
On the Semantics of Updates in a Functional Language ∗

c© Pavel Loupal

Department of Computer Science,
Faculty of Electrical Engineering, Czech Technical University in Prague,

Prague, Karlovo nám. 13, 121 35

loupalp@fel.cvut.cz

Abstract

Issues related to updating data in native XML
database systems are studied extensively nowa-
days. In this work we consider a problem of
updating typed XML documents having their
schema described by a Document Type Def-
inition (DTD) without breaking their validity
and with ensured transaction consistency. We
present a way how to express constructs avail-
able in DTD by using a functional framework
and propose algorithms for performing insert,
replace and delete operations. This solution is
an intermediate step we need for our ongoing
research – formal comparison of XQuery and
XML- λ.

1 Motivation and Problem Statement

Fundamental work we continue to work on is Pokorný’s
proposal of a functional framework for modeling and
querying XML – XML-λ [15, 16]. The main idea therein
is to use simply typedλ-calculus adherent to a DTD-
based type system for querying XML data. Over time we
identified a need for extending the language with support
of data modification operations. Our aim is to develop
an approach similar to the SQL language for relational
databases, i.e. to have an ability both to query and up-
date underlying data within one formal apparatus.

This work directly continues in the topic that we have
opened in [13]; in this text we clarify more the con-
cept of the framework by showing its relationship to the
W3C data model, reformulate proposed algorithms and
we also add some improvements in formal description of
the solution.

Nevertheless, ourprimary motivation is not to de-
velop a totally new sort of an XML update language but
rather to propose an update extension that allows us to go
on with our planned research in the future – comparison
of properties of XQuery and XML-λ and evaluation of
potential mutual transformations of queries written in re-
spective languages. We see the benefit of this paper par-

∗ I would like to thank to Prof. Pokorný for his patience and pro-
visioning of many helpful hints for my research.

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2008

ticularly in clarification of proposed update algorithms
and in specification of a link to transaction management.

The paper is structured as follows: Section 2 lists ex-
isting approaches for updating XML data and discusses
their contribution. In Section 3 we briefly outline the
concept of the functional framework we use, its data
model and show an example of query evaluation with
detailed description. Then, we discuss the problem of
updates in Section 4 in general and show our solution in
Section 5. In Sections 6 and 7 we conclude with feasible
ideas for future work.

2 Languages for Updating XML
By the term updating XML we mean the ability of a
language to perform modifications (insert, replace and
delete operations) over an XML document or a collec-
tion of XML documents.

Since the creation of the XML in 1998, there have
been many efforts to develop various data models and
query languages for databases of XML data. Multiple
approaches for indexing and query optimizations have
been invented. On the other hand, the problem of up-
dating XML gains more interest in few past years. Yet
there seems to be not a complete solution for this prob-
lem. Existing papers dealing with updating XML are
mostly related to XQuery [3]. Lehti [11] proposes an ex-
tension to XQuery that allows all update operations but
does not care about the validity of the documents. Tatari-
nov et al. [18] also extend XQuery syntax with insert, up-
date and delete operations and show the implementation
of storage in a relational database system. Benedikt et
al. [1] and Sur et al. [17] deal in deep with the semantics
of updates in XQuery. In the W3C XML Query Work-
ing Group is the need for having updates in the language
also considered as one of the most important topics in its
further development [5]. As a result, the XQuery Update
Facility has been proposed [6].

For the sake of completeness we should not omit
XUpdate [10] – a relatively old proposal that takes a dif-
ferent way. It uses XML-based syntax for describing up-
date operations. This specification is less formal than
those previous but it is often used in practice.

Another research field is represented by XDuce [9]
and its successor CDuce [2] that use also a type system
based approach for pattern matching and manipulation of
XML data.

Considering previous works we can deduce that there

are common types of operations for performing modifi-
cations that are to be embedded in a language – delete,
replace, insert-before, insert-after or insert-as-child. This
seems to be a sufficient base for ongoing work. None of
those proposals but deals in detail with the problem of
updating typed data and hence it makes sense to put ef-
fort and study this problem.

