
Automata-based Pinpointing for DLs

Rafael Peñaloza⋆

Intelligent Systems, University of Leipzig, Germany
penaloza@informatik.uni-leipzig.de

1 Introduction

Recent years have seen a boom in the creation and development of ontologies.
Unfortunately, the maintenance of such ontologies is an error-prone process. On
one side, it is in general unrealistic to expect a developer to be simultaneously
a domain- and an ontology-expert. This leads to problems when a part of the
domain is not correctly understood, or when, although correctly understood, is
translated wrongly to the ontology language. On the other side, most of the
larger ontologies are developed by a group of individuals. The difference in their
points of view can produce unexpected consequences.

Whenever an error is identified, one would like to be able to detect the portion
of the ontology responsible for such it; additionally, it would also be desirable
to modify the ontology as little as possible to remove the error. If, for instance,
an ontology is expresed by a TBox of an expressive Description Logic (DL), an
unwanted consequence could be the unsatisfiability of a certain concept term C.
Given that C is indeed unsatisfiable, we can search for a minimal sub-TBox that
still leads to unsatisfiability of the concept (explaining the consequence), or for
a maximal sub-TBox where C is satisfiable (removing the consequence). Finding
these sets by hand in large ontologies is not a viable option.

Schlobach and Cornet [14] describe an algorithm for computing the minimal
subsets of an unfoldable ALC-terminology that keep the unsatisfiability of a con-
cept. The algorithm extends the known tableau-based satisfiability algorithm for
ALC [15], using labels to keep track of the axioms responsible of the generation
of an assertion during the execution of the algorithm. A similar approach was ac-
tually presented previously in [2], for checking consistency of ALC-ABoxes. The
main difference between the algorithms in [14] and [2] is that the latter does
not directly compute the minimal subsets that have the consequence, but rather
a Boolean formula, called pinpointing formula, whose minimal satisfying valu-
ations correspond to the minimal sub-ABoxes that are inconsistent. The ideas
sketched by these algorithms have been applied to other tableau-based decision
algorithms for more expressive DLs (see, e.g. [13, 12, 11]), and generalized in [3]
where so-called general tableaux are extended into pinpointing algorithms that
compute a formula as in [2]. This general approach was then successfuly applied
for explaining subsumption relations in EL [4].

The main drawback of the general approach in [3] is that it assumes that
the original tableau algorithm stops after a finite number of steps without the

⋆ Funded by the German Research Foundation (DFG) under grant GRK 446.

need of cycle-checking (or blocking) techniques. When dealing with expressive
DLs, or even with general concept inclusions (GCIs) in ALC, this assumption
is not satisfied. The pinpointing extension described in [11] for ALC with GCIs,
follows the same ideas of [2, 3], but shows that the blocking conditions need
to be handled with care. Furthermore, the pinpointing extensions of terminat-
ing tableau algorithms need not terminate; thus, it is unknown whether every
blocking condition can be adapted to a pinpointing algorithm.

A different approach for checking properties in DL consists on reducing them
to the emptiness problem of an automaton. The finite (bottom-up) emptiness
test for automata yields then the desired decision. In this paper we will show
how these automata-based decision procedures can also be extended to compute
a pinpointing formula. We will motivate the construction, and its applicability
to DLs, by using the DL SI with GCIs.

The paper is structured as follows. We begin by a brief introduction to au-
tomata theory, defining looping and weighted looping automata in Section 2.
This section is followed by a description of the automata-based decision algo-
rithm for satisfiability w.r.t. TBoxes in the DL SI. Afterwards, in Section 4 we
show how weighted looping automata can be used for computing a pinpointing
formula, along with a short analysis of the time bounds required for this task.

2 Automata Theory

We will begin by defining the automata that are used for deciding and explaining
properties such as (un)satisfiability in DLs. These automata operate on infinite
k-ary trees. For a positive integer k, we denote the set {1, . . . , k} by K. The nodes
in these trees are identified by words in K∗ as follows: the root node is identified
by ε and the i-th successor of the node u is identified by u · i for 1 ≤ i ≤ k. In
the case of labelled trees, we will refer to the labelling of a the node u in the tree
t by t(u), and the set of all labels appearing in t by t(K∗) = {t(u) | u ∈ K∗}.

