
Simplifying the Web Service Discovery Process

Nathalie Steinmetz, Mick Kerrigan, Holger Lausen,
Martin Tanler and Adina Sirbu

Semantic Technology Institute (STI) Innsbruck,
Universität Innsbruck, Austria
firstname.lastname@sti2.at

Abstract. One of the crucial reasons for adding semantic descriptions
to Web services is to enable intelligent discovery, removing the need for a
human to manually search and browse textual descriptions in repositories
of services, like UDDI or ebXML. The Web Service Modeling Ontology
(WSMO) provides a conceptual model within which the function of a
Web service can be described in terms of formalized pre- and postcondi-
tions over the information space and assumptions and effects related to
the real world; however WSMO is very flexible in the way in which the
Semantic Web Service developer can use these elements to describe the
functionality of a service. Thus a number of approaches for effectively
describing the offered function of a Web service and the requirements
of users, along with methods to compare them have surfaced in the last
number of years, leaving developers unsure of which approach to use and
if it is possible to combine them. In this paper we introduce a framework
within which these different approaches can be combined and present
some new tools that can be used with this framework by the Semantic
Web Service developer.

1 Introduction

Web services are quickly becoming the standard for B2B integration. They have
machine-processable annotations that are well structured (using XML) and de-
scribe how to interface with these services. However these annotations are purely
syntactic and not machine-understandable, thus large amounts of human effort
are required to build Service Oriented Architectures (SOA). Semantic Web Ser-
vices are the extension of Ontologies to describe Web services such that critical,
currently human intensive, activities in the process of using Web services can be
totally or partially automated, reducing the amount of human effort needed to
develop an application using a Service Oriented Architecture. One of these core
activities is the process of finding services that can fulfill the requirements of
an end user, referred to as the process of Web service discovery, which involves
matching the description of a users functional requirements against the descrip-
tions of the functionality provided by individual service providers. Automation
of the process of discovering services enables Web service providers and Web
service requesters to be truly decoupled in a Service Oriented Architecture as
they need not know of each others existence prior to execution.

khalid
Typewriter
K. Belhajjame, M. d’Aquin, P. Haase and P. Missier (Eds.): SeMMA 2008CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-346/



2 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

The Web Service Modeling Ontology (WSMO)[6] and the Web Service Mod-
eling Language (WSML)[14] provide a conceptual model and formal language
within which Web services and user requirements can be captured and seman-
tically described as WSMO Web Services and Goals. In WSMO the functional
requirements of end users and the functionality offered by a given providers Web
service are described in terms of a WSMO Capability, by specifying conditions on
the state of the world that must exist for execution of the service to be possible
and conditions on the state of the world that are guaranteed to hold after exe-
cution of the service. Thus the process of discovery in a WSMO sense involves
matching the requested capability from the end users goal with the provided
capabilities of known provider Web Services.

WSMO is very flexible in the way Web service and goal descriptions can be
written leading to the creation of a number of different discovery approaches,
with these approaches differing in terms of the level of detail in which Web
Services and Goals need to be described and each having different associated
computational properties, precision and recall, and the amount of effort required
to create descriptions. These different approaches enable the support of a wide
range of applications with different requirements, from those that require high
precision of results to those that require high efficency; however the availability
of multiple approaches does cause problems for those wishing to semantically
describe their services or create goal descriptions. Developers have become un-
sure and confused of how to create their descriptions of Web Services and Goals.
They are unsure of whether different approaches are compatible with one an-
other and if a given Semantic Execution Environment is capable of supporting
their requirements or not.

In the paper we present an overview of the discovery approaches that have
become available in the last number of years and the discovery engines that im-
plement them, providing an easy to use framework, that can be deployed within
a Semantic Execution Environment or stand alone within an application, which
integrates the different discovery engines together and provides a single generic
entrypoint for accessing this functionality. We also present some tool enhance-
ments to the Web Service Modeling Toolkit (WSMT), which is an Integrated
Development Environment for Semantic Web Services, that can be used by the
Semantic Web Service developer alongside this discovery framework. We close
the paper with a look at some related work, an evaluation of our approach and
a description of some future work and conclusions.

