. g. as the result of queries using inferencing.
Under the hood: Triples are not items. They have no metadata or content
attached and a user has first to promote the triple to a Statement before it
can be annotated.

Statement A Statement is both a Triple and an Item. As such, it also has a
creation date, an author and may even be annotated or have textual content.
Annotating statements is useful to state the source of knowledge e. g. in
discussion systems.
There are two ways to create Statements. First, a user can use the name of
a NameItem in the text of a ContentItem. Then the system automatically
creates a statement, where the originating ContentItem is recorded as the
author. This allows the user to back-trace the origin of a statement. Second,
the user can directly create a Statement between any kind of item.
Under the hood: Statements are represented on RDF via a kind of reifi-
cation. Different from RDF, each CDS Statement does entail the ground
triple (s, p, o). For every Statement (s, p, o), the inverse Statement (o,−p, s)
is inferred, where −p is the inverse of p. That is:

∀s, p, o : (s, p, o) 7→ (o,−p, s) (3)

Note that the URI of the Statement does not influence the asserted facts.
It is possible that different statements with the same URI assert the same
facts but e. g. having different annotations. Statements with the same URI
must have the same content, i. e. the same source, relation and target.

38

2.2 CDS Relation Hierarchy

On top of this conceptual data model, CDS defines a hierarchy of relations.
The CDS built-in relations have been selected after an analysis of a number of

existing information structures in applications used for PKM. The core relation
types deal with order, hierarchy, different forms of annotation (i. e. free-text
annotations, tagging, and formal typing), and generic hyper-links. As the relation
hierarchy is represented in the CDS data model, the user can (and should) extend
it in CDS-based tools such as HKW.

The relation hierarchy itself is represented by the built-in relation cds:has-
SubRelation. Each lower-level Relation implies the higher-level Relations, just
like in RDF Schema (RDFS). The complete relation hierarchy is described in [28].

3 Semantic Annotations

In semantic wikis, users can usually either state the type of link or embed meta-
data about the current page using special syntax constructs. Some wikis (i. e.
SemperWiki) allow embedding arbitrary RDF statements on a page). There is a
high variance between the capabilities of semantic wikis to create semantic data.
[22] compares some popular semantic wikis with respect to their ability to create
annotations. We now analyse HKW with the dimensions given in [22]: Attribu-
tion, granularity, representation distinction, terminology reuse, object type, and
context.

Attribution Most wikis attribute their annotations to the page where the user
is editing the wiki syntax. In HKW (and CDS) links are external to the items.
Like in other semantic wikis it is possible to create links between entities via
syntax constructs. Internally, such syntax constructs are parsed and result
in generated statements. However, only HKW allows creating links which do
no originate from a wiki page. This allows e. g. easily importing an existing
ontology into the knowledge base without the need to append generated
wiki syntax to existing text. Furthermore, each Statement in HKW is an
Item itself and each Item in HKW has an author and a creation date. This
allows recording the provenance of Statements conveniently. The downside
of this extended flexibility is versioning. Existing semantic wikis where all
semantic statements originate in wiki syntax, the page-based wiki versioning
is re-used. In HKW, this is not possible. In fact, HKW has currently no
versioning. In the future, we plan to add two kinds of versioning: Item-level
versioning for the textual content and model-level versioning for the semantic
statements.

Granularity HKW allows creating ContentItems of varying size, ranging from
single words to full documents, just like the page content of a wiki page.
However, different from wiki pages, ContentItems have no name, therefore it
is cognitively easier to create a large set of them: Imagine an author of a long
document would have to name each paragraph in the document individually!

39

In wikis, every entity that one wants to link to must be written on its own
wiki page.

In HKW, the amount, size and relation between NameItems and Content-
Items can be chosen by the user. Therefore HKW can be used to mimic a clas-
sic wiki (with NameItem-ContentItem pairs), but can also be used in other
ways, i. e. linking ContentItems with ContentItems and NameItems with
NameItems.

Representation Distinction There have been long debates in mailing lists
and workshops over the role of URIs that are used to locate information
resources on the web and to denote abstract concepts. For practical every-
day personal knowledge management tasks this distinction does not matter
much. The individual users create their Items with URIs bound to a per-
sonal unique namespace, so there is no danger of accidental overlap. As we
separate the NameItems from the ContentItems, they have different URIs.
NameItems may contain only a short string. Line breaks and formatting
are not allowed. This reduces NameItems more or less to labels (but unique
ones). So there is the ambiguity whether one talks about the NameItem or
the concept denoted by the NameItem. However, the same ambiguity is in
our everyday life: Do we talk about the name “Dirk Hageman” or the per-
son “Dirk Hageman” when we say “Dirk Hageman”? For pragmatic reasons
HKW does not distinguish these two cases in the data model. Note that the
information-resource-like ContentItems are distinguished from the name-like
NameItems.

Terminology Reuse In HKW, the user is usually not confronted with URIs,
so she cannot directly re-use existing URIs. There are two options around
this: One is to create explicitly an Item with a given URI, another one is
to import an existing ontology as a set of NameItems. The ontology needs
either to have unique labels or labels have to be changed to become unique
at import time.

Object Type Most semantic wikis link either to other wiki pages or literal val-
ues. In HKW, there is no such distinction. All textual content is addressable
by URIs. So the object type is neither page nor literal but Item.

In the future, we will integrate the CDS API with the NEPOMUK backbone.
This will allow the user to link any semantic desktop item with any other
semantic desktop or CDS Item and vice versa.

Context As the annotations in HKW are stored as first-class citizens, prove-
nance and context can be stored. E. g. for each Item the author and creation
date are automatically recorded. In addition to that, each Statement can be
annotated further by the user. Note that none of the semantic wikis analysed
in [22] had a way to record context.

40

4 User Interface

Fig. 4 shows a screen-shot of the HKW GUI2 focusing on the NameItem “Dirk
Hageman”. The screen-shot shows the auto-completion list after entering the
letter “c”. The screen is divided into seven colored areas. Below the “Dirk” item,
HKW shows the Items related via the relation cds:hasDetail. E. g. the state-
ment“Dirk Hageman”–“born in”–“Offenburg” is rendered here. This tells the user
that ‘born in” is a cds:hasSubRelation of cds:hasDetail. The inverse
relation of cds:hasDetail is cds:hasContext. Items related to the selected
Item via cds:hasContext are rendered above the “Dirk” item. The other col-
ored boxes represent other CDS core relations. The GUI shows relations always
in their most specific box. Items are only rendered in different boxes at the same
time if the user assigned multiple super-relations to a relation. Behind the word

Fig. 2. Statement Widget

“Offenburg” there are icons allowing the user to navigate to the Statement “Dirk
Hageman”–“born in”–“Offenburg”. In a Statement view (c. f. Fig. 2), the State-
ment can be changed. E. g. the user can change the Relation or create a new
source or target. Auto-linking is supported wherever possible. Most actions in

Fig. 3. Relation Tree Widget

HKW are performed in the Relation Tree Widget (c. f. Fig. 3). Each relation

2 Try online or download from http://wiki.ontoworld.org/wiki/CDS_Editor

41

tree widget represents on of the CDS relations (detail, context, before, after,
tag, type, annotation, annotation member, related, source, or target). The wid-
get allows deleting existing statements by pressing the little red ’X’; creating
new items, relations and corresponding statements. By pressing the blue plus
icon next to an existing relation the widget expands and shows two form fields.
One to enter a relation name, pre-filled with the relation where the blue plus
was selected from and one form field to create a new item or select among the
existing NameItems. The user is free to enter a different relation name into the
relation field, again supported by auto-completion. At any time new relations
can be created by simply typing in a new Relation name. The Relation is au-
tomatically a sub-relation of the main Relation of a box. I. e. creating a new
Relation in the top right box (“has annotation”) creates a sub-relation of “has
annotation”. Inverse Relations are automatically created and named “inverse of
...”. The name can easily be change by the user in a single place. This allows
creating new semantically interlinked items easily. If the user enters a longer
text or uses line breaks, the system assumes the user creates a ContentItem. For
short text, the system suggest existing NameItems or creates new ones. As a re-
sult, a user can always just start typing in the address bar, no matter whether a
concept-like NameItem or a note-like longer ContentItem is going to be created.

The HKW prototype has been realised with the Google Web Toolkit (GWT),
an open-source AJAX-enabled web user interface toolkit by Google Inc. Styling
is done via Cascading Style Sheets (CSS). Due to CSS issues, the tool works
currently only properly in the Firefox browser. This is not a problem as Firefox is
available free of charge for all platforms. GWT applications are web-applications,
which can run in any servlet container. The typical use case is to run the server
locally on the desktop.

5 Related Work

A unified model for web content and semantic statements is presented in [13].
However, different from [13], the CDS model (i. e. ContentItems, NameItems,
Relations and Statements) is specifically designed to be exposed to and under-
stood by end-users. A model and system for a unified browsing and querying
across document boundaries is presented in [7], but authoring is not consid-
ered. Systems similar to HKW include Artificial Memory [15] and Haystack [1].
Artificial Memory shares the idea of CDS to break documents up into small,
interlinked parts to minimize redundancy and improve automated processing.
But Artificial Memory does not allow the user to create non-structured sloppy
entries. We believe letting the user decide how much effort to put into formalisa-
tion of a knowledge item is an important feature to keep the total cost of usage
low. Haystack emphasizes rendering and linking of RDF-based entities, but lacks
ways to author textual content intermingled with semantic facts.

42

6 Conclusions and Future Work

CDS lets the user express knowledge in the form of text (within an item), struc-
ture (structured text in items or structures between items) and formal statements
(by using relations with defined semantics). In HKW, searches and navigation
do not bring up long documents, but short fragments of text with its relations
to other parts.

In the future, we will extend HKW to allow a user to convert a Content-
Item structured with wiki syntax into a set of corresponding smaller Content-
Items. This will lower the cost of creating Items even further. The reverse oper-
ation should also be possible: Merge a set of Items into a single ContentItem, as
wiki syntax. This makes gradual formalisation of knowledge easier: First content
is written into ContentItems, then these items are structured using wiki syntax,
finally they are converted into many smaller Items that can further be annotated
as needed.

43

Fig. 4. HKW prototype screen shot, focusing on Dirk Hageman

44

Bibliography

[1] Adar, E., Karger, D. R. and Stein, L. A. [1999], Haystack: Per-user infor-
mation environments, in ‘CIKM’, ACM, pp. 413–422.

[2] Avery, S., Brooks, R., Brown, J., Dorsey, P. and O’Conner, M. [2001], Per-
sonal knowledge management: Framework for integration and partnerships,
in ‘Proc. of ASCUE Conf.’.

[3] Barreau, D. and Nardi, B. [1995], ‘Finding and reminding: File organization
from the desktop’, SIGCHI Bulletin 27(3), 39–43.

[4] Carroll, J. J., Bizer, C., Hayes, P. and Stickler, P. [2004], Named graphs,
provenance and trust, Technical report, HP.

[5] Decker, S., Park, J., Quan, D. and Sauermann, L., eds [2005], The Seman-
tic Desktop – Next Generation Information Management & Collaboration
Infrastructure, Galway, Ireland.

[6] Despres, C. and Chauvel, D. [2000], Knowledge Horizons: the present and
promise of Knowledge Management, Butterworth-Heinemann.

[7] Dittrich, J.-P. and Salles, M. A. V. [2006], idm: a unified and versatile data
model for personal dataspace management, in ‘VLDB ’06: Proceedings of
the 32nd international conference on Very large data bases’, VLDB Endow-
ment, pp. 367–378.

[8] Drucker, P. F. [1985], Management: Tasks, responsibilities, practices
(Harper & Row management library), Harper & Row.

[9] Fielding, R. T. [2000], Architectural styles and the design of network-based
software architectures, PhD thesis, University of California, Irvine.

[10] Frand, J. and Hixon, C. [1999], ‘Personal knowledge management : Who,
what, why, when, where, how?’, Speech. working paper.
URL: http://www.anderson.ucla.edu/faculty/jason.frand/

researcher/speeches/PKM.htm

[11] Hayes, P. [2004], RDF semantics, Recommendation, W3C.
URL: http://www.w3.org/TR/rdf-mt/

[12] Higgison, S. [2005], ‘Your say: Personal knowledge management’, Insight
Knowledge 7(7).

[13] Immaneni, T. and Thirunarayan, K. [2007], A unified approach to retriev-
ing web documents and semantic web data, in E. Franconi, M. Kifer and
W. May, eds, ‘ESWC’, Vol. 4519 of Lecture Notes in Computer Science,
Springer, pp. 579–593.

[14] Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H. and Studer, R. [2007],
‘Semantic wikipedia’, Journal of Web Semantics . To appear.

[15] Ludwig, L. [2005], Semantic personal knowledge management, Technical
Report D11.01 v0.01, DERI Galway.

[16] Luhmann, N. [1992], Kommunikation mit zettelkästen. ein erfahrungs-
bericht, in A. Kieserling, ed., ‘Universität als Milieu’, Kleine Schriften, Haux
Verlag, Bielefeld, pp. 53–61. ISBN 3-925471-13-8.

45

[17] Maurer, H. [1999], The heart of the problem: Knowledge management and
knowledge transfer, in ‘Proc. ENABLE’99’, Espoo-Vantaa Institute of Tech-
nology, pp. 8–17.

[18] Mitchell, A. [2005], ‘The rise of personal km’, Inside Knowledge 9(1).
[19] Nonaka, I. and Konno, N. [1998], ‘The concept of ”ba”: Building a foundation

for knowledge creation’, California Management Review 40(3), 40–54.
[20] Nonaka, I. and Takeuchi, H. [1995], The Knowledge-Creating Company :

How Japanese Companies Create the Dynamics of Innovation, Oxford Uni-
versity Press.

[21] Oren, E. [2005], SemperWiki: a semantic personal wiki, in [5].
[22] Oren, E., Delbru, R., Möller, K., Völkel, M. and Handschuh, S. [2006],

Annotation and navigation in semantic wikis, in S. Schaffert and M. Völkel,
eds, ‘Proceedings of the First Workshop on Semantic Wikis - From Wiki to
Semantics at the ESWC 2006’.

[23] Oren, E., Völkel, M., Breslin, J. G. and Decker, S. [2006], Semantic wikis
for personal knowledge management, in ‘Database and Expert Systems Ap-
plications’, Vol. 4080/2006, Springer Berlin / Heidelberg, pp. 509–518.

[24] Polanyi, M. [1966], Tacit Dimension, Routledge & Kegan Paul Ltd, London.
[25] Völkel, M. [2007], A semantic web content model and repository, in ‘Pro-

ceedings of the 3rd International Conference on Semantic Technologies’.
URL: http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.
pdf

[26] Völkel, M. and Haller, H. [2006], Conceptual data structures (cds) – towards
an ontology for semi-formal articulation of personal knowledge, in ‘Proc. of
the 14th International Conference on Conceptual Structures 2006’, Aalborg
University - Denmark.

[27] Völkel, M., Haller, H. and Abecker, A. [2007], Modelling higher-level
thought structures - method and tool, in ‘Proceedings of Workshop on Foun-
dations and Applications of the Social Semantic Desktop’.

[28] Völkel, M., Haller, H., Bolinder, W., Davis, B., Edlund, H., Groth, K.,
Gudjonsdottir, R., Kotelnikov, M., Lannerö, P., Lundquist, S., Sogrin, M.,
Sundblad, Y. and Westerlund, B. [2008], Conceptual data structure tools,
Deliverable 1.2, nepomuk consortium.
URL: http://nepomuk.semanticdesktop.org/xwiki/bin/download/

IST/WebHome/D1.2_v10_CDS-Tools.pdf

46

Mathematical Semantic Markup in a Wiki: the
Roles of Symbols and Notations

Christoph Lange

Computer Science, Jacobs University Bremen
ch.lange@jacobs-university.de

Abstract. We present semantic markup as a way to exploit the seman-
tics of mathematics in a wiki. Semantic markup makes mathematical
knowledge machine-processable and thus allows for a multitude of useful
applications. But as it is hard to read and write for humans, an edi-
tor needs to understand its inherent semantics and allow for a human-
readable presentation. The semantic wiki SWiM offers this support for
the OpenMath markup language. Using OpenMath as an example, we
present a way of integrating a semantic markup language into a semantic
wiki using a document ontology and extracting RDF triples from XML
markup. As a benefit gained from making semantics explicit, we show
how SWiM supports the collaborative editing of definitions of mathe-
matical symbols and their visual appearance.

1 Making Mathematical Wikis More Semantic

What does a wiki need in order to support mathematics in a semantic way?
First, there needs to be a way to edit mathematical formulæ. Many wikis offer
a LATEX-like syntax for that, and they have been used to build large mathemat-
ical knowledge collections, such as the mathematical sections of Wikipedia [30]
or the mathematics-only encyclopædia PlanetMath [16]. But LATEX, which is
mostly presentation-oriented, despite certain macros like \frac{num}{denom}
or \binom{n}{k}, is not sufficient to capture the semantics of mathematics.
One could write O(n2 + n), which could mean “O times n2 + n” (with redun-
dant brackets), or “O (being a function) applied to n2 + n”, or the set of all
integer functions not growing faster than n2 +n, and just by common notational
convention we know that the latter is most likely to hold.

For being able to express the semantics of O(n2+n), we need to make explicit
that the Landau symbol O is a set construction operator and n is a variable.
The meaning of O has to be defined in a vocabulary shared among mathematical
applications such as our wiki. This is analogous to RDF, where a vocabulary—
also called ontology—has to be defined before one can use it to create machine-
processable and exchangeable RDF statements. In a mathematical context, these
vocabularies are called content dictionaries (CDs). As with ontology languages,
one can usually do more than just listing symbols and their descriptions in a CD:
defining symbols formally in terms of other symbols, declaring their types for-
mally, and specifying their visual appearance. Thus, CDs themselves are special

47

mathematical documents that could again be made available in a mathematical
wiki. Then it would be possible to create an unambiguous link from any occur-
rence of O in a formula to its definition in the wiki, and knowledge from the
wiki could be shared with any other mathematical application supporting this
CD. As a practical solution, we present the OpenMath CD language in sect. 2
and its integration into the semantic wiki SWiM in sect. 4.

2 Semantic Markup for Mathematics with OpenMath

Semantic markup languages for mathematics address the problems introduced in
sect. 1 by offering an appropriate expressivity and semantics for defining symbols
and other structures of mathematical knowledge. This is a common approach to
knowledge representation not only in mathematics, but generally in science1.

OpenMath [7] is a markup language for expressing the logical structure
of mathematical formulæ. It provides its own sublanguage for defining CDs—
collections of symbol definitions with formal and informal semantics. One symbol
definition consists of a mandatory symbol name and a normative textual descrip-
tion of the symbol, as well as other metadata2. Formal mathematical properties
(FMPs) of the symbol, such as the definition of the sine function, or the commu-
tativity axiom that holds for the multiplication operator, can be added, written
in OpenMath and possibly using other symbols (see fig. 1). Type signatures
(such as sin : R→ R) and human-readable notations (see sect. 3) of symbols are
defined separately from the CD in a similar fashion.

As semantic markup makes mathematical formulæ machine-understandable,
it has leveraged many applications. For OpenMath, it started with data ex-
change between computer algebra systems, then automated theorem provers,
and more recently dynamic geometry systems. OpenMath is also used in mul-
tilingual publishing, adaptive learning applications, and web search [10]. Open-
Math CDs foster exchange by their modularity. Usually, a CD contains a set of
related symbols, e. g. basic operations on matrices (CD linalg1) or eigenvalues
and related concepts (CD linalg4), and a CD group contains a set of related
CDs, e. g. all standard CDs about linear algebra (CD group linalg). In this
setting, agents exchanging mathematical knowledge need not agree upon one
large, monolithic mathematical ontology, but can flexibly refer to a specific set
of CDs or CD groups they understand3.

1 Consider e. g. the chemical markup language CML [23]
2 OpenMath 2 uses an idiosyncratic schema for metadata, but Dublin Core is likely
to be adopted for OpenMath 3.

3 A communication protocol for such agreements is specified in [7, sect. 5.3].

48

<CDDefinition>
<Name>sin</Name>
<Description>The sine function on real numbers</Description>
<CMP>The sine function is defined in terms of the exponential function as
sin x = 1

2 (eix − e−ix).</CMP>
<FMP>

<OMOBJ xmlns="http://www.openmath.org/OpenMath"
version="2.0" cdbase="http://www.openmath.org/cd">
<OMA><OMS cd="relation1" name="eq"/>

<OMA><OMS name="sin" cd="transc1"/>
<OMV name="x"/></OMA>

<OMA><OMS name="divide" cd="arith1"/>
<OMA><OMS name="minus" cd="arith1"/>

<OMA><OMS name="exp" cd="transc1"/>
<OMA><OMS name="times" cd="arith1"/>

<OMS name="i" cd="nums1"/>
<OMV name="x"/></OMA></OMA>

<OMA><OMS name="exp" cd="transc1"/>
<OMA><OMS name="times" cd="arith1"/>

<OMA><OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/></OMA>

<OMV name="x"/></OMA></OMA></OMA>
<OMA><OMS name="times" cd="arith1"/>

<OMI>2</OMI>
<OMS name="i" cd="nums1"/></OMA></OMA></OMA></OMOBJ></FMP>

</CDDefinition>

Fig. 1. A definition of the sine function in OpenMath. FMP stands for “formal mathe-
matical property”, whereas the “C” in CMP stands for “comment”. OMA is an application
of a symbol (OMS) to some arguments, OMV denotes a variable, and OMI denotes an in-
teger. For any symbol, its CD (resolved relatively to a base URI) and name have to
be given. The CD used here are standard ones officially approved by the OpenMath
Society.

49

3 Authoring, Navigating and Presenting Semantic
Markup

As semantic markup is obviously hard to read and write for humans (see fig. 1),
proper authoring software is desirable for writing it. For reading, it should be
transformed to presentation markup. LATEX or presentational MathML [2] are
suitable output formats. With “authoring”, we refer both to authoring instances,
i. e. formulæ that can use symbols from any CD, but also to authoring ontolo-
gies, i. e. CDs. In fact, as with editors for semantic web ontologies, a sophisticated
editor should cover both levels, as existing vocabulary (here: mathematical sym-
bols) is not just used to create instance data, but also to define new vocabulary
in terms of old one.

Semantic markup is commonly presented by defining the notation of every
symbol as a mapping from a single semantic symbol—or a pattern matching a
set of semantic markup structures in which the symbol can occur—to fragments
of presentation markup, where arguments to symbols are presented by recursive
application of the rules [14, 19]. One such pattern-based language for notation
definitions has been proposed as a part of the CD language of the MathML 3
standard (see sect. 5) and, within the current process of aligning both languages,
is likely to be adopted for OpenMath 3 as well. For XML languages, semantics-
to-presentation-mappings are commonly given in XSLT [12], either directly, or
generated from a more concise representation [14, 19], but there are also non-
XSLT implementations (see sect. 5).

In the course of opening up new mathematical areas, definitions of new sym-
bols and their axiomatization are not fixed initially but subject to continuous
evolution and refactoring—a workflow that a semantic wiki should support. In
this paper, we assume that the semantics of symbols is fixed, but then it is still
the notation of the symbol that can evolve. On the one hand there is evolution
in the course of time. Before the 16th century, a prefixed letter R or r (= radix)
had mainly been used for square roots, but then the more abstract symbol

√
was developed [8]. On the other hand the notation of a symbol depends on the
context the symbol is used in. The context can be determined by the language
of the author or the reader, by previous knowledge, by the area of application,
and other criteria [14, 27]. For example, a binomial coefficient is written as

(
n
k

)
in German or English, but as Ckn in French. A mathematician uses the symbol i
for the imaginary unit, whereas an electrical engineer would write j. In a strict
style, one would express asymptotic growth as f ∈ O(g), but the sloppy style of
f = O(g) is far more common. For applications this means that reusing existing
mathematical content in a new context requires adapting the notation [14].

The fact that there is no single, definitive notation for a mathematical symbol
leads to the requirement that an integrated editor for mathematical documents
and CDs should instantly reflect changes of notation definitions in the places
where they are used for presentation. That means that whenever the notation
of a symbol σ has changed, all the presentation markup generated from formulæ
containing σ has to be invalidated and re-rendered upon the next request. In a
single-author environment this frees the author from recompiling all the affected

50

presentation markup and gives instant visual feedback about whether the new
notation works, and in a collaborative environment it relieves other authors from
worrying whether they are looking at an up-to-date presentation of a document.

Moreover, an authoring tool should make the semantic relations between
definitions of symbols, their notations, and their type signatures, as well as the
relations between instances (here: symbols used in formulæ) and classes explicit
in the user interface, as this facilitates orientation both for authors and for
readers.

4 OpenMath CDs in the Semantic Wiki SWiM

SWiM aims at satisfying the above requirements for authoring, navigating, and
presenting mathematical knowledge in a semantic wiki [18]. It is based on the
general-purpose semantic wiki IkeWiki [26] and enhances it by support for Open-
Math and subsets of MathML and the more comprehensive OMDoc [13]. In this
paper, we focus on OpenMath.

SWiM follows the approach of representing one subject of interest by one
wiki page and modeling it as one resource in an RDF graph; this shall henceforth
be called “page-level annotation”. This way of knowledge representation is the
most common in semantic wikis, but nowhere near the only one [24, 6]. Our
experience with developing SWiM and working in other semantic wikis following
the same approach, such as Semantic MediaWiki [29], shows that this works best
if pages are small. Otherwise, too many subjects of interest would be described
in subsections of pages and thus could not be represented in RDF. But small
pages are advisable in a wiki anyway, as they reduce the potential of editing
conflicts. With small pages, page-level annotation is at its most impressive in
terms of easy-to-use authoring, navigation, and search from a user’s point of
view, and easy maintenance within the system4.

An important task in implementing the OpenMath support in SWiM was
the choice of the granularity of pages. The OpenMath Society, the body stan-
dardizing OpenMath, considers whole CDs as units that are subject to review
or change [7, sect. 4.5], and the OpenMath CD language reflects that by only
providing “date” and “author” metadata fields on CD level. But quite a lot of
CDs contain more than 10 symbol definitions, covering several screen pages in a
browser. With SWiM we are not only aiming at supporting the review process
of the OpenMath Society but also the more dynamic preceding phase, when, for
example, a working group in some company or research institute is developing
a new CD that will then be submitted to the OpenMath Society for approval.
Thus, both to keep wiki pages small, and to support a more dynamic workflow,
we chose to map symbol definitions and even their subelements (formal and in-
formal properties, and examples) to wiki pages. The latter choice is influenced
4 These aspects were discussed in more detail on the mailing list of the Semantic
Wiki Interest Group [28] in two threads named “Modeling ‘third party’ relations on
Semantic Mediawiki page?” and “Creating Triples Anywhere in a Semantic Wiki”
in April 2007.

51

from our experience with OMDoc [13], where axioms and theorems—defining
or asserting additional properties of symbols—and examples are modeled as en-
tities separate from the declarations or definitions of the symbols, allowing for
greater flexibility.

Now that this design choice has been found reasonable for SWiM, it should
not violate the compatibility with other OpenMath applications. SWiM allows
for importing and exporting OpenMath files from and to the local file system
or the OpenMath Subversion repository. On import, CDs are split into their
subparts as mentioned above, every part being stored on its own wiki page. The
containment relations are preserved as XIncludes [21], which are resolved on
export again. The XIncludes are also resolved when a document is rendered, so
that a whole CD can be viewed at once.

Fig. 2. A content dictionary in SWiM

SWiM supports editing OpenMath and other semantic markup in a semi-
WYSIWYG way. Plain text can be edited and styled visually (but styles are lost
on export), for OpenMath objects there is a simple linear ASCII syntax, and
other XML structures are made accessible as special HTML tables (see fig. 3).

