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Abstract. In the clinical environment the segmentation of organs is
an increasingly important application and used, for example, to restrict
the perfusion analysis to a certain organ. In order to automate the
time-consuming segmentation process denoising techniques are required,
which can simultaneously remove the locally varying and oriented noise
in computed tomography (CT) images and preserve edges of relevant
structures. We analyze the suitability of different edge-preserving noise
reduction methods to be used as a pre-processing step for Geodesic Active
Contours (GAC) segmentation. Two popular methods, bilateral filtering
and anisotropic diffusion, are compared to a wavelet-based approach,
which is adjusted to the CT-specific noise characteristics. We show that
robust segmentation results for different organs at varying noise levels
can only be achieved using the wavelet-based denoising. Furthermore, the
optimal selection of parameters for the bilateral filter and the anisotropic
diffusion is highly dependent on the dataset and the segmentation task.

1 Introduction

In computed tomography (CT), the projections acquired at the detector are
corrupted by quantum noise. This noise propagates through the reconstruction
to the final volume slices. There, noise is non-stationary, its distribution is un-
known and directed noise can be present due to high attenuation along certain
directions.

In order to improve the reliability of automatic segmentation algorithms,
noise has to be removed. The most basic approach is to apply a linear Gaussian
filter. The main drawback of low pass filtering is that important image details like
edges are smoothed, too. As neighboring structures often show similar intensities,
the segmentation may leak into these regions. This effect can be avoided or at
least reduced by using edge-preserving noise reduction methods. In this paper
the suitability of different denoising approaches as a pre-processing step for edge-
based segmentation of organs in CT-images is investigated. Two standard edge-
preserving filters are compared to a wavelet-based approach, which adapts itself
to the characteristics of noise in CT.
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2 Methods

The image data used for the evaluation consists of 2D CT-slices with different
amplitudes of noise. The segmentation is performed for the liver, the kidney and
the spleen. Certain features, e.g. strong, non-stationary noise, changing contrasts
at the boundary, small structures due to contrast agent or diffuse boundaries
make the selection of optimal parameters for the denoising and segmentation
algorithm difficult. For the clinical practice, methods are useless where too many
parameters must be adjusted to the specific problem or dataset.

The edge-based GAC approach [1] is used for segmentation. The parame-
ters for the GAC were optimized once ([propagation, curvature, advection] ∈
[(1, 1, 3), (1, 2, 4)]) and then left unchanged, because here the influence of the
pre-processing should be investigated. The considered noise reduction methods
are: the bilateral filtering [2], the anisotropic diffusion [3] and a combination of
two wavelet approaches based on thresholding [4] and correlation analysis [5].
Several parameters can be adjusted for the examined denoising methods. For the
bilateral filtering, σD and σR, the standard deviations for the image domain and
image range, as well as the mask size m have to be specified. The anisotropic
diffusion requires the number of iterations Niter and the contrast parameter λ.
For the wavelet-based method, the mode of thresholding (hard or soft), a factor
k specifying the amount of thresholding and a parameter N defining the amount
of noise suppression of the correlation analysis have to be selected.

For each filter the parameter combination resulting in the best segmenta-
tion was determined for each organ in the medical data. We used the manual
segmentation of a medical expert as reference. Afterwards, the results were an-
alyzed on the basis of simulated water-phantoms with inlaid objects of different
contrasts and with varying noise amplitudes. The quality of the segmentation
result was quantified through sensitivity and specificity. During the evaluation,
especially the robustness with respect to parameter variations, changing organs
and varying noise amplitudes were examined.

3 Results

For each organ in both datasets and all filtering methods, it was possible to
find segmentation contours almost perfectly fitting the manual segmentation in
Fig. 1(a). However, some important differences could be observed with respect to
the robustness of the segmentation result regarding the parameter selection of the
denoising. These differences are now described on the example of one segmented
liver. Similar results were observable for all other investigated organs.

Figure 1(e) shows the best liver segmentation for the bilateral filtering. If
the contrast-dependent σR was increased, the segmentation contour leaked at
the region near the kidney (Fig. 1(f)), as the boundary is slightly diffuse and
of low contrast here. It could be observed that for higher noise amplitudes the
sensitivity to parameter variations was intensified. The best segmented liver for
the anisotropic diffusion is shown in Fig. 1(b). Both Fig. 1(c) and Fig. 1(d) illus-
trate the segmentation results when the contrast parameter λ was varied slightly.
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(a) Original man (b) A 50-0.5 best (c) A 50-0.75 neg (d) A 50-0.25 neg