2 Background

In order to describe Semantic Web Services a conceptual model is required. The
Web Service Modeling Ontology (WSMO)[6] is such a conceptual model and
provides four top level elements, namely Ontologies, Web Services, Goals and
Mediators. Ontologies are the basis for the other descriptions by providing the
terminology that they use. WSMO Web Services provide a semantic description
of both the function of a service, in terms of a Capability, and the mechanism for



Simplifying the Web Service Discovery Process 3

interacting with it, in terms of an Interface. A WSMO goal allows for the require-
ments of the requester to be semantically described. Finally, WSMO Mediators
provide a means to resolve heterogeneity issues that inevitably occur between
the other elements due to the open and distributed nature of the Web. The
Web Service Modeling Language (WSML)[14] is a formalization of the WSMO
ontology, providing a language framework within which the properties of Se-
mantic Web Services can be described. There are five language variants, based
on Description Logic and Logic Programming. Each language variant provides
different levels of logical expressiveness[14]. These variants are: WSML-Core,
WSML-DL, WSML-Flight, WSML-Rule and WSML-Full.

At the heart of any Semantically Enabled Service-oriented Architecture,
made up of Semantic Web Services, there needs to be a number of services
that provide the core functionality needed to bind requesters and providers to-
gether dynamically at runtime and to resolve any heterogeneity issues that may
exist between them. These services together are termed a Semantic Execution
Environment (SEE) and include services for discovering, composing, ranking, se-
lecting, mediating, and invoking Web services in order to meet the requirements
of the end user. There are currently two Semantic Execution Environments for
WSMO, namely the Web Service Execution Environment (WSMX)[7] and IR-
SIII[2]. Ongoing work in the OASIS Semantic Execution Environment Technical
Committee1 aims to provide a standard reference architecture for SEEs.

The purpose of developing Semantic Web Services is to totally or partially
automate activities that occur in the process of using Web services and one of the
most important activities that needs to be automated is the process of finding
services that can fulfill the end users goal. This discovery step is performed
by matching the end users goal description with the set of known Semantic
Web Services in a Semantic Execution Environment. This matching involves the
comparison of elements from the capability in the goal with elements from the
capabilities of the Web Services. A WSMO capability is described in terms of
conditions on the state of the world that must exist for execution of the service
to be possible and conditions on the state of the world that are guaranteed to
hold after execution of the service. WSMO makes a distinction between the state
of the information space, i.e. concerning the state of the inputs and outputs of
the service, and the state of the real world. Thus a capability is broken up into
four main elements, with preconditions and postconditions making statements
about the information space, and assumptions and effects making statements
about the real world. A capability has also a set of shared variables that can be
used across preconditions, postconditions, assumptions and effects.

The following example shows two small, matching goal and Web service de-
scriptions in WSMO. They are narrowed down to the necessary, using only post-
conditions in their capabilities. The Web service offers information about train
trips in Austria, and the goal seeks information about trips from Innsbruck to
Vienna:

1 http://www.oasis-open.org/committees/tc home.php?wg abbrev=semantic-ex



4 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

webService tripsInEurope

capability tripsInEuropeCapability

sharedVariables ?x

postcondition tripsInEuropePost definedBy

?x memberOf TrainTrip and

forall ?from (?x[from hasValue ?from]

implies ?from memberOf PlaceInAustria)) and

forall ?to (?x[to hasValue ?to]

implies ?to memberOf PlaceInAustria)).

goal tripIbkToVienna

capability tripIbkToViennaCapability

sharedVariables ?x

postcondition tripIbkToVienna definedBy

?x memberOf Trip and

forall ?from (?x[from hasValue ?from]

implies ?from memberOf PlaceInInnsbruck) and

forall ?to (?x[to hasValue ?to]

implies ?to memberOf PlaceInVienna).

It is possible to use different levels of abstraction when describing Web Ser-
vices and Goals with WSMO. Thus we can consider Web Services and Goals as
simple abstract objects with properties, using just postconditions within the ca-
pability descriptions to specify the targeted or delivered output of a goal or Web
service. Alternatively we can describe Web services and goals in a much more
fine-grained manner, using conditions on service input and output, assumptions
and effects, and taking into account states of the world that represent the world
before and after the execution of a service. These different levels of abstrac-
tion can be accounted to different approaches to Web service discovery, both in
general and in WSMO in particular. Below we describe the three main WSMO
discovery approaches that have appeared in the last number of years:

– Keyword-Based Discovery[10] is a basic approach to the discovery of
Web services, built on the concepts of simple term matching and using stan-
dard Information Retrieval methods. Thus a set of keywords from the query
is matched with the keywords contained in the service descriptions. Such
keyword-based techniques are limited due to the ambiguities of natural lan-
guage and the lack of semantics; However they have the major advantage
of being able to easily scale to a large number of services and can utilize
mature keyword matching technologies.

