
Implementing Interoperability through an

Ontology Importer for Amine

Saleh Abdulrub1, Simon Polovina1,
Ulrik Sandberg-Petersen2, and Richard Hill1

1 Faculty of Arts, Computing, Engineering & Sciences,
Sheffield Hallam University, Sheffield, United Kingdom

Saleh.Abdulrub@student.shu.ac.uk,{s.polovina, r.hill}@shu.ac.uk
2 Kaj Munk Research Center,

Department of Communication & Psychology,
Kroghstræde 3,

Aalborg University, DK-9220,
Aalborg, East Denmark
ulrikp@hum.aau.dk

Abstract. This paper investigates the need for tools that will facilitate
a higher-order demand for interoperability between disparate systems.
An ontology importer for Amine is described which enables ontologies
written in linear form to be used with Amine version 4. Furthemore,
the ontology importer is shown as an intermediary between CharGer
and Amine, thus demonstrating interoperation between two conceptual
structures tools, as well as discussed in a wider context by means of a
Web service or by interoperating with Protégé-OWL.

1 Introduction

The Amine platform provides a comprehensive software suite for symbolic pro-
gramming, intelligent system programming and intelligent agents programming[7].
It is primarily based on Conceptual Graphs (CG)[8]. As a core component it in-
cludes an ontology builder that is based upon a graphical user interface (GUI).
The role of an ontology is key as it describes the concepts in a domain and
any relationships between these concepts in this particular domain[3]. An ontol-
ogy thus describes an existence of some particular objects in some domain and
work can be derived from studying this domain. In CG an ontology consists of a
type hierarchy that contains types that represent groups of entities with similar
traits[5].

2 The Need

Whilst Amine’s ontology builder is sophisticated, the technique used to develop
an ontology using the Amine GUI can be quite time consuming as it involves
much manual mouse pointing and clicking by the user. There are two further

1



possible ways an ontology that on first sight appear to be more attractive. The
first of these is generating or writing XML that is compatible with Amine. This
method however is rather intricate as the XML needs to match the atypical on-
tology storage structure of Amine. Thus even with XSLT, in practical terms this
is too low-level[1], [4]. The second way is by building an ontology programmati-
cally by using Amine’s API. Again this method is difficult and time consuming
as, like the XML option, it requires the Amine-specific structure. The ontology
importer addresses these concerns. It provides easier ontology development by
giving, in contrast to Amine’s current ontology builder, the ability to develop an
ontology directly in CG in its linear form.

3 The Ontology Importer

The importer addresses the desire for CG software tools to interoperate. To have
these tools in some sense compatible and functioning with each other is a key goal
that would be welcomed by many in the CG community. This ontology importer
is a small experiment that could be taken further in the future to achieve the
end goal of interoperability between other CG tools.

3.1 As an Implementation

Currently the ontology importer consists of a GUI with a text-editor. An input
in straight ASCII format is complied and accepted, then linking it to Amine’s
APIs. The ontology importer is fully functioning with error handling facilities.
It is a Java library, and as such can be accessed from any Java application. One
application that comes with the ontology importer for example is a text editor to
input the text, which also contains output for informative messages. Currently
the prototype accepts the input as a Java String. However the ontology importer
will soon provide the facility for a user to enter the URL of a file and have the file
compiled and if there are no errors in the input create an ontology. It is significant
that the input to the ontology importer is a Java String. This is useful for the
following reasons; firstly it enables easy creation of ontologies that have been
automatically constructed from other sources, thereby enabling interoperability
between Amine and other knowledge representation software. Secondly it enables
quicker and easire creation of ontologies by using the keyboard rather than the
mouse.