3 XML-λ Framework
XML- λ is a proposal published by Pokorný [15, 16]. In
contrast to W3C specifications it uses a functional data
model instead of tree- or graph-oriented model. The
primary motivation was to see XML documents as a
database that conforms to an XML schema (defined, for
example, by DTD) and to gain a possibility to use a func-
tional language, particularly a simply typedλ-calculus,
as a query language for such database.

Except of the original proposal, that defines its formal
base and shows its usage primarily as a query language
for XML, there is a consecutive work that introduces up-
dates into the language available in [13].

Here, we focus primarily on extending and improving
the update part of the framework. Basic facts about the
framework are repeated in following sections rather for
convenience.

3.1 Basic Terms

In XML- λ there are three important components related
to its type system:element types, element objects andel-
ements. We can imagine these components as the data
dictionary in relational database systems. Note also Fig-
ure 1 for relationships of basic terms between W3C stan-
dards and the XML-λ Framework.

Element types are derived from a particular DTD and
in our scenario they cannot be changed – we do not al-
low any schema changes but only data modifications. For
each element defined in the DTD there exists exactly
one element type in the set of all available element types
(calledTE).

Consequently, we denoteE as a set ofabstract el-
ements. Set members are of element types. Note that
(from definition)E is an infinite set.

Figure 1: The Relationship Between W3C and XML-λ
Data Models

Element objects1 are basically functions of type either
E → String or E → (E × . . . × E). Application of

1We denote the element object of typet ∈ TE ast-object

these functions to anabstract element allows access to
element’s content.Elements are, informally, values of
element objects, i.e. of functions. For eacht ∈ TE there
exists a correspondingt-object.

For convenience, we add a ”nullary function” (also
known as0-ary function) into our model. This function
returns a set of all abstract elements of a given element
type from an XML document.

Finally, we can say that in XML-λ the instance of an
XML document is represented by a subset ofE and set
of respectivet-objects.

For readers familiar with W3C terminology, there is a
comparison of related terms in both environments shown
in Table 1.

3.2 XML-λ Example

This section shows an example of using the XML-λ
Framework in a real example with detailed description.
Let us consider an example DTD shown in Figure 2.

<!ELEMENT bib (book*)>
<!ELEMENT book (title, author+, price)>
<!ELEMENT author (last, first)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Figure 2: Example DTD

For given schema we obtain element types as follows:

BIB : BOOK∗,
BOOK : (TITLE, AUTHOR+, PRICE),
AUTHOR : (LAST, FIRST),
LAST : String,
FIRST : String,
TITLE : String,
PRICE : String.

Then, we define functional types – designated as
t-objects:

BIB : E → 2E,
BOOK : E → (E × 2E × E),
AUTHOR : E → (E × E),
TITLE : E → String,
LAST : E → String,
FIRST : E → String,
PRICE : E → String.

These types are the cornerstone for manipulation with
typed data from XML documents as shown in the list of
semantic functions (see Table 2).

Having look at DTD in Figure 2 and sample
data in Figure 3 we can obviously see that there
are 7 abstract elements (members ofE′ ⊂ E).
Now, for instance, thetitle-object is defined ex-
actly for one abstract element (the one gained from
<title>TCP/IP Illustrated</title> element and
for this abstract element it returns a string value ”TCP/IP
Illustrated”.

W3C XML-λ
Data Format XML 1.0 XML 1.0
Data Model Constraints Document Type Definition (DTD) Types inTE derived from DTD
XML Data Instance DOM - A tree instance Set of abstract elements –E, definition oft-objects
Query Languages XPath, XQuery, XSLT Simply typed lambda calculus

Table 1: The Relationship Between W3C and XML-λ Terms

<bib>
<book>

<title>TCP/IP Illustrated</title>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
<price>65.95</price>

</book>
...

</bib>

Figure 3: Fragment of a Valid XML Instance

Following example query returns all books with spec-
ified price

lambda b (/book(b) and b/price = "65.95")

Evaluation of this query with respect to semantics de-
scribed in [19] takes place in following way:

1. First, the binding of free variableb is evaluated
(/book(b)), i.e. nullary function returns a set of
all abstract elements of element typeBOOK).

2. For each item inb the application ofBOOK-object
element (note, it is a function) is performed

BOOK : E → (E × . . . × E)

and this operation returns ann-tuple.

