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Abstract. Ontologies, fundamental to the realization of the Semantic
Web, provide a formal and precise conceptualization of a specific domain
that can be used to describe resources on the Web. Reasoning over such
resource descriptions is essential in order to facilitate automated process-
ing using formal descriptions that are machine interpretable. In this con-
text, Datalog (with extensions) can be used for rule-based reasoning with
ontologies described with WSML, (a subset of) OWL-DL, RDF, RDFS
and extensional RDFS. Furthermore, since Java is the chosen implemen-
tation platform for the majority of software prototypes from research,
it becomes clear, that a good quality, open-source, Java-based Datalog
reasoner is a prerequisite for much research in the field of semantics. The
purpose of this paper is to present a reasoner that fills this gap. IRIS is
an open-source Datalog engine, extended with XML Schema data types,
built-in predicates, function symbols and Well-founded default negation.
We outline the reasoner architecture, basic evaluation algorithms and
various optimizations. Additionally we provide a comparison of the per-
formance of IRIS with similar systems.

1 Introduction

Ontologies[1] enable the reuse, sharing and portability of knowledge, coupled
with a better conceptual understanding and analysis of a certain knowledge do-
main. Using a well defined formal language for the specification of ontologies does
not only enable machine readability of knowledge, but crucially also machine in-
terpretability and in turn automated processing. Properly employed, ontologies
thus enhance the current Web with the possibility of automated reasoning about
distributed knowledge, which makes it possible to derive new, and only implic-
itly available, knowledge. This vision finally leads to a Semantic Web, in which
content has a well defined meaning.

An important observation in this regard is that resources on the Web are
likely to be annotated with relatively lightweight ontologies (low number of con-
cepts), however the number of resources annotated with these ontologies is likely
to be very large (a large instance set)[2]. Reasoning with such large data sets
is a well researched field in the context of deductive databases and a wealth of
formal results have grown out of these Logic Programming[3] based efforts. Fur-
thermore, it is possible to identify reasoning tasks at two different levels, namely
the schema level and instance level.



On the schema level (intensional reasoning) we can reason about class prop-
erties and subclass relationships, i.e. subsumption reasoning. This task consists
of checking if a certain class is more general than another one (subsumes it). By
performing this for the complete knowledge base it thus becomes possible to com-
pute a complete class hierarchy and implicit relationships with other classes be-
come apparent. Subsumption reasoning can be reduced to satisfiability checking
and Description Logic (DL) based reasoners (such as RacerPro[4], FaCT++[5],
Pellet[6] and Kaon2[7]) usually implement efficient algorithms to perform this
task. While subsumption reasoning can be reduced to query answering by a Logic
Programming engine, DL reasoners are generally more efficient in this regard.

The second reasoning task is query answering in regard to instances in the
knowledge base (extensional reasoning). Query answering can be further subdi-
vided into instance checking (a ground query) and instance retrieval. Instance
checking involves a ground fact, and the corresponding task is to check if this fact
is entailed by the current knowledge base. Instance retrieval (an open query) is
focused on a formula with free variables and its purpose is to give substitutions
for these free variables with values from the knowledge base. As a basic naive
approach, instance retrieval can be reduced to instance checking by grounding
the free variables in the open query with values from the knowledge base. Thus
one open query can be answered by computing several ground queries. Logic
programming based techniques are very efficient and well studied in regard to
query answering.

One Logic Programming based formalism that has been thoroughly ana-
lyzed is Datalog[8], which was originally developed as a database query and
rule language. Datalog is based on a simplified version of the Logic Program-
ming paradigm (it is a syntactic subset of Prolog) with its main focus on the
processing of large amounts of data from relational databases. Several relevant
complexity results of Datalog in regard to query answering have been derived.
Querying a static knowledge base in general has polynomial time complexity,
but is exponential otherwise[9].

Datalog can be used in a wide variety of applications, including Description
Logic Programming (DLP)[10], rule languages from the WSML family[11] and
RDF[12] reasoning. Disjunctive Datalog, which allows disjunctions in the head
of a rule and is more expressive than standard Logic Programming, can be used
to reason with an even larger subset of OWL DL[13].