The semantics of the OpenMath CD language is documented in a human-
readable specification [7, chap. 4], which is not explicit enough to make Open-
Math CDs directly usable by semantic web applications. Instead, an ontology
had to be developed to allow for making RDF statements about resources in CDs,
and an automated extraction of RDF statements from the OpenMath markup
had to be developed. The OpenMath document ontology models classes and
properties for all structural entities found in OpenMath’s CD groups, CDs, type
signatures, and notation definitions in OWL-DL. Properties from common on-

52

Fig. 3. Editing OpenMath in SWiM

tologies like Dublin Core were reused where appropriate. The inner structures of
formulæ (also known as “OpenMath objects”) were not modeled, for two reasons:
First, formulæ are not accessible as entities of their own in SWiM but as children
of structural entities like FMPs, which are represented in the document ontol-
ogy, and secondly, RDF combined with logics used for semantic web reasoning is
not expressive enough for capturing the full semantics of mathematical formulæ.
The latter should instead be left to a theorem prover or computer algebra sys-
tem working with OpenMath objects. If we had an ontology for expressing the
syntactic structure of an OpenMath object like ∀x.x ∈ R ⇒ ex > 0 in RDF, as
discussed in [20], we would be able to make the references to the bound variable
x explicit (they would point to the same URI), but still we would not be able to
express the notion of α-equivalence (meaning that we could have used any other
name for x as well) in the first order logic subsets commonly used for reasoning
on the semantic web. There is, however, a property that states that an FMP or
an example uses a symbol—which is contained in some OpenMath object inside
the FMP or example—and points to the definition of that symbol in some CD.
This is not only useful for determining dependencies among CDs (What other
CDs do I need to load in order to get a self-contained collection?), but also for
rendering formulæ according to notation definitions (see sect. 5).

Whenever a wiki page is stored in SWiM, i. e. whenever it is saved in the
editor or imported, an RDF representation in terms of the document ontology
is extracted from the markup. Consider the following CD:

<CD xml:id="sample">
<CDName>sample</CDName>
<CDDate>2008-03-05</CDDate>
<CDStatus>private</CDStatus>

53

<Description>A sample CD</Description>
<xi:include href="url/of/CDDefinition"/></CD>

From this, the following RDF would be extracted (in Turtle syntax [4]), where
omo is the prefix of the OpenMath document ontology namespace:

<#sample>
rdf:type omo:ContentDictionary ;
dc:identifier "sample" ;
dc:date 2008-03-05 ;
omo:status "private" ;
dc:description "A sample CD" ;
omo:containsSymbolDefinition <url/of/cddefinition> .

The extracted RDF is stored in the Jena store built into IkeWiki, where
the OpenMath document ontology resides as well. IkeWiki uses Jena’s builtin
RDFS reasoner that implements the RDFS semantics but understands the OWL
syntax as well [26]. IkeWiki currently utilizes the RDF graph in order to generate
a list of incoming and outgoing links for the current page, grouped by property
(shown on the right side in fig. 2), to feed a graphical RDF browser, to preselect
properties of pages and links an author would probably want to annotate, and
it supports embedding arbitrary inline SPARQL queries [25] into pages.

5 Defining Notations and (Re-)Rendering Formulæ

For defining the notation of a symbol, SWiM employs the pattern-based language
proposed for MathML 3 [2, sect. 8.6, “Rendering of Content Elements”]. A no-
tation definition for a symbol consists of a prototype that matches a fragment
of semantic markup, either matching elements literally or matching subtrees
against so-called content metavariables, and a rendering, which is a template of
presentation markup with so-called element metavariables in those places where
the results of rendering the XML trees matched against the correspondent con-
tent metavariables are to be inserted. This is, for example, a notation definition
for the root operator in the arith1 CD, specifying the rendering n

√arg:
<notation xml:id="ntn-root">

<prototype>
<om:OMA>

<om:OMS cd="arith1" name="root"/>
<expr name="arg"/>
<expr name="n"/></om:OMA></prototype>

<rendering>
<m:mroot>

<render name="arg"/>
<render name="n"/>

</m:mroot></rendering></notation>

54

From this, the RDF triple <#ntn-root> omo:rendersSymbol <url/of/arith1
/root> . would be extracted.

SWiM employs the Java-based mmlproc rendering library [14] for rendering
OpenMath objects to presentational (i. e. non-semantic) MathML, which can be
viewed in recent versions of the Firefox or Opera browsers. Whenever a wiki page
containing notation definitions is saved or imported, the notation definitions are
put into a cache read by mmlproc. To symbols without a notation definition,
mmlproc applies a default rendering like root(arg,n).

If a notation definition has been added, deleted, or changed, the affected
documents have to be re-rendered. In order to do this properly, SWiM has to

1. identify changes to notation definitions
2. identify documents affected by a change

(1) is done by computing an XML diff between the cached and the newly inserted
version of a notation definition. (2) is done by querying the RDF graph for
all FMPs and examples using the symbol rendered by the respective notation
definition, as shown in fig. 4 and 5. Not only the wiki pages holding these FMPs
and examples have to be re-rendered, but also those pages (symbol definitions
and CDs) that directly or indirectly include these fragments.

1 SELECT DISTINCT ?page WHERE {
2 <changed-ntn-def> omo:rendersSymbol ?sym .
3 { ?page omo:usesSymbol ?sym } UNION
4 { ?exOrFMP omo:usesSymbol ?sym .
5 { ?page omo:contains ?exOrFMP } UNION
6 { ?page omo:contains ?symDef .
7 ?symDef omo:contains ?exOrFMP } } }

Fig. 4. SPARQL query determining the effect of changing a notation definition; see
fig. 5 for a graphical representation.

6 Related Work

SWiM was originally motivated by deficiencies in mathematical wikis like
Wikipedia or PlanetMath (see sect. 1). For MediaWiki, a semantic web extension
has been developed [29], which aims at being used in the MediaWiki-powered
Wikipedia. se(ma)2wi [31] was a Wikipedia-independent experiment with a Se-
mantic MediaWiki fed with OMDoc-formatted mathematical knowledge from
the ActiveMath learning environment. While the ActiveMath learning meta-
data are displayed in the wiki, most of the structural semantics explicitly given
in OMDoc is, however, lost during this import: The formulæ are converted to

55

notDef sym

fmpfmpfmp

exexex

symDefsymDefsymDef cdcdcd

renders-
Symbol (2)

usesSymbol (3,4)

usesSymbol (3,4)

contains (5,7)

contains (5,7)

contains (6)

Fig. 5. Finding pages (depicted as stacks of nodes) affected by changes to a notation
definition. Numbers refer to lines of listing 4. Note that both sym and the symDef s are
instances of the class SymbolDefinition.

presentational-only LATEX, and the links between wiki pages that represent math-
ematical statements, for example a link from a theorem to its proof, are not typed
and therefore cannot be queried.

In its role as a CD editor, SWiM is comparable to an ontology editor.
Actually, the IkeWiki base system provides a simple editor for RDFS and OWL
ontologies as well. OntoWiki is a more comprehensive, agile collaborative editor
for ontologies and instance data that is inspired by wiki principles like ease of
use for non-experts and versioning [1]. In OntoWiki, one edits a resource like
a database record, namely in a table containing edit boxes for all properties of
the resource, whereas a resource in a semantic wiki is represented as a semi-
structured document, which the user can enrich with annotations. While an
OpenMath CD has a mostly record-like structure, this does not hold for mathe-
matical documents in general; consider e. g. the OpenMath objects inside a CD,
or a mathematical lecture written in the more versatile OMDoc language [13].

While SWiM is the first wiki that supports editing notation definitions,
this has been investigated for text editors before. In the PlatΩ system, the
TEXmacs editor has been extended towards semantic markup [3]. The devel-
opers focus on notations that use natural language and on parsing text and
formulæ the user writes in a presentational style back to a semantic representa-
tion. Both features have not yet been investigated in SWiM; here the focus is
rather on making the semantic markup editable in a convenient way. As a change
to a notation definition in PlatΩ/TEXmacs involves regenerating parser rules,
special attention is paid to making this efficient by only regenerating those rules
that are affected by a change. Improving this by computing minimal diffs w. r. t.
extended equivalence relations for structured document formats (such as ignor-
ing changes to whitespace) and computing and previewing long-range effects of
changes is further elaborated in [22].

Formula rendering is a special case of inline query processing. Many se-
mantic wikis support inline queries as a means of automatically generating
lists [15]; usually an inline query consists of a predicate p : Page→ B, a specifica-
tion of the information that is desired for every page satisfying p (e. g. its title),

56

and a formatting style for the result. An OpenMath object in SWiM can be
considered a query for the notation definitions of the symbols used in the object,
where for every symbol only the most appropriate rendering5 is included in the
result set and the result is “formatted” by rendering the symbols according to
the rendering specifications in the result set. In this setting, we can determine
whether a change to a page (here: a notation definition) affects the result set
of a query (here: a formula) by checking whether the formula contains a par-
ticular fixed symbol, which requires linear time w. r. t. the size of the formula.
For general queries6, this is far more complex, as the satisfiability problem for
propositional boolean expressions is NP-complete.

The document ontology presented here is the first one that has been de-
veloped for OpenMath CDs. In previous work, we have introduced a similar
ontology for a subset of OMDoc [17]. A different ontology for OpenMath has
been developed in the MONET project. It does not model the document struc-
ture of CDs but can be used to relate OpenMath objects to certain web services
operating on them; e. g. one can specify that there is a web service for computing
definite integrals, which can operate on any object that applies the defint symbol
from the calculus1 CD to certain arguments [9].

7 Conclusion and Outlook

Having motivated that mathematical semantic markup languages can help to
make semantic wikis aware of mathematics, we showed how the OpenMath
content dictionary language was integrated into the semantic wiki SWiM by
choosing an appropriate page granularity, modeling a document ontology, and
extracting relevant facts from the markup into RDF. We motivated the need
for supporting the maintenance of notation definitions for mathematical sym-
bols and showed how to utilize the information from the RDF graph in order to
improve the performance of the system and the usability in terms of navigation
and orientation when editing notation definitions.

So far, SWiM assumes that there is at most one notation definition per
symbol. The mmlproc renderer supports callbacks to an algorithm that selects
the most appropriate out of a set of multiple possible renderings for a symbol. A
default implementation considering the static context of a formula (such as the
language of the document [section]) is provided with mmlproc [14]. In future, it
is planned to provide a user interface inside SWiM that lets the user select his
preferred rendering for every symbol.

A visual editor for formulæ will be provided as well. Available editors will
be evaluated w. r. t. their extensibility by new symbols and notation definitions.
Ideally, the tool palette of a visual formula editor would be supplied dynamically
with all known instances of the SymbolDefinition class.
5 See sect. 7 for dealing with multiple renderings per symbol.
6 In database research, the area of problems touched on here is known as “materialized
view maintenance” [11].

57

Additional reasoning tasks need to be investigated to allow for more powerful
queries. For example, the dependency relation between CDs (see sect. 4) and the
containment relation between CDs and their subparts (see sect. 5) are transitive,
but RDFS cannot express transitivity, and SPARQL cannot compute transitive
closures.

Finally, the relationship between the structural semantics of documents and
domain knowledge is worth investigating. If we define the Landau symbols O
and Ω in a CD, probably including their type declarations, we have not gained
more domain knowledge than that two mathematical concepts O and Ω exist
that map integer functions to sets of integer functions. In the more expressive
OMDoc language we could provide a definition of Ω as ∀f, g.f ∈ Ω(g) :⇔ g ∈
O(f) and use that knowledge e. g. to customize presentation: Formulæ using Ω
could be rewritten to their equivalents using more the familiar O. Relationships
between mathematical concepts are not only given by definitions: Commonly a
differentiable function f is defined as a function that has a derivative, but the
fact that f also is continuous is only observed afterwards as a theorem. From such
definitions or theorems one could extract a domain ontology use it for reasoning.
In DL this might look as follows (class names abbreviated) [5]:

ContFunc v Func (1)
DiffableFunc = Func u ∃hasDeriv.Func (2)
DiffableFunc v ContFunc (3)

This information could then be utilized e. g. to display a general theorem
about continuous functions when the user searches for a theorem about differ-
entiable functions.

Acknowledgments The author would like to thank Michael Kohlhase for inspi-
ration by his vision of a semantic web for mathematics, and James Davenport,
representing the OpenMath society, for sharing his insights about CD metadata.

References

1. S. Auer, S. Dietzold, and T. Riechert. Ontowiki – A tool for social, semantic col-
laboration. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, 5th International Semantic Web Conference,
volume 4273 of LNCS. Springer, 2006.

2. R. Ausbrooks, B. Bos, O. Caprotti, D. Carlisle, G. Chavchanidze, A. Coorg, S. Dal-
mas, S. Devitt, S. Dooley, M. Hinchcliffe, P. Ion, M. Kohlhase, A. Lazrek, D. Leas,
P. Libbrecht, M. Mavrikis, B. Miller, R. Miner, M. Sargent, K. Siegrist, N. Soiffer,
S. Watt, and M. Zergaoui. Mathematical Markup Language (MathML) version
3.0. W3C working draft, W3C, 2007. http://www.w3.org/TR/MathML3.

3. S. Autexier, A. Fiedler, T. Neumann, and M. Wagner. Supporting user-defined
notations when integrating scientific text-editors with proof assistance systems. In
M. Kauers, M. Kerber, R. Miner, andW.Windsteiger, editors, Towards Mechanized

58

Mathematical Assistants. MKM/Calculemus, number 4573 in LNAI. Springer,
2007.

4. D. Beckett. Turtle – terse RDF triple language, 2007. http://www.dajobe.org/
2004/01/turtle/.

5. M. Bröcheler. The mathematical semantic web. Bachelor’s thesis, Computer Sci-
ence, Jacobs University, Bremen, 2007.

6. M. Buffa, F. Gandon, G. Ereteo, P. Sander, and C. Faron. Sweetwiki: A semantic
wiki. Web Semantics: Science, Services and Agents on the World Wide Web, 2008.
in press.

7. S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaetano, and M. Kohlhase.
The Open Math standard, version 2.0. Technical report, The Open Math Society,
2004. http://www.openmath.org/standard/om20.

8. F. Cajori. A History of Mathematical Notations. Courier Dover Publications, 1993.
Originally published in 1929.

9. O. Caprotti, M. Dewar, and D. Turi. Mathematical service matching using de-
scription logic and OWL. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Mathematical Knowledge Management, number 3119 in LNAI. Springer, 2004.

10. J. H. Davenport. OpenMath in a (semantic) web. In O. Caprotti, S. Xambó, M.-
A. Huertas, M. Kohlhase, and M. Seppälä, editors, 3rd JEM Workshop – Joining
International Mathematics, 2008. http://jem-thematic.net/workshop3.

11. A. Gupta and I. S. Mumick, editors. Materialized views: techniques, implementa-
tions, and applications. MIT Press, Cambridge, MA, USA, 1999.

12. M. Kay. XSL Transformations (XSLT) Version 2.0. W3C Recommendation, W3C,
2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/.

13. M. Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI. Springer, 2006.

14. M. Kohlhase, C. Müller, and F. Rabe. Notations for living mathematical docu-
ments. InMathematical Knowledge Management, MKM’08, LNAI. Springer Verlag,
2008. in press.

15. M. Krötzsch, S. Schaffert, and D. Vrandečić. Reasoning in semantic wikis. In
G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Pătrânjan, and
R. Tolksdorf, editors, 3rd Reasoning Web Summer School, volume 4636 of LNCS.
Springer, 2007.

16. A. Krowne. An architecture for collaborative math and science digital li-
braries. Master’s thesis, Virginia Tech, 2003. http://scholar.lib.vt.edu/
theses/available/etd-09022003-150851/.

17. C. Lange. SWiM – a semantic wiki for mathematical knowledge management. Tech-
nical Report 5, Jacobs University Bremen, 2007. http://kwarc.info/projects/
swim/pubs/tr-swim.pdf.

18. C. Lange. SWiM: A semantic wiki for mathematical knowledge management.
http://kwarc.info/projects/swim/, 2008.

19. S. Manzoor, P. Libbrecht, C. Ullrich, and E. Melis. Authoring Presentation for
OpenMath. In M. Kohlhase, editor, Mathematical Knowledge Management, num-
ber 3863 in LNAI. Springer, 2005.

20. M. Marchiori. The mathematical semantic web. In A. Asperti, B. Buchberger, and
J. H. Davenport, editors, Mathematical Knowledge Management, number 2594 in
LNCS. Springer, 2003.

21. J. Marsh, D. Orchard, and D. Veillard. XML inclusions (XInclude) version 1.0
(second edition). W3C Recommendation, World Wide Web Consortium (W3C),
Nov. 2006. Available at http://www.w3.org/TR/2006/REC-xinclude-20061115/.

59

22. N. Müller and M. Wagner. Towards Improving Interactive Mathematical Author-
ing by Ontology-driven Management of Change. In A. Hinneburg, editor, LWA
(Lernen, Wissensentdeckung und Adaptivität), 2007.

23. P. Murray-Rust, H. S. Rzepa, and M. Wright. Development of chemical markup
language (cml) as a system for handling complex chemical content. New Journal
of Chemistry Articles, 25:618–634, 2001.

24. E. Oren, R. Delbru, K. Möller, M. Völkel, and S. Handschuh. Annotation and
navigation in semantic wikis. In M. Völkel, S. Schaffert, and S. Decker, editors, 1st
Workshop on Semantic Wikis, volume 206 of CEUR Workshop Proceedings, 2006.

25. E. Prud’hommeaux and A. Seaborne. SPARQL query language for
RDF. W3C Recommendation, W3C, 2006. http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/.

26. S. Schaffert. IkeWiki: A semantic wiki for collaborative knowledge management. In
1st International Workshop on Semantic Technologies in Collaborative Applications
(STICA), 2006.

27. E. Smirnova and S. M. Watt. Notation Selection in Mathematical Computing
Environments. In Proc. Transgressive Computing (TC) 2006, 2006.

28. Mailing list of the semantic wiki interest group. swikig@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/mailman/listinfo/swikig.

29. M. Völkel, M. Krötzsch, D. Vrandečić, H. Haller, and R. Studer. Semantic
Wikipedia. In 15th WWW conference, 2006.

30. Wikipedia, the free encyclopedia. http://www.wikipedia.org, 2001–2007.
31. C. Zinn. Bootstrapping a semantic wiki application for learning mathematics. In

Y. Sure and S. Schaffert, editors, Semantics: From Visions to Applications, 2006.

60

User
Christoph Lange
<ch.lange@jacobs-
university.de>

School of Engineering and Science
Jacobs University Bremen, Germany

Digital Enterprise Research Institute
NUI Galway, Ireland

Search∫ ?

?
s2(t)dt

Go!

Import
• OpenMath CD

• OMDoc

• Ontology

• LATEX

Export
• OpenMath CD

• OMDoc

• XHTML+MathML

• RDF

• PDF

Poster Edit Discussion History

SWiM – A Semantic Wiki for
Mathematical Knowledge Management

SWiM is a semantic wiki for collaboratively building, editing, brows-
ing, and discussing collections of mathematical knowledge represented in
structural semantic markup. It motivates users to contribute by instantly
sharing the benefits of knowledge-powered services with them.

Mathematical Knowledge Management
Goal: web collaboration on structured mathematical knowledge
• semantic markup common for documents in
mathematics: MathML, OpenMath, OMDoc, sTEX

• layers of knowledge: symbols, statements, theories,
documents

• applications: e-learning, publishing, proof verification
• but how to acquire the knowledge?
•⇒ services to motivate the user and support the
authoring workflow

<apply>
<csymbol definitionURL=

"http://openmath.org/cd/
arith1#plus"/>

<cn type="integer">1</cn>
<ci>n</ci>

</apply>

A “simple” semantic formula

Semantic Wiki and Ontologies
• Semantic wikis found usable to support collaborative formalisation
• Difference here is: deeply nested markup, lots of cross-references
• Right granularity of pages: one page = one theory, one statement, one formula?
•⇒ extract knowledge relevant for search and navigation, build most services on top of that
• RDF graph in terms of an ontology that models the semantics of the markup; direct and
inferred relationships: dependency, containment

<omdoc>
<proof id="pyth-proof"

for="pythagoras">
. . . </proof>

</omdoc>

extraction
RDF

pyth-proof pythagoras

Proof Theorem

type type

proves

proves

<pyth-proof, rdf:type, omdoc:Proof>

<pyth-proof, omdoc:proves, pythagoras>

SWiM = IkeWiki + OMDoc + Σ∞
i=1σi, σi ∈ service

Technical foundations:
• IkeWiki [Schaffert]
• OMDoc [Kohlhase]
Features:
• editing
• presentation
• navigation
• discourse
• import/export
• refactoring
• semantic services

OpenMath 3 Case Study
• revision of the content dictionaries (collec-
tions of symbol definitions)

• user interface: editing formulae, metadata,
symbol notations

Examples for notational preferences:
• language:

(
n
k

)
, Ck

n, Cn
k

• domain:
√−1 = i,

√−1 = j

• taste: f ′′(x), f (2)(x), d2y
dx2, d2

dx2f (x)

• exactness: f ∈ O(n), f = O(n)

Flyspeck Case Study
• Formalising a Proof of the Kepler conjec-
ture [Hales 1998]

• hundreds of proof sketches (400 pages
LATEX), collaboratively transform them into
something machine-verifiable

• formalising, annotating, discussing, project
management

References
• hasDemo
http://swim.kwarc.info

• homepageURL
http://kwarc.info/projects/
swim/

• presentedAt
Semantic Wiki Workshop
JEM Workshop (Joining Educational
Mathematics)
MathUI Workshop

• rdfs:seeAlso
PlanetMath
Semantic MediaWiki
Connexions
ActiveMath

• rdf:type
Semantic Wiki
Mathematical Editor
Collaboration Tool
Browser

Conclusion
• SWiM makes mathematical docu-

ments editable collaboratively and fa-
cilitates common workflows by ex-
ploiting the knowledge they contain.

• Domain-specific markup and on-
tology allows for advantages over
generic semantic wikis and non-
semantic mathematical wikis w. r. t.
knowledge management

• Approach transferable to other do-
mains (e. g. chemistry): decide on
page granularity, capture semantics in
ontology, extract RDF, integrate suit-
able editors

Roadmap
• ontology for narrative structures

• formalisation workflow

• dependency graph navigation

• refactoring support

• adaptive presentation

Acknowledgments

Studienstiftung des deutschen Volkes

XML RSS FEED SWiM v0.2.008 “ESWC” edition (2008–06–03) © 2006–2008 Christoph Lange RDF

61

Position paper: A real Semantic Web for
mathematics deserves a real semantics

P. Corbineau, H. Geuvers, C. Kaliszyk, J. McKinna, F. Wiedijk

ICIS, Radboud University Nijmegen, the Netherlands

Abstract. Mathematical documents, and their instrumentation by com-
puters, have rich structure at the layers of presentation, metadata and
semantics, as objects in a system for formal mathematical logic. Semantic
Web tools [2] support the first two of these, with little, if any, contribu-
tion to the third, while Proof Assistants [17] instrument the third layer,
typically with bespoke approaches to the first two. Our position is that a
web of mathematical documents, definitions and proofs should be given a
fully-fledged semantics in terms of the third layer. We propose a “Math-
Wiki” to harness Web 2.0 tools and techniques to the rich semantics
furnished by contemporary Proof Assistants.

1 Background and state of the art

We can identify four worlds of mathematical discourse available on the Web:

– Traditional mathematical practice: a systematic body of knowledge, organ-
ised around documents written by experts, most often in LATEX, to varying
degrees of sophistication. The intended audience is an expert readership, and
the content is of high quality and reliability, having been through a rigorous
editorial process. Indexing and cross-referencing is managed externally by
journals themselves, augmented by tools such as CiteSeer, Google Scholar,
and archival sites such as ArXiv;

– Wikipedia, MathWorld, etc.: universal readership and authorship, wide cov-
erage, but relatively shallow and of variable reliability, with little systematic
development of larger theories, and little or no critical gloss on the material;

– The Semantic Web, with the OMDoc standard [9] and tools like SWiM [11],
for organising structured documents around a basic notion of “falling under
a concept” (such concepts then further organised into content dictionaries);

– The language and (checked) libraries of proof assistants, in which concepts,
definitions, statements, and most importantly, proofs of theorems are repre-
sented in a machine-checkable format.

We focus in this paper on the fourth world, as we expect it to be least familiar
to readers of the paper, but more importantly because we believe that proof
assistants offer a real, that is to say, formal mathematical semantics to (a Se-
mantic Web of) mathematical documents. Our aim, and that of our partners in
a European consortium, is to integrate all four worlds into a coherent whole, and
develop a “MathWiki”, a system for the collaborative authoring and communi-
cation of computer mathematics to the world.

62

Proof Assistants The basic idea of using computer programs to check math-
ematical proofs goes back to the archaeology of AI research. The 1960s saw
the emergence of two basic paradigms: de Bruijn’s Automath [16], and Mil-
ner’s LCF. Both provide highly generic foundational approaches to representing
mathematics: as a series of checked objects (definitions etc.) extending a body
of knowledge from an initial axiomatisation (e.g. of arithmetic or set theory). In
LCF the objects, including proofs of their properties, are obtained by running
programs to produce values of an abstract datatype thm, that is to say they are
ephemeral phenomena associated to the persistent program texts which give rise
to them. In Automath, the objects — λ-terms in a dependently-typed language
uniformly representing definitions and proofs — are themselves persistent and
in principle may be independently rechecked, or otherwise processed.

Modern systems have elaborated these ideas with great sophistication, ex-
tensive libraries, and highly non-trivial formalisations:

– The HOL Light system [8] is an LCF-style checker for higher-order logic;
Harrison recently announced a proof of the analytic Prime Number Theorem;

– The Isabelle system [15] is also LCF-like, but adds a generic twist in terms
of an Automath-like theory of representation: it is a logical framework, that
is, it is generic over the underlying choice of logic and axiomatisation. It is
available with libraries for both higher-order logic, and for ZF set theory. It
has been used to formalise Gödel’s completeness theorem, the consistency of
the axiom of choice, the Prime Number Theorem, etc.;

– The Coq system [3] is type-theoretic, within which objects and proofs are
λ-terms in a calculus of inductive and coinductive definitions; a notable
development is Gonthier’s formalisation of the Four Colour Theorem [6];

– The Mizar system [13], a proof checker for a strong version of set theory, em-
phasises developing a formalised library of standard, classical mathematics.

The decisive semantic advantage of all these systems over existing approaches
to mathematical documents comes from the infrastructure of a formalised meta-
level: names and binding to support substitutive definitions, definitional equality,
hypothetical and general reasoning. The Proof Assistant and Semantic Web
communities seem to differ over what constitutes a (mathematical) definition:

– in the Semantic Web a definition is a reference to a (canonical) textual
description of the defined object; while

– for the proof assistant community a definition is a binding with a dynamic
semantics given by a substitutive notion of definitional equality, namely the
replacement of the named object (definiendum) by a body (definiens).

2 A project proposal: MathWiki

The MathWiki project proposes to combine a Wikipedia-like encyclopedia of
mathematical notions and results, with a web-based integrated formal environ-
ment for collaboratively working with multiple proof assistants. Wikipedia has

63

shown that it is possible to create large bodies of coherent knowledge, by pro-
viding lightweight (web-based) functionality to add material. In the MathWiki
project we similarly want to provide lightweight web-based functionality to con-
tribute to a repository of formalised mathematics. This should provide both a
means to do large joint formalisations in a distributed way, but also the means
to search and retrieve material, both at a low level, in terms of proof assistant-
specific text, and at the high level of standard mathematical documents.

Fig. 1. An example MathWiki page for the binomial coefficient

The MathWiki repository will include knowledge about mathematical con-
cepts by the means of high level concept description pages. Those pages will
include links to pages containing the finer details, which are, in the end, checked
proof assistant code. We plan to directly incorporate into our project a cer-
tain number of state-of-the-art proof assistants. But the MathWiki itself will be
open to other systems and it should be easy to incorporate them. The repository
will contain all the large libraries of formal mathematics that already exist for
the included proof assistants, like the Coq user contributions (contribs) and the
Archive of Formal Proofs for Isabelle, in order to facilitate access to them.

We have created a prototype [4] that only supports Coq (without any seman-
tic aspects yet), which suggests the project is technically feasible. In Figure 1
we sketch how the eventual system might look (including quoted material from
Wikipedia for illustrative purposes).

