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Abstract. A major problem in magnetic resonance imaging (MRI) is
the lack of a pulse sequence dependent standardized intensity scale like
the Hounsfield units in computed tomography. This affects the post pro-
cessing of the acquired images as, in general, segmentation and regis-
tration methods depend on the observed image intensities. Different ap-
proaches dealing with this problem were proposed recently. In this article
we will describe and compare five state-of-the-art standardization meth-
ods regarding speed, applicability and accuracy. As a quality measure the
mean distance and the Kullback-Leibler divergence are considered. For
the experiments 28 MRI head volume images, acquired during clinical
routine, were used.

1 Introduction

MRI has the drawback of having intensity variations due to magnetic field in-
homogeneities and scanner-related intensity artifacts. Thus, it is not possible to
create a pulse sequence dependent, general intensity scale. Algorithms dealing
with the problem of the correction of signal intensity inhomogeneities usually
focus on intra-volume signal intensity distortions and do not correct the inher-
ently non-standardness. Hence, intensities obtained from the same or different
patients have no meaning related to a specific anatomical tissue even if they
are acquired on the same MRI scanner. This implies a significant affect on the
accuracy and precision of following image processing, analysis, segmentation and
registration methods relying on intensity similarity. Furthermore, standard pre-
sets cannot be used to display MR images or to visualize certain tissue classes
and/or pathologies. These settings have to be adjusted for every single case.

First we will give a brief overview of the intensity standardization method
described in Florian Jäger et al. [1] that basically performs a registration of joint
histograms. Further, we will discuss 1-d histogram based approaches presented
in Nyúl et al. [2] that matches landmarks on histograms, in [3] a method is
introduced that is based on histogram estimation using Gaussian mixtures, as
well as an algorithm adapted from dynamic histogram warping [4]. In addition we
will have a brief look at the algorithm proposed by Weisenfeld and Warfield [5],
in which a multiplicative correction field is estimated. Finally the experimental
setup is described and the evaluation results are presented and discussed.
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2 Methods

2.1 MRI Intensity Standardization by Non-rigid Registration of
Joint Histograms

The idea proposed in [1] is that a normalization can be achieved by finding
a deformation of the joint histograms of two sets of images with respect to a
certain distance measure. Each of these histograms is at least two dimensional
and contains the intensity information of two or more MRI sequences (e.g. T1
or T2 weighted images). If the probability density functions are considered as
images, the normalization can be treated as a registration problem. The resulting
non-linear correction function is used to adjust the image intensities of the MRI
image series. In [6] this approach is extended to be applicable to a whole body
MRI scan. Therefore, the volume is split up into K sub volumes which are
corrected separately. In order to include the influence of small local structures
the other K − 1 sub volumes are used as regularizer.

2.2 Landmark-based MRI Scale Standardization

The basic idea of the method presented in [2] is to find a mapping that deforms
the template intensity histogram of an input image so that it matches a refer-
ence histogram based on landmarks. In the first step the landmarks of the mean
histogram are detected which has to be done only once for each given protocol
and body region (training). Second, the real image-dependent normalization is
applied to a given volume image, of the same body region and protocol as used
in the training step, by matching its detected landmarks to the standard posi-
tions (transformation). Hence each segment, between two landmarks, is mapped
linearly and independently. The resulting transformation is nonlinear.

2.3 MRI Intensity Correction using Mixture Mapping

A normalization that is only applicable to images of the head region is described
in [3]. This is done by matching intensities of head specific anatomical tissue
classes. Therefore five main classes are used: background, cerebrospinal fluid
(CSF), gray matter (GM), white matter (WM) and a mixture of fat and muscle.
In the first step the histograms from a source and a target data set, i.e. two
3D images, are approximated by a Gaussian mixture. Each tissue class k is
modeled by a Gaussian probability density function which has a mean µk that
is approximated using the Expectation-Maximization (EM) algorithm. In the
second step a polynomial correction function fp of order p is used to interpolate
the correction of the intensities smoothly: fp(x) =

∑p
i=0Θix

i. By minimizing
the cost function

∑n
k=1(f

p(µk)−υk)2 the coefficients Θi are obtained, where µk

and υk are the means of the reference and template image respectively.
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2.4 Dynamic Programming Applied to Intensity MRI Correction

Dynamic programming can be used to find an optimal alignment between two
sequences of data of different length with respect to a monotonic and separable
cost function. Furthermore, this function is constrained to hold the principle of
optimality. In [4], one histogram is mapped to another by a one-to-one, one-to-
many and many-to-one mapping. Let f t

i denote the frequency of occurrence in the
i -th bin of the template histogram, respectively fr

j of the j -th bin in the reference
histogram. A plausible cost function c(i, j) for two intensities is the difference∣∣f t

i − fr
j

∣∣. In order to find an appropriate mapping a cost matrix C is defined
where C(i, j) corresponds to a optimal sub path and C(imax, jmax) contains the
minimal distance of the histograms. The cheapest path and the corresponding
mapping can be computed efficiently using dynamic programming.

