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Abstract. We aim at decomposing molecular surfaces which are in the
form of Van der Waals model into a structure adapted for mesh-free
modeling. We focus on the generation of spherical patches by using ra-
tional Bézier surfaces and homogeneous coordinates. We can achieve ex-
act global continuity by using generalized stereographic projection. We
support the theoretical descriptions by practical decompositions of a few
molecular surfaces.

1 Introduction

A lot of efforts have been done for mesh-based methods [1] in chemical modeling
[2]. In contrast, mesh-free molecular structure is not yet well developed. Having
patch representation is advantageous for both visualization and simulation tasks.
Among others, OpenGL and ACIS have built-in functions for treating rational
spline patches by providing only the required parameters as arguments. Further,
NURBS primitives are available in many rendering softwares like POV-RAY.
Additionally, generating a multiresolution setting is immediate when a four-
sided splitting as we present below is available. Multiresolution structure is well
known of being efficient for both fast graphical tasks and numerical simulations.
Hence, we want to contribute in the development of algorithms for treatments
of mesh-free molecular geometries. Each atom in a molecule is represented as an
imaginary sphere whose radius corresponds to the Van der Walls radius [2, 3].
Let us denote by B(ω, ρ) the ball of center ω and radius ρ. Consider N balls
Bk := B(Ωk, ρk) whose union is connected. The molecular surface is described

by S := ∂
[⋃N

k=1 Bk

]
which represents a closed surface. We want to tessellate S

into m four-sided patches Fi such that the splitting S =
⋃m

i=1 Fi is conforming:
every two nondisjoint patches Fi and Fj share either a complete edge or a single
corner. Our goal is to create functions γi such that Fi = γi([0, 1]2). Additionally,
we require global continuity meaning that for two adjacent patches Fi and Fj ,
there is an affine mapping A such that γi(s) = γj(A(s)) for all s ∈ ∂[0, 1]2 (Fig.
1).

Relevant works are as follows. From a list of intersecting spheres, one gen-
erates the B-rep structures as in [1]. Generation of trimmed surfaces has been
treated in [4] with application in mesh. For mesh-free methods, we have used
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transfinite interpolations in [5] but the mappings are not necessarily globally
continuous.

2 Materials and Methods

The description of the molecular surface S as in section 1 is good for CSG
where the only geometric primitives are spheres. Since B-Rep structure with
parametrizations is more convenient for the surface decompositions, we first con-
vert that CSG representation into B-rep structure. Since the method of doing
that is almost standard, we do not present it here. After that conversion, we
have trimmed surfaces Γk = σk(Dk) where Dk is a multiply connected pla-
nar domain and σk : Dk ⊂ R2 −→ Bk represents the stereographic projection
with respect to Bk. Since we have now a set of parametric trimmed surfaces
[6], we can split them into four-sided patches. The detail of such a decomposi-
tion task can be found in [5]. Hence, we focus on the creation of the mappings
from the unit square to the spherical patches while achieving global continu-
ity. Although most methods here are described for the unit sphere U, they
can be generalized to any sphere. An element of the projective space E3 with
homogeneous coordinates [w : x : y : z] will have the cartesian coordinates
(x/w, y/w, z/w). We will need P := {[w : x : y : 0] ∈ E3 with w, x, y ∈
R} which corresponds to the plane z = 0 in cartesian coordinates. The cre-
ation γi uses the next projections from [3]. First, the hyperbolic projection
ϑ transforms a point [e0 : e1 : e2 : e3] to a point in P given by ϑ(e) :=[
e20 + e23 : e0e1 − e2e3 : e1e3 + e0e2 : 0

]
. Second, the stereographic projection is

defined from P to U by σ(e) :=
[
e20 + e21 + e22 : 2e0e1 : 2e0e2 : e21 + e22 − e20

]
. Fi-

nally, the generalized stereographic projection is δ = σ ◦ ϑ. For a point q = [q0 :
q1 : q2 : q3], we define q̄ := [q2 : q3 : −q0 : −q1] and q⊥ := [−q3 : q2 : −q1 : −q0].
Our approach is based on the fact that the image by δ of a rational Bézier [7] of
degree n is a rational Bézier of degree 2n which is drawn on U. Note that the
converse holds true [3].

(a) (b)

Fig. 1. Molecular surface (a) and decomposition into foursided patches (b)
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2.1 Circular boundary parametrization

We want to parametrize a circular arc C with fixed endpoints as an image of δ.
There are already plenty of methods for representing a circular arc as rational
Bézier but we explicitly need that it is an image of δ because we intend to
obtain global continuity. We suppose that we have four equispaced points Qi

belonging to C which is contained in the unit sphere U. We are given also two
points b0 ∈ E3 and b2 ∈ E3 which are transformed by δ to the first and the
last points: δ(b0) = Q0 and δ(b2) = Q3. We search a conic x which maps by δ
to the circle C. In other words, we need the internal node b1 ∈ E3 such that C
is the image of the quadratic Bézier curve x(t) = b0B

2
0(t) + b1B

2
1(t) + b2B

2
2(t)

with bi = [wi : xi : yi : zi]. The internal points Q1 and Q2 should correspond to
the parameter values t1 := 1/3 and t2 := 2/3 as δ[x(ti)] = Qi. Toward that end,
we choose a preimage qi of Qi by δ. Since δ−1(Qi) = {λqi + µq⊥

i : λ, µ ∈ R},
we have < q̄i,x(ti) >= 0 and < q̄⊥

i ,x(ti) >= 0 which imply:

< q̄i,b1 >= K(q̄i, ti) < q̄⊥
i ,b1 >= K(q̄⊥

i , ti) for i = 1, 2 (1)

where K(q, t) := − 1
B2

1(t)

[
< q,b0 > B2

0(t)+ < q,b2 > B2
2(t)

]
. The four homo-

geneous coordinates of b1 are the solution of the linear system given by (1).