The purpose of this paper is to present IRIS, an open-source Datalog engine,
extended with XML Schema data types, built-in predicates, function symbols
and Well-founded default negation. It is licensed under the GNU lesser GPL
and is therefore free to use and modify by the research community and industry
alike. The IRIS project is hosted by Sourceforge1 and more detailed information
is available on its home page2.

1 http://sourceforge.net/projects/iris-reasoner
2 http://www.iris-reasoner.org



The WSML2Reasoner3 framework uses IRIS for ontology reasoning for rule
based WSML variants (WSML-Core, WSML-Flight and WSML-Rule) and there
exists an RDFS reasoner4 that uses IRIS for RDF, RDFS and extensional RDFS
reasoning[14].

The rest of this paper is structured as follows: Section 2 provides a brief sum-
mary of features. Section 3 describes the internal design, how different compo-
nents of the reasoner interact, in what ways optimization techniques are applied
and how new features can be added in a non-obtrusive way. Section 4 outlines
related work and identifies other reasoners that employ similar techniques and
formalisms. In order to demonstrate the practical use of IRIS, a performance
evaluation in the form of a comparison with other well-known reasoners is given
in Section 5. Finally, plans for future development are outlined in Section 6

2 System Overview

IRIS is a Datalog reasoner that uses bottom-up[8] evaluation strategies with
several optimizations. However, support for rule-based WSML variants requires
several extensions to Datalog, namely:

– WSML-Core is based on plain (function-free and negation-free) Datalog with
primitive XML schema types.

– WSML-Flight requires Datalog extended with inequality and locally strati-
fied[15] default negation.

– WSML-Rule further requires the unrestricted use of function symbols, Well-
Founded default negation and does not require the rule safety condition
(unsafe rules).

IRIS has been designed to be as modular as possible thus allowing more
evaluation strategies to be added over time. However, for the initial releases of
IRIS, it was decided to concentrate on bottom-up evaluation techniques. The
advantages of using bottom-up techniques are that they are easily understood
and implemented. The disadvantage is that for large or complex knowledge-
bases, the minimal model may be too expensive to calculate in either time or
storage requirements.

However, ‘Magic Sets’[16] is a well-researched program optimization tech-
nique that mitigates the disadvantages of bottom-up evaluation by re-writing
the rules of the knowledge-base to answer a specific query. The end effect is
that a far more efficient evaluation occurs where only those tuples likely to be
involved in answering the query are computed.

Therefore, at present, IRIS uses a combination of bottom-up evaluation for
simplicity, combined with magic sets optimization for efficiency. This particular
combination is well-researched[17][18], easy to implement, fast and efficient.

3 http://tools.deri.org/wsml2reasoner/
4 http://tools.deri.org/rdfs-reasoner/



3 Design and System Architecture

The IRIS Datalog reasoner is highly modular and comprised of a number of
loosely coupled components that implement well-defined Java interfaces. The
overall strategy is to focus on fast bottom-up evaluation techniques and opti-
mize query answering using magic sets. However, future top-down and hybrid
techniques are envisaged and planned for. When the time comes, new implemen-
tations can be easily ‘plugged-in’ and used without any requirement to modify
the existing code-base.

Broadly speaking, an evaluation strategy represents a particular combina-
tion of processing elements. There are two basic evaluation strategies currently
implemented, see Figure 1.
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Fig. 1. Stratified and Well-founded evaluation strategies

The first is a (locally) stratified[8] technique that includes a stratification
step where each stratification algorithm is applied in turn until one succeeds.
From then on, the rest of the processing steps are completed until a minimal
model for the knowledge-base is created. Queries can then be executed against
this model.

The second technique uses an alternating fixed point algorithm[19] to com-
pute the well-founded model. This approach is required for input programs that
are not stratified. Instead of stratification, a program doubling step is introduced



that creates the ‘positive’ and ‘negative’ versions of the logic program for input
to the alternating fixed point algorithm.

The individual processing elements are described below.