– “Lightweight” Set-Based Discovery[9] uses service descriptions that
describe the output of the service in an abstract way, taking only the post-
conditions and effects of services and goals into account, and not considering
any of the inputs to the services, i.e. the preconditions and assumptions.
Thus the Web service and the goal are described by sets of objects and a
match between them is determined if the sets of objects are interrelated, i.e.
there is some set-theoretic relationship between the goal set and the Web



Simplifying the Web Service Discovery Process 5

Service set. The most basic set-theoretic relationships that are consider in
this discovery approach are:
• Set Equality: SETGOAL = SETWS
• Plugin Relation: the goal description is a subset of the Web Service

description - SETGOAL ⊆ SETWS
• Subsume Relation: the Web service description is a subset of the goal

description - SETWS ⊆ SETGOAL
• Intersection Relation: there exists some common elements between the

goal and Web service descriptions - SETGOAL ∩ SETWS 6= ∅
– “Heavyweight” Discovery[11] is based on richer semantic descriptions

than the “lightweight” approach, taking into account the relationship be-
tween preconditions, postconditions, assumptions, and effects. Thus this ap-
proach allows for the properties of the states before and after Web service
Execution to be considered. Using this approach the Semantic Web service
developer can clearly specify constraints on the service input, while the de-
veloper of a goal description can describe the relationship desired between
the input data he will provide and the output the service should provide.

As has already been mentioned the availability of these different approaches
to describing services and user requirements semantically has resulted in a num-
ber of implementations of each of these approaches being created. In the next sec-
tion we introduce a framework that brings these different approaches, and their
associated implementations, together in order to make these discovery engines
more accessible and to reduce the complexity of integration service discovery
into an application.

3 The Discovery Framework

In the previous section we introduced three different discovery approaches. At
this time there are five different discovery engines which implement these three
approaches to discovery. The Keyword-Based Discovery [10] engine takes as input
a query made up of a set of keywords. The engine matches the keywords from
the query to the keywords contained in the service descriptions. Two discov-
ery engines use the “Lightweight” Set-Based Discovery [9] approach, one being
based on Description Logic and the other on Logic Programming. There cur-
rently also exist two different engines, both Logic Programming based, using
the “Heavyweight” Discovery [11] approach. They differ in that they pursue dif-
ferent strategies in using pre- and postconditions and the relationship between
them. It is certain that new approaches to Web service discovery and engines
implementing these approaches will appear in the near future.

To ease the use of these different discovery engines by the developer, we
think that it is vital to integrate them together into one framework and to
provide a single, common, interface to the developer. Furthermore we want to
try to support him in choosing which engine is the right one for his individual
discovery needs. Therefore it is important that the different discovery engines



6 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

can be used together in a Semantic Execution Environment (SEE) like WSMX
or IRSIII to effectively provide discovery functionality within a Semantically
Enabled Service-oriented Architecture. Thus we have designed and implemented
a discovery framework that can integrate different discovery approaches together,
providing a single generic interface for discovery within a SEE and providing each
integrated engine with access to a registry of Web Services.

Fig. 1. The Discovery Framework

As described in the previous section the different discovery approaches require
different levels of abstraction when describing Web Services and Goals. Obviously
they lead to different service descriptions, in the sense of their formal and logical
nature. This means that the effort needed to create WSMO Web Services and
Goals differs depending on the targeted discovery approach. Providing simple
textual description or keywords of services is quite easy, while the description of
simple abstract concepts is more difficult, but still manageable. The specification
of state-based service descriptions however gets significantly more difficult and
calls for a skilled expert to provide the descriptions. Along with differences in
effort needed, approaches can differ in terms of their accuracy and effectiveness.
Simple textual descriptions may lead to a rather high recall, but with a low
precision. Simple abstract concept descriptions may lead to a lower recall, but
with a relative increase in precision. The very fine-grained approach, with states
corresponding to the world and with reflected pre- and postconditions with the
relations in between, leads to a very high precision with recall decreasing, as
it becomes harder to actually find a match, as a service will need to fulfill a
number of exact requirements to be able to match with a goal. [8] also discusses
this gain vs. pain in choosing a discovery approach that leads to a targeted
precision and recall. Furthermore the different discovery approaches also have
very different computational properties. As service descriptions become more fine
grained the complexity of the associated discovery algorithms increases leading
to less desirable computational properties.