The automata used here do not include an alphabet for labeling the nodes in
the trees. In general, when deciding the emptyness problem for these automata,
we are interested only in the existence of a tree that is accepted by the automa-
ton, but not in the labelings it may contain. Since all the information relevant
for the existence is contained in the states of the automaton, the node labels
are redundant. In particular, this means that the language accepted by such
automata is either empty or contains the (only) unlabelled infinite k-ary tree.

2.1 Looping Automata

The satisfiability problem can be decided in several DLs with the help of looping
automata; that is, automata on infinite trees that do not impose any acceptance
condition. This is the case also for any other property that can be decided by
the presence or absence of an infinite tree model.

Definition 1 (Automaton, run). A looping tree automaton over k-ary trees
is a tuple (Q, ∆, I), where Q is a finite set of states, ∆ ⊆ Qk+1 is the transition
relation, and I ⊆ Q is the set of initial states.

A run of this automaton on the (unique) unlabelled k-ary tree t is a labelled k-
ary tree r : K∗ → Q such that (r(u), r(u ·1), . . . , r(u ·k)) ∈ ∆ for all u ∈ K∗. The
run is successful if r(ε) ∈ I. The emptiness problem for looping tree automata is
the problem of deciding whether a given looping tree automaton has a successful
run or not.

The emptiness problem for looping automata can be decided using time poly-
nomial in the size of the automaton. The idea consists on computing all the bad
states (that is, states that do not occur in any run) in a bottom-up fashion [16, 6]:
all the states that do not occur as first components in the transition relation are
bad, and if all the transitions starting from a state q lead to a known bad state,
then q is also bad. The automaton has a successful run if and only if there is an
initial state that is not bad.

2.2 Weighted Looping Automata

In some cases, deciding whether there is a successful run or not is not enough,
and we want to asign a value to these runs when accepting a tree. That occurs
when trying to explain the decision obtained: every accepted tree is assigned a
weight that contains information useful for the desired explanation. In general,
those weights are elements of a semiring.

A semiring is a tuple (S,⊕,⊗, 0, 1) where S is a set, ⊕ and ⊗ are associa-
tive binary operators with identity elements 0 and 1, respectively, such that ⊗
distributes over ⊕, 0 absorbs over ⊗, and ⊕ is commutative.

Definition 2 (Weighted automaton). Let S be a semiring. A weighted loop-
ing automaton (WLA) on S over k-ary trees is a tuple A = (Q, in, wt) where Q
is a finite set of states, in : Q → S is the initial distribution, and wt : Qk+1 → S
is the mapping of weights of the transitions of the automaton.

A run is simply a labelled tree r : K∗ → Q. The weight of this run is given by
wt(r) = in(r(ε))⊗

⊗

u∈K∗ wt(u, u ·1, . . . , u ·k). The behaviour of this automaton
is ‖A‖ =

⊕

r:K∗→Q wt(r).

Notice that for the definition of behaviour of a WLA to make sense, it is
necessary to be able to perform infinite additions and products, and the product
needs to be commutative even in the infinite case. In other words, we cannot
choose any semiring but only one that is totally commutative complete. For a
formal description of these semirings see e.g. [8].

3 SI satisfiability with TBoxes

We will show the applicability of our approach to DLs by describing how can
one obtain explanations of unsatisfiability of a SI concept term with respect to

a TBox. The DL SI extends ALC with transitive and inverse roles. In other
words, if NC is the set of concept names and NR the set of role names, then
there is a set NT ⊆ NR of transitive role names such that for every r ∈ NT we
can use r− as a role name when building concept expressions. The semantics of
this logic is defined in the usual way. See, for example, [10] for a more formal
description. Given a SI role s, the inverse of s (denoted by s̄) is s− if s is a role
name, and r if s = r−. We will also use the predicate trans(r) on SI roles to
express that either r or r̄ belongs to NT .

A TBox is a set of General Concept Inclusion axioms (GCIs) of the form
C ⊑ D where both C and D are SI concept terms. The semantics of TBoxes
and the satisfiability problem are defined as usual (see [5]).