3.1 Program optimizations

As mentioned above, the Magic Sets optimization technique re-writes the rule-
set according to the query so that only tuples likely to be involved in satisfying
the query are computed. It can be shown that this approach allows bottom-up
evaluation to rival top-down techniques in efficiency[20]. In essence, the applica-
tion of magic sets allows only a sub-set of the minimal model to be computed,
i.e. that part which contains all tuples that will be used to answer the query.
The disadvantage, is that a new sub-set of the model must be computed for
each new query. Therefore, magic sets allows faster knowledge-base initializa-
tion times at the expense of longer query times. Whether magic sets is used or
not can be configured programmatically to suit the environment in which IRIS
is being used.

Another simpler program optimization technique is rule-filtering. This tech-
nique is usually used in combination with Magic Sets and simply involves build-
ing a dependency graph between all rule predicates and removing those rules
that can not influence the query result, thus reducing the size of the minimal
model computation.

3.2 Rule Safety Processing

An unsafe rule is one in which a variable is used, but has no binding. In essence,
the entire universe of possible values must be substituted for this variable, which
is clearly impractical. Unsafe rules are therefore particularly problematic for
bottom-up evaluation techniques that do precisely this, i.e. substitute known
values into variables of rule body predicates.

When IRIS is configured not to allow unsafe rules, the standard rule-safety
processor is used. This processor simply examines each rule and indicates if any
rule is unsafe and exactly why it is unsafe. Inputting a program containing an
unsafe rule results in a specific exception being thrown containing a message
explaining which rule is unsafe and which variables are problematic.

In order to process unsafe rules IRIS can be configured to use a rule aug-
mentation processor. This processor uses a technique suggested by Gelder[21]
that adds a ‘universe’ predicate for each unbound variable. This universe pred-
icate automatically contains all term values that appear anywhere in the input
program or that are created during program evaluation.

3.3 Stratification Algorithms

A globally stratified logic program is one where the rules can be arranged into
strata, where each stratum contains rules whose positive body predicates match



the heads of rules that are in the same or a lower stratum and whose negated
body predicates match the heads of rules that are in a lower stratum. Arranging
the rules like this allows each stratum to be fully evaluated before moving to the
next higher stratum. This evaluation is guaranteed to be monotone.

IRIS has two separate stratification algorithms. The first algorithm is the
simplest and attempts to stratify the rules assuming the program is globally
stratified as described above[8]. If the program is not globally stratified the algo-
rithm fails. The second algorithm assumes the program is locally stratified[15].
Local stratification occurs when a rule has a direct or indirect dependency upon
itself through negation, but the presence of constant term values allow the sepa-
ration of the domain of tuples used as input to the rule and the domain of tuples
produced by the rule. For example, the following rule appears to be unstratified:

p(2, ?X) : −q(?X),¬p(3, ?X)

because the rule head predicate has a direct negative dependency upon itself.
However, the rule can only produce tuples whose first term value is 2 and can only
use input tuples whose first term value is 3. Therefore no recursive dependency
exists at all and this rule can be evaluated normally.

Locally stratified logic programs can be far more complicated than the sim-
ple example shown above[22]. IRIS uses a novel technique that scans the rule
bodies looking for negated predicates containing constants. If any are found then
the rules are examined to discover which rule heads can match to this negated
predicate. This is done by examining each rule’s body to discover what tuples
can be produced and adorning the rule-head with information about the range
of term values produced at each position in the rule output tuple. If any rules
can produce both tuples that match and tuples that do not match the original
negated predicate, then the rule is ‘split’ into two separate rules, one that per-
fectly matches and one that does not match. This process is continued until no
more rule-splitting can be done. After this, the normal stratification algorithm is
applied, but rule head adornments are also used to indicate predicate dependen-
cies. In this way, IRIS is able to do fast bottom-up evaluation of locally stratified
logic programs, without requiring the well-founded semantics.

3.4 Rule Re-ordering optimizations

After rules have been allocated to strata (or not as in the case of the well-founded
evaluation strategy) there can still be significant performance improvements if
the rules are evaluated in a better order, i.e. rules that produce tuples that
feed other rule bodies are evaluated earlier. The standard IRIS rule re-ordering
optimizer simply searches for the first positive body predicate of each rule and
builds a dependency graph between these positive body predicates and rule
heads. Rules are then arranged following this directed graph.