Due to the features of the integrated discovery engines, the framework sup-
ports a wide range of application scenarios from those that need high efficiency
to those requiring high precision in the discovery results. The following Section
3.1 provides an overview of the methods that we introduced to allow a flexible
framework configuration and Section 3.2 explains how we support the developer
in choosing the ”right” discovery approach by validating given Web Services and
Goals.



Simplifying the Web Service Discovery Process 7

3.1 The Framework Configuration

An important facet of the discovery framework is the fact that it is highly con-
figurable. When designing the framework we considered that the developer of a
goal description should not have to write a special configuration file, or similar,
to use the framework. Thus the goal developer can simply add his configura-
tion wishes to the nonfunctional properties of the Goals that he submits to the
framework. Similarly the developer of Semantic Web Services simply specifies
which approach the given Web service description is compliant with.

The configuration that can be made in the goal is made up of three parts,
namely the discovery engine, the match type and the pre-filter mechanism.
Firstly the goal developer can specify which discovery engine should be used
by adding the discovery#discoveryStrategy2 Non Functional Property (NFP) to
the goal description. The framework extracts this NFP when the goal is sub-
mitted, initializing the correct engine and registers the available Web service
descriptions that are compliant with this engine. The framework will choose the
most appropriate engines if no specific engine is specified within the goal, this
is performed by analyzing the goal and establishing which engines it is compli-
ant with (see Section 3.2). The compliant Web Services are chosen in a similar
manner, either the Web service developer specifies, in the NFP, the discovery
engine(s) he supports or the framework analyzes the Web service and chooses
whether they fit to the goal’s targeted engines or not.

Secondly the goal developer can specify which target match type, e.g. only
exact match, or range of match types, e.g. “exact → plugin”, or “exact → plugin
→ subsume”, are desired by specifying the discovery#typeOfMatch NFP in the
goal. The framework extracts this NFP when the goal is submitted and ensures
that the targeted discovery engine can deliver these match types. If no match
type has been targeted by the user, the framework returns all types of matches
and indicates the detected match type in the nonfunctional properties of the
resulting Web services. It is important to note that not all discovery engines
support all types of matches (e.g. the intersection type of match is currently
only supported by the Description Logic based ”Lightweight” Set-Based Dis-
covery engine). This means that the framework needs to handle ”inconsistent”
configuration wishes, either due to inconsistencies in the NFPs provided by the
user, or resulting from the analysis of the goal by the framework. If a developer
targets a discovery engine and a match type in the NFP of his goal that are
not compatible, the framework disregards the targeted match type and returns
all type of matches allowed by the chosen discovery engines. Furthermore the
framework indicates the configuration error in the nonfunctional properties of
the resulting Web services.

Finally the goal developer can choose the pre-filtering mechanism that should
be employed by specifying the discovery#preFilter NFP in the goal. A keyword-
based discovery engine can be used as a pre-filter to any of the other engines, in
order to reduce the thousands of available Web service descriptions in the registry

2 discovery : http://wiki.wsmx.org/index.php?title=DiscoveryOntology#



8 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

down to a more manageable number. Combining, for example, a “Heavyweight”
Discovery approach with a Keyword-based approach increases the performance
of the “Heavyweight” approach while improving the precision of the keyword-
based approach.

3.2 Validation

Choosing a discovery approach to use for a given application scenario involves
trading off the computational properties, the achievable accuracy and the effort
needed to create service descriptions. The choice of discovery engine to use to
achieve this discovery approach is based upon the choice of WSML Variant made
by the developer. As can be seen above, to effectively enable the configurability
described it is necessary that it be possible to check the conformance of a given
Web service or goal description against a given discovery engine. This ”vali-
dation” ensures that only compliant Web Services are registered with a given
discovery engine, improving performance of each discovery engine and also en-
abling the selection of potential discovery engines based on the conformance of
the provided goal to these engines.