3. Projection by nameprice returns then item(s) of
typePRICE (there is just one). Application of func-
tion PRICE : E → PRICE : String returns a
string value of the price element that is compared
with literal ”65.95”. Non-matching item is skipped,
otherwise the content ofb is serialized to output.

4. Steps 2.-3. are repeated for all items found in Step 1.

For readers familiar with XQuery, here is the same
query expressed in XQuery syntax:

{
for $b in doc("bib.xml")/bib/book
where $b/price = "65.95"
return {$b}
}

Expected output is shown in Figure 4.

4 Updating XML Documents
This section covers the process of updating data in an
existing XML data store. Thus, we do not update XML
schema of these documents but their content only. It is a
typical database life cycle – the database schema remains

<book>
<title>TCP/IP Illustrated</title>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
<price>65.95</price>

</book>

Figure 4: Expected Query Output

stable but the data is changing in time. In our (query
and update) language there is no way how to construct
new documents yet – sometimes this approach is called
”incremental update”. In other words we can change
the structure of the input document (w.r.t the DTD) by
a given XML-λ update statement but cannot e.g. create
a set of new XML files.

4.1 Updates in General

We can describe the whole operation of updating an
XML document rather on a physical level as (1) retriev-
ing its content from database, (2) performing update, (3)
storing document back to database. This paper deals with
the second part of the process. Viewed from closer look
in more detailed pieces it is (a) localization of point in
data model where the change will take place, (b) vali-
dation of requested operation, (c) execution of the up-
date operation. These steps are shown more from the
semantical point of view, in implementation it is usually
not necessary to retrieve complete XML document from
database into memory but we can manipulate only with
a part of its content needful for update.

There are two options when to perform data valida-
tion – before or after an update. The XQuery Update Fa-
cility proposal uses optional post-update revalidation; in
our approach we focus more on doing pre-update checks.
Our goal is to detect the maximum number of possible
conflicts during compilation of the update statement and
potentially raise a static error. Unfortunately, not in all
cases is the information from data model enough for val-
idation and, therefore, it is necessary to perform vali-
dation with respect to particular data stored in the data
store. We discuss this issue later in Section 5. Regard-
less the scenario, the processed XML document is a valid
instance in the type system both before and after update.

4.2 Validation Constraints in DTD

Document Type Definition (DTD) [4] is a syntactic way
how to describe a valid XML instance. We can break all
DTD features into disjoint categories:

1. Elements constraints - Specify the type of element
content. The possible value is one ofEMPTY, ANY,
MIXED or ELEMENT_CONTENT,

2. Structure constraints - The occurrence of elements
in a content model. Options are exactly-one, zero-
or-one, zero-or-more, one-or-more,

3. Attributes constraints - Each attribute can have one
of #REQUIRED, #IMPLIED, #FIXED, ID, IDREF(S)
options assigned.

Each update operation can or cannot be affected by
any construct from the particular DTD. Note that element
content typeANY cannot be used in XML-λ, because of
the framework’s type system nature.

4.3 Concept of Updates in XML-λ

This section covers the basic concept of updates in the
XML- λ Framework. It initially had not have any update
facility. We had to extend it with features allowing us to
check constraints available in DTD. The idea of updates
has been opened in [13] but here we focus just on the
main idea.

As already outlined in Section 3.1, there are three
crucial components related to the type system -element
types, element objects and abstract elements. Element
types are derived from a particular DTD and in our sce-
nario they cannot be changed.

Elements are, informally, values of element objects,
i.e. of functions. Thus, by updating an XML document
in XML- λ we modify the actual domains of these func-
tions (subsets ofE) and element objects affected by re-
quired update operation (insert, delete, replace).

Before of that, we have to validate requested opera-
tion. For now let us consider constraints described by
a DTD but in the outlook there are more options which
standards we plan to use as well (e.g. XML Schema).
Therefore we design our solution keeping this possibility
in mind.

Sections 5.3 - 5.5 discuss the semantics of delete, in-
sert and replace operations in detail.

4.4 Concurrency Support

One disadvantage of the solution proposed in [13] is the
lack of transaction support [7]. In this work we assume
the existence of a transaction manager that can control
(i.e. lock, unlock, suspend or abort) user activities. Cur-
rently we carry out a parallel research on using the ta-
DOM locking protocol [8] together with XML-λ (there
is a recent paper that introduces our first proposal of the
transactional behavior for XML-λ in [14]).