(e) B 16-6-60 best (f) B 16-6-80 neg (g) W s-11-11 best (h) W s-5-6 neg

Fig. 1. GAC segmentation of a liver. Top row: manual segmentation of medical ex-
pert and anisotropic diffusion Niter-λ. Bottom row: bilateral filtering m-σD-σR and
wavelet-based filtering soft-k-N . The manual segmentation (gray) and the results of
the automatic segmentation (white) are plotted in the denoised images in (b)-(h): man
= manual segementation; best = best segmentation; neg = negative example

(a) 40 HU, σN=40 (b) bilateral (c) aniso. diffusion (d) wavelet

(e) 40 HU, σN=80 (f) bilateral (g) aniso. diffusion (h) wavelet

Fig. 2. GAC segmentation results: Filtering performed with the same parameter com-
bination on a phantom image with a contrast of 40 HU but different noise (σN ). The
ideal contour (gray) and segmentation results (black) are plotted in the denoised images
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Table 1. Best segmentation results for the example of the liver and the spleen

without best best best best
denoising linear bilateral anisotropic wavelet

iter. s.×s. iter. s.×s. iter. s.×s. iter. s.×s. iter. s.×s.

liver 290 0.08 1449 0.94 794 0.98 911 0.97 847 0.97
spleen 155 0.53 515 0.94 717 0.99 460 0.98 503 0.98

An increasing λ decreased the slope of the edge and the curve evolution process,
starting in the interior of the liver, stopped before the ideal contour was reached.
If λ was selected too small, the segmentation process stopped after few itera-
tions without covering the whole liver. It can be observed that especially there
strong noise could not be removed but was even amplified. The best segmented
liver achieved with the wavelet-based filter is shown in Fig. 1(g). It is visible that
structures like vessels filled with contrast agent could not be covered during the
curve evolution, as during the filtering process even those edges were preserved. If
the amount of noise suppression was substantially reduced, (Fig. 1(h)) the outer
contour of the liver still matched, however, the holes in the interior increased.

Another observation was that only for the wavelet-based noise reduction
method one single parameter combination could be found, leading to good seg-
mentation results for all organs in both datasets. For the anisotropic diffusion
and the bilateral filtering even organs of the same dataset could not be seg-
mented without adapting parameters. This is also confirmed by the analysis of
simulated phantom images. Figure 2 shows results obtained when for each filter
one single parameter set, determined from optimization in real medical data, is
applied to images with constant contrast but varying noise level. In contrast to
the bilateral filtering and the anisotropic diffusion, the wavelet-based denoising
allowed good segmentations for all different noise levels (σN ∈ {20, 40, 60, 80}).

In Table 1 the best achieved results for two examples are listed. The quality
of the segmentation is quantified with the product of sensitivity and specificity,
leading to values in the range between 0 and 1. The larger the value, the better
the result of the segmentation. Furthermore, the numbers of iterations used for
the segmentation are included. For better comparison the values for the seg-
mentation without any pre-filtering and the best results achieved with a linear
Gaussian filtering are shown. The segmentation contours obtained in the liver
without pre-filtering, with optimized Gaussian filtering (σ=2) and too strong
Gaussian filtering (σ=4) are shown in Fig. 3 together with the initial segmenta-
tion curve. It is obvious that for segmentation a pre-filtering is needed. If too
strong linear filtering is performed, the segmentation contour can leak or the
precision of the result is reduced. Table 1 shows that with edge-preserving de-
noising either the number of elapsed iterations could be reduced (example of the
liver) or the precision of the segmentation results improved (both examples).
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Fig. 3. Comparison of segmentation results (white) without pre-filtering and with linear
Gaussian filtering

(a) initial curve (b) without (c) best linear (d) linear negative

4 Discussion

The evaluation presented above clearly shows that for the segmentation of organs
in medical CT-images a noise-reducing pre-processing step is required. In con-
trast to linear Gaussian filtering, edge-preserving denoising methods improved
the precision of the segmentation contours. Furthermore, the number of elapsed
iterations could be decreased for some organs.

By analyzing and comparing different edge-preserving noise reduction meth-
ods, it was evident that the parameters of the bilateral filtering and the aniso-
tropic diffusion had to be adapted to each organ in each dataset separately in
order to result in precise segmentations. However, for clinical use it is desirable
to optimize parameters for the segmentation and its pre-processing once and
then used them for all segmentation tasks. In contrast to the bilateral filtering
and the anisotropic diffusion, the wavelet-based method allowed the robust and
precise segmentation of different organs with varying noise levels with a single
parameter combination, as it automatically adapts itself to the CT-specific noise
characteristics.
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