SI has the tree model property. A tree model for a satisfiable SI concept can
be obtained through unravelling [7]. For example, the SI concept A is satisfiable
with respect to the TBox {A ⊑ ∃r.A} in a model having just one element
belonging to A and related to itself via the role r. Unravelling this model yields
a sequence d0, d1, d2, . . . of elements, all belonging to A, where di is related to
di+1 via the role r, for all i ≥ 0. To obtain these tree models, we will construct
so-called Hintikka trees. Intuitively, Hintikka trees are tree models where every
node is labelled with the concepts to which the element represented by the
node belongs. These concepts must be subconcepts of the concept tested for
satisfiability or the concepts appearing in the TBox. In our small example, all
the nodes di would be labelled by the concepts A and ∃r.A, since each element
belongs to both of them.

To simplify the notation, we assume in the following that all concepts are in
negation normal form (NNF); that is, negation appears only directly in front of
concept names. Any SI concept can be transformed into NNF in linear time us-
ing de Morgan’s laws, duality of quantifiers, and elimination of double negations.
We denote the NNF of a concept C by nnf(C) and nnf(¬C) by ∽C.

Definition 3 (Hintikka set). The set of subconcepts of an SI concept C
(sub(C)) is the least set S that contains C and has the following properties: if S
contains ¬A for a concept name A, then A ∈ S; if S contains D ⊓E or D ⊔E,
then {D, E} ⊆ S; if S contains ∃r.D or ∀r.D, then D ∈ S. For a TBox T ,
sub(C, T) is defined as follows:

sub(C, T) = sub(C) ∪
⋃

D⊑E∈T

sub(∽D ⊔ E)

A set H ⊆ sub(C, T) is called a Hintikka set for C if the following three
conditions are satisfied: if D ⊓ E ∈ H, then {D, E} ⊆ H; if D ⊔ E ∈ H, then
{D, E} ∩ H 6= ∅; and there is no concept name A such that {A,¬A} ⊆ H.

For a TBox T , a Hintikka set H is called T -expanded if for every GCI
D ⊑ E ∈ T it holds that ∽D ⊔ E ∈ H.

Hintikka trees for C and T are infinite trees of a fixed arity k, which is
determined by the number of existential restrictions – concepts of the form ∃r.D
– in sub(C, T). In our definition, we will need to know which successor in the tree

corresponds to which existential restriction. For this purpose, we fix a linear order
on the existential restrictions in sub(C, T). Let ϕ : {∃r.D ∈ sub(C, T)} → K be
the corresponding ordering function; that is, ϕ(∃r.D) determines the successor
node corresponding to ∃r.D. In general, such a successor node need not exist
in a tree model. To obtain a full k-ary tree, Hintikka trees contain appropriate
dummy nodes.

Definition 4 (Hintikka tree). The tuple of Hintikka sets (H0, H1, . . . , Hk) is
called C, T -compatible if the following holds for every existential concept ∃r.D ∈
sub(C, T):

– if ∃r.D ∈ H0, then

1. Hϕ(∃r.D) contains D, every concept E for which there is a universal
restriction ∀r.E ∈ H0, and additionally ∀r.E if trans(r);

2. for every concept ∀r̄.F ∈ Hϕ(∃r.D), H0 contains F , and additionally ∀r̄.F
if trans(r).

– if ∃r.D /∈ H0, then Hϕ(∃r.D) = ∅.

A k-ary tree t is called a Hintikka tree for C and T if, for every node u ∈ K∗,
t(u) is a T -expanded Hintikka set, the tuple (t(u), t(u · 1), . . . , t(u · k)) is C, T -
compatible, and C ∈ t(ε).

This definition of Hintikka trees ensures that its existence characterizes satis-
fiability of SI concepts. The transitivity is dealt with by transfering all universal
restrictions to the “successor” with respect to the transitive role, while the fact
that restrictions can be also applied to the parent node in the tree handles the
inverses. In [9, 1], these Hintikka trees are extended with additional data struc-
tures that allow detecting cycles in the tree in a depth as small as possible. Since
we are not interested in the detection of such cycles, we do not require the data
structures either.

Theorem 1. The SI concept C is satisfiable w.r.t. the TBox T iff there exists
a Hintikka tree for C and T .

We can construct now a looping tree automaton whose successful runs are
exactly the Hintikka trees for C and T . We would then be able to decide satisfia-
bility of C with respect to T by performing an emptiness test on the automaton.