For now, we can consider that a transaction manager
locks the complete part of XML data that can be modified
during the update operation (in the worst case even the
whole XML document). It is a significant performance
issue but for purpose of this paper it is not fundamental.

Thus, at the beginning of suggested algorithms we
only ask for locking of a specific part of processed XML
document and keep all concurency-related worries and
issues on the ”virtual” transaction manager.

5 Analysis and Design of Updates in
XML-λ

In this section we describe two parts of the update pro-
cess – general concept of validation we use in XML-λ

and then semantics of all supported update operations –
insert, delete and replace.

5.1 Validation Approach

In this paper we base our work on constraints available
in DTDs. The goal here is to describe these limitations
in general as much as possible for eventual future ex-
tensions. Validating update operations is a problem very
closely related to the problem of validating a complete
XML instance. This process, however, can be for exten-
sive documents very time consuming.

In our approach we propose two sets of types and al-
gorithms for validation for each update operation. Men-
tioned sets are constructed and initiated during analysis
of given DTD and contain element types fromTE . Due
to the fact that we do not allow schema changes, they are
stable in time.

1. Timmutable. Abstract elements of types from this
set and respectivet-objects are not changeable in
our data model. In terms of DTD these types are as-
sociated with DTD types which content cannot be
modified, i.e. attributes declared as#FIXED and el-
ement types withEMPTY content model.

2. Tmandatory. Abstract elements of types from this
set and respectivet-objects are not modifiable (must
not be removed) in our data model. In terms of
DTD this set contains types associated with at-
tribute types with#REQUIRED declaration and ele-
ment types for those typesTi iff all occurrences of
Ti in given DTD are exactly-one.

These sets we use in our semantics for particular
update operations. For future work we can also con-
sider setsTreferencing andTreferenced of types associ-
ated with attributes declared in given DTD asIDREF or
IDREFS and for attributes declared asID respectively. In
following text we use number of functions with informal
meaning as summarized in Table 2.

5.2 General Notes to Proposed Algorithms

Following sections contain particular algorithms for data
modification shown in detail. The most important of
them –Delete and Insert – follow the same structure.
First, they check (optionally) the validity of the operation
and if there is no conflict with the type system definition
they break down the modification into a list of primitive
operations (stored in a structure also known as the ”Pend-
ing Update List”). This list represents hence the result of
these algorithms. Note that theReplace algorithm com-
bines aforesaidDelete andInsert with within. The items
inside the list are pairs(e, op), wheree ∈ E is an ab-
stract element andop ∈ {DELETE, INSERT } is the
operation to be carried out.

The output pending update list, that represents the re-
sult of each update algorithm, is then passed to thePro-
cessPendingList algorithm. This algorithm then executes
all primitive changes requested.

5.3 Delete

Formally, we decompose the process into two parts – a
function checkDelete that is used for checking whether

Semantic Function Behavior
parent(e) For ane ∈ E returns its parent abstract element. An abstract element can have at most one

associated ”parent” element. When consideringE as infinite set of abstract elements, most of
them have no parent associated.

typeOf(e) For ane ∈ E returns its element type (see Section 3.1).
cardMin(e),cardMax(e) Return minimal (or maximal, respectively) cardinality of an abstract element’s type in a particular

data model instance.
alterTObjectDel(e, t),
alterTObjectIns(e, t)

Alters thet-object for givene ∈ E. Regarding the fact thatt-objects are functions these semantic
functions change the domain of givent-object and thus associations among abstract elements.
Basically, alterTObjectDel removes the abstract elemente from domain of thet-object and
alterTObjectIns adds the abstract elemente into the domain.

isSubtype(t1, t2) Describes a relation between element typest1 and t2. Returns true iff the result of
application(e, t2) for ane ∈ E can return ann-tuple containing an abstract element of typet1 (at
any position).

canSubstitute(t1, t2) Returnstrue iff an abstract elemente1 of type t1 can replace an elemente2 of type t2 without
breaking document’s validity. It is utilized in the Replacealgorithm.

isElementary(t) Returnstrue iff t is an elementary element type.
application(e, t) Executes an application oft-object to thee element. In general it returns ann-tuple from Carte-

sian product of(E × . . . × E).
Note that the application function serves for diving in the ”content” of an element.

projection(n-tuple,t) Retrieves all elements of typet from givenn-tuple.
count(n-tuple) Returns number of elements in ann-tuple.