64

Our first claim is that a mathematical semantic web where the mathemat-
ical notions refer to objects with a real formal semantics in a proof assistant
will be profitable for users of mathematics because it improves preciseness and
correctness. Our planned MathWiki system should substantiate that claim and
open up to a wider community the rich collections of knowledge stored in the
repositories of proof assistants and to facilitate the extension and editing of these
repositories by outside users.

Our second claim is that the “medium” of computer checkable formal proofs
will become a valuable asset in ICT, notably in verification and correctness of
software and systems. At this moment there is not one type of medium for
computer checkable formal proofs: basically each proof assistant has its own
“media type”. We think that in the future these media types will more and
more converge and become exchangeable. A real mathematical semantic web is
the platform for studying, comparing and exchanging these media types.

3 Why now: QED 15 years later?

The motivation for initiating this project precisely now is the convergence of
several decisive factors. One of them is the success of the Wiki approach in
general, and mostly the success of its application to the encyclopedic endeavour.
This example shows that the collaborative approach is a good way of developing
bodies of shared knowledge.

Another key factor is the availability of mature proof assistants with solid
reputations and a certain quantity of formal developments. These proof assis-
tants are way past toy examples and now allow outstanding results; they can
handle large developments spanning hundreds of files.

Semantic web techniques now available provide a relevant presentation layer
to the user. Although formal proofs are highly structured and hence easy to
index, it is this extremely precise structure that can leave the user lost in the
details, or unable to search or browse effectively.

The last key element we wish to stress is the availability of Web 2.0 tech-
nologies, which support the creation of web-based complex user interfaces. These
technologies are important for our project since interactive proof development
is by far the most popular way of using proof assistants.

Already in 1993 the authors of the QED Manifesto [1] had this vision: to let
the whole world participate in creating a shared repository of formalised mathe-
matics. We can speculate as to why this was an idea before its time: inevitably,
user communities around each system felt keenly the supposed strengths of their
own approach, and the perceived deficiencies of others’. The relative maturity
of systems and their libraries has greatly mitigated this state of affairs.

The difficulty of formal proof also restrained the ambition of proof projects
attempted, but with eyes on a bigger prize, collective development has become
common practice in the formal proof community. This is how the biggest achieve-
ments were possible. Mizar and its MML are the primary example of the success
of collective development though not very focused. More focused examples are

65

the CompCert project in which a whole team participated in the verification of
a C compiler and the Nijmegen repository of formalised mathematics (CoRN)
[5]. The ongoing Flyspeck project [7] is another instance.

Proof assistants proposed to be part of the MathWiki project in the initial
phase are Coq, Isabelle and Mizar. They cover three different foundational the-
ories (Type Theory, Higher-Order Logic and Set Theory), and embrace classical
as well as intuitionistic mathematics. They also have three different interaction
modes: de Bruijn style, LCF-style and batch-mode interaction. Thus the three of
them provide an excellent coverage of the variety among existing proof assistants.

4 Conclusion

The power of Wiki technology is to make building a new encyclopedia of mathe-
matics a truly global democratic enterprise. Contemporary proof assistant tech-
nology has reached the point where we can imagine such a richly structured
web of mathematics with a fully-fledged semantics in a formal system. A real
Semantic Web for mathematics deserves a real semantics.

References

1. R. Boyer et al. The QED Manifesto. In Bundy, ed., Automated Deduction – CADE
12, LNAI 814. Springer, 1994.

2. S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaëtano, and M. Kohlhase.
The OpenMath Standard, version 2.0, 2002.

3. Coq Team. The Coq Proof Assistant Reference Manual V8.1. INRIA, 2006.
4. P. Corbineau and C. Kaliszyk. Cooperative repositories for formal proofs. In

Kauers et al. eds., Calculemus/MKM, LNCS 4573. Springer, 2007.
5. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN, the constructive Coq repos-

itory at Nijmegen. In Asperti et al. eds., MKM, LNCS 3119. Springer, 2004.
6. G. Gonthier. A computer-checked proof of the Four Colour Theorem, 2006.
7. T. C. Hales. Introduction to the flyspeck project. In Coquand et al. eds., Mathe-

matics, Algorithms, Proofs, Dagstuhl Proceedings 05021. IBFI, Germany, 2005.
8. J. Harrison. HOL light: A tutorial introduction. In Srivas and Camilleri, eds.,

Proceedings of FMCAD’96, LNCS 1166. Springer, 1996.
9. M. Kohlhase. OMDoc - An Open Markup Format for Mathematical Documents

[version 1.2], LNCS 4180. Springer, 2006.
10. A.P. Krowne. An architecture for collaborative math and science digital libraries.

Master’s thesis, Virginia Tech Dept. of Computer Science, Blacksburg, VA, 2003.
11. C. Lange. SWiM – a semantic wiki for mathematical knowledge management. In

Bechhofer et al. eds., ESWC, LNCS 5021. Springer, 2008.
12. C. Lange, S. McLaughlin, and F. Rabe. Flyspeck in a semantic wiki. Unpublished.
13. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, 1993.
14. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath,

Studies in Logic and the Foundations of Mathematics 133. Elsevier, 1994.
15. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for

Higher-Order Logic, LNCS 2283. Springer, 2002.
16. D.T. van Daalen. A description of Automath and some aspects of its language

theory. In Nederpelt et al. [14]. Article A.3.
17. F. Wiedijk, ed. The Seventeen Provers of the World, LNCS 3600. Springer, 2006.

66

Flyspeck in a Semantic Wiki
Collaborating on a Large Scale Formalization of the

Kepler Conjecture

Christoph Lange1, Sean McLaughlin2, and Florian Rabe1

1 Computer Science, Jacobs University Bremen,
{ch.lange,f.rabe}@jacobs-university.de

2 School of Computer Science, Carnegie Mellon University, Pittsburgh,
seanmcl@gmail.com

Abstract. Semantic wikis have been successfully applied to many prob-
lems in knowledge management and collaborative authoring. They are
particularly appropriate for scientific and mathematical collaboration.
In previous work we described an ontology for mathematical knowledge
based on the semantic markup language OMDoc and a semantic wiki us-
ing both. We are now evaluating these technologies in concrete application
scenarios. In this paper we evaluate the applicability of our infrastructure
to mathematical knowledge management by focusing on the Flyspeck
project, a formalization of Thomas Hales’ proof of the Kepler Conjecture.
After describing the Flyspeck project and its requirements in detail, we
evaluate the applicability of two wiki prototypes to Flyspeck, one based on
Semantic MediaWiki and another on our mathematics-specific semantic
wiki SWiM.

1 Scientific Communication and the Flyspeck Project

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture
Com−
munication

Publication

Teaching

Application

(B. Buchberger, 1995)

Scientific communication consists mainly of ex-
changing documents, and a great deal of scien-
tific work consists of collaboratively authoring
them. Common instances are writing down first
hypotheses, commenting on results of experi-
ments or project steps, and structuring, annotat-
ing, or re-organizing existing items of knowledge,
as depicted in Buchberger’s figure on the right.
Semantic markup languages for representing structures of scientific knowledge,
and editing tools understanding them, are a promising approach to supporting
this work.Besides generic approaches like SALT [6], the most extensive work in
semantic markup has been in the domain of mathematics. Mathematical logic,
depending on symbols and relationships between symbols, naturally lends itself
well to formal exposition. Languages like MathML [24], OpenMath [29], and
OMDoc [14] were developed to represent the clearly defined and hierarchical
structures of mathematics in a way that preserves the intricate relationships.
OMDoc employs Content MathML or OpenMath for structurally representing

67

mathematical objects (symbols, numbers, equations, etc.) and adds two layers
on top: Objects or informal text can be annotated as mathematical statements
(symbol declarations, definitions, axioms, theorems, proofs, examples, etc.), and
collections of interrelated statements can be grouped into theories.

With SWiM, a semantic wiki for mathematical knowledge management [22],
we have investigated collaborative editing of OMDoc documents. Additionally,
we host a public knowledge base and experimental ground about mathematical
knowledge management on the web, powered by Semantic MediaWiki3. It has
become evident that a wiki is a suitable tool for supporting the workflow of
incremental formalization inherent to scientific writing. Wikis have not only shown
to be appropriate for writing, but are also effective for project management, e. g. in
corporate settings [23, 36]. We are therefore interested in applying our technologies
to scientific knowledge engineering projects.

(http://tinyurl.com/3bxx2t)
Fig. 1. The face centered
cubic packing

The target of our case study is the Flyspeck
Project, which seeks to formally verify Thomas
Hales’ proof of the Kepler Conjecture [8, 9]. This
conjecture asserts that the density of a packing of
unit spheres in 3 dimensions is at most π/(3

√
2),

the density of the face centered cubic and hexagonal
close packings. Posed by Kepler in 1611, it formed
part of Hilbert’s 18th problem, and until its solution
was recognized as one of the most famous unsolved
problems of mathematics. Hales’ proof, completed in 1995, was not accepted
immediately by the mathematical community. Besides its considerable length,
the proof relies essentially on computer calculations. The 300 pages of text and
many thousands of lines of computer code made checking the proof for errors in
the referee process unusually difficult, leading to a publication delay of nearly 10
years. In 2003, Hales proposed using computers to rigorously check the entire
proof in detail, including the computer code. He dubbed this effort Flyspeck4.
The software systems used in such formalizations are called theorem provers or
proof assistants5, examples being Isabelle [31], Coq [3], and Twelf [32]. With
adequate human assistance they can verify that a purported proof follows from a
given set of axioms and inference rules.

Modern proof assistants are still far from being able to check proofs at the
level given in most journals and textbooks. A typical estimate is that it takes
about a week to formalize a single page of mathematical text. Hales expects that
it will take around 20 man-years to complete Flyspeck. Hales is compiling a LATEX
3 http://mathweb.org/wiki/
4 The word “flyspeck” means, “to examine closely”. It was found by Hales using a
regular expression search of an English dictionary for the expression “F.*P.*K”, for
“Formal Proof of Kepler”

5 The word “formalize” is used in many contexts in this field. In the remainder of this
paper, we use “formal” and “formalize” loosely, possibly referring to any degree of
colloquial or scientific formalization. We use “computerized” to mean that a theorem,
proof or definition has been expressed in a proof assistant. Note that we consider
computerized definitions and proofs formal “documents” as well.

2

68

book [10] of lemmas from different areas of mathematics that are needed in his
proof. Its 450 pages contain a significant percentage of the mathematical results
used in the proof, covering such disparate topics as plane, solid, and spherical
geometry, graph theory and hypermaps, single and multivariable calculus, and
plane and spherical trigonometry.

The first steps toward a computerized proof have already been taken. Nipkow
and Bauer [27] proved the correctness of a fundamental algorithm in Isabelle.
The other two main parts of the computer code, linear programming and global
optimization, are currently being investigated in doctoral dissertations [39, 28].
A project page documents some of this progress and has a source repository
containing the book of lemmas, as well as the formalized definitions of some
important functions and inequalities [11]. Despite this considerable progress on
the computer code, the bulk of the mathematical formalization remains to be
done. This formalization will consist of two broad phases. First, a number of
elementary mathematical theories (e.g. spherical geometry) need to be defined
and the relevant lemmas proved. Then the specific aspects of the Kepler proof
that relies on the elementary results need to be formalized. Given the content of
the book mentioned above, we suspect that Flyspeck, in its final form, will consist
of dozens of theories, with hundreds of definitions and thousands of lemmas.

Flyspeck is particularly appealing as a use case for a semantic wiki approach.
While the ultimate result is to be a highly formal computerized proof, the current
proof involves both highly formal and semi-formal mathematical knowledge. It
contains descriptive and motivating yet informal text that should be preserved
for human understanding. This quasi-formal information would be difficult to
present in a strictly formal setting of a proof assistant. Secondly, the large number
of lemmas, many independent or only loosely coupled, suggests a “crowdsourcing”
approach will be beneficial. Both can be supported by a (semantic) wiki, as we
will show in the following.

2 Supporting Flyspeck in a Semantic Wiki

Our focus in this work is on making the extent and structure of Flyspeck
comprehensible, communicating where work needs to be done, and allowing
collaborators to improve the structure and finally to contribute computerized
proofs. For this the outline of the whole proof from the book [10] needs to be
represented in the wiki, where the mathematical statements (including definitions,
lemmas, and theorems) are available in a human-readable way (with formulae
in LATEX or presentational MathML) as well as a computerized presentation
suitable for using in a theorem prover. In order to obtain a well-structured
network of knowledge items, each mathematical statement should be presented
on one wiki page, which shows its human-readable representation taken from
the book, offers additional space for annotation, and allows for downloading a
formal representation. Here, we are not yet considering formal proof checking
inside the wiki, but rather using the wiki for communication about the projects
and annotation of informal text.

3

69

2.1 Scenario

An example usage scenario is as follows (cf. fig. 2). A user wishes to contribute
to Flyspeck. She looks at our wiki main page, which shows her what still needs
to be done. Preferring trigonometry, she searches for open problems in that field.
This returns a list of lemmas related to analysis from which she can choose one
that seems possible given her time constraints. She reads the text of a paper
proof culled from Hales’ book and annotated by other wiki collaborators and
downloads the relevant formal definitions and lemmas. She uses a proof assistant
to begin formalizing the paper proof. At some point, she needs clarification on
some definition and additionally has an idea on how to generalize this lemma.
She thus asks for help, makes comments on the discussion pages of the wiki, and
refines the annotations of the lemma. She completes her proof, and uploads the
proof assistant file to the wiki. The wiki uses a theorem prover to check the proof
for correctness and, if it is correct, adds it to the database.

Lemma 1.3
The cosine is an even function.
The sine is an odd function.
cos(−x) = cos(x)
sin(−x) = −sin(x)

[Download Twelf representation]
Page type: Lemma
Topic: Trigonometry
Proven: no (3 attempts)

Cosine
cos

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

Cosine
cos

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

Cosine
cos : R → R, x 7→ . . .

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

To do
Unproven lemmas:
Topic Lemma Score Discussion
Trigonometry 1.3 3 5 posts
Hypermaps 4.2

[Download Twelf representation]
Page type: Overview

1. Browse

2. Download

usesSymbol

references

Fig. 2. Page Structure and Navigation

2.2 Requirements

With this scenario in mind, we propose that the wiki should minimally offer:

A knowledge base of the theory, constant, and lemma definitions.
A theory browser where a user can browse the knowledge by category, or

search with keywords.
An editor to annotate and structure informal texts on their way to computeri-

zation.
A download area where one can download existing computerized definitions,

lemmas, and proofs.
An upload area where one can upload new proofs.
Discussion pages to discuss issues involved in the formalizations.

4

70

The following set of annotations should support this minimal infrastructure:

Categorization by topic: In the beginning, one would mirror the narrative
structure of the book (e. g. “sphere” being a subsection of “primitive volumes”,
which in turn is a section of the chapter “volume calculations”). Standardized
ways of classifying mathematical topics, such as the Mathematical Subject
Classification (MSC) [1], could be added later.

Project-organization metadata such as whether the proof of a lemma has
already been computerized, or if someone is currently attempting a proof.
This is essential so that two people do not duplicate work.

Dependency links: These can be links from individual symbols in mathemat-
ical formulae to the place where they are declared, or from any page p to
other pages containing knowledge that is required for understanding p: either
pages in the same wiki, or external resources like PlanetMath or Wikipedia
articles. Authors should be able to add them where they are missing.

Discussion posts should be strongly tied to the topic being discussed, and
classified into categories like question, answer, explanation, etc.

An enticing page for visitors and potential collaborators should give an
impression of the extent and structure of the project (e. g. its size and its
specialization into diverse fields of mathematics). For the developer, there should
be tools for browsing and querying the knowledge. Not only should it be possible
to query knowledge items by their annotations, but important query results must
also be available as dynamically generated lists. Examples for queries are:

1. “Which lemmas about composite regions need to be proved?”
2. “What lemmas are difficult to prove?”

(a) . . . in the sense that many people have already attempted them, but given
up

(b) . . . in the sense that many people have asked questions in the related
discussion

3. “Are there textual resources I can read in order to understand the Jordan
Curve Theorem?”

4. “What other lemmas could help me to prove this one?” (e. g. because they
prove a related statement)

A volunteer who is willing to work out and contribute a computerized proof for
a lemma should be able to download a self-contained computerized representation
of this lemma and everything it depends on. Different notions of “dependency”
can be supported, the most straightforward being that a lemma depends on the
declarations and definitions of all symbols it uses and on the transitive closure of
all symbols used by the latter. Related lemmas could be downloaded and assumed
as axioms, under the assumption that those will be proved later, perhaps by
other collaborators. Finally, assuming that the Flyspeck book [10] is written in a
linear order, all definitions and lemmas before the current one in the narrative
order could be used.

5

71

During the formalization of the knowledge, we anticipate that the definitions
will undergo refactoring in order to facilitate the actual development of the
proofs. (Historically, this has been the case with many large computerized proofs,
cf. [5].) Refactoring support by the wiki would thus be advantageous. In fact, as
definitions rely so heavily on each other, and the lemma statements rely on the
definitions, Hales needs to oversee the computerization of the definitions so that
the mathematical constants are correct6. This could be done by allowing him and
other experienced mathematicians to rate the contributions of the collaborators.

3 Case Studies and Evaluation

So far, the Flyspeck project has four core members who collaborate via Google-
Code [11]. While the services offered by GoogleCode (a Subversion repository, a
mailing list, and others) were found to be sufficient for the core development team,
we were not satisfied with the wiki integrated into the GoogleCode web interface.
Lacking support for mathematical formulae, it would not even allow for presenting
the theorems and lemmas to be computerized in a human-readable fashion. This is
important, as we suspect people would prefer to look at traditional mathematics
text than proof assistant scripts when browsing. Furthermore, GoogleCode offers
very little structuring support, which we believe will be essential for browsing
and querying Flyspeck’s large knowledge collection.

In the following sections, we evaluate two semantic wiki prototypes for their
applicability to Flyspeck with regard to their support for annotations, browsing,
and querying, as specified in section 2.2. One is based on Semantic MediaWiki, the
other one on our own semantic wiki SWiM. For the case study, we took a simplified
view of Flyspeck, using only the TEX sources of the Flyspeck book [10] and a
Twelf [32] computerization of the definitions and lemmas of the chapter dealing
with the foundations of trigonometry. The goal was to present the trigonometry
chapter in a compelling way that we believed would scale 2-3 orders of magnitude.

Both systems are semantic wikis, where one resource (e. g. one mathematical
theorem) is represented by one wiki page and relations between resources by links
between pages. Both pages and links can be typed with terms from ontologies [30],
which are either preloaded into the wiki or modeled ad hoc [17]. This is the
prevalent approach of adding semantics to wikis, although other ways have been
investigated [37]. Note that we have developed an ontology for mathematical
knowledge (see sec. 3.2), but as this only focuses on the most essential structures,
keeping it extensible in the wiki may be beneficial. Semantic wikis offer enhanced
navigation capabilities. For example, they can usually display a summary of all
typed links, grouped by type, for each page. They support searching for pages
by type or by a page being source or target of a typed link7. Such queries can
either be executed interactively or automated as inline queries embedded into
6 For example, one can represent a vector as a function from the integers to the reals, or
as a tuple of reals. The operations of vector spaces will depend on this representation,
etc.

7 Both explicit and inferred links (RDF triples) can be considered [17]

6

72

the content of a page [17]. Both systems we consider support this basic set of
semantic wiki features.

3.1 Semantic MediaWiki 1.0

Semantic MediaWiki [17] is a semantic extension to MediaWiki, the system
driving Wikipedia. Plain MediaWiki supports mathematical formulae written in
LATEX and allows for categorizing pages. Semantic MediaWiki interprets category
membership as an instance-of relationship and supports the creation and editing
of typed links (called properties). External ontologies can be referenced from the
wiki, but at most sites powered by Semantic MediaWiki, site-specific ontologies
are developed in an ad hoc manner [34].

Prototype In Semantic MediaWiki, we imported the Twelf master source of
Flyspeck via a custom upload page. The Twelf file was first enhanced by special
comment lines marking the beginning and end of a declaration with information
about topical categorization. The Twelf upload page handler breaks an uploaded
file down into declarations and creates two wiki pages for each Twelf declaration:
one page that just contains the Twelf listing, categorized in the OMDoc document
ontology (e. g. Lemma; see section 3.2), and one container page that includes the
Twelf page via MediaWiki’s template inclusion mechanism, but also allows for
including a LATEX representation and leaves space for free-form annotations made
by the contributors. Additionally, MediaWiki offers a discussion page for each
page of mathematical content. The Twelf pages are overwritten on every import
from the master source, whereas existing container pages remain untouched. This
allows one to change the computerized version of a Twelf constant in the master
source (e. g. if it is incorrectly specified) and re-importing it without losing the
semantic markup and comments. During the import of a new symbol x, the
upload extension recognizes all previously imported symbols y in the definition
of the new symbol and creates links between x, y in the wiki.

The generated annotations can be used for browsing, either via the “fact
box” (the summary of all typed links), or by the special “browse” page. For
querying, Semantic MediaWiki offers a simple triple search, as well as inline
queries. The query language corresponds to the small description logic EL++ [17],
which, for example, does not support unrestricted negation. A query for unproven
lemmas about a certain topic could only be performed if the “unprovenness” were
explicitly annotated. The following queries additionally ask for lemmas available
in a Twelf formalization:

<ask>[[Category:Unproven]] [[Category:Lemma]]
[[Category:Trigonometry]] [[written in::Twelf]]</ask>

Exporting computerized representations of knowledge items is not yet sup-
ported conveniently. The Twelf listings can be viewed on their own pages, but
due to the auto-generated symbol links in the source code, these are not suitable
8 See http://mathweb.org/wiki/Flyspeck

7

73

Fig. 3. A Flyspeck lemma in Semantic MediaWiki8

for download. One would either have to implement a special Twelf download
page that cleans these sources again, or one would have to implement the symbol
linking as an extension of the rendering process.

Evaluation We found the ad hoc ontology development useful while prototyp-
ing the annotations that might be required for Flyspeck, e. g. project-related
metadata like the information whether a lemma has already been proven, or
categorization by topic. Semantic MediaWiki did not meet the requirements in
places where ontologies already existed. For example, in structures of mathe-
matical documents, it was possible to reference vocabulary from the OMDoc
document ontology (see below), but not to apply further inference rules given
there to items of mathematical knowledge. This is because Semantic MediaWiki
does not support a full import of external ontologies. Most annotations were
modeled by categorization, i. e. instantiation of classes—certainly not the most
formal way of structuring knowledge in view of many classes just corresponding
to narrative sections of the book, but the one that is supported best by Semantic
MediaWiki. The inline queries were intuitive to write but not as powerful as
required. Complex reasoning tasks like inference of dependencies are not possible
in Semantic MediaWiki; in the restricted domain-specific setting of Flyspeck one
could realize them by hard-coded extension functions. Semantic MediaWiki does
not understand the semantics of mathematical formulae, as the LATEX formulae
cannot be annotated. The Twelf listings could be annotated, but at the cost of
making them harder to download.

3.2 SWiM 0.2

SWiM is a semantic wiki targeted at mathematical knowledge management.
Based on the general-purpose semantic wiki IkeWiki [17], it adds support for

8

74

browsing, editing, rendering, importing and exporting mathematical documents
written in OMDoc. The semantics of mathematical knowledge is mainly captured
in the OMDoc markup, and more explicitly in a document ontology ; whenever a
wiki page containing OMDoc fragments is saved, its type and its (typed) relations
to other items of mathematical knowledge in the wiki are extracted from the
OMDoc XML markup and explicitly represented as RDF triples using terms
of the OMDoc document ontology [18]. This ontology models those aspects of
the three layers of mathematical knowledge supported by OMDoc to the extent
supported by the expressivity of OWL-DL [25], including a limited inference of
dependencies. Modeling all modules of the OMDoc specification in this ontology
is not totally complete, though most mathematical statements as well as key
aspects of theories have been implemented. Relevant classes for Flyspeck would be
Lemma/Theorem/Corollary/. . . (all being subclasses of Assertion), Proof, Symbol
(a symbol declaration), Definition, and the properties Proof–proves–Assertion
and Symbol–hasDefinition–Definition.

Statement

Definition Symbol Assertion Proof

Lemma Corollary Theorem

v v

uses uses proves

depends on

hasDefinition

Fig. 4. A relevant subset of the OMDoc document ontology

In the current version 0.2 of SWiM, the browsing of mathematical documents
is powered by the document ontology; whenever RDF triples having the current
page as subject or object are available9 the IkeWiki user interface can display
them either as navigation links (see figure 5) or in a graph view. Documents
are presented as XHTML+MathML, with mathematical symbols linked to their
declarations.

Prototype We manually converted part of the trigonometry lemmas to OMDoc
for SWiM. Additionally, we can auto-generate OMDoc documents from the Twelf
source with a converter and import them into SWiM using the built-in import
functionality.

As every SWiM page has an associated discussion page and discussion posts
are semantically represented using the SIOC ontology [35], one can support the
coordination of the project by queries like query 2b from section 2.2. Work on
determining a relevant subset of OMDoc and its document ontology for discussions
9 In a mathematical document such as those we consider, most of these triples use
from the OMDoc document ontology.

9

75

Fig. 5. A Flyspeck lemma in SWiM

is currently in progress. Pages and non-OMDoc links can be annotated with
types from ontologies loaded into the wiki10.

Another powerful feature of SWiM is that authors can embed inline SPARQL
queries into wiki pages. Query 1 can be posed without explicitly annotating
“unprovenness”, making use of negation as failure [33]:

SELECT ?l WHERE { ?l rdf:type odo:Lemma .
?l swrc:isAbout <Composite_Regions> .
OPTIONAL { ?p rdf:type odo:Proof .

?p odo:proves ?l . }
FILTER (! bound(?p)) }

As OMDoc supports all degrees of formalizing mathematical knowledge,
computerized data can be downloaded in their OMDoc representation using
SWiM’s export feature and then be converted to Twelf by client-side software [14,
chap. 25.2].

Evaluation Annotating mathematical structures with SWiM is easy if the built-
in OMDoc editor is used. Other annotations required for Flyspeck, such as
categorizations or information about the progress of the project, can be made,
but not in an ad hoc way, which we would have found useful in the prototyping
phase. Instead, one would have to import an existing ontology into the wiki,
or create it using the built-in ontology editor, and then one would be able to
annotate documents using terms from that ontology.

Browsing is well supported, with incoming and outgoing navigation links
being displayed. Additionally, the neighborhood of the current resource in the
RDF graph can be browsed visually.

Queries are powerful, but not always short and intuitive (see above). Al-
ternatively, one could enhance the ontology and make use of the integrated
Pellet OWL-DL reasoner (see [17]), which supports a more powerful logic than
Semantic MediaWiki, and get the same result with a simple query for instances

10 Types of OMDoc links are automatically extracted from the markup; see above.

10

76

of a specially defined class. For unproven lemmas, the following axiom would
suffice:

LemmaWithoutProof ≡ Lemma u ¬(∃proves−1.Proof)

However, it remains to be evaluated how well the wiki scales with DL reasoning
enabled. First experiments with Pellet let the system considerably slow down (an
experience also made by the IkeWiki author [17]), so alternatives will have to be
investigated as well.

System Semantic MediaWiki SWiM
Ontology availability none built in sufficient (OMDoc)
Ontology editing/
extensibility

easy, ad hoc in place easy, but only via dedi-
cated user interface

Page annotation easy but not sufficiently
expressive

easy and expressive

Inline queries easy to write but not suffi-
ciently powerful

harder to write but more
powerful

Browsing intuitive intuitive, optional graph
browser

Reasoning not sufficient powerful but slow
Semantics/annotation
of formulæ

not supported very powerful but harder
to author

Annotation of
computerized content

not directly supported
by our extension

powerful (OMDoc
markup)

Fig. 6. Summary of the evaluation of the features

4 Related Work

Outside of wikis, the combination of computerized proofs and human-readable
text has been investigated in Isar [38], an alternative literate programming
language for Isabelle, and in Mizar [26], whose language of Mizar is close to
mathematical vernacular. In contrast to Isar, there is a large web-based library
of Mizar proofs. It is browsable and searchable on the web but managed in a
centralized and hierarchical way, which is not comparable to wiki collaboration.