Definition 5 (Automaton AC,T). For an SI concept C and a TBox T , let
k be the number of existential restrictions in sub(C, T). The looping automaton
AC,T = (Q, ∆, I) is defined as follows:

– Q consists of all T -expanded Hintikka sets for C;
– ∆ consists of all C, T -compatible tuples (H0, H1, . . . , Hk);
– I = {H ∈ Q | C ∈ H}.

Theorem 2. C is satisfiable w.r.t. T iff AC,T has a successful run.

We have shown until now how we can use automata to decide satisfiability of
SI concepts w.r.t. TBoxes. This approach has the advantage that it requires no
additional cycle checking techniques. We will now turn our attention on extend-
ing this approach into a method that will allow us to explain the unsatisfiability
of a concept; in other words, we want to find which axioms of the TBox are
responsible for the concept to be unsatisfiable. In general, we will construct a
so-called pinpointing automaton; a WLA whose behaviour contains all the infor-
mation of the causes of the property to hold.

4 Automata-based Pinpointing

If we are given a set T of axioms, then a property P is a set of finite subsets
T ∈ Pfin(T). In the previous section we defined an automaton that depended
on a set of axioms, which could be used to decide a property; in that case,
(un)satisfiability of a concept. If the concept C turns out to be unsatisfiable
w.r.t. the given TBox, we would like to be able to find out a minimal, with
respect to set inclusion, sub-TBox w.r.t. which C stays unsatisfiable. In a more
general scenario, we want to find a minimal subset of axioms – or explanation
– from which the property tested still follows. For this task to make sense, it is
necessary that the property is monotonic in the sense that if T ∈ P , then for
every superset T ′ ⊇ T , it also holds that T ′ ∈ P . Notice that unsatisfiability
w.r.t. TBoxes is in fact monotonic. Whenever we talk of a property, we will
assume that it meets this monotonicity requirement.

In order to find an explanation we need to know how each of the axioms
affects the runs of the automaton. We will do this with the help of a restricting
function. Intuitively, the restricting function will tell us which states can be used
in a run if a given axiom is present.

Definition 6 (Axiomatic automata). Let A = (Q, ∆, I) be a looping au-
tomaton over k-ary trees and T a set of axioms. The restricting function is a
function res : T → P(Q). The restricting function is extended to sets of axioms
as follows: for T ′ ⊆ T , res(T ′) =

⋂

t∈T ′ res(t).

For T ′ ⊆ T , A|T ′ = (Q ∩ res(T ′), ∆ ∩ (res(T ′))k+1, I ∩ res(T ′)) is called the
T ′-restricted subautomaton of A. The set of axiomatic automata for A w.r.t.
res is denoted by (A, res) = {A|T ′ | T ′ ⊆ T }.

Given a property P, we say that (A, res) is correct for P if for every T ′ ⊆ T
it holds that T ′ ∈ P iff A|T ′ has no successful runs.

In the automaton defined in Section 3 for deciding SI (un)satisfiability, the
axioms restrict the set of states by forcing each Hintikka set to be T -expanded.
This is the only condition that depends on the GCIs used; hence, we can re-
move this condition in the definition of the looping automaton and use it as
a restricting function to define a set of axiomatic automata that is correct for
the property “C is unsatisfiable w.r.t. the TBox”. More precisely, this set of
axiomatic automata is given by (AC , res), with AC = (Q, ∆, I), where Q con-
sists of all Hintikka sets for C, ∆ contains all C, T -compatible k + 1-tuples,

I = {H ∈ Q | C ∈ I}; and for every t ∈ T , we have res(t) = {H ∈ Q | H is
{t}-expanded}.

Notice that in particular the subautomaton AC |T is exactly the same as the
automaton AC,T from Definition 5. The benefit of making this change is that
we are now able to understand the behaviour of the automaton in the absense
of some of the axioms.

A näıve approach for finding an explanation consists on deciding the empti-
ness problem for the subautomata obtained by removing some of the axioms,
until one subset of axioms is found such that the property holds for it, but for
none of its proper subsets. Another approach consists on computing a pinpoint-
ing formula [3]. We assume that every axiom t ∈ T is labelled with a unique
propositional variable, lab(t). Let lab(T) be the set of all propositional variables
labeling an axiom in T . A monotone Boolean fomula over lab(T) is a Boolean
formula using (some of) the variables in lab(T) and only the connectives con-
junction and disjunction. We identify a propositional valuation with the set of
propositional variables that it makes true. Given a valuation V ⊆ lab(T), we
denote TV = {t ∈ T | lab(t) ∈ V}. For a property P and a set of axioms T , a
monotone Boolean formula φ over lab(T) is called a pinpointing formula for P
and T if for every valuation V ⊆ lab(T) it holds that TV ∈ P iff V satisfies φ.