Table 2: List of Semantic Functions and their Informal Meaning

an abstract element can be deleted and a complete algo-
rithmDelete that accomplishes the operation completely:

Function: checkDelete;
Input: E - set of abstract elements

e - an abstract element to be deleted
Output: returnstrue - deletion is allowed,

false - deletion is denied
begin

let t = typeOf(e);
if ((t ∈ Tmandatory) or (t ∈ Timmutable)) then

return false;
if ((cardMin(e) = 0) and (cardMax(e) = ∞)) then

return true;
if ((cardMin(e) ≥ 1) and

(count(application(parent(e), t)) > 1)) then
return false;

return true;
end

Algorithm: Delete;
Input: E - set of abstract elements

e - an abstract element to be deleted
checkV alidity - a boolean flag. Enables or

disables validity check. Default istrue.
trans - a new transaction
pList - a list of currently pending update

operations
Output: returnstrue - delete is allowed,

false - delete failed
pList - updated list of pending operations

begin
/* Lock the data being deleted */
trans.lockRequest(DELETE NODE, e);

/* Check type constraints - if requested */
if (checkV alidity) then

if (not checkDelete(E, e)) then return false;

let S = new Stack(); S.push(e);

while (tmp = S.pop()) do
let t = typeOf(tmp);
let nt = application(tmp, t);
For i = 1 to count(nt)

let etmp = nt[i];
let ttmp = typeOf(etmp);

/* Elementary element types are added into
the pending delete list */

if (isElementary(ttmp)) then
pList.add(etmp, DELETE))

else
/* Complex element types are stored for

next iterations */
S.push(etmp);

next;
end

/* Add the initial abstract element to pending list */
pList.add(tmp, DELETE);

/* Deletion is finished */
return true;

end

5.4 Insert

As for theDelete algorithm, we propose two parts of the
insert process – functioncheckInsert that validates inser-
tion of given abstract element andInsert algorithm that
implements the operation in whole.

Function: checkInsert;
Input: E - set of abstract elements

e1 - an abstract element to be inserted,
e2 - an abstract element to be associated withe1

as its parent abstract element,

Output: returnstrue - insertion is allowed,
false - insertion is denied

begin
let t = typeOf(e2);
if (t ∈ Timmutable) then return false;

/*Traversing through all ”sibling” abstract elements*/
let nt = application(tmp, t);
for i = 1 to count(nt)

let etmp = nt[i];
let ttmp = typeOf(etmp);
if (isSubtype(typeOf(e1), ttmp)) then

if (cardMax(etmp) > 1) then return true;
if ((cardMin(e) = 0) and

(cardMax(etmp = ∞)) and
(count(application(etmp, ttmp)) = 0)) then
return true;

next;
return false;

end

Structure of theInsert algorithm is similar to the
Delete algorithm. It is generally a traversal of given data
model instance with modification of currently processed
abstract element of elementary type.

Algorithm: Insert;
Input: E - set of abstract elements

e1 - an abstract element to be inserted,
e2 - an abstract element to be associated withe1

as its parent abstract element,
checkV alidity - a boolean flag. Enables or

disables validity check. Default istrue.
trans - a new transaction
pList - a list of currently pending update operations

Output: returnstrue - insert is allowed,
false - insert failed

pList - updated list of pending operations
begin

/* Lock the data being inserted */
trans.lockRequest(INSERT NODE, e1);

if (checkV alidity) then
if not checkInsert(E, e1, e2) then return false;

let S = new Stack(); S.push(e);

while (tmp = S.pop()) do
let t = typeOf(tmp);
let nt = application(tmp, t);
For i = 1 to count(nt)

let etmp = nt[i];
let ttmp = typeOf(etmp);

/* Elementary element types are inserted
into pending list */

if (isElementary(ttmp)) then
pList.add(etmp, INSERT)

else
/* Complex element types are stored for

next iterations */
S.push(etmp);

next;
end

/* Add the initial abstract element to pending list */
pList.add(e1, INSERT)

/* Insert is finished */
return true;

end

5.5 Replace

The replace operation can be logically separated into
two parts – first, the removal of old data and then in-
sertion of new data. To ensure that the XML instance
remains valid we have to check the relation between
types of deleted and inserted data. For this reason we
introduce thecanSubstitute(told, tnew) semantic func-
tion. This function returnstrue if and only if we can
replace an abstract elemente1 of type told with e2 of
type tnew (for example, fort1 = (a|b), t2 = a ⇒
canSubstitute(t1, t2) = true).