2.5 Intensity Normalization by Minimizing the Kullback-Leibler
Divergence

A multiplicative correction field is estimated in [5] to match a template histogram
to a reference model density. The observed image O is composed of a multiplica-
tive pixelwise intensity corruption field F , additional acquisition noise n and the
correct image I in the following way: O = FI + n. After neglecting n for having
only little influence on the problem of intensity normalization and solving the
equation for I the uncorrupted image is obtained as I ≈ F−1O. The parameter
field F−1 has to be chosen in a way that the Kullback-Leibler divergence between
source and target sets is minimized. The Simultaneous Perturbation Stochastic
Approximation (SPSA) is used to generate the gradient estimate.

3 Results

The images used for evaluation were T1- and T2/FLAIR images. The T2-
weighted FLAIR datasets were acquired on a Siemens Avanto 1.5 T scanner
with 408×512×19, pixel size of 0.43 mm2 and 7.2 mm slice thickness and TE =
143 and TR = 9000. The T1-weighted images had a resolution of 208× 256× 19
with 0.86 mm2 and 7.2 mm slice thickness and TE = 14 and TR = 510. In total
28 volumes from eleven different patients were used. Since the methods need to
be applicable for medical diagnosis in a real clinical environment, all images used
were chosen to be real patient data including evolving lesions.

For the evaluation, T1-weighted volumes and the appropriate FLAIR data
sets were evaluated separately. A single reference image was chosen for each
patient. Then the follow-up studies were standardized to the intensities of the
corresponding reference images. As a measure for the quality of the standard-
ization the absolute mean (Equation 1) and the average Kullback-Leibler (KL)
divergence (Equation 2) were computed. In order to minimize the influence of
changing anatomy on the evaluation, lesions were segmented and removed be-
forehand. However, the normalization was applied to the original images since
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Table 1. The measurement before standardization is given in parenthesis and the
methods are numbered in the same order as described above. µkl is the average KL
divergence and µm is the overall mean distance

Method T1 FLAIR
µm (32.62) µkl (0.46) µm (53.22) µkl (0.61)

2.1 6.82 0.12 7.47 0.16
2.2 10.41 0.14 10.30 0.27
2.3 14,69 0.16 12,33 0.56
2.4 7.65 0.07 5.99 0.30
2.5 8.25 0.07 16.79 0.15

the pathological distortions should be considered in the evaluation of the robust-
ness of the algorithm. As quality measure the average absolute distance between
all reference and template volumes, is given by:

µm =
1

N

∑

i

|xi − yi| (1)

with N being the number of compared images, xi being the mean intensity of the
reference and as yi the corresponding template mean is used. As a measure of the
difference between two probability densities, the overall average KL divergence
between the reference and template images is computed as follows:

µkl =
1

N

∑

i

∑

j

pij log(pij/qij) (2)

where pij is the probability of occurrence of intensity j in the template image i
and qij is the probability of occurrence of intensity j in the reference image i.

In Figure 3 an example for the standardization is given. All images were
binarized and displayed at the same threshold value. It can be seen that the in-
tensities vary globally and become more similar regarding similar tissue classes.
In Table 1 a quantitative overview of the computed distance measures is given.
As mentioned above these values were computed after removal of the lesions but
without any additional inhomogeneity correction. Thus, the difference between

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Binary FLAIR image slices of two data sets from the same patient where (a) is
standardized on (g) the reference image. (b) corresponds to the corrected image gained
by the algorithm presented in 2.1, respectively (c) to 2.2, (d) to 2.3, (e) to 2.4 and (f)
to 2.5
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Table 2. General overview: + is good, o is average and − is below average

Method Speed Applicability Accuracy

2.1 o (≈ 1 minute) + +
2.2 + (≈ 2 seconds) o +
2.3 o (≈ 5 minutes) − 0
2.4 + (≈ 2 seconds) o +
2.5 − (≈ 30 minutes) o +

the volumes will never become zero. A short overview of the methods for com-
parison can be found in Table 2, where applicability means that the algorithm
can be easily adapted to different regions of the body. Accuracy refers to robust-
ness and improvement of the image quality. The runtime measurements were
performed on a Intel Core2 CPU T5500 with 1.66GHz and 2 gigabyte RAM.

4 Discussion

In this article we have compared five MRI signal intensity standardization meth-
ods in terms of speed, applicability and accuracy. More sophisticated methods
that make use of all image sequences or do a pixelwise correction estimation
are of course slower but lead to better results (approaches 2.1 and 2.5), whereas
approach 2.3 leads to worse results. Algorithm 2.2 and 2.4 are fast and in general
provide good results but 2.2 is vulnerable to distortions in the histograms due
to the fact that it is piecewise linear and relies on a learned histogram shape.
All methods can be potentially applied to every body area excepting 2.3 which
uses head specific tissue classes.
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