Informal mathematical knowledge is currently managed in comprehensive
encyclopediæ like the mathematical sections of Wikipedia11 or in PlanetMath11,
which focuses on mathematics and is powered by a highly customized wiki-like
system. The pages in these systems are categorized and searchable in full-text,
with additional metadata records in PlanetMath. Neither of the systems is a
semantic wiki, and for lacking typed links they fail to answer queries essential for
11 See http://www.wikipedia.org or http://www.planetmath.org, respectively,

and [19] for a more comprehensive evaluation.

11

77

Flyspeck, such as query 1 from section 2.2, and they do not link mathematical
symbols to their declarations; instead, the author has to provide links he considers
relevant in the text surrounding the formula.

Recently, there is a growing interest in integrating proof assistants with wikis.
Logiweb is not a wiki but a distributed system for publishing machine checked
mathematics in high-quality PDF that shares part of the key wiki principles [7].
Anybody can contribute to a Logiweb site and edit new pages in a simple text
syntax. On the other hand, Logiweb does not offer other essential features. For
example, browsing by traversing links is supported neither in the editor nor in
the generated PDF, and a built-in search or query facility is not offered. Logiweb
does not allow for exchanging knowledge as required for Flyspeck: Documents
can only be exported in presentational formats like PDF or TEX, but their
semantic structures cannot be exported in mathematical markup or theorem
proving languages. The way Logiweb checks proofs is not compatible with other
theorem provers, as all calculi and proof tactics need to be defined in the Logiweb
system itself. ProofWiki is an integration of the ProofWeb Coq frontend into
MediaWiki [4]. Coq’s export tools are used to generate browsable HTML or
LATEX with linked symbols from the proof scripts. Generating index pages, such
as lists of all definitions or all theorems, is planned, but not yet in a way that
could be customized by users. So far, there is just text search, and dependencies
among knowledge items are only computed for exporting proofs but not used
for browsing inside the system. Pages can either be formal proof scripts (with
restricted possibilities to include informal comments) or informal wiki pages.
Semi-formal documents or stepwise formalizing of knowledge are not supported.
Importing and exporting Coq proof scripts to and from the wiki is possible. While
the authors provide instructions on how to integrate other theorem provers, doing
so would be a lot of work, as there is no abstraction layer or metalanguage for
exchanging or converting data. Both Logiweb and ProofWiki are “semantic” in the
sense that the integrated proof checker utilizes the mathematical knowledge in the
wiki pages. But the semantics is not utilized for anything else, such as facilitating
browsing or editing, or connecting to semantic web services. Developing and
verifying formal proofs in the wiki is not yet the focus of Flyspeck in this early
stage, but it may be required later.

5 Conclusion and Further Work

Our preliminary experiments lead us to believe that, due to its rich semantic
web and OMDoc infrastructure, future work toward supporting Flyspeck should
continue in the SWiM infrastructure. For the text-based page format of Media-
Wiki, features that rely on structures like the linking of symbols could only be
realized in an ad hoc way using, say, regular expressions. Relying on the XML
infrastructure of OMDoc, these features are either already available or easier
to develop. However, rapidly prototyping our first ideas about the wiki support
required for Flyspeck was easier in Semantic MediaWiki due to its ability to

12

78

design ad hoc ontologies and its implementation in the interpreted language
PHP.

Importing For this case study, we created OMDoc from Twelf. OMDoc also offers
support for the alternative workflow of stepwise formalization as well. One could
either start by converting the Flyspeck book from LATEX to HTML with MathML
formulæ and formalize the presentation markup into content markup step by step,
or one could start the formalization on the TEX side. There, one would formalize
the book to sTEX, a content-oriented TEX notation for OMDoc, which can then
be converted to OMDoc [13]. Either way involves a TEX-to-XML transformation,
which has been tested in large scale in our group [2].

Annotating The case study showed that the editing of ontologies in SWiM should
become more flexible. While a fixed OMDoc document ontology can be preloaded,
it should be possible to add other annotations ad hoc. We have not focused on
document editing in detail here, but additional editing services relying on the
document ontology are planned for SWiM 0.3 [20, 21]. Finally, using the module
system of OMDoc and refactoring the knowledge into more smaller theories
could help to simplify the structure of Flyspeck for browsing and to explicate
the dependencies between components of the proof.

Browsing In the Semantic MediaWiki prototype we realized that the narrative
structure of the book is not adequately represented by a simple hierarchy of
categories. OMDoc has more powerful ways of putting content into narrative
structures [15]. We are going to cover them with the document ontology and
utilize them for browsing.

Querying Proof search will be greatly simplified if the semantic-aware search
engine MathWebSearch [16] is used. It applies substitution tree indexing to
mathematical formulae. That means, for example, that a query for

∫
f(x ? z)dx

would also find
∫
f(y + z)dy. Equivalence up to α-renaming of bound variables

is obviously essential for a serious query language.

Different Theorem Provers If several parts of the proof are done in different
theorem provers, highly non-trivial and mostly novel translations become nec-
essary to provide one single proof object. Here OMDoc could be used as an
exchange format between theorem prover languages, and formal translations
could be specified in OMDoc itself. While this line of research is interesting, it is
difficult for us to foresee what kinds of translations, if any, will be needed.

Download Dependencies, which we need for bundling download packages, can
partly be inferred by a DL reasoner using the document ontology, but for a
complete support of OMDoc’s notion of dependency, an OMDoc-specific calculus
will have to be applied, which is currently in development.

13

79

Upload We have not implemented uploading a proof directly to the wiki to have
it checked. This is easy in theory as we simply need to hook up the theorem
prover, but requires some effort to get the theorem prover to run on the wiki
server. This should be done soon, as it will relieve the maintainers.

Acknowledgments We would like to thank Stefan Decker, Michael Kohlhase,
and Immanuel Normann for their feedback particularly during the case studies.

References

1. American Mathematical Society. 2000 mathematics subject classification. http:
//www.ams.org/msc/, 2000.

2. arXMLiv: Translating the arχiv to xml+mathml, 2007. http://kwarc.info/
projects/arXMLiv/.

3. Y. Bertot and P. Castéran. Interactive theorem proving and program development:
Coq’Art: the Calculus of Inductive Constructions. Texts in theoretical computer
science. Springer, 2004.

4. P. Corbineau and C. Kaliszyk. Cooperative repositories for formal proofs. In Kauers
et al. [12].

5. G. Gonthier. A computer-checked proof of the four colour theorem. Unpublished
manuscript, 2005.

6. T. Groza, S. Handschuh, K. Möller, and S. Decker. SALT – Semantically Annotated
LATEX for scientific publications. In E. Franconi, M. Kifer, and W. May, editors,
ESWC, volume 4519 of Lecture Notes in Computer Science. Springer, 2007.

7. K. Grue. The layers of Logiweb. In Kauers et al. [12].
8. T. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1065–1185,

2005.
9. T. Hales. The Kepler conjecture. Discrete and Computational Geometry, 36(1):1–

269, 2006.
10. T. Hales. Flyspeck : A Blueprint of the Formal Proof of the Kepler Conjecture.

Unpublished manuscript, 2008.
11. T. Hales and S. McLaughlin. The Flyspeck Project. http://code.google.com/p/

flyspeck, 2007.
12. M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors. MKM/Calculemus

2007, number 4573 in LNAI. Springer, 2007.
13. M. Kohlhase. sTEX: A LATEX-based workflow for OMDoc. In OMDoc – An open

markup format for mathematical documents [Version 1.2] [14], chapter 26.15.
14. M. Kohlhase. OMDoc – An open markup format for mathematical documents

[Version 1.2]. Number 4180 in LNAI. Springer, 2006.
15. M. Kohlhase, C. Müller, and N. Müller. Documents with flexible notation contexts

as interfaces to mathematical knowledge. In P. Libbrecht, editor, Mathematical
User Interfaces Workshop, 2007.

16. M. Kohlhase and I. Şucan. A search engine for mathematical formulae. In T. Ida,
J. Calmet, and D. Wang, editors, Artificial Intelligence and Symbolic Computation,
AISC, number 4120 in LNAI. Springer, 2006.

17. M. Krötzsch, S. Schaffert, and D. Vrandečić. Reasoning in semantic wikis. In
G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Pătrânjan, and
R. Tolksdorf, editors, 3rd Reasoning Web Summer School, volume 4636 of LNCS.
Springer, 2007.

14

80

18. C. Lange. The OMDoc document ontology. http://kwarc.info/projects/
docOnto/omdoc.html, 2007.

19. C. Lange. SWiM – a semantic wiki for mathematical knowledge management.
Technical Report 5, Jacobs University Bremen, 2007.

20. C. Lange. SWiM development roadmap. https://trac.kwarc.info/swim/
roadmap/, 2007.

21. C. Lange. Towards scientific collaboration in a semantic wiki. In A. Hotho and
B. Hoser, editors, Bridging the Gap between Semantic Web and Web 2.0, 2007.

22. C. Lange. SWiM – a semantic wiki for mathematical knowledge management. In
S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, editors, ESWC,
volume 5021 of Lecture Notes in Computer Science, pages 832–837. Springer, 2008.

23. B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley Professional, 2001.

24. Mathematical Markup Language (MathML) version 3.0. W3C working draft, World
Wide Web Consortium, 2007. http://www.w3.org/TR/MathML3.

25. D. L. McGuinness and F. van Harmelen. OWL web ontology language overview.
W3C recommendation, W3C, 2004.

26. Mizar mathematical library. Web Page at http://mizar.org/library/.
27. T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame Graphs. In U. Furbach

and N. Shankar, editors, International Joint Conference on Automated Reasoning,
volume 4130 of LNCS. Springer, 2006.

28. S. Obua. Proving bounds for real linear programs in isabelle/HOL. In J. Hurd and
T. F. Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of
LNCS. Springer, 2005.

29. The Open Math standard, version 2.0. Technical report, The Open Math Society,
2004. http://www.openmath.org/standard/om20.

30. E. Oren, R. Delbru, K. Möller, M. Völkel, and S. Handschuh. Annotation and
navigation in semantic wikis. In Völkel et al. [37].

31. L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer,
1994.

32. F. Pfenning and C. Schürmann. System description: Twelf : A meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, 16th International Conference
on Automated Deduction (CADE), volume 1632 of LNAI. Springer, 1999.

33. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation, World Wide Web Consortium, 2008. http://www.w3.org/TR/
2008/REC-rdf-sparql-query-20080115/.

34. Sites using Semantic MediaWiki. http://www.semantic-mediawiki.org/w/index.
php?title=Sites_using_Semanti%c_MediaWiki&oldid=781, 2008.

35. SIOC – Semantically-Interlinked Online Communities, 2007. http://sioc-project.
org/.

36. D. Tapscott and A. D. Williams. Wikinomics – How Mass Collaboration Changes
Everything. Portfolio, 2006.

37. M. Völkel, S. Schaffert, and S. Decker, editors. 1st Workshop on Semantic Wikis,
volume 206 of CEUR Workshop Proceedings, 2006.

38. M. Wenzel. Isar — a generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry,
editors, Theorem Proving in Higher Order Logics: TPHOLs’99, volume 1690 of
LNCS, pages 167–184. Springer, 1999.

39. R. Zumkeller. Formal global optimisation with taylor models. In U. Furbach
and N. Shankar, editors, International Joint Conference on Automated Reasoning,
volume 4130 of LNCS. Springer, 2006.

15

81

Using Attention and Context Information
for Annotations in a Semantic Wiki

Malte Kiesel, Sven Schwarz, Ludger van Elst, and Georg Buscher

Knowledge Management Department
German Research Center for Artificial Intelligence DFKI GmbH,

Trippstadter Straße 122, 67663 Kaiserslautern, Germany

{firstname.lastname}@dfki.de

Abstract. For document-centric work, meta-information in form of an-
notations has proven useful to enhance search and other retrieval tasks.
Since creating annotations manually is a lot of work, it is desirable to
also tap less obtrusive sources of meta-information such as the user’s
context (projects the user is working on, currently relevant topics, etc.)
and attention information (what text passages did the user read?).
The Mymory project uses the semantic wiki Kaukolu that allows stor-
ing attention and context information in addition to standard semantic
wiki metadata. Attention annotations are generated automatically us-
ing an eyetracker. All types of annotations get enriched with contextual
information gathered by a context elicitation component.
In this paper, an overview of the Mymory system is presented.

Shortened version. Please see http://www.dfki.de/mymory for the full paper.

1 Annotations in document-centered Work

Generally speaking, an annotation “is extra information asserted with a particu-
lar point in a document or other piece of information”1, and as such, it is a widely
used element in document-centered work: We put general comments (“This is
similar to xy!”) or ratings (“Important!”) of text passages into annotations or an-
notate text with imperative statements (“Verify!”). Thus, annotating is a means
to individualize and personalize documents which, for the rest, might be alike for
a group of information consumers. Formal annotations as they are commonly
applied in the Semantic Web context, in contrast, contain mainly meta-data,
i. e., they primarily aim at machine-understandability of a document’s content
in order to enable automated information services (see [7, 2] for overviews of the
role of annotation in document-centric Knowledge Management and the Seman-
tic Web). For personal knowledge management, in addition to annotations that
formalize document semantics, personal annotations along with attention and
user context information are needed. Mymory addresses this by supporting
1 http://en.wikipedia.org/w/index.php?title=Annotation&oldid=175839314

82

additional types of annotations: Conceptual annotations are used to clas-
sify (Web 2.0 speak: “tag”) document passages. Mymory relies on a Personal
Information Model (Ontology) (PIMO), i.e., the user(s)’s conceptualization of
his/their (knowledge work) world. Instead of tagging passages with simple text
labels, PIMO concepts are used to annotate and classify the passages. Atten-
tion annotations are used to store how much attention the user invested for
which parts of the document. Mymory uses several user observation techniques
to gather attentional evidences. For example, an eye tracking device is used to
recognize which passages the user really reads, which ones he has skimmed over,
and which ones the user did not seem to have viewed at all. Highlightings and
comments are comparatively simple annotations. However, context-sensitive
management (i.e., context-sensitive storage and retrieval) of such annotations
conveys a context-sensitive view of the document as the user (himself) had in
the past when he created these annotations. It allows a quick “flashback” and
reminds him of his past understanding and usage of that document. Contex-
tualized annotations are annotations containing meta-information about the
user’s context at the time of the creation of the annotation. This allows context-
sensitive views of a document and is a way to enable scalable, massive usage of
annotations in a multi-user/multi-context scenario as is typical in shared docu-
ment repositories.

2 Overview over Mymory Components

The PIMO: The Personal Information Model (Ontology) [3] provides a
vocabulary for describing information elements on an individual desktop, thereby
comprehensively reflecting a user’s personal view on his information landscape.
The Mymory PIMO offers rather general concepts of knowledge work (Person,
Organization, Location, Document, etc.) and allows for extensions of these up-
per models with more specific group or personal concepts (e. g., concrete project
types or organizational structures). It provides the basic vocabulary for anno-
tating concrete information elements and for describing a user’s context.

Automatic User Context Capturing — Mymory aims at transforming
the knowledge worker’s workplace into a context-sensitive document-centric work
environment. Automatic user observation generates a continuous stream of con-
textual evidences which are then fed into a context elicitation framework2. That
way, the user’s context is captured without disturbing the user. A detailed de-
scription of the user observation and context elicitation framework is beyond the
scope of this paper. See [4–6] for an overview of modeling, using, and accessing
user context for knowledge management scenarios. The User Observation Hub3

2 Technically, this is achieved by observing the usage of a number of applications such
as the web browser and editor using plug-ins, keeping track of events within these
applications, and matching these events and the content displayed in the applications
against a number of rules that are partially autogenerated from the user’s PIMO.

3 http://usercontext.opendfki.de/wiki/UserObservationHub

83

is an open-source (Java) project responsible for the gathering and distribu-
tion/forwarding of user observation data.

Our scenario assumes that the knowledge worker’s world is conceptualized
and modeled using the PIMO. Mymory’s context elicitation automatically gath-
ers evidences to estimate for every PIMO concept a degree of attention/relevance
with respect to the user’s current context. Thus, the context as elicited and pro-
cessed by the system consists of a map associating such an attention level with
every PIMO concept. As the user works and his behavior continuously adapts
during his current task, the attention levels of the concepts adapt accordingly.

The Mymory Workbench AKA Kaukolu Wiki — The wiki component
of Mymory is implemented by Kaukolu, a semantic wiki research prototype.
Kaukolu is an extension of JSPWiki4. Its new frontend features are implemented
using Dojo5, a JavaScript framework that allows higly interactive user interfaces.

Typically, semantic wikis associate wiki pages with semantic resources, and
allow links between pages to get typed, possibly according to some ontology
known to the wiki. However, while this approach is elegant in terms of simplicity
and ease of use, there are several drawbacks:

– The rigid mapping between wiki pages and semantic resources imposes se-
vere limits on the possible use cases. Mapping complex ontologies to the
wiki or creating proper instances for these ontologies in a wiki is as diffi-
cult as capturing the knowledge present in a large wiki page (which would
correspond to a resource with hundreds of properties).

– Handling of existing documents, be it existing wiki pages or other documents,
is difficult. Metadata has to be added into the page text, changing the actual
document. For texts such as law documents or finalized versions of documents
this might not be desirable.

– Handling of further information concerning annotations such as provenance
or context information is difficult. Personal annotations are not supported.

For Mymory another way of creating annotations has been implemented.
Annotations can get created for any text part6–in this regard, annotations in
Kaukolu are similar to annotations or notes created in a standard word pro-
cessing application. These are displayed in connection with the text they are
associated with but do not show up as text characters or markup in neither
editing nor viewing mode unless requested by the user.

An example can be seen in figure 1 that depicts a software license text and its
annotations. This text contains lots of separate mentions of certain facts–after
all, a license is a collection of legal statements. Expressing semantics of this type
of document is impossible using the page-resource mapping technique. Only

4 http://www.jspwiki.org/
5 http://dojotoolkit.org/
6 Technically, these annotations are implemented by creating an AnnotationAnchor

for each RDF annotation, associating the RDF resource of the annotation with a
part of the wiki markup by means of storing character offsets of the annotated text.
Offsets are updated on markup edits by a modified text diff algorithm.

84

Fig. 1. Annotating a software license in Kaukolu.

annotating a license with a few rather generic information fragments would be
possible, de facto using an ontology with one or few classes and lots of properties,
and creating one large instance.

Using the text annotation approach, fine-grained annotation is possible. Both
text decomposition and assigning complex fact representations to individual text
fragments can be done. Since a tight connection between annotations (or more
precisely, the information contained therein) and the text exists, text passages
concerning or expressing certain facts can be retrieved quite easily.

3 Features of the Mymory Workbench

Creating Annotations in Kaukolu: In Mymory, annotations are created in
two different ways: Users may manually create annotations, and an eyetracker
component can automatically mark read or skimmed passages, keeping track of
the user context in the course7. From user perspective, creating manual annota-
tions in Kaukolu is pretty straightforward. Once a text part to be annotated is
selected, right-clicking opens an annotation window where possible annotation
types are displayed. These types and corresponding dialogs are fetched from on-
tologies loaded in Kaukolu’s RDF repository or, if configured accordingly, also
from external sources using a custom implementation.

Using Annotations in Search: All data and metadata found in the system
can be queried in Kaukolu’s advanced search feature. Advanced search is imple-
mented as a faceted search paradigm: The user can select one or more restrictions
on text and annotation characteristics graphically (”Search for paragraphs I read
yesterday in context of project Firestart“). Search always returns wiki text para-
graphs as results; searching for standalone RDF resources or authors directly is
not supported. This was done to keep the system simple and to keep some re-
semblance with a normal wiki search in which users expect text passages to be
returned.
7 Information on the algorithms used for reading detection using the eyetracker can

be found in [1]. Note that the eyetracker used is built-in in the display and does not
require wearing glasses or other equipment.

85

Creating Documents based on Search Results: Text passages found
in search can be used to create new documents. The idea here is that this way
it is possible to “remix” texts to form documents that fit to new requirements.
Passages are copied, not referenced—however, provenance information indicating
the source of copied paragraphs is kept as a new annotation.

Using Annotations for Personalized Views: Kaukolu also supports fil-
tering a page’s display based on annotations during normal page view. While
many possible implementations of this can be imagined, we currently imple-
mented two major ways of filtering. One can filter wiki pages by attention
information—in practice, this means that passages bearing a read or skimmed
annotation are displayed as usual while all other passages are grayed out. This
helps finding (formerly) relevant passages in large documents. Filtering by con-
text information is implemented differently: As context information is meta-
information about annotations, we filter the annotations to display in the wiki
page. For example, one can choose to display only annotations created in the
context of a certain project or topic.

Acknowledgement

The Mymory project is funded by the Bundesministerium für Bildung und
Forschung under grant 01 IW F01 and by the IST Programme of the European
Union under grant FP6-027705.

References

1. Georg Buscher. Attention-based information retrieval. In SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference on research and development
in information retrieval (doctoral consortium), 2007.

2. Siegfried Handschuh. Creating Ontology-based Metadata by Annotation for the Se-
mantic Web. PhD thesis.

3. Leopold Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko Maus,
and Sven Schwarz. Personalization in the epos project. In M. Bouzid and N. Henze,
editors, Proceedings of the International Workshop on Semantic Web Personaliza-
tion, Budva, Montenegro, June 12, 2006, pages 42–52, 2006.

4. Sven Schwarz. A context model for personal knowledge management applications.
In Th. Roth-Berghofer, St. Schulz, and D. B. Leake, editors, Modeling and Retrieval
of Context, Second International Workshop, MRC 2005, Edinburgh, UK, volume
3946 of Lecture Notes in Computer Science, pages 18–33. Springer, 2006.

5. Sven Schwarz and Thomas Roth-Berghofer. Towards goal elicitation by user obser-
vation. In A. Hotho and G. Stumme, editors, Proceedings of the LLWA 2003, pages
224–228, Karlsruhe, oct 2003. AIFB Karlsruhe, GI.

6. Roza Shkundina and Sven Schwarz. A similarity measure for task contexts. In
Proceedings of the Workshop Similarities - Processes - Workflows in conjunction
with the 6th International Conference on Case-Based Reasoning, 2005.

7. Victoria S. Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-
Vera, Enrico Motta, and Fabio Ciravegna. Semantic annotation for knowledge man-
agement: Requirements and a survey of the state of the art. Journal of Web Se-
mantics, 4(1):14–28, 2006.

86

RDF Authoring in Wikis

Florian Schmedding, Christoph Hanke, and Thomas Hornung

Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
{schmeddi, hankec, hornungt}@informatik.uni-freiburg.de

Abstract Although the Semantic Web vision is gaining momentum and
the underlying technologies are used in many different areas, there still
seems to be no agreement on how they should be used in everyday docu-
ments, such as news, blogs or wiki pages. In this paper we argue that two
aspects are crucial for the enrichment of this documents with semantic
annotations: full support for RDF and close integration of the annota-
tions with the continuous text. The former is necessary because many
common relationships cannot be expressed by attribute-value-pairs, the
latter reduces redundancy and enables Web browsers to help readers
using the contained data. To gain further insights, we implemented an
RDFa-capable extension for MediaWiki and report on improvements for
wiki use cases and other applications on top of the contained data.

1 Introduction

Since the vision of the Semantic Web [1] has been described, different knowledge
markup and ontology definition languages, such as RDF [2] and OWL [3] have
been proposed and standardized. A recent survey has shown that these languages
are mostly applied to highly-structured domains with a well-understood seman-
tics, e.g. for drug discovery [4]. In the revisited version [5] of the original vision
the authors acknowledge that the Semantic Web has not reached the expected
adoption yet. We believe that this is because the lion’s share of the content on
the Web is only available in presentation-oriented HTML documents without
any semantic markup. Therefore to reach a critical user base, a clear benefit for
the users of everyday documents, such as news, blogs or wiki pages, has to be
established.

So far, semantic annotations were added to HTML documents in a very in-
formal and restricted manner with respect to the semantic complexity of the
information. In our opinion these approaches still suffer from two major draw-
backs: lack of expressiveness and separation of text and annotations. The goal
of our approach is to have full RDF expressivity while retaining the proximity
of metadata and normal textual content. The latter is especially important for
reusing existing external applications or enabling third parties to make use of
the semantic content in a standardized way, e.g. for extracting calendar data.

Projects such as DBpedia1 have shown that Wikipedia2 already contains a
lot of relevant structured metadata, e.g. the population of cities, and hence is
1 http://dbpedia.org
2 http://wikipedia.org

87

an ideal candidate for the adoption of Semantic Web technologies to enrich the
existing content with semantic annotations. In this paper we describe an exten-
sion for MediaWiki3, which allows to directly embed these semantic annotations
while editing the wiki article. The main features are full support of RDF, in-
cluding blank nodes, and the direct embedding of the resulting annotations in
the generated XHTML presentation of the wiki article.

The remainder of the paper is organized as follows. In Section 2 we introduce
and evaluate semantic annotation formats with respect to our requirements. In
Section 3 we describe our extension to MediaWiki and present a use case about
geo-political facts of countries in Section 4. In Section 5 we discuss related work,
Section 6 gives an outlook on future work, and we conclude with Section 7.

2 Semantic Annotation Proposals

In line with our proposal, all semantic annotations should be embedded in the
written article to avoid the administrative overhead of maintaining separate
documents (HTML and e.g. RDF/XML). Additionally, there are less redundan-
cies and update problems with a single document which is both human- and
machine-readable from a single Web address.

Currently, there are three competing proposals for annotating semantics in
HTML documents: Microformats4, eRDF5, and RDFa [6]. For obvious reasons,
RDF/XML [7] is out of the question because it is not designed to contain readable
text. Because eRDF only supports a subset of RDF and the informal semantics
of Microformats we chose RDFa as annotation language.

Another orthogonal approach to embedding semantics in HTML documents
is GRDDL [8]. It is designed to extract RDF data from any XML document
via specialized XSLT transformations. Redundancy in text and RDF data is
therefore omitted, but there is no connection between text and RDF data.

3 RDFa Wiki Extension

We implemented a prototype as an extension of MediaWiki to evaluate our
approach. Here, the main focus is on augmenting the existing wiki syntax to
enable users to embed arbitrary RDF statements into regular articles. The syntax
design especially considers the following three requirements:

1. Subject and object of a statement can be any desired URI (or blank nodes),
2. Subject and predicate should be invisible to the reader and literals should

be masqueradable,
3. Single statements are made within one unit, as distributed statements are

vulnerable to partial deletion, which could alter the semantics.

3 http://www.mediawiki.org
4 http://microformats.org
5 http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml

88

In general, the semantic statements in our wiki extension include subject, pred-
icate and object, although the subject is not mandatory. To annotate an ex-
isting wiki text, the user has to choose the desired object in the wiki text and
place the predicate and optionally a subject in front of it. The whole seman-
tic statement is delimited by <sem>-tags. URIs for subject and object are
expressed using the common MediaWiki link notations. The predicate has to
be written in CURIE [6] style, e.g. cc:license instead of the expanded URL
http://creativecommons.org/ns#license. Applying these rules a statement
about the external page www.mypage.de would look like this:

My homepage is licensed under <sem> [http://www.mypage.de] cc:license
[http://mylicense.org/ my own license] </sem>.

Omitting the subject ([http://www.mypage.de]) would create an equivalent
statement but about the current page. In both cases the only value visible to
the user is the URI, or rather the label of the object.

If the object is not denoted in link notation, the object value is interpreted
as a (XML-)Literal. Literals can additionally receive a dataype and a label.
This can be used to provide a date in a machine readable format, which means
we masquerade the machine-readable data with an alternative representation.
For example the sentence The meeting takes place on 7th of August 2008 could
be annotated in the following way, where ”2008-08-07” represents the machine-
readable date and 7th of August 2008 is the alternative representation:

The meeting takes place on <sem>[http://www.futuremeeting.com] dc:date
”2008−08−07”ˆˆxsd:date 7th of August 2008 </sem>.