Note that we turn off the type validation for partic-
ular Delete andInsert calls. Type validity is already
checked at the beginning of the algorithm.

Algorithm: Replace;
Input: E - set of abstract elements

e1 - an abstract element to be replaced,
e2 - an abstract element used as the substitution ofe1

trans - a new transaction,
pList - a list of currently pending update operations

Output: returnstrue - replace is allowed,
false - replace failed

pList - list of pending update operations
begin

/* It must be allowed to replacee1 with e2 */
if not (canSubstitute(typeOf(e1), typeOf(e2)) then

return false;

let etmp = parent(e1);
if not Delete(E, e1, trans, false, pList) then

return false;
if not Insert(E, e2, etmp, trans, false, pList) then

return false;

/* Replace is finished */
return true;

end

5.6 Pending Update List Processing

TheDelete, Insert andReplace algorithms introduced in
previous sections transform high-level manipulation op-
erations into a sequential list of primitives that is stored
in the structure called Pending Update List – here it is
denoted as variablepList. This list is to be processed by
the database engine at the end of each high-level opera-
tion in cooperation with the transaction manager.

Following algorithm describes the operation more for-
mally.

Algorithm: ProcessPendingList;
Input: E - set of abstract elements

t-objects associated with affected abstract elements
pList - a list of currently pending update operations

Output: pList - an empty pending list,

E - (potentially modified) set of abstract elements,
t-objects - (potentially modified)t-objects

begin
while (pList.hasNext()) do

let tmp = pList.next(); pList.remove();
let e = tmp.getItem();
let t = typeOf(parent(e));
let op = tmp.getOperation();

if (op == INSERT) then
let E = E ∪ e;
alterTObjectIns(e, t);

else / ∗ DELETE ∗ /
let E = E \ e;
alterTObjectDel(e, t);

next;
end

/* Pending List is now empty */
end

5.7 Query Language Impact

Considering the XML-λ Query Language as specified
in [13], we have changed and extended the semantics
of all update operations. The syntax of the language re-
mains the same.

6 XML-λ’s Future Exploitation
By the extensions proposed in this paper we obtain a
framework suitable for both querying and updating XML
data. With respect to its original idea there is a number
of potential applications of the framework. Let us sketch
three possible ways how to continue with its develop-
ment:

1. further expand its query and update capabilities,

2. use it for integration of heterogeneous data sources,

3. use the XML-λ’s formal apparatus for description
of XQuery semantics.

For each option there is still a lot of work ahead. To
get a complete query framework we have to finalize an is-
sue with references within documents (IDs andIDREFS).
This is only a technical problem of introducing new types
and formalizing the algorithm to be executed to keep the
documents consistent and valid. Let us also note another
questionable area that is not covered in this paper and
thus the dependencies of multiple update operations in
one ”query” statement. This issue deals with transac-
tional processing and optimizing multiple update primi-
tives’ execution.

This option is also questionable because of wide ac-
ceptance of XQuery as the de-facto theoretical and indus-
trial standard in the area of query languages for XML. At
least, the research here will require extensive enthusiasm
and sufficient resources.

Integration of heterogeneous data sources (as outlined
in [15]) is a practical application of the solution we have
presented. With respect to the universal type system con-
struction it is possible to use various data models (not
only DTD or XML Schema for XML) but for instance
the relational or object data model as well.

The third option for ongoing research is using the
framework for description of XQuery’s semantics. This
is probably the most interesting research branch from the
theoretical point of view. It generally means that we will
be able to express any XQuery statement with a corre-
sponding XML-λ alternative. This idea represents a the-
oretical research related to formal methods and compil-
ers. In this case the framework is going to be used as a
tool for transformation of queries between various query
and update languages. In addition, we can use this tool
for evaluation of XQuery queries within our prototype
of a native XML database system ExDB [12] based on
XML- λ.