As already mentioned, the choice of WSML Variant allows Web service and
goal descriptions to be written with different levels of logical expressiveness and
in different styles, based on the underlying logic language, for example Logic
Programming[15] or Description Logics[1]. When using the WSML[14] syntax to
write down the semantic description of a WSMO Web service or goal it should
be noted that the WSML syntax is broken down into two parts. The conceptual
syntax is based on the structure of the WSMO conceptual model, and is inde-
pendent from the underlying logic, shielding the developer from the particulars
of the underlying language, while the logical expression syntax provides access
to the full expressive power of the WSML variant chosen by the developer. Thus
when describing services the conceptual objects, like Web Services, Goals and
Capabilities are always written in the same way, but the content in the precon-
ditions, postconditions, assumptions and effects will change depending on the
WSML variant and the discovery approach pursued.

To be able to fulfill the needs resulting from the discovery framework con-
figurability, we have introduced a validation functionality within the Discovery
Framework that can be used in two ways. Firstly it supports the developer in
writing correct service descriptions as it allows the validation of Web Services,
Goals and Ontologies with regard to the WSML variant specified in the header
of the WSML file. Secondly, and most importantly in this context, it allows the
determination of the variant of a WSML description and thus the determination
of which discovery engines can be used for a given goal.

The validation is performed over two different description aspects of the spec-
ified Goals and Web Services, namely the ”structures” (e.g. precondition, post-
condition) used in the capabilities and the logical expressions used within these
structures. Firstly, the Web service and goal descriptions may use different ca-
pability ”structures” i.e. preconditions, postconditions, effects, assumptions and



Simplifying the Web Service Discovery Process 9

shared variables, the ”Heavyweight” Discovery engine for example is the only dis-
covery approach to take into account the preconditions of service descriptions.
Secondly the logical expressions defined within the capability descriptions need
to comply to the WSML variant that is supported by the discovery engine, i.e.
WSML-Core, WSML-DL, WSML-Flight or WSML-Rule. Thirdly, certain dis-
covery engines only accept restricted logical expressions, e.g. descriptions may
not be allowed to contain constraints, implications, inverse implications, equiv-
alence implications, logic programming rules, negation or possibly disjunctions.
This depends on which features the used WSML variant allows, e.g. constraints
are not allowed in WSML-Core and WSML-DL. Finally, it is important to en-
sure that the ontologies imported by the goal or Web service descriptions and
used within the logical expressions conform to the WSML variant supported by
the discovery engine in question. This validation involves checking whether both
the conceptual and the logical expression definitions within the ontology are
compliant to the WSML variant supported by the targeted discovery engines.

Let us have a look at the example goal that we introduced in Section 2:

goal tripIbkToVienna

capability tripIbkToViennaCapability

sharedVariables ?x

postcondition tripIbkToVienna definedBy

?x memberOf Trip and

forall ?from (?x[from hasValue ?from]

implies ?from memberOf PlaceInInnsbruck) and

forall ?to (?x[to hasValue ?to]

implies ?to memberOf PlaceInVienna).

By looking at the ”structures” used in this description we see that we cannot
use the ”Heavyweight” Discovery engine for finding matching services, as this
goal does not describe any preconditions or assumptions. When validating the
logical expression used in the capability, we find out that it is only compliant to
WSML-DL. This leads to the conclusion that with this goal we can only use the
“Lightweight” Set-Based Discovery based on Description Logic.

As will be seen in the next section this validation support can be reused to
aid the developers of Semantic Web Services and Goals in building valid and
compliant descriptions at design time.

4 Supporting the Semantic Web Service Developer

The Web Services Modeling Toolkit (WSMT)[12][13] is an Integrated Develop-
ment Environment (IDE) for Semantic Web Services implemented in the Eclipse
framework. The WSMT aims to support the developer through the full develop-
ment cycle of Semantic Web Services, developed through the WSMO paradigm,
in order to improve the productivity of the developer and to ensure the quality
of the Semantic Web Services produced. The tools provided in the WSMT are
seamlessly integrated with one another and thanks to the Eclipse framework can



10 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

be integrated with other toolkits like the Java Development Toolkit (JDT)3 or
the Web Tools Platform (WTP)4 so that the developer can create his Java code,
Web services and Semantic Web Services side by side in one application.