4 Prolog+CG 2.0

The syntax used by the ontology importer is modelled upon that of Prolog+CG
2.0 (hereafter referred to as Prolog+CG). Prolog+CG is a GC tool built in
Java. It is similar to Prolog except it has extensions for handling CG. Profes-
sor Adil Kabbaj, the creator of Amine, was also the creator of Prolog+GG[6].
Prolog+CG’s extensions enable it to handle CG ontologies that can be created,

2



queried and results given. Prolog+CG is thus a CG programming environment.
In Prolog+CG for example the following ontology could be written into a Pro-
log+CG text editor without any further programming:

Universal > Male, Female, Adult, Child.

Male > Man, Boy.

Female > Woman, Girl.

Child > Boy, Girl.

Adult > Man, Woman.

Instances can also be created easily in Prolog+CG. For example the following
instances can easily be created in Prolog+CG:

Boy = Sam, Richard, Gary.

Girl = Greta, Rebecca, Sheila.

Like the ontology importer, Prolog+CG enables ontologies to be entered in CG
linear form. However it is not interoperable in that it lacks a cohesive, distinct
component for creating and interoperating ontologies. It also does not return
an Amine API ontology or lexicon object that can then be used by Amine’s
ontology builder. Given all these factors, the ontology importer was designed
as a distinct component from the outset rather than to retro-fit Prolog+CG’s
legacy version to the problem in hand.

5 Creating an Ontology with the Ontology Importer

As in Amine the topmost type and the topmost relation type must be specified
at the start of the ontology. This is achieved by simply entering the word ‘TOP’
and specifying its identifier after the ‘::=’ assignment of symbol. This process
is the equivalent to the dialogue box that appears on Amine’s ontology builder
GUI that asks for the topmost type in the hierarchy. The topmost relation in
the hierarchy must also be specified by entering ‘RELATION TOP’ and passing
the identifier name after the ‘::=’ assignment symbol. The ontology importer
then expects these to be the first types in the hierarchy. (NB If an identifier
other than the TOP’s identifier is the first in the hierarchy an error is flagged. If
RELATION TOP’s identifier is a subtype of any type other than TOP’s identifier
an error is flagged. Similarly if TOP and RELATION TOP are omitted the
ontology would not compile). Adding an ontology using the prototype is thereby
much simpler than using Amine’s GUI; indeed one can simply paste an ontology
into the text editor. The following ontology can then be created as shown in
Figure 1:

TOP ::= Universal.

RELATION_TOP ::= Relation.

Universal > Male, Female, Adult, Child.

Male > Man, Boy.

Female > Woman, Girl.

3



Child > Boy, Girl.

Adult > Man, Woman.

Boy = Sam, Richard, Gary.

Girl = Greta, Rebecca, Sheila.

Fig. 1. Importing an ontology.

6 Automating across Applications

An example of how to automate the ontology importer can be illustrated using
CharGer as an example. CharGer is a CG software tool[2]. CharGer is used
for CG operations similar to Amine. CharGer creates ontologies in graphical
form and generates a linear form ontology from this graphical form. In CharGer
instances are created by having the link in text format. Instances are shown in
a rectangular box with the concept type name and the instance as the referent.
The link is produced by giving the name of the concept type, thus in text format.
The following linear form ontology is generated by CharGer:

Type Man is a kind of Male

Type Boy is a kind of Child

Type Female is a kind of Universal

Type Adult is a kind of Universal

Type Relation is a kind of Universal

Type Male is a kind of Universal

4



Type Child is a kind of Universal

Type Woman is a kind of Adult

Type Man is a kind of Adult

Type Boy is a kind of Male

Type Woman is a kind of Female

Type Girl is a kind of Female

Type Girl is a kind of Child

There is a Proposition where Boy Sam Boy Richard Girl Rebecca Girl

Sheila Boy Gary Girl Greta

The above code can be either automatically transformed or manually edited to
produce the type hierarchy in the format accepted by the ontology importer.
One current shotcoming of the ontology importer is that it requires the types to
be specified top-down. Hence we need to reorder the list before processing with
the ontology importer.

TOP ::= Universal.

RELATION_TOP ::= Relation.

Universal > Female.

Universal > Male.

Universal > Child.

Male > Man.

Child > Boy.

Universal > Adult.