A further feature of our extension is the possibility of using blank nodes. For
this we introduce a three bracket notation to provide a name for the blank node
variable. This concept is useful for adequate modeling of n-ary relationships [9],
e.g. to describe the border between two countries, where also the length of the
border is of interest. An exemplary statement is given here:

The border between <sem>[[[border]]] mond:bordering [[Spain]]</sem> and
<sem>[[[border]]] mond:bordering [[France]]</sem>
has a length of <sem>[[[border]]] mond:length 623</sem> km.

Additonally the type of the subject can be classified using the inof attribute of
the <sem>-tag:

<sem inof=”mond:Border”>[[[border]]] mond:bordering [[Spain]]</sem>

Figure 1 shows a geographical wiki page about Spain. The JavaScript tool RDFa-
Highlight6 can be used in any browser to mark all semantically annotated areas.

4 Use Cases

Mondial [10] is a collection of political and geographical data, which covers
typical concepts that we expect in a semantically enhanced version of Wikipedia.
6 http://www.w3.org/2001/sw/BestPractices/HTML/rdfa-bookmarklet/

89

Figure 1. Wiki page about Spain with marked semantic annotations (red). The blue
box shows two statements about a blank node.

For this reason, we chose it as the basis to populate our prototype wiki with
approximately 5,500 test pages.

4.1 Wiki Page Generation

We used a simplified version of the Mondial RDFS ontology7 for the generation
of the wiki pages, e.g. an excerpt for Spain is depicted in Figure 1. For the sake
of illustrating the features of the ontology, we concentrated on the therein de-
fined concepts and relationships. Obviously, we could have also enriched regular
Wikipedia articles with additional semantic annotations.

Although the pages were generated according to a pre-defined template the
simplified articles demonstrate the feasibility of our approach for real-world sce-
narios. It is also a good example of how to bootstrap semantic wikis from existing
database content.

4.2 Ontology Maintenance

In contrast to other wikis, which separate the metadata from wiki articles, in our
approach RDF vocabularies can be defined within the articles itself. This follows
as an immediate consequence of the RDF support in our syntax. New definitions
could be stated on any arbitrary wiki page or in a more structured way, using a
reserved wiki category or special page. For example, the abovementioned Mondial
ontology is defined in a separate article by means of our new wiki syntax. This
enables the wiki community to collectively define and evolve ontologies with the
same syntax used for authoring semantic articles.

4.3 Data Import

Since the RDFa standard is on its way to becoming a W3C recommendation, we
expect the number of accessible XHTML+RDFa pages to constantly increase in
the near future. Each of these pages could be seen as a remote information source,
7 http://www.dbis.informatik.uni-goettingen.de/Mondial/

90

analogously to a SPARQL endpoint. This would enable us to use a coherent
query language to both specify queries on our wiki and to include these remote
sources as well in our wiki articles as dynamic data sources. An example from
the Mondial theme would be to include the gross domestic product of a (future)
semantically annotated version of the CIA World Factbook8. In this case the
changes would occur only once a year, but the same general concept applies to
including the most current publications of researchers in the relevant articles.
Since for most data on the Web, especially homepages, it is not realistic to
expect the data to be availabe via SPARQL endpoints, we expect a reasonable
application area of our coherent integration approach.

5 Related Work

Similar to Semantic MediaWiki [11], we base our extension on MediaWiki. But
unlike this project, our main focus was to have maximum RDF support for au-
thors, instead of maintaining the current wiki syntax. Although this requires
additional effort on the side of the authors, we believe that the benefits of the
added semantics outweigh this inconvenience. For example, we support sub-
jects different from the current page. BOWiki [12] is an extension of Semantic
MediaWiki and is additionally capable of representing n-ary predicates but is
restricted to a specialized biological domain. Kaukolu [13] also supports subjects
different from the current page but has no full support for blank nodes. IkeWiki
[14] is geared towards knowledge engineers and provides a sophisticated user
interface and ontology reasoning. Our approach is geared towards shallow on-
tologies [5] and regular users. OntoWiki [15] offers a visual editor for easy editing
of RDF content and provides semantically enhanced search strategies. Its main
focus is on the acquisition of instance data and knowledge engineering projects.
We are more interested in enriching normal wiki texts with embedded seman-
tics. SweetWiki [16] also uses RDFa to embed semantics directly in the articles.
However, their major focus is on providing keywords, or so-called tags, for spe-
cific articles or objects, e.g. images, inside the article. Our focus is on authoring
complex RDF relations between several entities within the article. Finally, the
internal structure of the Maariwa [17] wiki is based on an ontology meta model,
i.e. each page either represents a class, an individual or a set of individuals.
The annotations are then interpreted as properties of the class or individual,
respectively. To query information they introduce a proprietary query language
called MarQL. As discussed in Section 4.2 we propose a less rigid approach to
specifying ontologies within arbitrary articles.

6 Future Work

To allow non expert users to formulate complex annotations in their articles it is
crucial to provide an intuitive and easy-to-use editing environment. Inspired by
8 https://www.cia.gov/library/publications/the-world-factbook/index.html

91

the successful WYSIWYG principle, we are currently working on a rich internet
application for editing and annotating semantic Wiki articles in an integrated
fashion.

Up to now, the available visualization tools for contained RDFa annotations
in (X)HTML pages are rather limited. Given the specific Wiki content of Mon-
dial we envision a more sophisticated graphical presentation of contained RDFa
annotations. Currently, we are exploring different approaches of how to better
support the user in browsing and understanding the contained annotations.

Additionally, the close proximity of semantic annotations to the textual con-
tent opens the door for new information retrieval applications, e.g. to combine
keyword-based searches with semantic enhancements. By only querying the con-
tained RDF data in a triple store, unannotated text is not considered. At the
moment, we are investigating the impact of combining the approach by [18] with
RDFa annotated pages.

Measurement units are currently not considered, but could be handled similar
to the Semantic MediaWiki [11] proposal. An open question is how to handle
articles in different languages about the same concept: should the annotations be
shared between the different versions or does each language belong in a separate
semantic unit? This a general question, which is not specific to our approach,
and is relevant for each semantic wiki to some extent.

7 Conclusion

We have shown a semantic extension for MediaWiki and how it helps to improve
the application of semantic wikis as well as the benefits of the directly embed-
ded annotations for other applications, e.g. for developing semantic-aware search
engines. Additionally, our approach could contribute to the proliferation of se-
mantically enriched content on the Web, especially with a higher-level editing
environment that hides the syntactic details of the wiki syntax. If the advantages
of these semantic annotations would be visible to and demanded by end users the
willingness of authors to employ these techniques would increase significantly.
We believe this is possible in the near future due to the standardization of RDFa
by the W3C and expect a wide adoption and support in Web browsers as well
as innovative uses by other third party tools.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

2. Manola, F., Miller, E.: RDF Primer. http://www.w3.org/TR/rdf-primer (2004)
3. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide.

http://www.w3.org/TR/owl-guide/ (2004)
4. Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., Stephens, S.: The

Semantic Web in Action. Scientific American 297 (December 2007) 90–97
5. Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE

Intelligent Systems 21(3) (July 2006) 96–101

92

6. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax
and Processing. http://www.w3.org/TR/rdfa-syntax/ (2008)

7. Beckett, D.: RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/
rdf-syntax-grammar/ (2004)

8. Connolly, D.: Gleaning Resource Descriptions from Dialects of Languages
(GRDDL). http://www.w3.org/TR/grddl/ (2007)

9. Noy, N., Rector, A.: Defining N-ary Relations on the Semantic Web. http://www.
w3.org/TR/swbp-n-aryRelations/ (2006)

10. May, W.: Information extraction and integration with Florid: The Mondial case
study. Technical Report 131, Universität Freiburg, Institut für Informatik (1999)

11. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic
Wikipedia. Journal of Web Semantics 5 (2007) 251–261

12. Backhaus, M., Kelso, J., Bacher, J., Herre, H., Hoehndorf, R., Loebe, F., Visagie,
J.: BOWiki – A Collaborative Annotation and Ontology Curation Framework. In:
CKC. (2007)

13. Kiesel, M.: Kaukolu: Hub of the Semantic Corporate Intranet. In Völkel, M.,
Schaffert, S., eds.: SemWiki. (2006)

14. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management.
In: WETICE. (2006) 388–396

15. Auer, S., Dietzold, S., Riechert, T.: OntoWiki - A Tool for Social, Semantic Col-
laboration. In: ISWC. (2006) 736–749

16. Buffa, M., Gandon, F.L., Ereteo, G., Sander, P., Faron, C.: SweetWiki: A Semantic
Wiki. J. Web Sem. 6(1) (2008) 84–97

17. Landefeld, R., Sack, H.: Collaborative Web-Publishing with a Semantic Wiki. In:
CSSW. (2007) 23–34

18. Bast, H., Chitea, A., Suchanek, F.M., Weber, I.: ESTER: Efficient Search on Text,
Entities, and Relations. In: SIGIR. (2007) 671–678

93

AceWiki: Collaborative Ontology Management
in Controlled Natural Language

Tobias Kuhn

Department of Informatics, University of Zurich, Switzerland
tkuhn@ifi.uzh.ch

http://www.ifi.uzh.ch/cl/tkuhn

Abstract. AceWiki is a prototype that shows how a semantic wiki using
controlled natural language — Attempto Controlled English (ACE) in
our case — can make ontology management easy for everybody. Sen-
tences in ACE can automatically be translated into first-order logic,
OWL, or SWRL. AceWiki integrates the OWL reasoner Pellet and en-
sures that the ontology is always consistent. Previous results have shown
that people with no background in logic are able to add formal knowledge
to AceWiki without being instructed or trained in advance.

1 Introduction

Since ontologies are often defined within communities, semantic wikis could be
used for their collaborative creation and management. Unfortunately, most of
the existing semantic wikis do not support expressive ontology languages in a
general way. They do not allow the users to add complex axioms like “every
landlocked country borders no sea”. Furthermore, the existing semantic wikis
are often hard to understand for people who are not familiar with the technical
terms of logic and ontologies.

AceWiki1 tries to solve both problems by using controlled natural language.
Ordinary people who have no background in logic should be able to understand,
modify, and extend the formal content of a wiki.

Many existing semantic wikis are classical wikis enriched with semantic an-
notations. The goal is not to manage stand-alone ontologies, but rather to give
some kind of formal backbone to the wiki articles. We follow a different approach
— similar e.g. to the myOntology project [7] — by providing a wiki that is dedi-
cated to building and maintaining ontologies. In contrast to myOntology, we do
not restrict ourselves to lightweight (i.e. relatively inexpressive) ontologies. The
use of controlled natural language allows us to express also complex axioms in
a natural way. Figure 1 shows a screenshot of the AceWiki interface.

In our usage scenario, a community of domain experts uses AceWiki to cre-
ate and maintain a formal knowledge base in a collaborative manner. There are
two exemplary wiki instances — one about geography and the other about pro-
tein interactions — that demonstrate how AceWiki could be used to represent
knowledge of such communities.
1 See [6] and http://attempto.ifi.uzh.ch/acewiki

94

Fig. 1. The web interface of the AceWiki prototype

AceWiki has been introduced in [6]. Since then, several new features have
been added, for example the integration of a reasoner and the support for number
restrictions (“at most 3”, “exactly 5”, etc.).

2 Attempto Controlled English

Attempto Controlled English (ACE)2 is the controlled natural language that is
used for AceWiki. ACE appears completely natural since it is a subset of English.
Restrictions of the syntax and the definition of a small set of interpretation rules
make it a formal language that is automatically translatable into first-order logic.
ACE supports a wide range of natural language constructs: singular and plural
noun phrases, active and passive voice, relative phrases, anaphoric references,
existential and universal quantifiers, negation, modality, and more. In the past,
ACE has successfully been applied for different tasks in different research areas,
for example as a query language for ontologies [1], as a knowledge representation
language for the biomedical domain [4], and as a rule language for a multi-
semantics rule engine [5].

Furthermore, ACE has been used as a natural language front-end to OWL
with a bidirectional mapping of ACE to OWL [3]. This mapping covers all
of OWL 2 except data properties and some very complex class descriptions.
AceWiki relies on this work for translating ACE sentences into OWL, which
allows us then to do reasoning with existing OWL reasoners.

2 See [2] and http://attempto.ifi.uzh.ch

95

Fig. 2. The predictive editor of AceWiki

3 Design and Evaluation

The goal of AceWiki is to show that semantic wikis can be more natural and at
the same time more expressive than existing semantic wikis.

Naturalness is achieved by representing the formal statements in ACE. Since
ACE is a subset of natural English, every English speaker can immediately read
and understand the content of the wiki. In order to enable easy creation of
ACE sentences, AceWiki provides a predictive editor that shows step-by-step
the words that are syntactically possible at a given position in the sentence.
Figure 2 shows a screenshot of the predictive editor of AceWiki. Furthermore,
the AceWiki interface does not use technical terms like “ontological element”,
“property”, or “subclass” but uses instead terms like “word”, “transitive verb”,
or “hierarchy” which should be much more familiar to people with no background
in logic.

AceWiki makes use of the high expressivity of ACE that goes beyond OWL
and SWRL. We do not like the idea of cutting down the expressivity just for
the sake of reasoning performance. Even if some statements become so complex
that it is almost impossible to do reasoning with them, it is better to have them
formalized than just left out. We do not lose anything, since we are free to ignore
those complex statements for certain reasoning tasks.

In our previous work [6], we conducted a user experiment that proved that
ordinary people with no background in logic are able to deal with AceWiki. The

96

participants — without being instructed how to interact with the interface —
were asked to add knowledge to AceWiki. About 80% of the created sentences
were correct and sensible. This is remarkable since most of the sentences were
quite complex: more than 60% of them contained an implication or a negation or
both. Using the predictive editor which the participants had never seen before,
they needed on average only five minutes to create their first correct sentence.

4 Reasoning in AceWiki

We have started to integrate the OWL reasoner Pellet3 into AceWiki. Since ACE
sentences can be beyond the expressivity of OWL, the reasoner cannot consider
all sentences. In order to make this clear to the users, each sentence is tagged as
blue (inside of OWL) or red (outside of OWL):

In this way, it is easy to explain to the users that only the blue statements are
considered when the reasoner is used. We plan to provide an interface that allows
skilled users to export the formal content of the wiki and to use it within an
external reasoner or rule-engine. Thus, even though the red statements cannot
be interpreted by the built-in reasoner they can still be useful.

Consistency checking plays a crucial role because any other reasoning task re-
quires a consistent ontology in order to return useful results. Most other semantic
wikis do not have this problem since their languages are simply not expressive
enough to ever run into inconsistency.

In order to ensure that the ontology is always consistent, AceWiki checks
every new sentence — immediately after its creation — whether it is consis-
tent with the current ontology. Otherwise, the sentence is not included in the
ontology:

After the user created the last sentence of this example, AceWiki detected that
it contradicts the current ontology. The sentence is included in the wiki article
but the red font indicates that it is not included in the ontology. The user can
remove this sentence again, or keep it and try to reassert it later when the rest
of the ontology has changed.

For this approach, it is very important to perform incremental reasoning
which Pellet supports only partially at the moment. For that reason, AceWiki
does not scale very well. We expect that future reasoners will be able to run
much faster in such incremental scenarios.
3 http://pellet.owldl.com/

97

Not only asserted but also inferred knowledge can be represented in ACE. At
the moment, AceWiki can show inferred class hierarchies and class memberships.
Furthermore, we are working on a query feature for AceWiki. Questions will be
formulated in ACE and evaluated by the reasoner:

Thus, ACE can be used not only as an ontology- and rule-language, but also as
a query-language.

5 Conclusions

The AceWiki prototype shows how ontologies can be managed in a natural
way within a wiki. It demonstrates how semantic wikis using controlled natural
language can be expressive and easy to use at the same time. Our previous eval-
uation showed that AceWiki is indeed easy to learn. We explained how AceWiki
ensures — in a very simple way — the consistency of the ontology which is the
basis for other integrated reasoning services.

References

1. Abraham Bernstein, Esther Kaufmann, Norbert E. Fuchs, June von Bonin. Talking
to the Semantic Web — A Controlled English Query Interface for Ontologies. Proc.
14th Workshop on Information Technology and Systems, 2004

2. Norbert E. Fuchs, Kaarel Kaljurand, Gerold Schneider. Attempto Controlled
English Meets the Challenges of Knowledge Representation, Reasoning, Inter-
operability and User Interfaces. Proc. 19th International FLAIRS Conference
(FLAIRS’2006), 2006

3. Kaarel Kaljurand. Attempto Controlled English as a Semantic Web Language. PhD
thesis, Faculty of Mathematics and Computer Science, University of Tartu, 2007

4. Tobias Kuhn, Löıc Royer, Norbert E. Fuchs, Michael Schroeder. Improving Text
Mining with Controlled Natural Language: A Case Study for Protein Interactions.
Proc. Third International Workshop on Data Integration in the Life Sciences 2006
(DILS’06), Springer, 2006

5. Tobias Kuhn. AceRules: Executing Rules in Controlled Natural Language. Proc.
First International Conference on Web Reasoning and Rule Systems (RR2007),
Springer, 2007

6. Tobias Kuhn. AceWiki: A Natural and Expressive Semantic Wiki. Proc. of Seman-
tic Web User Interaction at CHI 2008: Exploring HCI Challenges, CEUR Work-
shop Proceedings, 2008

7. Katharina Siorpaes, Martin Hepp. myOntology: The Marriage of Ontology Engi-
neering and Collective Intelligence. Proc. Bridging the Gap between Semantic Web
and Web 2.0, 2007

98

Natural Expressive

ReasoningEasy to Use

●AceWiki is a semantic wiki that is easily understandable by
everybody. The wiki articles are written in ACE (Attempto
Controlled English) that is a controlled natural language.
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●ACE supports a wide range of natural language constructs:
● Proper names, nouns, verbs, of-constructs, ...
● Singular and plural noun phrases
● Relative phrases
● Anaphoric references
● Existential and universal quantifiers
● Negation
●... and much more. Some examples:

●AceWiki is not only easy to read and understand, but
also easy to modify and extend. Users do not need to
understand the details of ACE. A predictive editor helps
them word-by-word to create sentences that comply with
the ACE syntax:
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●We performed a small-scale user experiment to test the us-
ability of AceWiki. The participants were asked to add gen-
eral knowledge to AceWiki:

● 20 participants (no background in logic and ontologies)
● No instructions how to use the interface
● They spent on average 47 minutes on AceWiki
● They created in total 186 sentences

● 80% were correct and sensible
● 61% were complex (using negation or implication)

ACE is a formal language that is translatable into logic
and other languages, for example OWL. Some examples
of OWL-compliant sentences:

ACE is more expressive than OWL. You can express com-
plex statements (e.g. rules) that are beyond OWL:

ACE supports also questions which are used in AceWiki to
state queries:

Thus, ACE is an all-in-one language.

AceWiki integrates the OWL reasoner Pellet that con-
siders all OWL-compliant sentences of the wiki. It en-

sures that the ontology is always consistent:

The reasoner infers class memberships and presents
them in ACE:

Also class hierarchies are inferred and presented in ACE:

Furthermore, AceWiki supports inline-queries that are an-
swered by the reasoner:

Attempto Group
University of Zurich
Department of Informatics

Tobias Kuhn
tkuhn@ifi.uzh.ch

http://attempto.ifi.uzh.ch/acewiki

✔ALL-IN-ONE

✔ Ontology Language

✔ Rule Language

✔ Query Language

99

Next-Generation Wikis:
What Users Expect; How RDF Helps

Axel Rauschmayer

Institut für Informatik, LMU München,
Oettingenstr. 67, 80538 München, Germany

http://hypergraphs.de/

Abstract. Even though wikis helped start the web 2.0 phenomenon,
they currently run the risk of becoming outdated. In order to find out
what aspects of wikis will survive and how wikis might need to evolve, the
author held a survey among wiki users. This paper argues that adding
RDF integration to wikis helps meet the requirements implicitly con-
tained in the answers of that survey. Technical details are given by look-
ing at the semantic wiki Hyena.

Key words: Next-generation wikis, Semantic Wiki, RDF, Semantic
Web

1 Introduction

Wikis have been a popular web application for some time now. But the recent
rise of Ajax [1] has changed the perception of web applications: Many wiki-like
web sites have appeared, often specialized to do a single task well (where wikis
are more universal). Examples include Google Calendar and Flickr.

This begs the question: What aspects of wikis will survive in the Web 2.0
age? What aspects are worth preserving? To answer this question, one has to find
out what people use wikis for, what features they like and what features they
are missing. A small survey on this topic helped the author do that. This paper
interprets the survey results as requirements for the next generation of wikis and
then argues that wikis that mix wiki pages and RDF data are perfectly equipped
to meet those requirements. How they can meet those requirements is illustrated
by taking a closer look at the semantic wiki Hyena [2].

2 The survey

The survey has intentionally been relatively simple. For example, it was probably
not representative for all potential wiki users, because the participants (a total
of 23) were chosen in an ad-hoc fashion by announcing the survey to the author’s
colleagues1 and to a mailing list about semantic wikis. But the results are still
interesting and point out several possible trends for wikis.
1 None of them are experts in the semantic web or wikis.

100

The survey participants answered in percentages indicating how important
a given fact was to them or how often they performed a given activity. The
reported percentages are averages of these answers. Note that the answers do
not necessarily apply to a single wiki; many participants use several wikis. The
following sections present groups of questions and observations that the author
derived from the answers.

2.1 What is a wiki used for? What is its content?

Collecting data or knowledge 91%
Coordination, planning, project management 56.75%
Web site, light-weight content-managment system 54.5%
Document creation (and later publishing) 48.75%
Discussions, forum 42%
Brainstorming, (possibly shared) whiteboard 39.75%
Weblog, relatively small journal-style entries 16%

“What is the purpose of your wiki? What do you use it for?”

The content of traditional wikis is just text. But what users care about is the
data and knowledge contained in the text—as expressed by the 91% ranking of
“collecting data or knowledge”.

Text 68.25%
Data 55.75%
Knowledge 55.75%

“What makes up the content of the wiki?”

In the survey, “text” was explained as feeling more like a word document, possi-
bly being a collection of notes. “Data” are lists, tables, forms, etc.—things one
might keep in a spreadsheet or a database. “Knowledge” is similar to data, but
the focus is on collecting facts (true statements) and on specifying these facts as
precisely as possible. Thus, the numbers above confirm what all the tables and
lists in traditional wikis already suggested: In addition to text (semi-structured
data, if you will), structured data and knowledge play an important role when it
comes to wiki content. Naturally, structured information could be more flexibly
processed if it were explicitly stored and had dedicated editors. For example,
spreadsheets handle tabular data well, so it would be nice if one could embed
little spreadsheets inside a wiki page. Note that the survey results do not in-
dicate that wikis should become pure databases.Rather, being able to mix text
and data is what seems to make wikis attractive.

2.2 Who uses the wiki?

Several collaborators, all reading and writing 60.25%
Personal use, a single person 50%
Few editors, many readers 46.5%

101

At heart, wikis can be considered groupware. Still, having the wiki information
available anywhere and the flexibility in structuring information, makes wikis
good personal information managers: Survey participants attributed an average
importance of 50% to this task.

2.3 Current and future wiki features
Information roaming: the wiki information is available online. 78.5%
Collaboration: share and jointly edit information. 77.25%
Linking: relate and collate pieces of information. 72.75%
Publishing: disseminate information. 67%

“What core aspects of (traditional) wikis are you interested in?”

Version control (editing history, who edited what, unlimited undo,
etc.)

78.5%

File upload and management 69.25%
Wiki page meta-data (annotations and labels describing the content
of the page)

58%

WYSIWYG text editor 56.75%
Generate a PDF file from a wiki page 52.25%
Diagrams (UML, mind maps, organizational charts, etc.) 48.75%
Finer-grained wiki pages 47.75%
Outliners (edit indented lists such as tables of contents) 46.5%
Live collaborative editing (all editors work on the same copy of the
document, changes show up immediately)

46.5%

Spreadsheets (with calculation) 46.5%
Discussions (forums) 41%
Offline editing, synchronization 37.5%
Calendars 37.5%
Form-based data entry (similar to MS Access) 37.5%
Blogs 25%

“What (actual or hypothetical) features are important to you?”

The author thinks that while an offline mode has been ranked relatively low, it is
still essential for next-generation wikis. Otherwise, information will not be truly
available everywhere (1st table); especially for personal information management
(Sect. 2.2), one will need to access it without online connectivity.

2.4 Wiki alternatives

The following is a list of web applications that the survey participants use as
alternatives to wikis for some tasks: (1) BackPack, (2) Blogger, (3) del.icio.us,
(4) Facebook, (5) Flickr, (6) Google Calendar, (7) Google Docs, (8) iusethis, (9)
Online Contacts, (10) Trac, (11) Wordpress, (12) WikipediaReview.com.

Interestingly, the majority (all except 1, 4, 11) of these web applications is
very task-specific. Accordingly, Sect. 2.3 indicates that users would like to see
more task-specific editing support (including WYSIWYG text editors) in wikis.
The difficulty is to do so without significantly raising the learning curve.

102

3 Hyena

Hyena is an RDF publishing and editing system that comes in two compo-
nents: A desktop application (Eclipse plugin, Fig. 1) and a web application
(Java Servlet, Fig. 2) for online editing.

1. Storing and editing data: RDF is used as universal data storage. Hyena
supports a variety of data encoded in RDF resources and has specialized
graphical editors for them. Working with RDF generates presentation data:
Lists of resources returned by a query, bookmarked locations, etc. This data
can be edited in a similar fashion to RDF resources and saved (manifested)
as RDF data.

2. Integrating pages and data: Wiki pages are also stored as RDF resources.
They an link to external data or embed it. Similar to data-specific editors,
embedding is supported by data-specific embedders (translators from the
data to the abstract wiki syntax). All of a page’s references (links, embed-
dings, etc.) to RDF resources are made explicit in RDF. This prevents stale
links and allows one to track referers.

3. Meta-data for pages: Every page being an RDF resource, it can be annotated
with RDF. This meta-data can be referenced in a query whose results can
be manifested and embedded (as a table, as a sequence of embeddings, via
templates). Thus, pages and data can be collated and presented in many
ways.

4. Online and offline availability, collaborative editing: Both the desktop ap-
plication and the web application manage web sites as projects, directory
trees with files. This includes images, shared files and RDF data. One can
synchronize projects between the desktop and the web. For RDF data, syn-
chronization granularity is resources, otherwise it is files. Thus data can be
published to a web server, but also edited offline. Furthermore, projects are
easy to back up (which was one of the explicitly mentioned wishes in the
survey).

The requirement of integrating text and data (Sect. 2.1) is fulfilled by items (1)
and (2). The desired features “page meta-data” and “offline editing” (Sect. 2.3)
are provided by items (3) and (4). Task specific editing (Sect. 2.4) is explained
in item (1). For more detailed information on Hyena, consult [2]

Acknowledgments Thanks to Malte Kiesel, Andreas Schroeder, Philip Mayer,
and Hubert Baumeister for their feedback on the survey questions.

References

1. J. J. Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php, 2005.
2. A. Rauschmayer. Wikifying an RDF editor. 2007. Submitted for publication.

103

Fig. 1. The Eclipse frontend for Hyena. The bottom half shows three editing panes
that have been populated from left to right and thus make the history of editing
visible.The top left is one of the standard Eclipse file explorers. One can see that the
file index.trix that is being edited below belongs to project wiki. The top center
hosts a variety of views that supplement the editor at the bottom. Currently visible is
a view for synchronizing Eclipse projects with a web server. The top right contains a
view that shows what commands can be used in the current context.

Fig. 2. The same project wiki that has been edited with Eclipse in Fig. 1 is displayed
here as a web application in Firefox. The bottom right half shows the resource list, a
subset of all available resources that is determined by filter criteria (such as “show only
wiki pages”, which is currently active). Resource Start Page has been selected and is
visible in the top right. To the left, there is a toolbar that shows inlinks (resources
that point to the currently selected resource); a list of special locations (the first of
which is shown by default when starting the web application); and facets, a subset of all
property key-value pairs among the resources in the resource list. Facets are grouped
by key. One can hide the facets and the resource list so that Hyena/Web feels more
like a web site.