From a pinpointing formula one can easily find out the minimal sets of axioms
for which the property still follows; they correspond to the minimal valuations
that satisfy it. Conversely, the maximal sets of axioms for which the same prop-
erty does not hold correspond to the maximal valuations falsifying the formula.

We will use a set of axiomatic automata as a base for constructing a weighted
looping automaton whose behaviour is a pinpointing formula. The semiring used
needs to produce a monotonic Boolean formula by means of additions and prod-
ucts, but syntactic variations of the same formula must be treated equally. Hence,
we use the T -Boolean semiring B

T = (B̂(T) ∪ {⊤,⊥},∧,∨,⊤,⊥), where B̂(T)
is the quotient set of all monotonic Boolean formulas over lab(T) by the propo-
sitional equivalence relation; in other words, two propositionally equivalent for-
mulas will correspond to the exact same element in B̂(T). The constants ⊤ and
⊥ correspond to a tautology and a contradiction, respectively.

Definition 7 (Pinpointing automaton). Let (A, res), with A = (Q, ∆, I),
be a set of axiomatic automata and T a set of axioms. The violating function
vio : Q → B

T is defined for every q ∈ Q by

vio(q) =
∨

{t∈T |q/∈res(t)}

lab(t).

The pinpointing automaton for (A, res) w.r.t. T is the WLA Apin = (Q, in, wt)
on B

T , where

in(q) =

{

vio(q) if q ∈ I,

⊤ otherwise; and

wt(q0, q1, . . . , qk) =

{

∨k
i=1 vio(qi) if (q0, q1, . . . , qk) ∈ ∆,

⊤ otherwise.

Notice that if r is a successful run of A, then wt(r) =
∨

q∈r(K∗) vio(q); oth-

erwise, wt(r) = ⊤. Intuitively, the violating function expresses which axioms
are not satisfied by a given state, and thus the weight of a run accumulates all
the axioms violated by any of the states appearing as labels in it. Removing all
the axioms appearing in that formula would yield a subset of axioms for which
it is possible to construct a run; and hence, the property does not hold any-
more. Conjoining this information for all possible runs leads us to a pinpointing
formula.

Theorem 3. Let P be a property, T a set of axioms, and (A, res) a correct set
of axiomatic automata for P. Then ‖Apin‖ is a pinpointing formula for P and
T .

This theorem shows that it is enough to compute the behaviour of the pin-
pointing automaton in order to obtain all the information necessary to extract
the explanations for a property to hold. The question is now whether it is possible
to effectively compute that behaviour. Clearly, the direct approach of comput-
ing and conjoining the weights for the infinitely many runs of infinite size is
doomed to failure within finite resources. One idea for computing the behaviour
consists in adapting the bottom-up method described in Section 2 for deciding
the emptiness problem of unweighted looping automata. Recall that this proce-
dure iterates labeling states as bad, depending on the transitions that start from
them.

It is possible to reinterpret the same procedure as applied to a weighted
automaton over the Boolean semiring ({0, 1},∧,∨, 1, 0), where the initial distri-
bution maps every initial state to 0 and all the rest to 1, and a transition has
weight 0 if it is an element of ∆ and 1 otherwise. The behaviour of this WLA is
0 if and only if there is a successful run for the original unweighted automaton.

We can then iteratively construct the function bad : Q → {0, 1}. Intuitively,
if bad(q) = 1, then q is a bad state. In the beginning, no state is considered to
be bad, and hence the iteration begins by setting bad0(q) = 0 for all q ∈ Q.
We then iterate as follows: given a state q, badi+1(q) = 1 if every transition
(q, q1, . . . , qk) starting from q leads to states known to be already bad; that is,

if
∨k

j=1 badi(qj) = 1. Thus, the iteration takes the form:

badi+1(q) =
∧

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ∨
k

∨

j=1

badi(qj). (1)

The function bad is then the limit of this iteration. It is easy to see that this limit
is reached after linearly many steps, measured on the size of the automaton. In
the end, we are only interested in knowing whether there is an initial state that
is not bad; i.e. we compute

∧

q∈Q in(q) ∨ bad(q), which corresponds exactly to
the behaviour of the WLA.