3.5 Rule optimizations

A number of optimizations can be achieved on a per rule basis. The default
configuration contains the following four optimizers, but more user defined op-
timizers can be easily added.

Join condition This optimizer attempts to use the same variable for join con-
ditions, e.g.

p(?X) : −q(?X), r(?Y ), ?X =?Y

would be changed to
p(?X) : −q(?X), r(?X)

This can significantly reduce the number of intermediate tuples produced
during a sequence of cartesian products.

Replace variables with constants This has the effect of pushing selection
criteria into the evaluation of a relation, such that fewer tuples are processed,
e.g.

p(?X, ?Y ) : −q(?X, ?Z), ?Z = 2

would be changed to
p(?X, ?Y ) : −q(?X, 2)

Re-order literals Re-arrange the literals in a rule body so that the most re-
strictive literals appear first. The preferred order is: positive literals with no
variables, built-ins with no variables, positive literals, built-ins and negated
literals. However, negated literals and built-ins can be pushed earlier into
the rule body as soon as all their variables are bound.

Remove duplicate literals Remove any literal that appears twice within the
rule with the same variables.

3.6 Rule Compilers

Compiling an input rule simply involves pre-computing all possible information
required for rule evaluation. The input rule is transformed into a compiled rule
that can be quickly evaluated using a rule evaluator.

The first step is to create views on each literal. A view is analogous to a
view in a relational database and is created from the underlying relation for
a predicate and the tuple as it appears in the rule body predicate. A view is
itself a relation for the purposes of rule evaluation, as the following examples
demonstrate:

p(?X, ?Y ) : −q(?X, ?Y ), r(?Y, ?Y ), s(1, ?X), t(g(?Y, ?Z))

q(?X, ?Y ) is a simple view that selects all tuples from the relation for ‘q’.
r(?Y, ?Y ) is a view that selects only those tuples where both terms are equal.
This view appears as a unary relation.
s(1, ?X) is a view that selects values from the second term of the relation for ‘s’
where the first term is equal to 1. This view also appears as a unary relation.



t(g(?Y, ?Z)) is a view that selects the two term parameters of constructed terms
from the relation for ‘t’. This view converts a unary relation into a binary view.

The next step is to assign join objects and indexes. Since all joins in Datalog
are natural joins, the compiling stage looks for all matching variables between
two adjacent views, calculates the join indices and creates indexes. The indexes
used in the default rule compiler are hash-based and therefore this approach is
equivalent to performing a hash join. The advantages of a hash join over a sort-
merge join are that the underlying views are not required to be sorted in any way,
rather simply grouped according to matching join indices. This approach appears
to scale much better than maintaining sorted relations (as in previous versions of
IRIS) and is much faster overall. When an evaluation is highly iterative, the cost
of maintaining a sorted relation as tuples are added on each iteration becomes
very expensive.

An important optimization that this approach allows is that of caching of
indexes, views and relations. Bottom-up evaluation can be expensive computa-
tionally when the rule set is highly recursive. However, when a rule is compiled
into an object model just described, the fetching of matching tuples for joins
does not have to re-evaluate an entire view of a relation, because a view need
only process the extra tuples added since the last rule evaluation and the index
only need process those matching tuples from the view.

3.7 Rule Evaluators

Closely related to rule compilation is rule evaluation. A rule evaluator simply
applies facts to rules to generate new facts. Two rule evaluators are provided as
described in Ullman[8], the naive evaluator and the semi-naive evaluator.

The naive evaluator simply applies all facts to all rules in each round of
evaluation and stops when no new facts are produced. Semi-naive attempts to
avoid inferring the same fact twice in the same way. In each round of evaluation
it uses the deltas, i.e. the set of new facts from the previous round, to substitute
into each rule once for each positive ordinary literal.

3.8 Miscellaneous Components

The following utility components are common to all evaluation strategies.

Storage and Indexing Although IRIS currently computes all inferred data in-
memory, it is planned to allow for alternative implementations of relations and
indexes that can use any medium, the most likely being flat files or a relational
database.