2.2 Spherical transfinite interpolation

Let us consider four circular arcs Ck represented as rational Bézier curves which
are drawn on the unit sphere U and which enclose a four-sided spherical surface
H such that Ck(t) =

∑2n
i=0 ck

iB
2n
i (t) with ck

i = [wk
i : xk

i : yk
i : zk

i ]. We assume
that Ck are the images of four Bézier curves Dk of degree n by δ. That is, we
have Ck(t) = δ[Dk(t)] with Dk(t) =

∑n
i=0 dk

iB
n
i (t) such that there is coincidence

at the corners as d1
0 = d4

0, d1
n = d2

0,d
2
n = d3

n, d3
0 = d4

n.
What we are searching is not simply a rational Bézier surface which interpo-

lates those curves but a spherical transfinite interpolant X residing on U:

X(u, 0) = C1(u), X(u, 1) = C3(u) ∀u ∈ [0, 1]
X(0, v) = C4(v), X(1, v) = C2(v) ∀v ∈ [0, 1]
X(u, v) ∈ U ∀ (u, v) ∈ [0, 1]2

(2)

The desired patch X will be represented as a rational Bézier surface X(u, v) =∑2n
i=0

∑2n
j=0 bijB

2n
i (u)B2n

j (v) with bij = [wij : xij : yij : zij ]. That problem
amounts to searching for some rational Bézier Y of degree n which maps by
δ to X as X(u, v) = δ[Y(u, v)] with Y(u, v) =

∑n
i=0

∑n
j=0 aijB

n
i (u)Bn

j (v). On
account of the boundary conditions (2), the problem is reduced to the deter-
mination of the internal homogeneous control points aij of Y. They are found
by specifying that the image rational Bézier X interpolates some given internal
points Qk ∈ H ⊂ U at (uk, vk) ∈ [0, 1]2: X(uk, vk) = δ[Y(uk, vk)] = Qk for
all k = 1, ...,m := 2(n − 1)2. Let qk be a preimage of Qk by the mapping δ.
Since we want to achieve Y(uk, vk) = qk for all k = 1, ...,m, we have two equal-
ities: 〈q̄k,Y(uk, vk)〉 = 0, 〈q̄⊥

k ,Y(uk, vk)〉 = 0, ∀ k = 1, ...,m. By denoting the
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set of indices (i, j) for internal and boundary control points of Y by J and B
respectively, we obtain

∑

(i,j)∈J

〈q̄k,aij〉Bn
i (uk)Bn

j (vk) = −〈q̄k,
∑

(i,j)∈B

aijB
n
i (uk)Bn

j (vk)〉 (3)

Similar computations yield relations for q̄⊥
k . Since aij for (i, j) ∈ B are known,

the right hand side of (3) is completely specified. Therefore, this leads to some
linear system of equations having aij with (i, j) ∈ J as unknowns.

3 Results

We have implemented routines in C/C++ and OpenGL in order to decom-
pose some molecular surfaces. The numerical results can be found in Table 1
where the input was taken from PDB files. Note that the runtime measurement
has been performed on a machine with processor Intel Core 2.16GHz running
Windows Vista. For a triangle having vertices T := [xp,xq,xr] belonging to
the sphere B(Ωk, ρk), we introduce ε(T ) :=

∣∣dist
(

1
3 [xp + xq + xr], Ωk

)
− ρk

∣∣.
The criterion that quantifies the surface invariability of a mesh M is ε(M) :=

1
card(M)

∑
T∈M ε(T ). The patches which are obtained by the mappings from the

unit squares are illustrated in Fig. 2.

4 Discussion

The main advantage of our mesh-free method is that it requires few patches
in comparison to mesh-based methods. For a surface invariance ε(M) of order

Fig. 2. Decomposition with 1284 four-sided patches
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Table 1. Decomposing molecular surfaces: comparison with meshes

Molecule Nb atoms Nb patches Time (patch) Nb triangles ε(M) Time (mesh)

Benzene 12 160 2.26 sec 18615 5.56e-004 4.40 sec
Fullerene 60 360 2.45 sec 102380 6.88e-004 9.09 sec
Propane 11 231 9.65 sec 21927 3.53e-004 11.73 sec
Petane 17 388 11.77 sec 38764 3.31e-004 15.67 sec
Ice 84 1284 71.97 sec 290732 4.96e-004 77.22 sec

10−4, several thousands of triangles are required. Further, only 9 control points
for each patch are necessary to completely store the results. Additionally, the
patches are exact as opposed to meshes where piecewise linear approximation
is required. The runtime depends in fact on the molecular models. In general,
the runtime for mesh-free geometric preparation is slightly faster than mesh-
based one. But sometimes, the difference is tangible as in the case of fullerene
where the surface structure is almost uniform. On the other hand, for every
two neighboring patches, the lines incident upon the interface match very well
as illustrated in Fig. 2. That is, the global continuity that we discussed in the
above theory is obtained. As for the simulation side, there are efficient numerical
solvers which accept mesh-free models directly. Those solvers do not require
the patch representation to be converted to meshes. A concrete example is the
Wavelet-Galerkin solver which needs only the control points for the generation
of multiscale bases.
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