This procedure can be directly adapted to compute the behaviour of the
automaton Apin. Intuitively, bad(q) does not anymore show whether q is bad or
not, but rather a formula that expresses the axioms that must be violated in

order to construct a run that uses q as a label. We start again by considering
that no axiom is violated, and hence bad(q) = ⊥ for all q ∈ Q. Notice that this
corresponds to initializing the iteration with the neutral element of the product,
as done in the previous case. From here, we can iterate again using the same
process described by Equation (1).

We will proceed now to show both that the function bad can be computed in
time polynomial on the number of states of A, and that the formula

∧

q∈Q in(q)∨

bad(q) corresponds to the behaviour of Apin. To do this, we will use partial runs of
depth m. Let K≤n :=

⋃n
i=0 Ki. A partial run of depth m for a looping automaton

is a mapping r : K≤m−1 → Q such that (r(u), r(u·1), . . . , r(u·k)) ∈ ∆ for all u ∈
K≤m−2. For a weighted looping automaton, a partial run is simply a mapping
r : K≤m−1 → Q. All the notations and terminology used for runs will also be
applied for partial runs. We further denote Ki

q = {r : K≤i → Q | r(ε) = q}.

Lemma 1. For all i ≥ 0 and q ∈ Q it holds that

badi(q) =
∧

r∈Ki
q

∨

u∈K≤i−1

wt(r(u), r(u · 1), . . . , r(u · k))

This lemma can be proved by induction, by simply applying the definition of
badi+1 in terms of badi. The intuition behind this lemma is that after the i-th
iteration, the function badi(q) states the conjunction of weights of all the partial
runs up to depth i. Hence, if computing the partial runs of a certain depth m is
enough for knowing the existence of a run, then only m iterations are necessary
to compute the limit bad.

Definition 8 (m-complete). A looping automaton A is called m-complete if
the following property holds: A has a successful run iff A has a successful partial
run of depth m.

It is easy to see that every looping automaton A = (Q, ∆, I) is m-complete
for every m greater than the cardinality of Q. However, there are also classes
of automata for which this bound can be lowered [1]. The following corollary
follows easily from Lemma 1.

Corollary 1. If A is m-complete, then badm+1 = badm = bad.

We know now that we need at most as many iterations as there are states
in the automaton to find the fixed point of bad. It remains to show that this
process is indeed helpful for computing the behaviour of the WLA.

Theorem 4. ‖Apin‖ =
∧

q∈Q in(q) ∨ bad(q)

Proof. Let n be such that badn(q) = badn+1(q) for all q, and V a valuation.
Assume that V does not satisfy ‖Apin‖. Then there must exist a run r such that
V does not satisfy wt(r) = in(r(ε)) ∪

∨

u∈K∗ wt(r(u), r(u · 1), . . . , r(u · k)). In
particular, V satisfies neither in(r(ε)) nor

∨

u∈K≤n wt(r(u), r(u · 1), . . . , r(u ·k)).

By Lemma 1, V cannot satisfy badn(r(ε)) = bad(r(ε)). Thus, V does not satisfy
in(r(ε)) ∨ bad(r(ε)).

Conversely, suppose that there is a q ∈ Q such that V does not satisfy in(q)∨
bad(q). We can construct a run r whose weight is not satisfied by V as follows.
First set r(ε) = q. Since V does not satisfy bad(q), there is a tuple (q, q1, . . . , qk) ∈

Qk+1 such that V satisfies neither wt(q, q1, . . . , qk) nor
∨k

j=1 bad(qj). We set
r(i) = qi for 1 ≤ i ≤ k. We can then iterate this procedure for each of the new
nodes in the tree, adding always transitions that are not satisfied by V . Thus, V
cannot satisfy ‖Apin‖. ⊓⊔

We have finally shown that we can compute the behaviour of a pinpointing
automaton, and hence a pinpointing formula, in a time polynomial on the size
of the automaton. Since the automaton constructed for SI has exponentially
many states, measured on the size of the TBox, we would require exponential
time for computing the pinpointing formula. This bound is optimal for SI w.r.t.
TBoxes since only deciding unsatisfiability requires already exponential time. If
we restrict our attention to SI with only acyclic TBoxes, we have a decision
problem in PSpace. We can also show that in this case, the automaton AC is
m4-complete, where m is the cardinality of sub(C, T). Thus, we need only poly-
nomially many iterations of the function bad to compute the pinpointing formula.
Unfortunately, each iteration still requires the computation of a value for each
state, and hence needs exponential time and space on the size of the TBox. It
is unclear whether this exponential bound is also optimal for the restricted case
or not.