New implementations for relations and indexes can easily be integrated in
IRIS by creating classes that implement the relation and index interfaces. To
use these new implementations, the configuration object for the knowledge-base



(see below) needs only to have new factory objects added for these new imple-
mentations.

When an IRIS knowledge-base is initialized, the complete rule-set and set of
starting ground facts must be passed to the knowledge-base factory. However,
this is not always convenient, especially when the data set is large. It may be that
the data set does not fit into memory or takes too long to parse and format. In
any case, not all the data may not be required for evaluation. For these situations,
IRIS allows the user to supply external data sources at initialization time. An
external data source is simply a user supplied Java object that implements the
external data source interface. The storage mechanism used is left entirely to
the class implementor. The external data source must simply answer requests
from the reasoner to provide facts for the given predicate and selection criteria
during program evaluation.

Built-in Predicates IRIS comes with a large set of built-in predicates that
can be used in the bodies of rules. They include:

– Equality, inequality, assignment, unification and regular expressions.

– Less, less or equal, greater, greater or equal, that take into account type and
floating-point round-off errors.

– Unary type checking, e.g. ‘is integer’, for all supported data types and binary
‘same type’ comparison.

– Addition, subtraction, multiplication, division and modulus.

A selection of base classes are provided so that user-defined built-in predicates
can be created easily. Furthermore, mechanisms are provided to allow the parser
to recognize and automatically create instances of user-defined built-ins.

Configuration IRIS can be configured at the point where a knowledge-base is
created. All configuration parameters are collected together in a single configu-
ration class that is passed to the knowledge-base factory, thus allowing a highly
flexible combination of standard and user-provided components. The configura-
tion class contains these categories of parameters:

– Factories for evaluation strategies, rule compilers, rule evaluators, relations
and indexes.

– Termination parameters (time out, maximum tuples, maximum complexity)

– Numerical behavior, i.e. significant bits of floating point precision for com-
parison and divide by zero behavior

– External data source objects

– Program optimizers, rule optimizers and a rule re-ordering optimizer

– Rule set stratifiers

– Rule-safety processor for detecting unsafe rules or making unsafe rules safe



4 Related Work

It is possible to make a comparison with other ontology reasoners when IRIS
is used with the WSML2Reasoner adaptor for rule-based reasoning. However,
ontology reasoners are mostly based on OWL(DL) and therefore any comparison
will invariably favor one or the other approach.

So while DL reasoners should be mentioned as related work in the area of
ontology reasoning, it makes more sense to compare IRIS with other Datalog
engines.

DLV [23] is a Logic Programming based system computing answer sets accord-
ing to the stable model semantics[24]. DLV is a Disjunctive Datalog engine,
with support for safe rules, but without function symbols. Among other fea-
tures, DLV supports several comparative and arithmetic built-ins, aggregate
functions and a SQL front-end.

MINS 5 is a Datalog reasoner that supports function symbols and negation
using the Well-Founded Semantics. The acronym MINS stands for ‘Mins Is
Not Silri’, because it is based on the SILRI[25] inference engine by Stephan
Decker and Jürgen Angele. It is no longer supported.

XSB [26] is a Logic Programming and deductive database system based on
Prolog and more particularly on WAM[27]. However, it goes beyond Prolog
by introducing several features such as different kinds of negation (stratified
negation, negation under the well-founded semantics), bottom-up extensions
and SLG resolution[28]. The syntactic basis of XSB is HiLog[29], which al-
lows a great deal of flexibility in regard to (meta)modeling. XSB also has a
range of built-in predicates and data types. It is openly distributed under
the GNU lesser GPL license.

5 Evaluation

It makes little sense to try and compare reasoners founded on different knowl-
edge representation paradigms, i.e. Logic Programming versus Description Logic.
For this reason the evaluation results are limited to a comparison of similar
Logic Programming/Datalog based systems, even though they might use dif-
ferent evaluation methods. The situation is further complicated by the lack of
widely accepted benchmarks for Datalog.