Over the last three years the WSMT has provided text-based, form-based and
graph-based editors and visualizers allowing the engineer to create and manage
WSMO descriptions through the WSML language. It provides validation support
for ensuring that the WSMO Ontologies, Web Services, Goals and Mediators cre-
ated by the developer are syntactically correct and that the Ontologies conform
to the WSML variant specified. A number of reasoners for the Description Logic
and Logic Programming variants of the WSML Language are embedded within
the WSMT enabling the developer to execute sample queries over the seman-
tic descriptions created to ensure they behave as expected. Developers can also
created Ontology Unit Tests, where competency questions are encoded as tests,
to ensure that ontologies still behave as expected as they evolve. The WSMT
has an Eclipse Perspective dedicated to the interaction with Semantic Execution
Environments (SEE), such as WSMX and IRSIII, through which developers can
manage their connections to SEEs, browse the content stored on these SEEs,
store or retrieve WSMO descriptions to or from a SEE, and invoke any of the
entry points they expose, for example the entry point for achieving a goal.

However as mentioned before, the fact that WSMO is very flexible in terms
of how a developer can specify Web Services and Goals means that the WSMT,
while providing generic support for creating WSMO Web service and goal de-
scriptions, has in the past been weak in terms of providing useful tools to the
developer for the process of building Web service and goal descriptions. While
the initial work described in [13] provided one of the discovery engines that
implemented the “Lightweight” Set-Based discovery approach to the developer
such that the Goals and Web Services produced by the engineer could be tested
against one another, this discovery engine was not available in any Semantic Ex-
ecution Environment and was only usable by those using this specific discovery
approach.

To further support the Semantic Web Service developer through the devel-
opment cycle we have extended the WSMT in two crucial ways. Firstly, as de-
scribed for Ontologies in our previous work in [12], the developer can waste huge
amounts of time trying to debug errors related to small syntactical or modeling
mistakes. Up until now there has been no validation support for Web Services
and Goals available in the WSMT, due to the ambiguity regarding what should
actually be present within a precondition, postcondition, assumption and effect.
The WSMT now reuses the validation support within the discovery framework,
providing the Semantic Web Service developer with immediate feedback within
the development environment regarding not only syntactical mistakes but also
the conformance of the Web service or goal being created with the target dis-
covery engine as specified with the discovery#discoveryStrategy Non Functional
Property. This feedback is delivered to the developer via the same approaches

3 http://www.eclipse.org/jdt/
4 http://www.eclipse.org/webtools/



Simplifying the Web Service Discovery Process 11

as when he builds WSMO Ontologies, namely via annotations within editors, in
a list view in the Eclipse Problems view and via graphical annotations on those
files with errors in the WSML Navigator.

Fig. 2. The WSMT Discovery View

Secondly, the discovery view introduced in [13] has been extended such that
the individual embedded discovery engine has been replaced with the discovery
framework itself, as can be seen in figure 2. Now the developer can quickly
test not only the conformance of his descriptions to all of the engines available
through the discovery framework, but can also ensure that the relevant Web
Services are discovered for the goal descriptions as expected. This testing can
be performed without having to repeated deploy the Web service descriptions
to a Semantic Execution Environment in order to perform testing, drastically
reducing the duration of the testing cycle.

The importance of testing in the development cycle of Semantic Web Services
cannot be emphasized enough. Considering a scenario where Amazon made a
decision to provide their Web services as Semantic Web Services, they would also
want to provide some sample goal descriptions to the community to ensure that
those new to Semantic Technologies could find their services quickly and simply.
Thus the developer in Amazon trusted with the development of Web service and
goal descriptions for this new effort needs to be confident that these sample Goals
do indeed match the Amazon services as expected. Considering a similar scenario
when a new competitor service wishes to semantically describe their services, it
would be very important for the developers of these new Web service description
to ensure that the Amazon sample Goals will discover the Web services he is
annotating, such that all Amazon customers will automatically discover these
services and allow his company to effectively compete with Amazon.



12 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

It is also important that the developer has visibility of the matching between
Goals and Web Services as the descriptions of both evolve. Therefore a unit
testing tool for discovery called DUnit, as can be seen in figure 3 was imple-
mented and added to the WSMT. The DUnit View compliments the Ontology
Unit Testing (OUnit) and Mapping Unit Testing (MUnit) Views, providing the
developer with the ability to specify a goal, a set of Web Services and the degree
to which each should match. The DUnit View invokes the underlying discovery
framework for each of the tests at the click of a button and gives feedback to
the developer regarding the successful execution (or not) of the tests selected.