Another feasible challenge for future work is redefini-
tion of the type system by replacement of DTD types by
types available in XML Schema or in RELAX NG. This
means restructuralization of the type systemsTreg and
TE and redevelopment of the idea of constraint sets. This
research would demonstrate that the concept of func-
tional framework is not strictly bound to DTD but is more
general as we declare.

7 Conclusion
We have shown a proposal for updating typed XML data
constrained by a Document Type Definition. We build
on a functional framework for querying XML that can
utilize concept of DTD constraints in its type systemTE.
Main part of the paper discusses the idea of extending the
framework with update operations with accent to keep
the documents always valid. By enriching the XML-λ
query language with modification operations - inserts,
deletes and replacements - we obtain a language suitable
both for querying and updating XML documents.

Further work and research directions outlined in Sec-
tion 6 lead to onward framework extensions – either im-
proving its query capabilities, using it for integration of
heterogeneous data or utilizing the framework for de-
scription of semantics of various query languages.

In any case the work presented in this paper creates
sufficient base for extensive future work.

References
[1] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas.

Adding updates to XQuery: Semantics, optimiza-
tion, and static analysis. InXIME-P 2005, 2005.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce:
An XML-centric general purpose language. InPro-
ceedings of ICFP 2003, Uppsala, Sweden, August
2003.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Flo-
rescu, J. Robie, and J. Siméon. XQuery
1.0: An XML Query Language, January 2007.
http://www.w3.org/TR/xquery/.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau. Extensible markup lan-
guage (XML) 1.0 (fourth edition), August 2006.
http://www.w3.org/TR/2006/REC-xml-20060816.

[5] D. Chamberlin. XQuery: Where do we go from
here? InXIME-P 2006, 2006.

[6] D. Chamberlin, D. Florescu, J. Melton, J. Ro-
bie, and J. Siméon. XQuery Update Facility
1.0, March 2008. http://www.w3.org/TR/2008/CR-
xquery-update-10-20080314/.

[7] C. J. Date. An Introduction to Database Systems,
6th Edition. Addison-Wesley, 1995.

[8] M. P. Haustein and T. Härder. A synchronization
concept for the DOM API. In H. Höpfner, G. Saake,
and E. Schallehn, editors,Grundlagen von Daten-
banken, pages 80–84. Fakultät für Informatik, Uni-
versität Magdeburg, 2003.

[9] H. Hosoya and B. Pierce. Xduce: A statically typed
XML processing language, 2002.

[10] A. Laux and L. Martin. XUpdate – XML Update
Language, 2000. available online at http://xmldb-
org.sourceforge.net/xupdate/index.html.

[11] P. Lehti. Design and implementation of a data
manipulation processor for an XML query lan-
guage. Master’s thesis, Technische Universitaet
Darmstadt, 2001.

[12] P. Loupal. Experimental DataBase (ExDB) Project
Homepage. http://swing.felk.cvut.cz/~loupalp.

[13] P. Loupal. Updating typed XML documents using a
functional data model. In J. Pokorný, V. Snášel, and
K. Richta, editors,DATESO, volume 235 ofCEUR
Workshop Proceedings. CEUR-WS.org, 2007.

[14] P. Loupal. Using taDOM Locking Protocol in a
Functional XML Update Language. InDATESO,
2008.

[15] J. Pokorný. XML functionally. In B. C. Desai,
Y. Kioki, and M. Toyama, editors,Proceedings
of IDEAS2000, pages 266–274. IEEE Comp. So-
ciety, 2000.

[16] J. Pokorný. XML-λ: an extendible framework for
manipulating XML data. InProceedings of BIS
2002, pages 160–168, Poznan, 2002.

[17] G. M. Sur, J. Hammer, and J. Siméon. An XQuery-
Based Language for Processing Updates in XML.
In PLAN-X 2004, 2004.

[18] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S.
Weld. Updating XML. InACM SIGMOD 2001,
2001.

[19] P. Šárek. Implementation of the XML lambda lan-
guage. Master’s thesis, Dept. of Software Engineer-
ing, Charles University, Prague, 2002.