Universal > Relation.

Adult > Woman.

Adult > Man.

Male > Boy.

Female > Woman.

Female > Girl.

Child > Girl.

Boy = Sam, Richard, Gary.

Girl = Rebecca, Sheila, Greta.

The above ontology now can be accepted and compiled by the ontology importer.
Achieving the goal of automation across applications has been met, though there
were some amendments that need to be done to the ontology in order for it
compile. This is clearly a shortcoming which we intend to address in the near
future.

7 Automating as a Web Service

The primary goal for this work was to be able to use Amine ontologies in Web Ser-
vices, without using a mouse for data entry. Part of this goal has been achieved;
since the ontology importer is a Java library, it can be incorporated into any Java

5



Web Service together with Amine. Similarly it would be useful to enable the cre-
ation of Amine ontologies as a web service. Once implemented this will achieve
the goal of interoperability. Any application can then add a reference specifying
the location of the Web Service and connect to the ontology importer’s API.
When connected to the importer’s API the user is indirectly accessing Amine’s
APIs to create an ontology. An Amine ontology would then be returned, thus
achieving the goal which was originally formulated.

8 Conclusion

The ontology importer presented in this paper provides Amine with a convenient
plug-in tool for its ontology builder. This extends to Web Services and main-
stream non-CG ontology tools such as Protégé-OWL. Future research would
include the following. First, the restriction on the order of the lines needs to be
lifted. Second, a convenient method needs to be added, such that a URL can be
given to the ontology importer, which is then fetched and used as the input to
the method which accepts a String. Third, a Web Service needs to be created
which provides Amine ontology creation services through a Web Service inter-
face. The ontology importer will be released as Open Source software, thereby
benefitting the CG and broader knowledge representation communities.

References

1. Brady, N., Polovina, S., Shadija, D., Hill, R., (2006) ‘Experiences and Lessons from
the Practical Interoperation of CharGer with SeSAm’, Proceedings of the First Con-
ceptual Structures Tool Interoperability Workshop (CS-TIW 2006), July 16, 2006,
Aalborg, Denmark. de Moor, A., Polovina, S., Delugach, H., (Eds.), Aalborg Uni-
versity Press (ISBN: 87-7307-769-0), 32-47.

2. Delugach, H., (2006). ‘CharGer - Conceptual Graph Editor’. [online] last accessed
8 April 2008 at: http://sourceforge.net/projects/charger/

3. Horridge, M.,(2008). ‘A Practical Guide To Building OWL Ontologies Using Protégé
4 and CO-ODE Tools’, [online] last accessed 25 March 2008 at: http://www.co-
ode.org/resources/tutorials/ProtegeOWLTutorial-p4.0.pdf

4. Maybery, P., Polovina, S., (2007). ‘The Extent to which Interoperability between
CG and non-CG Tools can be Assessed against the Semiotic Ladder’, Proceedings
of the 2nd Conceptual Structures Tool Interoperability Workshop (CS-TIW 2007),
July 2007, Sheffield, UK. Pfeiffer, H., Kabbaj, A., Benn, D., (Eds.), Research Press
International (ISBN: 1-897851-16-2), 35-44.

5. Petersen, U., (2008). Online Course in Knowledge Representation using Conceptual
Graphs [online] last accessed 22nd March 2008 at http://www.huminf.aau.dk/cg/.

6. Petersen, U., (2004-2007). Prolog+CG 2.0 website. last accessed Accessed 26 March
2008 at: (http://prologpluscg.sourceforge.net/.

7. Pfeiffer, H., Kabbaj, A., & Benn, D., (2007). Proceedings of the 2nd Conceptual
Structures Tool Interoperability Workshop (CS-TIW 2007), July 2007, Sheffield, UK.
Pfeiffer, H., Kabbaj, A., Benn, D., (Eds.), Research Press International (ISBN: 1-
897851-16-2), 65-70

8. Sowa, J.F., (1984). Conceptual Structures, Addison-Wesley.

6