Fig. 3. The Discovery Unit Testing (DUnit) View

With these new additions to the WSMT the developer is now not only sup-
ported in the process of creating and maintaining Web service and goal descrip-
tions, whether by textual, form or graphical means, but also receives detailed val-
idation information regarding the conformance of his descriptions to the WSML
variant selected and to the chosen discovery engine. The developer can also at
the click of a button test the result of discovery with a single goal or can execute
a batch load of discovery unit tests via the DUnit View.

5 Related Work

In this paper we align, in a configurable manner, several discovery approaches
that can be used with the WSMO conceptual model. Beside WSMO, there are
other approaches to semantically describe Web Services, for example OWL-S
and SAWSDL. OWL-S[4] is an OWL based Web service ontology that can be
used to semantically describe Web services. Similarly to WSMO it does support
different discovery approaches, for example keyword-based discovery, discovery



Simplifying the Web Service Discovery Process 13

based on simple concept categorization, or discovery based on matching pre-
and postconditions. To our knowledge at this time, there have been no efforts
in OWL-S to align different approaches to discovery. SAWSDL[5] is another
approach to semantic annotation of Web services and the only official W3C
technology recommendation for Semantic Web services at this point in time.
Nevertheless SAWSDL does not support the definition of service pre- and post-
conditions, which severely limits the annotation possibilities for the functional
behavior of Web services. As a direct consequence of this it follows that SAWSDL
can only be used with the simplest of discovery techniques, e.g. using keywords or
on concept categorizations. As, e.g., [9] and [11] have shown, preconditions and,
especially, postconditions are essential for a more precise service discovery. Re-
cent works in [16] tries to combine the two approaches of OWL-S and SAWSDL.
The early nature of SAWSDL means that only one approach to discovery exists
and thus a need to align different approaches is unnecessary at this point. It is
envisioned that as SAWSDL becomes more popular such a need will arise.

From the perspective of tool support there is only one other tool for creating
Semantic Web Services through the WSMO paradigm, namely WSMO Studio[3].
WSMO Studio provides a broader feature set than the WSMT in that it covers
not only WSMO, but also functionality for modeling semantic business processes
and SAWSDL descriptions; however the WSMT provides more functionality for
WSMO and WSML covering functionality in all phases of the life cycle of Se-
mantic Web Services. Recently an extension to WSMO Studio was provide with
a Quality of Service based discovery engine allowing Goals and Web Services to
be matched based on Quality of Service metrics.

6 Evaluation

In this paper we have introduced our Semantic Web Service Discovery framework
that integrates and manages different discovery engines, as well as its integration
into the Web Service Modeling Toolkit. Due to the lack of competing tools in
this area we have been unable to do any direct comparison of our tool; However
we are aware that the integration of the current existing discovery engine imple-
mentations into the framework does not affect the performance of these engines.
This is because the discovery step itself is performed in exactly the same way as
if the engine was called directly by the developer. What the framework adds is
a simple lookup of the non-functional properties of the Web services and goals
and then the execution of a validation process to validate the given services and
ontologies and to eventually find out which discovery engine is the right one
for a given Goal. So far no reasoning is done by the framework itself and it is
important in the future to ensure, if reasoning is added to the framework, that
the performance of the reasoners while in the framework does not deteriorate.

The main evaluation we actually can do is in terms of usability of the dif-
ferent discovery approaches. Looking at the use case of a developer that has
written a goal and would like to discover fitting services. Without the discov-
ery framework that this paper introduces he first must manually integrate each



14 N. Steinmetz, M. Kerrigan, H. Lausen, M. Tanler and A. Sirbu

of the discovery engines that supports his goal into his application. With the
discovery framework all he needs to do is ’set a flag’ on his goal, that is add a
simple non-functional property to his goal. The case is even worse if the devel-
oper does not know which engines would actually support his goal. In this case
he would first need to compare the WSML variant and expressivity used in the
logical expressions of his goal’s capability with the WSML variant and expres-
sivity supported by the single available engines. Our framework allows him to
simply omit the choice of specific targeted engines, allowing the framework to
validate his goal description and automatically add the right discovery engines
to the discovery process. Another aspect is that the developer is, without our
discovery framework and its configuration abilities, not able to target a specific
type of match; and would need to implement a software component that would
analyze the output of each of the discovery engines integrated into his applica-
tion. This use cases shows the added-value of the discovery framework that we
introduce and demonstrates the actual simplification of the whole Web Service
Discovery Process that has occurred through the introduction of this framework.