5 Conclusions

We have introduced the notion of axiomatic automata, which can be easily ap-
plied to automata-based decision procedures for DLs; that is, axiomatic au-
tomata can decide unsatisfiability of concept terms with respect to sets of GCIs.
We have then shown how to construct a weighted looping automaton from a set
of axiomatic automata in such a way that the behaviour of the WLA corresponds
to a pinpointing formula for the property decided by the axiomatic automata.

We have also shown a bottom-up procedure for computing this behaviour.
Although it was presented only for pinpointing automata, this bottom-up algo-
rithm can be adapted for computing the behaviour of any WLA in a straight-
forward manner. This procedure requires at most as many iterations as states
in the automaton, and each iteration requires time polynomial to the number
of states. The automata described here for unsatisfiability in DLs has exponen-
tially many states with respect to the number of GCIs in the TBox. This means
that the computation of a pinpointing formula requires an exponential time on
the size of the TBox, even for logics where deciding unsatisfiability is in a lower
complexity bound, such as ALC with acyclic TBoxes. One interesting question
that arises is whether this bound is optimal or the algorithm can be improved
for specific cases, for example, by constructing only parts of the automaton at a
time.

References

[1] Franz Baader, Jan Hladik, and Rafael Peñaloza. Automata can show PSPACE
results for description logics. Information and Computation, 2008. To appear.

[2] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological
knowledge representation formalisms. J. of Automated Reasoning, 14:149–180,
1995.

[3] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux. In
Proc. of TABLEAUX 2007, LNAI, Aix-en-Provence, France, 2007. Springer.

[4] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pinpointing in
the description logic EL

+. In Proc. of KI’07, LNAI, Germany, 2007. Springer.
[5] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description

logics. Studia Logica, 69:5–40, 2001.
[6] Franz Baader and Stephan Tobies. The inverse method implements the automata

approach for modal satisfiability. In Proc. of IJCAR 2001, volume 2083 of Lecture
Notes in Artificial Intelligence, pages 92–106. Springer-Verlag, 2001.

[7] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[8] Manfred Droste and George Rahonis. Weighted automata and weighted logics
on infinite words. In Oscar H. Ibarra and Zhe Dang, editors, Developments in
Language Theory, volume 4036 of Lecture Notes in Computer Science, pages 49–
58. Springer, 2006.

[9] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A PSpace-algorithm for deciding
ALCNIR+-satisfiability. LTCS-Report LTCS-98-08, LuFG Theoretical Computer
Science, RWTH Aachen, 1998.

[10] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial In-
telligence, pages 161–180. Springer-Verlag, 1999.

[11] Kevin Lee, Thomas Meyer, and Jeff Z. Pan. Computing maximally satisfiable
terminologies for the description logic alc with GCIs. In Proc. of Description
Logics 2006, 2006.

[12] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding maximally
satisfiable terminologies for the description logic ALC. In Proc. of the 21st Nat.
Conf. on Artificial Intelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.

[13] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In
Allan Ellis and Tatsuya Hagino, editors, Proc. of the 14th International Confer-
ence on World Wide Web (WWW’05), pages 633–640. ACM, 2005.

[14] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In Georg Gottlob and Toby Walsh,
editors, Proc. of IJCAI 2003, pages 355–362, Acapulco, Mexico, 2003. Morgan
Kaufmann, Los Altos.

[15] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
unions and complements. Technical Report SR-88-21, Fachbereich Informatik,
Universität Kaiserslautern, Kaiserslautern (Germany), 1988.

[16] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Sciences, 32:183–221, 1986. A
preliminary version appeared in Proc. of the 16th ACM SIGACT Symp. on Theory
of Computing (STOC’84).