104

RDF Editor Hyena
hypergraphs.de

web application desktop application

dir File

RDF
dir

File

project

RDF

each RDF repository
becomes a sub-web
site

project

web application

desktop application
Ajax applications

GWT

services Eclipse plugin
dependency injection container

Sesame

RDF2Go
RDF graphs:

configuration data
(from Hyena and

users)

functions:
operations to

invoke from GUI
and/or wiki pages

inspectors:
resource editors

embedders: "print"
a resource (as

HTML or LaTeX)

components: API
for implementors

Architecture

Tagged: BibTeX, bookmarks, list of favorite films, notes, Java code references
Other: compound document, list of friends (via FOAF), travel checklist (outline)

Editing scenarios

Other resource data: facets, namespaces, embedding templates

resourcewiki page link to

embed

Fresnel lens

SPARQL query
(embeddable)

define editor for
collect sets

RDF repository

Axel Rauschmayer, LMU München (Germany)
Axel.Rauschmayer@ifi.lmu.de
www.pst.ifi.lmu.de/~rauschma

Application
constructs encoded
as resources

Data organized as
projects

Hyena
synchronize synchronize

105

Integrating a Wiki in an Ontology Driven Web Site:
Approach, Architecture and Application

in the Archaeological Domain

Andrea Bonomi, Alessandro Mosca, Matteo Palmonari, Giuseppe Vizzari

Department of Computer Science, Systems and Communication (DISCo)
University of Milan - Bicocca

{andrea.bonomi, ale.m, matteo.palmonari,
giuseppe.vizzari}@disco.unimib.it

Abstract. This paper describes an approach to the design and implementation of
ontology driven dynamic web sites combining ontologies and wiki technologies.
The core of the architectural solution proposed is completely based on ontologies
rather than on more traditional forms of persistent data storage facilities, such as
relational databases. This approach provides a flexible support to the design and
implementation of web portals in which navigation schemes are not entirely pre-
determined but are instead influenced by actual relationships among the contents
of the ontology, that are used to generate web pages as well as hyperlinks. A wiki
technology is integrated with this approach in order to create pages not directly
derived by elements of the ontology, but also to enrich the textual contents with
suitable formatting, images and hyperlinks. The application of this approach to
the realization of a web portal is also described; the portal is devoted to enable
a number of scientific communities to share archaeological knowledge about the
Silk Road domain.

1 Introduction

The introduction of technologies enabling the development of data driven web sites rep-
resented an extremely important step in the process that lead the initial version of the
Web to its current state of pervasive diffusion and impressive growth rate. Data driven
web sites are able to generate web contents and pages according to the information
persistently stored in a suitable module, such as a relational Data Base Management
System. This represents the last tier of an architecture encompassing a middle tier that
is able to interpret suitable templates for web pages that are instantiated according to ac-
tual data stored in the data tier, and that are eventually passed to the first tier responsible
of the visualization of the page (i.e. the client tier, a common web browser). Tradition-
ally these templates have been realized by integrating modules developed in common
programming languages with a web application (e.g. Common Gateway Interface or
Java Servlet technologies), or embedding “programming languages–like” control struc-
tures and abstractions in traditional web pages through scripting languages (e.g. PHP,
ASP, JSP). Some of the most relevant abstractions related to a data driven web site, and
determining its organization and function are thus implemented and expressed in terms

106

of a database logical schema and specific programming language control structures em-
bedded in page templates.

Even if this approach surely represents a huge improvement with respect to static
web sites, that are essentially repositories of HTML documents and embedded multi-
media contents, a set of different research efforts have been carried out in an attempt
to supply higher level abstractions to support the design and implementation of web
based advanced information systems and applications. Some of these approaches, for
instance [1, 2], are based on traditional data conceptual models for site contents and
extend the scope of the modelling activity to aspects of relevance in the web context,
such as navigation and presentation. In this vein, this paper presents an approach that
provides instead the adoption of an ontological rather that data tier, building on experi-
ences and results of research in the Semantic Web [3] area to provide new abstractions
and instruments for the structuring and management of information supporting dynamic
web pages composition. In particular, the basic idea is to exploit an explicit and formal
conceptualization of concepts related to the web site domain, as well as specific aspects
related to web sites in general, to structure data and information required to generate
contents, to specify the navigation among them and to generate an effective presenta-
tion. The ontological approach provides a uniform and expressive framework for the
representation and management of these different aspects. In particular, the ontology
can encompass documents, and one particular type of document can be represented by
a wikipage. This allows endow this ontology driven approach to the definition, design
and realization of web sites with a more traditional and established form of definition
of contents of web pages.

The following section will elaborate the research context in which this work is set,
briefly introducing relevant related works, while Section 3 introduces the architecture
and the various functionalities offered by NaVEditOW [4], the framework on which
this approach is based. A case study in which the approach has been applied for the
development of a portal organizing archaeological information and documents will then
be introduced. Conclusions and future developments will end the paper.

2 Ontology Driven Web Sites and Wikis

In his proposal for a global hypertext [5], Tim Berners-Lee proposed a “gateway pro-
gram” to generate hypertext view of existing data source. He has imagined a simply
generic gateway with a limited, perhaps read-only, access on a database that allow to
display it as a hypertext and navigate through the data.

Within a short period, the Internet and World Wide Web have become ubiquitous
and today Internet is full of data-driven Web sites: yellow pages, e-Commerce sites,
digital libraries are only the most common examples. But also, forum, blog, wiki, video
and photo sharing website, hotel booking, online auction website, online community,
Web-based email client and Web mapping service are all data-driven Web sites.

A data-driven Web site is much easier to maintain than a static Web site: most con-
tent changes require no change to the pages. Instead, changes are made to the data
source and this source could be enterprise or organization database. Sharing a common
data source, the Web application can be easily integrated within information system.

107

 Relational
database

Pages templates

Client
Web Browser

Application Code

Web Server

Presentation tier

Data tier

Application tier

Fig. 1. On the top schema, the architecture of a traditional data-driven Web site.

So, for example, in a manufacture company when a new product is added to the enter-
prise database, it could be automatically displayed on the corporate Web site products
catalog.

One of the most common architecture used in developing of dynamic data driven
web sites, is shown in Figure 1. In particular, the persistent data storage is generally
delegated to a relational database management system. The web server generally hosts
dynamic pages including server side scripts necessary to query the data tier and collect
the information required to compose pages related to the contents of the database. These
dynamic pages represent a sort of template for the web pages that must be generated
according to the stored data, specifying different aspects ranging from the queries that
must be submitted to the database to retrieve them, to the kind of links that must be
created to support the navigation inside the data.

An evolution of this approach is the adoption of the the MVC (Model View Con-
troller) [6] architectural pattern. In a web based MVC application, the model is the
domain-specific representation of the application information, the view layer is respon-
sible to renders the model into user interface element (HTML pages) and the Controller
processes and responds to the users actions and can invoke data changes.

Generally, the data is stored in a relational database and the model is represented by
a database schema. In our opinion, it is difficult to represent all the relations that could
be present in a complex domain (such the archaeology domain) with a database schema.
In many cases, is difficult to translate some aspects of a conceptual schema (such the
generalization) into the relational model. Some kind of extra-relational constraint are
not representable within the database schema and requests database store procedure or
external application code. There are also problems to manage the database schema, for
example, the is no way to check the schema consistency.

The proposed approach provides the adoption of an ontology [7], rather than a rela-
tional database, as data layer (a schema of such architecture is shown in Figure 1) and
to use a Wiki engine in order to simplified content authoring and management func-

108

Client Web
Browser

NavEditOW

Web Server

Presentation tier

Ontological tier
Application tier

Visualization
annotation

Pages templates

Domain ontology

Documents,
including wiki

pagesRadeox
Wiki Engine

Fig. 2. The overall architecture of the proposed system, integrating a wiki engine for rendering
specific documents stored in the ontological tier.

tionality. In particular, we employed NaVEditOW [4], a system for navigating, editing
and querying ontologies through the web, as a means to access and manage the on-
tology, and we integrate the Wiki technology through the adoption of Radeox [8], that
is an Open Source Wiki engine written in the Java language. An interesting feature of
this engine is that it could be easy extended with custom macros that can support, for
instance, the inclusion in a wiki page of a table of all instances of a given class. The
overall resulting architecture is shown in Figure 2.

The main motivations of this architectural modification are related to a more com-
prehensive exploitation of the explicit relationships among the concepts described in
the ontology, and a simpler integration of this kind of architecture with instruments and
systems developed in the Semantic Web context.

Other approaches of ontology-driven Web site architectures can be found in the
literature: in [9], it is described an application, OntoWeaver, that uses an ontology to
provide a comprehensive support for the design and management of data-driven Web
sites. The described approach uses site ontologies to enable a declarative representation
of all the aspects of a Web sites: in particular, a domain ontology is used as an abstract
of the back-end data sources and a user ontology models information about the Web
site users. In [10] it is described a similar approach in which data from various sources
are converted into RDF-annotated format (based on a domain ontology), composed
together and used to generate a browsable Web site.

A large number of approaches for combining Semantic Web and Wiki technologies
are currently under development; some relevant examples are Makna [11], IkeWiki [12],
Rhizome [13]) and Semantic MediaWiki [14]. The above cited approaches and the re-

109

lated systems are all examples of Wikis expanded to encapsulate and exploit a well–
defined semantics to enhance their functionalities. It is not the aim of this section to
introduce a structured and comprehensive discussion of these approaches and systems
(an interesting discussion on this line of work can be found in [15]), but it is important
to note that the described approach follows a totally different line of work: we are more
focused on supporting a collaborative effort towards the definition of domain ontolo-
gies and their exploitation in web based systems than in supporting the enhancement
of wikis through the usage of semantic web technologies. The NavEditOW system and
this effort can be intended as an attempt to bring part of the spirit of wiki technologies
and the social aspects of the Web 2.0 in the semantic web context. The remainder of the
paper will introduce the NavEditOW system and its application to the realization of a
web portal supporting a community of archaeologists working on Cultural Heritage of
Central Asia.

3 NavEditOW

In this section we present a system for web based navigation, querying and updating
of ontological KBs. The presented software allows exploring the concepts and their
relational dependencies as well as the instances by means of hyper-links; moreover, it
provides a front-end to query the repository with the SPARQL1 query language.

NavEditOW is an environment for navigating, querying and A-Box2 editing of
OWL3 (Web Ontology Language) ontologies through a web-based interface.

With respect to ontology navigation, since individuals play a fundamental source of
knowledge for people accessing an ontology, A-Box navigation should be supported.
From this perspective, it is important to support not only navigation of concept hier-
archies defined by isA relations, but also other forms of ordering on the individuals
domain. As a first example, locations can be linked through a partOf relation and it
should be possible to group locations under the location of which they are all subparts
(e.g. browsing all countries of which Europe is composed of starting from Europe); as a
second example consider a number of historical periods ordered according to a relations
such as followedBy: it should be possible to exploit this relation to sort such individuals
from the first to the last one.

With respect to editing, although T-box4 maintenance require a certain knowledge
about ontological formalisms, A-Box editing should be supported taking into account:
(i) cardinality and range restrictions defined in the T-Box need to be respected; (ii)
ranges of properties and individuals stored in the ontologies can be also exploited to
drive and suggest instance update. Moreover, contextual editing, that is, the editing of
the A-box while browsing the ontology, should be supported.

1 SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language standard-
ized by RDF Data Access Working Group of the World Wide Web Consortium. For more
information, see http://www.w3.org/TR/rdf-sparql-query/

2 The A-Box is the “assertion component” of a knowledge base.
3 http://www.w3.org/TR/owl-features/
4 The T-Box is the “terminological component” of a knowledge base.

110

Although end-users may not be familiar with query languages, the possibility to
perform expressive queries should be supported. From the one hand a language as much
as similar to well-known query languages for relational databases language should be
preferred. On the other hand, interfaces enabling non expert users querying the ontology
should be developed (e.g. query forms).

In the following paragraphs, we presents more details about each of these tree basic
functionalities and the application architecture.

3.1 Navigation

With the ontology navigation interface the users can view ontology individuals and
their properties and browse properties via hyperlinks. Browsing the ontology is essen-
tial for the user in order to explore the available information and it also helps non-expert
users to refine their search requirements, when they start with no specific requirement in
mind [16]. The hierarchical organization of the different concepts and individuals of the
ontology is graphically represented as a dynamic tree. The aim of the navigation tree
is to explore the ontology, view classes and instances, discover the relation between
them. The tree does not represent only the a hierarchy of classes connected with isA
binary relations (like the navigation tree of Protégé), but represents also also tree-like
connections of individuals for domain dependent classes of properties (e.g. partOf, is-
LocatedIn, and so on). From a formal point of view, ontological relations supporting
tree-like visualization (tree-like properties) are those represented as properties not sym-
metric and whose inverse is functional (therefore identifying directed acyclic graphs).
These properties link directly an individual with its “father” and are particularly rele-
vant with respect to mereological relations (e.g. partOf, composedOf), and to relations
defining hierarchical spatial and temporal structures (e.g. representing the unfolding of
historical periods). Another kind of relations exploited for the visualization are relations
defining total orders on individuals (e.g. isFollowedBy).

The root of the navigation tree is the OWL class Thing, and the rest of the tree is
organized as follows: under the root node, there are the top-level classes (i.e. direct
subclasses of Thing); each class can be expanded to show its subclass hierarchy and
its individual members; individual-to-individual tree connections are defined according
to a number of selected tree-like properties (e.g. partOf); finally if total order relations
are selected, they are exploited to order individuals within a given level of the tree.
In order to distinguish between classes and individuals, the former are represented in
petrol blue while the latter are shown in shocking pink. An example of a navigation tree
is presented in the Figure 3. In this example Geographical Region is a class and Cental
Asia, Uzbekistan, etc... are its instances. This individuals, in turn, are connected each
other by the partOf directly property.

3.2 Editing

The application allows the users to create, edit and remove individuals of the ontol-
ogy, their properties and, in particular, their labels. In fact, To ensure multi-languages
support, it’s possible to define several labels in different languages for every individual.

111

Fig. 3. A screenshot of the NavEditOW system in the archaeological case study.

The properties of each classes are defined in the T-Box. Two types of properties are
distinguished: object property is a binary relation between two individuals and datatype
property is a binary relation between an individual and a literal (a primitive type, like
string or number). Cardinality and range restrictions for properties are used to support
users while editing. For example, in an archeological ontology, the class TypologyO-
fArchaeologicalObject has the property builtOf. This property has no cardinality re-
striction (so it can have zero, one ore more values) but Material is specified as range
(co-domain). For instance, Sword is an instance of TypologyOfArchaeologicalObject
and has the property builtOf Metal, where Metal is an instance of Material.

There are a datatype and an object editor in the framework: the datatype editor
allows editing a literal values, displayed as a text input box, object allows defining
the property values presenting the user a tree for selecting the values; the individuals
displayed in the tree are only those that are valid for the property range.

Literal values can be not only plains strings but also Wiki text. This allows the
users to insert long formatted text with link in the generated pages. For example, we
can have the ’Uzbekistan’ individual in our ontology. ’Uzbekistan’, as an instance of
Country, has some properties such population, capital city, part-of, currency, history,
foreign relations, etc. Same (e.g. population) are plain literals (numbers, dates, strings),
others are references to other ontology instances (e.g. the filer of the property ’capital
city’ is Tashkent which is an instance of the class City). History of foreign relations
are Wiki Text, so they can be formatted, contains images an hyperlinks. Wiki Text can

112

also contains ’macro’ that allows to include in the text information from the ontology
or results of SPARQL queries.

NavEditOW adopts an editing policy. Knowledge engineers interacting with domain
experts, are supposed to create the ontology and edit the Tbox with standard design-time
editing tools such as Protégé [17]. They are supposed to test its quality with reasoners
such as Racer [18] or Fact++ [19] in order to check if the Tbox (i) is consistent and (ii)
it captures the intended meaning (by concept hierarchy inference). End-users can edit
the Abox; they can insert new instances, asserting that they are member of a concept
of the ontology, and assert relation statements; this means, that they can edit the textual
descriptions contained in the ontology. The assumption behind this editing policy is
that end users are not familiar with formal semantics. First, learning to use concept
constructor and ontology axioms is difficult for end users, if one goes beyond simple
Tbox updates, such as the insertion of a new concept as subconcept of a concept in
the ontology. Second, every axiom has logical implications that are difficult to control,
especially for people non expert in formal semantics.

3.3 Querying

The first implemented query interface is the SPARQL query form in which users can
write query in the SPARQL language, display results in paginated tabular form and nav-
igate through results via hyperlinks. This interfaces is very flexible because the users
can write arbitrary queries but is not suitable for end users. Another kind of query inter-
faces is based on a predefined set of queries. Every predefined queries is composed of a
description in natural language, a SPARQL query with eventually free parameters and a
list of parameters. Every parameters have a label, a type and eventually a restriction on
the valid values (e.g. a parameter can be filled only with instances of a specific class).
For this interface, users can select a query by its description, fill the query parameters
and execute it. The results are presented as the results of the other query form. The
queries can be inserted in the Wiki Text through a macro, for example the following
macro shows in the resulting page all the provinces of the Uzbekistan:

{sparql | SELECT ?x
WHERE { ?x silkrode:partOf silkrode:Uzbekistan .
?x rdf:type silkrode:Province }}

3.4 Application architecture

From an architectural point of view, the functionalities (ontology editing, navigation
and querying) of the user interfaces are based on the Application API, as shown in
Figure 5. The main purpose of this API is to support the manipulation and querying
of the ontology through the standard SPARQL query language and through a set of
specific adapters, shielding the user from the underlying semantic framework. A plug-in
interface, in fact, makes the application independent from the adopted specific semantic
framework (as long as SPARQL is supported). A different adapter for every semantic

113

Fig. 4. Example of datatype properties editing with Wiki Text (on the left) and object properties
editing (on the right).

framework is needed because SPARQL is only a query language and does not offers
any data manipulation statements (e.g. INSERT, UPDATE, DELETE).

The adapter API supports the manipulation and query of the RDF graphs in two
different ways: frame-centric and statement-centric. The former view is similar to the
object-oriented paradigm: every resource is viewed as an object and properties as at-
tribute. This view is used for ontology navigation and resource manipulation. Statement-
centric is a lower level view in which the graph is represented as a set of triples. Each
triple contains three components: subject, predicate and object.

Currently two semantic framework adapters have been implemented: the first one is
a wrapper for the Jena Semantic Web Toolkit, the other for the Sesame Framework. The
former is an open-source Semantic Web Toolkit5 aimed at supporting the development
of applications that use the Semantic Web information models an languages [20]. We
have initially adopted this framework since it matched our requirements, it is widely
used within the Semantic Web research community and well documented. This first
adapter implementation works well with small ontologies, but fails with larger ones
since Jena is not suitable to manage an huge amount of data (a performance evaluation
of several frameworks suitable for large OWL ontologies is presented in [21]). For this
reason, we choose to develop a new adapter for the Sesame Framework6 [22]. Sesame
provides a number of functionalities for handling (querying and manipulating) RDF
graphs. It also supports various types of storage facilities and inference mechanisms.

5 http://jena.sourceforge.net/
6 http://www.openrdf.org

114

SPARQL

Persistent Storage

Application API

Semantic Query
Interface

Semantic Navigation
Interface

Web Interface

Se
m

an
tic

fra
m

ew
or

k
la

ye
r

Pr
es

en
ta

tio
n

la
ye

r

Bu
sin

es
s

lo
gi

c
la

ye
r

A-Box
Editor

Semanti Framwework Adapter

JenaSesame
External

Reasoning
Service

Remote
SPARQL

Client Radeox Wiki Engine

Fig. 5. The NavEditOW architecture

The default implementation supports inferencing and querying on RDF Schema but
lacks a specific support for OWL.

4 The SilkRoDE Case Study

SilkRoDE (Silk Roads in the Digital Era) is a project that aims to collect, structure
and diffuse all knowledge concerning the Cultural Heritage of Central Asia, including
not only archaeological material, sites and historical monuments but also data from
fields such as geography, sociology and ethnography. It is an open and evolutive project,
which functions as an intelligent network linking all interested institutions, research
groups and scholars, that worked and working in Central Asia.

As a first step, SilkRoDE aims to create a Wiki, used on a daily basis by all special-
ists of Central Asia, interested members of the general public and those involved in Cul-
tural Management. The creation of this Wiki will be possible thanks to a collaboration
between specialists from the Humanities and from Computer Sciences in a very close
multidisciplinary context. One of the keys to the success of the SilkRoDE project is the
decision of all participating scholars, institutions and research groups to work together
as Equal Partners. This does not mean that all resources are simply pooled together
but that each resource is clearly associated to the authors and funding agencies that en-
abled its creation. SilkRoDE thus aims to be a Network rather than a new institution.
In this perspective, the NavEditOW system represents the general platform adopted by
the Project to organize and manage the various different contents of SilkRoDE Wiki.
The main aim is to share information and knowledge, and all partners should thus be
enabled to employ the system to publish, connect personal data and information, and
to identify other groups or Institutions working or interested in same themes. This need
for a collaborative and collective participation in data and information collection phases
lead us to choose a Wiki–based approach to develop the SilkRoDE portal.

115

The introduced approach and the NavEditOW system were adopted to represent
and organize basic information about institution, research groups and scholars having
active researches in Central Asia, as well as information about relevant bibliography
and important cultural and archaeological sites. The platform will be integrated with
webGIS: the possible connection between specific entities of the SilkRoDE ontology
and georeferred entities stored in a GIS will support the visualization of spatial position
and distribution of various entities in dynamically generated maps.

The ontological approach provided the required expressiveness and flexibility even
in these starting phases of the project, in particular in order to support rich forms of nav-
igation among stored contents. In particular, this approach provided the possibility of
representing and managing relationships like “is-a” and “part-of” without flattening the
related entities in a single table or splitting them in different tables, as would have been
necessary adopting a traditional relational database. For instance institutions, research
groups and individual scholars are all actors of the SilkRoDE ontology, in other words,
they are individuals belonging to classes that are related to the Actor class by an “is-a”
relation. It is now possible to define a generic relationship binding an archaeological
site to an instance of the Actor class or one of its subclasses, without the need to define
different relationships. This flexibility in defining and establishing relationships among
individuals will support further types of analysis aimed, for instance, at identifying pos-
sible connections among actors that are working on similar or related research issues,
or geographic areas, or adopting similar methodologies.

5 Conclusions and Future Developments

The paper has described an ontology driven approach to the modeling, design and im-
plementation of dynamic web sites. In particular, we aimed at simplifying the realiza-
tion of web based systems that exploit and give access to a shared ontology, but these
systems should also look like traditional web sites and support simple forms of navi-
gation. To this aim, we endowed the system with a wiki engine and we included doc-
uments, and in particular wiki pages, in the ontological tier, to support a simple form
of editing of pages that give the site an ordinary structure and appearance, that can be
enhanced by means of the exploitation of the underlying domain ontology.

The motivations of this effort, as well as related work and the research context
were introduced, and the NavEditOW framework was described, in terms of provided
functionalities and architecture. A case study providing the application of the introduced
approach and framework was also presented.

Future works are mainly aimed at extending the range of the represented and man-
aged concepts, with particular reference to the various topics that can be used to char-
acterize relevant scientific publications, in an effort similar to the one described in [23].
Moreover, in the medium term, the project will consider the possibility to realize spe-
cific wrappers able to to export contents complying to the CIDOC Conceptual Ref-
erence Model [24], so as to achieve a high level of interoperability with this relevant
standard for cultural heritage information organization.

116

With respect to the editing policy, it will be tested the possibility to enable end-
users to insert new concepts and the respective subclass-relations. Moreover the more
extended use of reasoning capabilities will be investigated.

References

1. Atzeni, P., Nostro, P.D.: T-Araneus: Management of Temporal Data-Intensive Web Sites. In
Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm,
K., Ferrari, E., eds.: EDBT. Volume 2992 of Lecture Notes in Computer Science., Springer
(2004) 862–864

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling Lan-
guage for Designing Web Sites. Computer Networks 33(1-6) (2000) 137–157

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5)
(2005) 34–43

4. Bonomi, A., Mosca, A., Palmonari, M., Vizzari, G.: NavEditOW - a System for Navigating,
Editing and Querying Ontologies through the Web. In Apolloni, B., Howlett, R.J., Jain,
L.C., eds.: KES (3). Volume 4694 of Lecture Notes in Computer Science., Springer (2007)
686–694

5. Berners-Lee, T.: Information Management: a Proposal (1989)
6. Leff, A., Rayfield, J.T.: Web-Application Development Using the Model/View/Controller

Design Pattern. In: EDOC, IEEE Computer Society (2001) 118–127
7. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.

International Journal of Human-Computer Studies 43(5-6) (1995) 907–928
8. Jugel, M.L., Schmidt, S.J.: The Radeox Wiki Render Engine. In Riehle, D., Noble, J., eds.:

Int. Sym. Wikis, ACM (2006) 33–36
9. Lei, Y., Motta, E., Domingue, J.: Modelling Data-Intensive Web Sites with Ontoweaver. In

Grundspenkis, J., Kirikova, M., eds.: CAiSE Workshops (1), Faculty of Computer Science
and Information Technology, Riga Technical University, Riga, Latvia (2004) 106–121

10. Jin, Y., Decker, S., Wiederhold, G.: Ontowebber: Model-Driven Ontology-Based Web Site
Management. In Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L., eds.: SWWS. (2001)
529–547

11. Dello, K., Simperl, E.P.B., Tolksdorf, R.: Creating and Using Semantic Web Information
with Makna. In Völkel, M., Schaffert, S., eds.: SemWiki. Volume 206 of CEUR Workshop
Proceedings., CEUR-WS.org (2006)

12. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management. In:
WETICE, IEEE Computer Society (2006) 388–396

13. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5) (2005) 87–91
14. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic MediaWiki. In Cruz, I.F., Decker, S.,

Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L., eds.: International
Semantic Web Conference. Volume 4273 of Lecture Notes in Computer Science., Springer
(2006) 935–942

15. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in Semantic Wikis. In Antoniou,
G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R., eds.:
Reasoning Web. Volume 4636 of Lecture Notes in Computer Science., Springer (2007) 310–
329

16. Ram, S., Shankaranarayanan, G.: Modeling and Navigation of Large Information Spaces: a
Semantics Based Approach. In: 32nd Annual Hawaii International Conference on System
Sciences (HICSS-32), 5-8 January, 1999, Maui, Hawaii, Track 6: Modeling Technologies
and Intelligent Systems., IEEE Computer Society (1999)

117

17. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy,
N.F., Tu, S.W.: The Evolution of Protégé: an Environment for Knowledge-Based Systems
Development. Int. J. Hum.-Comput. Stud. 58(1) (2003) 89–123

18. Haarslev, V., Möller, R.: Racer: a Core Inference Engine for the Semantic Web. In Sure, Y.,
Corcho, Ó., eds.: EON. Volume 87 of CEUR Workshop Proceedings., CEUR-WS.org (2003)

19. Tsarkov, D., Horrocks, I.: Fact++ Description Logic Reasoner: System Description. In
Furbach, U., Shankar, N., eds.: IJCAR. Volume 4130 of Lecture Notes in Computer Science.,
Springer (2006) 292–297

20. McBride, B.: Jena: a Semantic Web Toolkit. IEEE Internet Computing 6(6) (2002) 55–59
21. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large OWL

Datasets. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International Semantic
Web Conference. Volume 3298 of Lecture Notes in Computer Science., Springer (2004)
274–288

22. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: an Architecture for Storing and
Querying RDF Data and Schema Information. In Fensel, D., Hendler, J.A., Lieberman, H.,
Wahlster, W., eds.: Spinning the Semantic Web, MIT Press (2003) 197–222

23. Bonomi, A., Mantegari, G., Vizzari, G.: A Framework for Ontological Description of Ar-
chaeological Scientific Publications. In Tumarello, G., Bouquet, P., Signore, O., eds.: Se-
mantic Web Applications and Perspectives 2006, Proceedings of SWAP 2006, the 3rd Italian
Semantic Web Workshop, Pisa, Italy. Volume 201 of CEUR Workshop Proceedings. (2006)

24. Doerr, M.: The CIDOC CRM, an Ontological Approach to Schema Heterogeneity. In
Kalfoglou, Y., Schorlemmer, W.M., Sheth, A.P., Staab, S., Uschold, M., eds.: Semantic Inter-
operability and Integration. Volume 04391 of Dagstuhl Seminar Proceedings., IBFI, Schloss
Dagstuhl, Germany (2005)

118

Extending the Makna Semantic Wiki to support
Workflows

Karsten Dello, Lyndon Nixon, and Robert Tolksdorf

Freie Universiẗat Berlin, Institut f̈ur Informatik,
AG Netzbasierte Informationssysteme, Takustr. 9, D-14195 Berlin, Germany

{dello,nixon,tolk }@inf.fu-berlin.de ,
http://www.ag-nbi.de/

Abstract. Semantic wikis combine the advantages introduced by the wiki princi-
ple with the potential of Semantic Web technologies. However, there is still a very
limited support for coordination, collaboration and integration in current seman-
tic wikis. In this paper, we present a solution for this through the integration of our
Makna semantic wiki with a workflow system. The resulting implementation is
presented and an example given how this integration leads to better coordination,
collaboration and integration support.