5.1 Methodology

It was decided to use DLV and XSB for comparison, because they have similar
usage semantics to IRIS. In order to make a comparison, a set of specimen logic
programs were chosen that are known to be computationally expensive, in that
a large number of intermediate tuples must be computed in a series of cartesian

5 http://tools.deri.org/mins/



products. The intention is to test the basic join operation, fundamental to eval-
uating Datalog. Each program is identical, apart from the number of starting
tuples in the relation for ‘p’. The reasoners use a slightly different Datalog di-
alect, so separate programs were generated for each one. Shown below is the ‘11
starting tuples’ version for IRIS:

p(’abcd0’).p(’abcd1’).p(’abcd2’).p(’abcd3’).p(’abcd4’).

p(’abcd5’).p(’abcd6’).p(’abcd7’).p(’abcd8’).p(’abcd9’).

p(’abcd10’).

ra(?A,?B,?C,?D,?E) :- p(?A),p(?B),p(?C),p(?D),p(?E).

rb(?A,?B,?C,?D,?E) :- p(?A),p(?B),p(?C),p(?D),p(?E).

r(?A,?B,?C,?D,?E) :- ra(?A,?B,?C,?D,?E),rb(?A,?B,?C,?D,?E).

q(?A) :- r(?A,?B,?C,?D,?E).

q(?B) :- r(?A,?B,?C,?D,?E).

q(?C) :- r(?A,?B,?C,?D,?E).

q(?D) :- r(?A,?B,?C,?D,?E).

q(?E) :- r(?A,?B,?C,?D,?E).

?- q(?X).

The comparison was conducted on a 32-bit Windows machine with a dual-
core, 2.67GHz Intel processor. Timings were measured using the cygwin ‘time’
command. This set-up was not intended to generate rigorous results, rather
simply to give a quick impression of performance characteristics.

5.2 Results

Four version of the specimen program were created, using 11, 15, 17 and 19
starting tuples, which should in turn involve creating 161,051, 759,375, 1,419,857
and 2,476,099 tuples for each of the relations associated with predicates ‘ra’, ‘rb’
and ‘r’.



The performance results are shown in the following table and graph. All
timings are in seconds.

Tuples XSB DLV IRIS
11 14.799 6.449 4.267
15 71.699 31.68 21.135
17 136.017 62.036 40.28
19 237.453 107.468 n/a
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Fig. 2. Performance Comparison

Set up times were not measured, because with more complex problems the
setup/load times become insignificant. As can be seen, IRIS was faster in all
tests. However, IRIS was unable to evaluate the ‘19 starting tuples’ program
due to an out of memory error. In any case, it was observed that IRIS generally
uses more memory during evaluation and this has been identified as an area for
improvement.



6 Conclusion

This paper has attempted to elucidate the motivation for creating a free, open-
source, Java based Datalog reasoner. The features that extend IRIS beyond a
simple Datalog reasoner have been described, along with the internal structure
and design goals. As can be seen from Section 5, the functionality and perfor-
mance of IRIS compare favorably with similar systems. IRIS is currently used
in the implementation of WSML2Reasoner6 and an RDFS reasoner7.

In the future, IRIS will be extended in several directions:

– The flexibility and configurability of the reasoner will be improved. It is en-
visaged that IRIS will be used in various situations that each require unique
reasoner properties. For example, in some situations, fast initialization times
over longer query times may be preferred. Other situations may require fast
query times in preference to slower initialization times. Yet further envi-
ronments may require the ability to modify the extensional database (set
of starting ground facts) ad-hoc and have the intensional database (set of
inferred facts) update in real time.

– The Stable Model semantics[24] can potentially reveal more information from
an unstratified knowledge-base than the Well-founded semantics[21], but at
the expense of a more computationally intensive evaluation process.

– At least one top-down evaluation strategy will be implemented. This will be
useful when dealing with knowledge-bases with a theoretically infinite min-
imal model, such as can occur when using function symbols and arithmetic
built-in predicates. Goals can still be proved using a top-down approach,
whereas bottom-up techniques will simply fail.

– Identify a more comprehensive benchmarking strategy and derive more re-
sults.

– Research better data structures in order to improve memory usage.

– The standardization work of the Rule Interchange Format (RIF) working
group8 will lead to a common format for exchanging rules between systems.
It is planned for IRIS to be one of the first systems to implement the RIF
Basic Logic Dialect9.
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