1 Introduction

Wikis have become popular tools for collaborative information management rooted in
the principles of editability and collaboration : each member of the community can
provide his knowledge, revise incorrect information and of course benefit from access
to everyone else’s knowledge. Semantic wikis are a natural extension of this, allowing
for knowledge to be provided in some formal manner, e.g. using RDF, to improve the
search for and retrieval of knowledge in the wiki system.

In this paper, we respond to a significant shortcoming in current semantic wiki sys-
tems in that they provide limited support for coordination, collaboration and integration
despite the presence of semantics which can be used to improve such aspects. Partic-
ularly for corporate semantic wikis, it can be important to follow specific workflows
in the collaborative editing of some wiki article, e.g. that a certain department must
provide its input before another department takes over working in the wiki.

We present our proposal for the limited coordination, collaboration and integration
of semantic wikis: combining a semantic wiki and a workflow management system. We
have designed a model integrating the semantic wiki’s data model with the WfMC pro-
cess definition reference model (http://www.wfmc.org/standards/referencemodel.htm).
Following an introduction to the semantic wiki used in this work, Makna, we describe
its integration with the workflow engine jBPM. We evaluate the implementation towards
a workflow example and conclude by considering the contribution of this work.

2 Integrating a semantic wiki with a workflow engine

Makna was conceived as a Wiki-based tool for distributed knowledge engineering
(http://makna.ag-nbi.de). It extends an existing Wiki engine with generic, easy-to-use

119

2

ontology-driven components for collaboratively authoring, querying and browsing Se-
mantic Web information. The architecture ofMakna consists of the Wiki engine JSP-
Wiki (http://www.jspwiki.org/), extended with several components for the manipulation
of semantic data, and the underlying persistent storage mechanisms. A more detailed
description of Makna and the user interfaces it supports can be found in [DPT06].

For this work we integrated the semantic wiki Makna and the workflow engine
jBPM . The architecture of the distributed system with jBPM and Makna consists of a
J2EE server, J2SE server(s), and a workstation and database servers that serve as per-
sistence stores. In this paper we briefly consider some of the aspects of this integration
which were implemented.

2.1 Semantic Workflow Annotation

It is necessary to reflect the workflow instances (e.g. tasks and processes) in the se-
mantic model in order to support search for and enhanced presentation of tasks and
processes. The insertion of workflow concepts into the semantic model at runtime has
two prerequisites: first, a mechanism must be provided which assigns URIs to workflow
instances; second, these URIs must be made accessible in jPDL process definitions.

With these prerequisites met, semantic decoration of workflow execution can be
performed with standard jBPM procedures. While traversing a process graph the en-
gine fires events – e.g.process-start, process-end, task-start, task-endandtask-assign
– which can be associated with custom actions. By associating these events with ac-
tions that perform SPARUL update queries based on URIs for workflow instances, the
progress of a workflow can be reflected in the semantic model.

2.2 Semantic Flow Conditions

Facilitating semantically enhanced flow conditions in the process execution phase is
desirable, because inference allows for transitions and control flow, based on the de-
scription of a workflow in the semantic model itself.

jPDL supports the association of transitions with boolean expressions which are
based on workflow relevant data. The process execution continues via the first transi-
tion whose associated expression resolves to true, or via the default transition if none
of the expressions resolves to true, though this behavior can be customized. Anyway, a
straightforward approach is to query the semantic model with a SPARQL-ASK-Query,
and store the result in a process variable which determines an expression that is associ-
ated with a transition. This procedure facilitates simple control of the process based on
semantic model state.

2.3 Semantic Assignments

Strategies for the assignment of tasks to wiki users that build on semantic user and
task descriptions should be supported by the system. Semantic user descriptions can be
based on formalizations such as DOAC. Task descriptions are a bit more complicated
because not only the general description of a task, which is valid for all task instances,

120

3

but also details of the current execution of a particular instance might be relevant for as-
signments. The description of users and tasks can use common concepts, e.g. by sharing
domain ontologies. The actual assignment of tasks to users is realized through a jBPM
AssignmentHandlerimplementation which can be configured with a SPARQL query
that references these concepts.

2.4 Semantic Search and Presentation of Workflow Individuals

The structured presentation of semantic resources has been a lacking feature in Makna.
To deal with this problem we have added support for formating SPARQL XML re-
sponses with XSLT. This functionality is encapsulated as another JSPWiki-Plugin, which
additionally has limited support for expressions that are resolved at rendering time (e.g.
logged in user and page URL). Via an endpoint parameter remote triplestores are also
supported. The plugin enables the structured presentation of workflow individuals such
as tasks and process instances in the wiki. It can be called from the JSPWiki template
level (invoked from a JSP) or from the wiki page level (invoked from wiki syntax). An-
other application of this plugin in the generation of lists such as semantically enhanced
task lists. The tasks that have been assigned to the logged in user can be arranged by
domain specific structures, thus enabling semantically enhanced task lists.

3 Evaluation

In this section we present an example workflow to illustrate improvement of coordina-
tion, collaboration and integration support in our system.

3.1 Example Workflow

Fig. 1.Sample workflow for the processing of a new specimen. The three columns are associated
with the process swimlanesFieldWorkParticipant, TaxonomistundCurator.

We have derived a couple of example workflows from a business model within the
EDIT (European Distributed Institute of Taxonomy) project (http://www.e-taxonomy.
eu/). Figure 1 shows a typical workflow: the processing of a specimen. It involves three

121

4

actors: a field trip participant who describes the finding of the specimen, a taxonomist
who performs the taxonomical identification and a curator who is responsible for the
curational administration.

First, somebody in the role of afield work participanttriggers the start of the process
1 and describes the discovery of a new specimen through an associated task form in
the userconsole, whereby a new wiki page is created from a template. This template
contains enhanced wiki syntax with placeholders for subjects of statements, which are
replaced with corresponding user input. User input consists of literals (e.g. from textarea
and input fields) as well as URIs of concepts and instances (e.g. from JSFSelectItem
elements). Predicates used in the template are taken from existing ontologies.2

Notification by email is sent to somebody in thetaxonomistswimlane to inform
him/her that he/she is due to perform a taxonomic identification of this specimen. Again,
the results are committed to the workflow engine through a task form. Upon completion
a new page with the results of the taxonomic identification is created, and a typed link
to it is inserted on the discovery page. A last action must be taken by somebody in
the role of acurator. The selection of the actor is formalized as a SPARQL query
and executed upon creation of the task instance. It is based on semantic description of
curators’ responsibilities and the results of the taxonomist’s identification.

3.2 Improved Coordination, Collaboration and Integration

Even though this short sample workflow makes only use of one workflow pattern –
the sequence – it can be used to show that coordination, collaboration and integration
support has been improved. The combination with a workflow system has enabled the
coordination of interactions within a wiki system. The creation of a new wiki page in
the nodeCreateIdentificationPagehas been combined with the modification of another
page in the nodeUpdateSpecimenPagewhich adds a link to the newly created page,
thus realizing a coordinated modification of two wiki resources.

The collaboration of the participating actors is described in the workflow, thus en-
abling a controlled yet versatile modification of a semantic wiki resource. The chrono-
logical dependencies between the activities of the actors in the process rolesFieldWork-
Participant, TaxonomistundCurator is reflected in the sequential flow of the process.
Through task assignment notifications the taxonomist and the curator are informed by
emails about their tasks which arise from other user’s previous activities. Further on,
the workflow assures that information which is required in a later step is present before
the execution continues, thus facilitating an efficient collaboration. In this example this
has been realized at user interface level by the use of JSF validators in the associated
task forms, though it could also has been realized at process definition level by means
of a jBPM task controller.

Because the execution of processes and tasks is reflected in the wiki’s semantic
model it is also possible to use hypertext navigation facilities between task, process

1 Workflow related functionality (e.g. listing and starting of processes) is provided by JSPWiki
plugins in Makna which use RMI to interact with the jBPM engine.

2 In our example we reuse the FungalWeb ontology [SNBHB05] for mycological classifications
and TDWG’s LSID ontologies for taxonomic data.

122

5

and user resources. Further on, Makna’s click-searches which are provided with every
resource in the wiki can also be helpful for collaboration. Examples include a list of all
users with tasks in a certain process and a list of all specimen that have been identified
by a certain taxonomist.

Another aspect of the improvement of collaboration support is the selection of an
actor in the curator swimlane based on the results of the taxonomic identification and the
semantic responsibilities descriptions in the wiki. In this example the taxonomic iden-
tification requires the selection of aFungalWebconcept and responsibility descriptions
of actors refer to the same ontology. Because of the hierarchical structure of theFun-
galWebontology it is possible to infer the responsible actor, thus realizing a dynamic
assignment strategy.

4 Conclusion

We have considered in this paper how the limited coordination, collaboration and in-
tegration support of semantic wikis could be improved and have presented a solution
based on integration with a workflow system. Initial evaluation of our implementation
has demonstrated improvements in these aspects which, in the authors’ view, can prove
to be of importance to the future uptake of semantic wiki systems, particularly in the
corporate environment.

We plan to continue the development of Makna, and particularly to explore in a
practical manner the deployability of semantic wikis in enterprise environments through
our Corporate Semantic Web research group (http://www.corporate-semantic-web.de),
which has as one of its goals research in corporate semantic collaboration. Makna and
its workflow system integration is a first product of our work on corporate semantic
wikis, and through industrial partnerships we plan to test the usability of Makna in
real business scenarios where the described coordination, collaboration and integration
support is of great importance.

5 Acknowledgments

This work has been partially supported by the “InnoProfile-Corporate Semantic Web”
project funded by the German Federal Ministry of Education and Research (BMBF) and
the BMBF Innovation Initiative for the New German Länder - Unternehmen Region.

References

[DPT06] Karsten Dello, Elena Bontas Simperl Paslaru, and Robert Tolksdorf. Creating and
using semantic web information with makna. In Max Völkel and Sebastian Schaf-
fert, editors,Proceedings of the First Workshop on Semantic Wikis - From Wiki To
Semantics, volume 206 ofWorkshop on Semantic Wikis, pages S.43–57, Budva,
Montenegro, June 2006. ESWC2006.

[SNBHB05] Arash Shaban-Nejad, Christopher Baker, Volker Haarslev, and Greg Butler. The
fungalweb ontology: Semantic web challenges in bioinformatics and genomics. In
Proceedings of the International Semantic Web Conference 2005, volume 3729 of
Lecture Notes in Computer Science, pages 1063–1066. Springer, 2005.

123

SWOOKI: A Peer-to-peer Semantic Wiki

Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli

LORIA – INRIA Nancy-Grand Est, Nancy Université, France
{Charbel.Rahal, skaf, molli}@loria.fr

Abstract. In this paper, we propose to combine the advantages of se-
mantic wikis and P2P wikis in order to design a peer-to-peer semantic
wiki. The main challenge is how to merge wiki pages that embed se-
mantic annotations. Merging algorithms used in P2P wiki systems have
been designed for linear text and not for semantic data. In this paper, we
evaluate two optimistic replication algorithms to build a P2P semantic
wiki.

1 Introduction

Nowadays, Wikis are the most popular web-based collaborative writing tools.
In spite of their popularity, wikis suffer from the difficulty of navigation and
information retrieval. To overcome these problems, some traditional wiki systems
turned into semantic wikis. Semantic Wiki is a wiki engine with technologies from
semantic web1 to embed formalized knowledge, content, structures and links in
wiki pages. Popular semantic wikis are based on the client-server architecture. All
wiki pages reside on a single server that controls operations of distributed users.
Consequently, scalability, performance, fault-tolerance and load balancing are
major challenges for current semantic wikis. In addition, centralized architecture
suffers from censorship problem and does not support off-line work. An approach
to solve these problems is to shift from centralized architecture to full distributed
(peer to peer) one. In this paper, we address the challenge of transforming a P2P
wiki system into a P2P semantic wiki system. In fact, merging algorithms used
in P2P wiki systems have been designed for linear text and not for semantic
data. In this paper, we show how we can use the existent optimistic replication
algorithms to build a P2P semantic wiki.

2 SWOOKI Approach

SWooki is the first attempt to build a peer to peer semantic wiki. SWooki is based
on Wooki [1] a peer-to-peer wiki system. SWooki integrates the semantic web
technology by following the philosophy of Semantic Media Wiki[2]. The semantic
annotations are embedded in the wiki text via a wiki markup e.g. typed links.
It follows the use of wikis for ontologies approach. A formal ontology emerges

1 www.w3.org/2001/sw

124

during the edition of the wiki pages. SWooki provides the same functionalities of
any server-based semantic wiki. In addition, SWooki allows the following three
interesting use cases for P2P wikis: (1) a massive collaboration, (2) the off-
line editing, and (3) an ad-hoc collaboration [3]. In order to combine P2P wiki
system with semantic wiki systems, it is very important to know how semantic
wikis represent their semantic data and how they combine textual parts with
semantic parts. The main issue that we address is how to merge wiki pages that
contain semantic annotations and if this combination changes the behavior of
the Semantic Media Wiki. In this paper, we investigate how we can combine the
Wooki with the Semantic Media wiki. We called this combination SWooki.

We adopt Wooki [1] because it supports all use cases for a P2P wiki system
previously cited. In Wooki, wiki pages are replicated over all members of the
p2p overlay network. A wiki page is considered as a sequence of lines. Each
server hosts a copy of pages and can autonomously offer the wiki service. Page
copies at each site are maintained by an optimistic replication mechanism called
Woot [4] that disseminates changes and ensures consistency. Woot ensures the
CSCW principles of convergence and user intentions. The only two available
merging algorithms for peer-to-peer wikis are the Thomas rule [5] and Woot
strategy. These algorithms handle linear text. The merge using these algorithms
is done by the server which differs from the merge done by the users during
concurrent editing in centralized semantic wikis. In case of Thomas rule, only
the modifications of the user that lastly saved are kept. In case of Woot, the result
includes the modifications of all users. However, the result in Woot is produced by
the server and must be reviewed by a human in order to verify its accuracy. The
Woot algorithm preserves users intentions, all concurrent effects are visible in the
final version of the wiki page. If the user wants to change the result of the merge,
he can do that easily. In conclusion, Swooki adopts the Woot algorithm because
it provides the best solution for the merge by keeping all concurrent changes
made by the users without any lost of updates. The SWooki approach allows to
build a P2P semantic wiki very easily by integrating semantic annotations into
a P2P wiki. It allows also to balance the load of queries. It provides a cheap
way to have many replicas of the same semantic wiki. This total replication of
semantic data can be used to distribute semantic queries on different replicas.

References

1. Weiss, S., Urso, P., Molli, P.: Wooki: a p2p wiki-based collaborative writing tool.
In: Web Information Systems Engineering, Nancy, France, Springer (2007)

2. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic Wikipedia.
Proceedings of the 15th international conference on World Wide Web (2006)

3. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys (2004)

4. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P collaborative edit-
ing. Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work (2006) 259–268

5. Johnson, P., Thomas, R.: RFC0677: Maintenance of duplicate databases. Internet
RFCs (1975)

125

A Generic Corporate Ontology Lifecycle

Markus Luczak-Rösch and Ralf Heese

Freie Universität Berlin, Berlin 14195, Germany,
{luczak,heese}@inf.fu-berlin.de

Abstract. Weaving the Semantic Web the research community is work-
ing on publishing publicly available data sources as RDF data on the
Web. To facilitate the adoption of Semantic Web technologies in corpo-
rate environments some issues on ontology engineering have to be ad-
dressed, e.g., support unexperienced employees to work collaboratively
on ontologies. Although, existing methodologies structure well the pro-
cess of ontology engineering, we miss an adequate tool support. We de-
scribe the Lekapidia case study and derive requirements for ontology
engineering in a corporate environment. Furthermore, we present an ex-
tended ontology lifecycle integrating ontology engineering and ontology
usage.

1 Introduction

Within the past years the Semantic Web community has developed a compre-
hensive set of standards and data formats to annotate semantically all kinds of
resources, e.g., documents and images. Currently, a main focus lies on integrat-
ing publicly available data sources and publishing them as RDF on the Web,
e.g., linking open data [1]. In contrast, many corporate IT areas are just start-
ing to engage in Semantic Web technologies. Early adopters are in the areas of
enterprise information integration, content management, life sciences and gov-
ernment [2]. Applying Semantic Web technologies to corporate content is known
as Corporate Semantic Web.

To facilitate the adoption of Semantic Web technologies in a corporate en-
vironment some issues have to be addressed. Although ontology engineering
methodologies might be well thought out, we miss an adequate tool support for
unexperienced participants and the economic-driven needs of companies.

In Section 2 we present the results of the Lekapidia case study. A team of
six people modeled collaboratively an ontology on desert recipes. Afterwards,
this process was examined under the theoretic foundations of the DILIGENT
methodology and simulated using a wiki-based tool for ontology engineering.
We analyze the results of the case study in Section 3 and derive requirements on
tools for modeling ontologies in a corporate environment. As a result we present
an innovative two parts ontology lifecycle. Furthermore, we describe a corporate
Semantic Web scenario, developed in cooperation with the Projektron GmbH: a
semantic ticket system.

126

2

2 Lekapidia Case Study

In this section we describe the Lekapidia case study which we use to evaluate
wiki-based ontology engineering empirically and to derive requirements for on-
tology engineering in a corporate environment. First we outline the setting of
the case study and describe how the DILIGENT methodology was applied to
this scenario. Afterwards, we present our conclusions drawn from the case study
which refers to the special needs of corporate environments. In the Lekapidia
case study a team of six students were asked to develop collaboratively a seman-
tic wiki for desert recipes including a desert recipes ontology, while other four
people were working as the software engineers. The teams were free in choosing
the tools to build the ontology, to develop the application, to control the collab-
orative work, and to produce a documentation. They used Protégé for modeling
tasks and a conventional MediaWiki for discussions.We used the case study for a
valuable proof-of-concept of the DILIGENT ontology engineering methodology
[3]. DILIGENT [4] assumes that ontology engineering scenarios are characterized
by unexperienced and unequally skilled participants working in a distributed en-
vironment having individual needs on the ontologies. It permits local adoptions
of ontologies and also defines a structured and iterative process for user argu-
mentation to discuss changes of the central ontology. After reaching a consensus
a central board decides on the integration of these adoptions into the central
ontology. We used a wiki-based tool, coefficientMakna, as an integrative support
to facilitate DILIGENT. For that reason a semantic wiki system was extended
to support two semantic models. One model for statements about normal wiki
pages and on model for discussion pages and pages which are marked as devel-
opment issues or ideas. The structured argumentations follow the DILIGENT
argumentation ontology. Thus, it is possible to hold discussions related to design
issues as well as ontology primitives. When a decision is made the ontology con-
sensus is build automaticly by processing the arguments. It is possible to build
multiple ontologies for multiple groups in that way.

The participants of the Lekapidia project had no experience in ontology en-
gineering. Examining the activities of the working groups we discovered a lack of
communication. Considering DILIGENT, we discovered that the argumentation-
based approach has enabled the unexperienced users to discuss their design de-
cisions in an intuitive way. However, it does not support application-dependent
or scenario-oriented ontology engineering. Empirical studies such as [5] state
that the adoption of wikis in enterprises fails due to missing participation and
underestimated entrance barriers of wikis.

Lekapidia does not allow any proposition about a long-running ontology en-
gineering lifecycle, because the developed ontology was not deployed in a pro-
ductive system. Even though, the structure of the project is close to real-world
ontology development processes. The simulation with coefficientMakna allows
to draw conclusions from a concrete methodological approach. We come to the
conclusion that wiki-based approaches do not adequately support ontology engi-
neering tasks. We identify a strong gap between the currently accepted ontology
engineering approaches, e.g. DILIGENT, which suggest the applicability of wiki-

127

3

based ontology engineering, and the needs of ontology engineering in corporate
contexts. Ontologies are commonly seen as an artifact without any application-
dependence. We suggest it as the outcome of a process which is concurrent while
the ontology is in use and which is not finished after a decisive iteration step.
Thus, appropriate methodologies and tools are needed, which respect this per-
spective.

3 Requirements of Corporate Ontology Engineering

The Lekapidia case study results a lack of adequate methodologies and tools re-
specting the agile character of ontology engineering. In the following we present
new requirements for ontology lifecycles in a corporate environment. A key fea-
ture of our lifecycle is that it includes a cycle feeding back requirements on the
ontology derived from its usage.

Corporate Ontology Lifecycle

Corporate Semantic Web refers to the usage of Semantic Web technology in a
corporate environment. In a project of the same name we focus besides others
on ontology engineering in a collaborative environment to increase the effective-
ness of this process. A main advantage over realizing the Semantic Web is the
controlled environment in a company. That allows us to name the boundaries of
the setting as follows:

– Central allowance and control of the conceptualization
– Existing rules and workflows for employees
– Limited domain complexity
– Trust in semantic annotations

A main part of ontology engineering is the evolution of an ontology over life
time. Figure 1 depicts our approach towards a corporate ontology lifecycle. The
outer circle describes the engineering process by ontology engineers and domain
experts while the inner one describes the adaption of the ontologies driven by
usage requirements.

The ontology engineering process (outer circle) starts with the creation/selection
phase by collecting and model knowledge fragments which results in a prototype
ontology. This ontology is validated against the objectives. At the intersection
point between the engineering and the usage cycles the engineers decide if the
ontology reached a state to be used (populated) in the production system. If
it does not meet the requirements or change requests arise from its usage the
ontology engineers have to evaluate the current ontology. The evolution/forward
engineering phase describes the task of changing the ontology to meet the new
requirements. If an ontology has been populated to the production system then
instances of concepts are generated by processing data and documents. The
ontology is deployed. The feedback tracking phase is essential for adapting the

128

4

Fig. 1. The Corporate Ontology Lifecycle

ontologies to new requirements arising from its usage. A new requirement arises
if a user gives explicit feedback, e.g., by arguing about concepts and relation-
ships, or a system monitor generates conclusions by tracking the user behavior.
The collected feedback and requirements are analyzed (synchronization) and if
inconsistencies are recognized between the user’s viewpoint and the ontology
then ontology engineers start to adapt the ontology entering the outer cycle.

Use Case Semantic Ticket System

We transfer our lifecycle model into practice to support a feasible evaluation.
In cooperation with the Projektron GmbH we evaluate the proposed ontology
lifecycle in a real-world scenario: a semantic ticket system. Projektron uses and
sells a ticket system which can be used to collect requests of customers, e.g.,
bug reports for a software. Although tickets are annotated with keywords and
categories, similar tickets cannot be detected automatically. A main reason is
the usage of synonym terms, e.g., differences in the terminology of the customer
and the operating company of the ticket system. The difference in terminology
may originate from the adaption of a software product to the terminology of
the customer. For example, the customer uses “job” or “issue” instead of “task”.
Having the information about similar tickets a software engineer could solve
these tickets in a single run and, thus, save time.

Establishing an ontology lifecycle as described above helps to keep track of
customer-specific changes in the terminology of a software product. Furthermore
the ontology has to be adapted to the terminology of ticket submitters to be able
to detect similar tickets in the system.

We name the following requirements for a semantic ticket system aiming at
an integrative support for our lifecycle:

1. Expert design tools enable the operating company to develop valid and con-
sistent ontologies.

129

5

2. (Semi-)Automatic knowledge acquisition performed by machine learning al-
gorithms, amongst others, lessens the effort for the ontology engineers to
develop valuable ontology prototypes, e.g., based on the common terminol-
ogy of a customer.

3. (Semi-)Automatic knowledge retrieval lessens the additional work for the
user to annotate relevant data at the run-time.

4. Lightweight extended communication platforms, e.g., forums or feedback
forms, and the automatic recovery of user behavior feature the adaption
of new requirements arising from ontology usage.

5. Alternative intuitive visualization, e.g., graph visualizer, provide an intuitive
navigation for users of any level of experience and enable easy detection of
similar concepts.

6. Interfaces for applications are necessary to allow a number of applications
to integrate as much consistent ontologies as needed.

7. Ontology storage and versioning enable centrally administration and con-
figuration of the interdependence, matching and alignment of the various
coexisting ontologies.

We will extend and use these requirements in progress towards an architecture
for a holistic corporate semantic web and implement a practical proof of concept
which respects them. Thus, we do not just transfer Semantic Web technologies
from web-scale to corporate-scale, but improve the foundations by innovative
research results which start from another point of view, e.g. ontology engineering
as a usage-oriented lifecycle.

4 Related Work

Current lifecycle models for ontologies [6–8] consider only one cycle consisting of
the phases design, validation, population, deployment, maintenance, and evolu-
tion. To our best knowledge there exists only one approach dividing the process
of ontology engineering into two orthogonal cycles [9]. In contrast, our approach
assumes a spiral model. The NeOn project [10] also researches the development
of ontologies and focuses on standardizing the interchange of knowledge between
world-wide operating enterprises. We assume a corporate environment, e.g., the
ontologies are developed to process data and documents in a company effec-
tively.

5 Conclusion

In order to find an applicable set of functional requirements for an integrative
tool-support for ontology engineering in corporate environments, we used the
results of the Lekapidia case study to discard wiki-based tools for this task.
Based on ideas of the DILIGENT methodology and assumed characteristics of
corporate settings, we constructed an innovative ontology lifecycle. The semantic

130

6

ticketing use-case provides the basis for functional requirements which comply
with the lifecycle integrative.

We expect the corporate ontology lifecycle to evolve towards a generic model,
which enables companies to estimate the complexity and the chances of a tran-
sition from conventional information systems to ontology-based information sys-
tems. The approach will suite intra-corporate as well as inter-corporate settings.

Acknowledgement: This work has been partially supported by the ”Inno-
Profile-Corporate Semantic Web” project funded by the German Federal Min-
istry of Education and Research (BMBF).

References

1. W3C SWEO Community Project: Linking open data.
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
(2008)

2. Gartner, Inc.: Hype cycle for emerging technologies.
http://www.gartner.com/it/page.jsp?id=495475 (2006)

3. Luczak, M.: Design and implementation of a wiki-based tool for collaborative
ontology engineering. Master’s thesis, Freie Universität Berlin (2007)

4. Pinto, S., Tempich, C., Staab, S., Sure, Y.: Distributed Engineering of Ontologies
(DILIGENT). In: Semantic Web and Peer-to-Peer. Springer Verlag (2006) 301–320

5. Department of Personnel Economics and Human Resource Man-
agement of the University of Cologne: Wikis in enterprises.
http://wikipedistik.de/survey/results.html (2008)

6. Gruninger, M., J., L.: Introduction. Commun. ACM 45(2) (2002) 39–41
7. Novacek, V., Handschuh, S., Maynard, D., Laera, L., Kruk, S., Voelkel, M., Groza,

T., Tamma, V.: Report and prototype of dynamics in the ontology lifecycle. Tech-
nical report, Galway, Ireland : Knowledge Web (2006)

8. Buitelaar, P.: NLP in the ontology life-cycle.
http://www.lt4el.eu/content/files/ws_prague/eLearning-Prague.final.pdf (2007)
Invited talk at the international workshop of the LT4eL project.

9. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1) (2001) 26–34

10. Tran, D.T., Haase, P., Lewen, H., Munoz-Garcia, O., Gómez-Pérez, A., Studer,
R.: Lifecycle-support in architectures for ontology-based information systems. In:
Proc. of the 6th Int. Semantic Web Conference (ISWC’07). (2007) 508–522

131

www.corporate-semantic-web.de

A Generic Corporate Ontology Lifecycle
Markus Luczak-Rösch and Ralf Heese

Freie Universität Berlin
Institute for Computer Science

Networked Information Systems
Königin-Luise-Straße 24/26

D-14195 Berlin
{luczak|heese}@inf.fu-berlin.de

Although recent ontology enginee-
ring methodologies might be well
thought out, we miss an adequa-
te support for the economic-driven
needs of companies and a context-
dependent point of view. Corporate
settings are characterized by a com-
plex IT infrastructure, which provides
various contents, such as documents
or databases (domain context). On-
tologies, as knowledge representa-
tion artifact in this setting, should
respect the agility of the evolving
knowledge of the whole context.

Validate the conceptuali-
zation against the objec-
tives.

Process for instance genera-
tion from structured, semi-
structured and unstructured
data runs up.

Ontology deployment for
usage.

Record formal statements
about users feedback and
behaviour.

Analyze feedback informati-
on respecting internal incon-
sistencies and effects to the
currently used ontology ver-
sion.

Evaluate the current onto-
logy version for evolution.

Evolve the ontology.

Motivation

1

2
3

4
5

6

7

8
The Corporate Ontology Lifecycle

= Ontology Engineers = Corporate Domain Experts

Corporate Ontology Engineering Settings

Central allowance and control
of the conceptualization

Existing rules and workflows
for employees

Limited availability of domain
experts for engineering tasks

Trust in semantic annotations

Approach

We present an innovative two parts
ontology lifecycle, which has been
concluded from requirements that we
derived from the Lekapidia case stu-
dy. This lifecycle separates enginee-
ring tasks from ontology usage and
aspires a minimal effort of corporate
human resources and a reduction of
engineering tasks. The integrity of
the rapidly released ontology pro-
totypes is reached by an innovative
tracking mechanism, which enables
an automatic, implicit improvement
of the conceptualization.

Corporate Knowledge

Documents, Databases, Webpages, Wikis, Blogs, Userdata, Emails….

Workflows

U
s
a
g
e

Corporate Ontology Engineering

Start the knowledge ac-
quisition and conceptuali-
zation, re-use or re-engi-
neer existing ontologies,
or commission a contrac-
tor to develop an ontolo-
gy.

Vision and Outlook

We aim at an extension of this approach towards
an innovative architecture for ontology lifecycle
management in corporate contexts. This architec-
ture is carried by an ontology versioning mecha-
nism, which makes use of an innovative knowledge
tracking model to facilitate cost-effective, agile
knowledge evolution. The lifecycle is designed to
allow a cost-benefit-estimation in the forefront
of each engineering iteration. A cost-benefit-es-
timation model for this purpose will be developed
in the future.

USAGE

ENGINEERING

Ontology Evolution Framework

Ontology Lifecycle Methodology

Ontology
Versioning
Model

Knowledge
Tracking
Model

Knowledge
Tracking

Component

Ontology
Versioning
Component

Knowledge
Integration

API

Knowledge
Distribution

API

Domain Context
Applications – Users –Workflows/Processes – Content

132

Descriptive Schema:

Semantics-based Query Answering

S. D. Lee, Patrick Yee, Thomas Lee, David W. Cheung, Wenjun Yuan

Department of Computer Science, The University of Hong Kong.
{sdlee,kcyee,ytlee,dcheung,wjyuan}@cs.hku.hk

Abstract. We propose the novel concept of “descriptive schema” (DS).
Unlike ordinary database schemas, a DS does not restrict the structure
of the underlying database. Rather, it is just a probabilistic description
of the structure. When answering keyword queries, DS can be used to
improve semantics-based query answering and result ranking.

1 Schema: To have or not to have?

Wikipedia is a rich repository of information. However, facilities to exploit the
information are still limited. Although typical search WWW search engines such
as Google[1] allow users to look for information using keywords, they lack a
schema for formulating the queries precisely.

Besides hyperlinks among the Wikipedia pages, many pages have Category
tags as well as Infoboxes, which can be exploited to perform more sophisticated
searches. For example, the DBpedia community makes use of these tags to build
a database of RDF triplets, allowing more expressive and precise queries in the
form of SPARQL to be used to retrieve useful information [2].

The above are two extremes of search and query. In the former case, the user
can perform a search easily using relevant keywords, without having to learn the
schema’s lexicon beforehand. In the latter case, a schema can be used to help
specify the query more precisely, but it has a non-trivial learning curve. In this
paper, we propose the approach of “descriptive schema” to address these short-
comings. We attempt to strike a balance between the ease of use of a schema-less
approach and the high accuracy that a schema-based system can bring us.

2 Descriptive Schema

In this paper, we propose a new concept called “Descriptive Schema” (DS). Un-
like XSD (XML Schema Definition), DS is not meant to prescriptively mandate
a structure on the underlying data. We want to retain the flexibility of free
format for the pages. Rather, DS, as its name implies, is descriptive. It is only
a summary of the structure exhibited by the underlying database. It does not
define the structure. The data may occasionally violate the DS.

This tolerance to violations marks our biggest innovation, contrasting with
existing approaches. Existing approaches to data modelling use “Prescriptive

133

Schema”, which mandates a rigid structure on the underlying data, with little
(if any) tolerance to violations.

We model a DS by a set of rules on the underlying data. There are many
possible ways to formulate the rules. One example rule is: “90% of the time, a
page of class ‘Countries’ has value for the field ‘capital’ in the infobox (infobox
for countries)”. Note that the rules defined in this way are probabilistic, because
they are not satisfied all the time. A DS may thus be considered a summary of
the patterns occurring in a database, instead of policies imposed on the data.

The task of discovering a DS from a database is a mining task, which is
the problem of finding all rules satisfying a the specified syntax and support
thresholds, thus following the data mining model in [3].

3 Applications

Since a DS captures semantical information about the underlying data, it enables
a semantics-based approach to answering search queries. We can, for instance,
use the DS to help us disambiguate the query, enrich the query with semanti-
cal information, as well as using the semantical information to rank the search
results. Applications of DS include, but are not limited to, the following:

– Keyword Disambiguation
– Query Augmentation
– Result Ranking
– Data Cleansing
– Guidelines for Authors
– Guided Query Building

4 Conclusions

We have proposed the concept of “descriptive schemas”, which is a set of rules
obeyed by most of the underlying data, with tolerance for violations. Although
the primary goal of devising this novel concept was to help answering keyword
queries with an accuracy comparable to databases with prescriptive schemas,
we have realized that DS can also be useful for other applications. Future works
include exploring further potentials of DS, developing a formalism for it, devis-
ing efficient algorithms for mining DS, as well as more in-depth studies of the
applications mentioned in this paper.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1-7) (1998) 107–117

2. Auer, S., Lehmann, J.: What have Innsbruck and Leipzig in common? extracting
semantics from Wiki content. In Franconi, E., Kifer, M., May, W., eds.: ESWC.
Volume 4519 of Lecture Notes in Computer Science., Springer (2007) 503–517

3. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3) (1997) 241–258

134

Descriptive Schema:
Semantics-based Query Answering

S. D. Lee, Patrick Yee, Thomas Lee, David W. Cheung, Wenjun Yuan
Department of Computer Science, The University of Hong Kong.
{sdlee,kcyee,ytlee,dcheung,wjyuan}@cs.hku.hk

Abstract

We propose the novel concept of “descriptive schema”
(DS). Unlike ordinary database schemas, a DS does not
restrict the structure of the underlying database. Rather,
it is just a probabilistic description of the structure. When
answering keyword queries, DS can be used to improve
semantics-based query answering and result ranking.

1. Schema: To have or not to have?

•Wikipedia is a rich repository of information.
• But: not easy to extract information precisely.

Keyword Search: Search engines such as Google
• Easy to use: only need to enter keywords
• But: no schema for formulating precise queries.

Web Images Maps News Shopping Gmail more Ȝ Sign in

 Search
 Advanced Search

 Preferences

 Web Results 1 - 10 of about 517,000 for 747 manufacturer. (0.10 seconds)

747 Manufacturer , Buyer, Supplier, Importer, Exporter ...
Trade Leads for 747, Search ecplaza.net for buying and selling leads, trade

opportunities, manufacturers , suppliers, distributors, sellers, factory, ...

buy.ecplaza.net/search/1s1nf20sell/ 747.html - 90k - Cached - Similar pages

boeing 747 Manufacturer , Buyer, Supplier, Importer, Exporter ...
Product Catalog for boeing 747, Search ecplaza.net for selling and buying leads,

trade opportunities, manufacturers , suppliers, distributors, sellers, ...

buy.ecplaza.net/search/3s1nf20sell/boeing_ 747.html - 64k -

Cached - Similar pages

More results from buy.ecplaza.net »

Koala Putter SP-747 Manufacturer exporting direct from China
Product information for Koala Putter SP-747 from Xiamen Jasde Sports Equipment

Co., Ltd.. Source what you need here!

jasde.en.alibaba.com/product/50421094/

202053229/Golf_Putter/Koala_Putter_SP_ 747.html - 38k - Cached - Similar pages

LCD Monitor (CM-747), China LCD Monitor (CM-747) products- China ...
China LCD Monitor (CM-747), China LCD Monitor (CM-747) products, provided by

China manufacturer & supplier - Aotop Industrial Co., Ltd..

www.made-in-china.com/china-products/

productviewDWxEIKJlumsf/LCD-Monitor-CM-747-.html - 23k - Cached - Similar pages

Car flag TB-F-747 Manufacturer exporting direct from China
Product information for Car flag TB-F-747 from Jurong To Beauty Co., Ltd.. Source

what you need here!

tobeauty-hats.en.alibaba.com/product/

200041059/201835175/car_flag_/Car_flag_TB_F_ 747.html - 31k -

Cached - Similar pages

TradeBIG.com China Manufacturer China Supplier China Product

Directory
Beijing Langdilaser Science Technology Development Co., Ltd (747, Manufacturer ,

China) We Serviced: Ipl System, Ipl for Hair Removal system , Medical ...

www.tradebig.com/main.php?cat=%2FHealth+and+Beauty - 86k -

Cached - Similar pages

Amazon.com: C. Benjamin's review of Xbox 360 Pro Value Bundle
My box says "Go Pro", lot 747, manufacturer date 11/22/2007, with the new chipset. A

very pleasant surprise. My rating is 4 stars instead of 5 only because ...

www.amazon.com/review/RO5J53TKASMPY?ASIN=B000W91YTA - 121k -

747 manufacturer
Google

Schema-oriented Querying: à la DBpedia
• An RDF triple database retrieved from Wikipedia.
•Captures information from Category and Infobox tags.
•Richer in structure and semantics.
• Allows more precise SPARQL queries.
• But: need to learn the schema (lexicon + structure) of

the data before posing useful queries.
SPARQL Explorer for http://dbpedia.org/sparql

SPARQL:
PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://dbpedia.org/resource/>

PREFIX dbpedia2: <http://dbpedia.org/property/>

PREFIX dbpedia: <http://dbpedia.org/>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

Results: BrowseBrowse Go! Reset

SPARQL results:

x y

:Boeing_747 :Boeing_Commercial_Airplanes

:Boeing_747-8 :Boeing_Commercial_Airplanes

:Boeing_747SP :Boeing_Commercial_Airplanes

:Boeing_747-400 :Boeing_Commercial_Airplanes

:Boeing_747_Large_Cargo_Freighter :Boeing_Commercial_Airplanes

:Boeing_747_Large_Cargo_Freighter :Evergreen_Group%23Evergreen_Aviation_Technologies_Corporation

Powered by OpenLink Virtuoso and dbpedia

SELECT ?x ?y WHERE {
 ?x dbpedia2:manufacturer ?y .

 FILTER (regex(?x,"747")) .

}

A middle-ground : Descriptive Schema (DS)
• Ease of use: to search using keywords
• Precision of query: approaching the precision of

schema-oriented queries
• Idea: Using the DS and the search keyword, guess and

formulate a relatively precise query to the RDF triples.

2. Descriptive Schema

•We propose a new concept called “Descriptive Schema”
(DS).
– Unlike ordinary database schemas (e.g. XSD), DS is

not meant to prescriptively mandate a structure on the
underlying data.

– DS is meant to retain the flexibility of free format for
Wiki pages.

– DS is descriptive: It is only a summary of the structure
exhibited by the underlying data.

– The data may occasionally violate the DS.
•We model a DS by a set of probabilistic rules, e.g.

90% of the time, a page of class ‘Countries’ has value
for the field ‘capital’ in the infobox (infobox for coun-
tries).

• The task of discovering a DS from a database is a mining
task.

3. Applications

Applications of DS include, but are not limited to:

• Keyword Disambiguation

•Query Augmentation

•Result Ranking

•Data Cleansing

•Guidelines for Authors

•Guided Query Building

4. Conclusions

We have proposed the concept of “descriptive schemas”:

• a set of rules obeyed by most of the underlying data with
tolerance for violations.

•meant to help answering keyword queries with an accu-
racy comparable to databases with prescriptive schemas.

•DS may also be useful for other applications.

• Future works:

– exploring further potentials of DS

– developing a formalism for DS

– devising efficient algorithms for mining DS

DBpedia

RDF triplets
<:Boeing_747> <dbpedia2:name> “Boeing 747”@en

<:Boeing_747> <dbpedia2:manufacturer><:Boeing_Commercial_Airplanes>
...

SPARQL
Engine

Wiki Pages
RDF
Resource De-
scription Frame-
work is a family
of W3C specifica-
tions originally
designed as a...

DBpedia
DBpedia is a
community effort
to extract
structured infor-
mation from
Wikipedia and to...

Wikipedia
Wikipedia is a
free, multilingual,
open content
encyclopedia
project operated
by the non-profit...

Descriptive Schema
If X is “747”, then X is <:Boeing_747> with 70% chance.

If X is of Category Aircraft, then X has attribute <dbpedia2:manufacturer> with 90% chance.
...

Query
Engine

User

1a) Extraction

1b) Mining

2a) Keyword Search

2b) Consult DS

2c) SPARQL Query

2d) Retrieval

2e) Results2f) Answers

SemWiki2008
The Wiki Way of Semantics

3rd Semantic Wiki Workshop co-located with 5th European Semantic Web Conference (ESWC) Tenerife, Spain 2008-06-02

135

Property Clustering in Semantic MediaWiki

Define Your Own Classes and Relationships

Dr. Gero Scholz

IVU Traffic Technologies AG, Berlin, Germany

Abstract. Semantic MediaWiki (SMW) currently has an atomic under-
standing of properties: they are seen as annotation marks which can be
arbitrarily attached to articles. As a next step towards an object oriented
representation of knowledge we introduce a concept of property cluster-
ing. This makes it possible to define a formal meta model for a knowledge
domain. We support class inheritance and typed relations between ob-
jects. As a proof of concept we provide an implementation which is based
on a set of templates and a few existing MediaWiki extensions. A graph
of the meta model can be generated automatically. We offer different
models for entering information based on templates and forms. A demo
website (http://semeb.com/dpldemo/SMWpc) is available.

Keywords: Semantic MediaWiki, Semantic Forms, Class, Relation, Inheritance,
Meta Model, Proof of Concept, Demo Implementation

1 Introduction

Currently in SMW every possible combination of properties can be assigned to
every article. It is possible to assign multiple values for the same property to the
same article. The difference between relations and values which was part of the
SMW concept in older versions has been dropped in favor of more generalized
properties in the latest SMW release. All this leads to a fairly universal, generic
concept. In short, SMW offers a concept of weak typing expressed by arbitrary
bundles of properties taken from an ocean of all possible attributes which might
be useful for annotation.

But people do not primarily perceive objects as conglomerates of attributes.
Instead they classify objects and use well defined names for these classifications.
Classes in essence are named clusters of properties. Consequently, this article in-
troduces a concept of strong typing which we call SMWpc. The ’pc’ might trans-
late to ’property clustering’ or to ’personal classes’. The latter interpretation
would emphasize that the design of classes always depends on the perspective of
authors and readers.

SMWpc is a proof of concept which is already usable for small wikis. It is
based on SMW, a few other MediaWiki extensions and some tricky MW tem-
plates. To improve performance and robustness a more professional implemen-
tation should be made by extending the current php source code of SMW.

136

2

2 Idea and Concept

The graph in Fig.1 describes the general idea of SMWpc.

Fig. 1. Meta Model of SMWpc

In SMWpc MediaWiki articles are seen as instances of a classes (objects).
A class is formally described in a meta model using special meta properties.
Each class in SMWpc corresponds to a traditional MediaWiki category which is
named after the class. There are no freely floating properties in SMWpc. Instead
properties are always tied to classes. A special meta property is used to describe
class inheritance.

3 Meta Model

A full version of the meta model can be found on the website. The most impor-
tant meta property is .obj is a. It states that an article describes an object of a
certain class. The meta property .prop describes ties a property to its class. Note
that one property can be tied to many classes. .class extends is used to define
(single) inheritance. It is a good design principle to use templates for the assign-
ment of property values. Via .prop assigned by we establish a reference between

137

3

a property and its associated ’assignment template’. Sometimes the value of a
property can be algorithmically derived from the values of one or more other
properties. We use .prop derived from to express this. The meta property .prop
refers to allows to express that a property of a class is to be understood as a
reference to an object of another class. .prop reverse offers a second name for
the same relation if used in the opposite direction. The properties .prop unique
and .prop mandatory express the cardinality of properties, i.e. they state if zero,
one or many values will be allowed for a certain property.

Apart from these essential features there are other meta properties which
can help you to attach color schemes or icons to classes and properties. There is
also a meta property that links an edit form to a class. And last not least there
are class-specific templates which produce a nice common layout for all objects
belonging to the same class.

As you may have noted all SMWpc meta properties start with a prefix like
.obj, .class, .prop, .. to make clear that they do not belong to the application
domain of the wiki. It would be a good idea to use the same convention for
SMWs existing meta properties like ’has type’, ’allows value’ etc. There should
be a clear separation of namespaces between the meta model and the application
domain of a wiki. Technically speaking all SMWpc meta properties are normal
SMW properties. This allows to use the concept of reflection (introspection)
in the implementation of SMWpc. SMW should consider to follow the same
strategy. It would be of great value to operate on the information model of a
wiki in the same query language that you use to operate on its contents.

4 Focus of SMWpc

The initial version of a wiki typically contains a small, weakly structured collec-
tion of articles which have some commonalities. Once a wiki grows the designer
of the wiki can use SMWpc to create a formal meta model which supports
queries and helps to enter information in a more structured way. It is important
to closely monitor the ratio between the size of the ’information model’ and the
total amount of information in a wiki. Encyclopedic wikis will have a lower ratio
than specialized wikis with closer scope and more elaborated relationships be-
tween the articles. Most often there will be a perceived lack of semantic structure
in a wiki. But there is also a (small) danger of over-engineering when a small
wiki is started with a very rigid structure.

The main focus of SMWpc is on small and medium-size wikis (less than
10.000 pages) which have a dedicated focus. Their user communities agree on a
common scheme for classification of articles and they want better support for
collecting highly structured information. An example could be a wiki in the area
of molecular genetics but it could also be a wiki about pets where you have
classes like species, food, disease etc. It is quite clear that a property named
symptom belongs to class disease and not to food or species. With SMWpc there
is a way to express this. While it may make a lot of sense to have multiple values
for the symptoms of a disease, there should only be a single value for the property

138

4

maximum age of class species. The property likes must contain a reference to an
instance of food and not to a disease. With SMWpc you can express all this and
much more.

5 Example

We set up an example which deals with students, their subjects of study and
their hobbies (playing games and playing musical instruments). The example
tries to demonstrate all features of SMWpc. So do not pay too much attention to
the contents. The information model generated by SMWpc ios shown in Fig.2.
For more information please go to the website (http://semeb.com/dpldemo/
ClassStudent).

Fig. 2. Sample class model of an SMWpc application

6 Conclusion

SMWpc is a first step in the direction of true object oriented semantic modeling
with MediaWiki. There are lots of features which can be improved and added
in future. And there is much more functionality already available than could be
shown and explained here. We hope that the idea of SMWpc will be adopted by
the Semantic MediaWiki community. Integration of SMWpc concepts into SMW
would create a more robust solution with better performance. Adding SMWpc
concepts to SMW would enlarge the scope of SMW significantly. It would be a
pure add-on, so no current functionality would be lost.

139

BOWiki: ontology-based semantic wiki with

ABox reasoning

Joshua Bacher1,2,3, Robert Hoehndorf1,3,4 and Janet Kelso3

1 Department of Computer Science, Faculty of Mathematics and Computer Science,
University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany

2 Institute for Logics and Philosophy of Science, Faculty of Social Science and
Philosophy, University of Leipzig, Beethovenstrasse 15, 04107 Leipzig, Germany
3 Department of Evolutionary Genetics, Max Planck Institute for Evolutionary

Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
4 Research Group Ontologies in Medicine (Onto-Med), Institute of Medical

Informatics, Statistics and Epidemiology (IMISE), University of Leipzig,
Härtelstrasse 16-18, 04107 Leipzig, Germany

Claim. This paper presents the semantic wiki BOWiki, that uses a ontology to
verify the content of semantical dat added by the user. The BOWiki is a semantic
Wiki, designed to eliminate the need for costly and time consuming manual
expert database curation, while providing users with an automated reasoning
system to verify the consistency of newly added content to the knowledgebase
(KB). A semantic wiki built on an ontological foundation can provide users
with information about particular types of entities and how they relate to one
another. Automated reasoners can be adapted for use within an ontologically
based semantic wiki, in order to verify whether newly submitted information is
consistent with existing KB content, prior to incorporating the new information
into the KB [5]. The reasoner is also useful for querying the data. The BOWiki
combines an ontologically based semantic wiki with an automated Pellet reasoner
to deliver users a collaboratively curated and consistent KB. Although originally
targeted to serve the biological community, the BOWiki can be used in any
domain.

1 Implementation and Usage

The BOWiki is an extension of the MediaWiki and comprised of 4 parts (a figure
is accessible online1: (a) the BOWiki software extension, (b) the BOWikiserver,
(c) the BOWiki database extension and (d) an OWL-DL ontology. The BOWiki
extension to the MediaWiki is the main application component. It both displays
data and interacts with the user. The BOWiki extension communicates with the
BOWikiserver over a custom-designed protocol. The BOWikiserver classifies the
content in the BOWiki’s current KB and has the capacity to reason over the KB.
For this purpose, the BOWikiserver uses the Jena 2 Semantic Web Framework
[1] and currently employs the Pellet OWL Reasoner [4]. The database exten-
sion provides persistent storage of the BOWiki’s KB, which enables revovery of
1 See http://onto.eva.mpg.de/pub/eswc-misc/

140

the KB content in the event the BOWikiserver fails. During the BOWiki setup,
when the BOWiki is initialized, an OWL-DL ontology must be imported into
the BOWiki.
The BOWiki markup plays an important role in the BOWiki’s operations. A
translation between the BOWiki markup and OWL [3] is available online1. It
illustrates how it is translated from BOWiki syntax into appropriate OWL Syn-
tax. During installation, an OWL-DL ontology must be chosen for importing.
The types and binary relations used in these extensions come from an OWL-DL
ontology [3], which must be imported into the BOWiki during setup. In addition
to this markup the BOWiki allows for inline queries2. When a wikipage is mod-
ified and one of the BOWiki markup extensions is used, the newly submitted
data is immediately processed by the BOWikiserver and its consistency verified.
Only consistent data is added to the BOWiki’s KB. Inconsistent changes are
rejected, and a notification with an explanation of the inconsistency is provided
to the user. The BOWiki further includes several features intended to help users
with basic functionality: special pages allow reviewing all relations and all OWL
classes known to the BOWiki’s reasoner; allow importing ontologies in the OBO
flatfile format [2]; rebuilding the KB from data stored in the BOWiki database
and exporting the content of the BOWiki’s KB to OWL. An online tutorial2

guides new users in using the BOWiki.

2 Conclusion

We designed the BOWiki, an extension to the MediaWiki, to enable biologists to
develop a collaboratively curated KB that automatically verifies its ontological
adequacy. As a semantic wiki built on an ontological foundation, the BOWiki
provides its users not only with information about particular entities, but also
tells users how these entities relate to one another. The automated Pellet rea-
soner verifies the consistency of newly submitted information to the KB, thereby
avoiding the incorporation of inconsistent information that sometimes plagues
user curated systems.

References

1. Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the Semantic Web Recommendations.
Technical Report HPL-2003-146, Hewlett Packard, Bristol, UK, 2003.

2. Christine Golbreich and Ian Horrocks. The OBO to OWL mapping, GO to OWL
1.1! In Proc. of the Third OWL Experiences and Directions Workshop, number 258
in CEUR (http://ceur-ws.org/), 2007.

3. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, 2004.

4. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 2007.

2 See http://bowiki.net/wiki/index.php/Tutorial

141

5. Denny Vrandecic and Markus Krötzsch. Reusing Ontological Background Knowl-
edge in Semantic Wikis - From Wikis to Semantics. In Proceedings of the First
Workshop on Semantic Wikis, 2006.

142

	Preface
	Programme
	Towards an Interlinked Semantic Wiki FarmAlexandre Passant and Philippe Laublet
	Ad-Hoc Knowledge Engineering with Semantic Knowledge WikisJochen Reutelshöfer, Joachim Baumeister, and Frank Puppe
	Hypertext Knowledge WorkbenchMax Völkel
	Mathematical Semantic Markup in a Wiki: The Roles of Symbols and NotationsChristoph Lange
	Poster (SWiM -- A Semantic Wiki for Mathematical Knowledge Management)

	A Real Semantic Web for Mathematics Deserves a Real Semantics (Position Paper)Pierre Corbineau, Herman Geuvers, Cezary Kaliszyk, James McKinna, and Freek Wiedijk
	Flyspeck in a Semantic Wiki -- Collaborating on a Large Scale Formalization of the Kepler ConjectureChristoph Lange, Sean McLaughlin, and Florian Rabe
	Using Attention and Context Information for Annotations in a Semantic WikiMalte Kiesel, Sven Schwarz, Ludger van Elst, and Georg Buscher
	RDF Authoring in WikisFlorian Schmedding, Christoph Hanke, and Thomas Hornung
	AceWiki: Collaborative Ontology Management in Controlled Natural LanguageTobias Kuhn
	Poster

	Next-Generation Wikis: What Users Expect; How RDF HelpsAxel Rauschmayer
	Poster (RDF Editor Hyena)

	Integrating a Wiki in an Ontology Driven Web Site: Approach, Architecture and Application in the Archaeological DomainAndrea Bonomi, Alessandro Mosca, Matteo Palmonari, and Giuseppe Vizzari
	Extending the Makna Semantic Wiki to support WorkflowsKarsten Dello, Lyndon Nixon, and Robert Tolksdorf
	SWOOKI: A Peer-to-peer Semantic WikiCharbel Rahhal, Hala Skaf-Molli, and Pascal-Molli
	A Generic Corporate Ontology LifecycleMarkus Luczak-Rösch and Ralf Heese
	Poster

	Descriptive Schema: Semantics-based Query AnsweringSau Dan Lee, Patrick Yee, Thomas Lee, David W. Cheung, and Wenjun Yuan
	Poster

	Property Clustering in Semantic MediaWiki -- Define Your Own Classes and RelationshipsGero Scholz
	BOWiki: Ontology-based Semantic Wiki with ABox ReasoningJoshua Bacher, Robert Höhndorf, and Janet Kelso