In terms of the WSMT the developer will see a dramatic improvement in the
confidence he can have in the Web service and goal descriptions that he creates.
The ability to quickly and easily test the descriptions he creates in the integrated
environment he is using as he creates them enables him to be sure that what he
is creating is correct and the ability to create unit tests that can be executed as
ontologies, service and goal descriptions evolve ensure that he is sure that what
he has previously created is correct.

7 Conclusions and Future Work

In this paper we introduce a first attempt to aligning different WSMO discovery
approaches in a configurable framework and to enhance the developer tools avail-
able in the Web Service Modeling Toolkit with additional functionality, made
possible by this framework. In terms of future work, [9] mentions user intentions,
related to the “lightweight” set-based discovery approach. Service descriptions,
described as sets of objects, can be interpreted in different ways and are thus not
semantically unique: A developer might want to express that either all elements
contained in a goal or service description are requested or delivered, or that only
some of these elements are requested or delivered. We want to take this user
intentions into account in future versions of the discovery framework, enabling
the user to specify more fine-grained match type wishes and at the same time
getting more precise results.

In terms of the WSMT, future directions will include the creation of a new
WSMO Web service and goal editor that includes discovery approach based
User Interface plugins. With such a framework it will be possible to provide
the developer with a simple form based editor into which the developer has
fill only very simple information. From these forms complex logical expressions
can be created within the underlying Web service or goal that conforms to the
restrictions set in place by the underlying discovery approach.



Simplifying the Web Service Discovery Process 15

8 Acknowledgements

The work is funded by the European Commission under the projects Knowledge
Web, Musing, Salero, SEEMP, SemanticGov, Super, SHAPE, SWING and Trip-
Com; by the FFG (Österreichische ForschungsFörderungsGeselleschaft mbH) un-
der the projects Grisino, RW2, SemNetMan, SeNSE, TSC, OnTourism.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The Description Logic Handbook. Cambridge University Press, 2003.

2. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and
C. Pedrinaci. IRS-III: A Broker for Semantic Web Services Based Applications. In
Proc. of the 5th Intl. Semantic Web Conf. (ISWC2006), Athens, USA, 2006.

3. M. Dimitrov, A. Simov, M. Konstantinov, and V. Momtchev. WSMO Studio - a
Semantic Web Services Modelling Environment for WSMO. In Proc. of the 4th
European Semantic Web Conf. (ESWC2007), Innsbruck, Austria, June 2007.

4. D. Martin (ed.). OWL-S: Semantic Markup for Web Services. W3C Member
Submission 22 November 2004, 2004.

5. J. Farrell and H. Lausen. Semantic annotations for wsdl and xml
schema. W3c member recommendation 28 august 2007, 2007. online:
http://www.w3.org/TR/sawsdl/.

6. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and
J. Domingue. Enabling Semantic Web Services – The Web Service Modeling On-
tology. Springer, 2006.

7. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Seman-
tic Service-Oriented Architecture. In Proc. of the Intl. Conf. on Web Services
(ICWS2005), Orlando, USA, July 2005.

8. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding
semantic matching of stateless services. In Proc. of the 21st National Conf. on
Artificial Intelligence (AAAI-06), Boston, USA, 2006.

9. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic location of
services. In Proc. of 2nd European Semantic Web Conf. (ESWC), 2005.

10. U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel. D5.1v0.1: WSMO
Web Service Discovery”. Technical report, DERI Innsbruck, 2005.

11. U. Keller, H. Lausen, and M. Stollberg. On the semantics of functional descriptions
of web services. In Proc. of 3rd European Semantic Web Conf. (ESWC), 2006.

12. M. Kerrigan, A. Mocan, M. Tanler, and W. Bliem. Creating Semantic Web Services
with the Web Service Modeling Toolkit. In Proc. of the workshop on Making
Semantics Work For Business (MSWFB2007) at ESTC2007, Vienna, May 2007.

13. M. Kerrigan, A. Mocan, M. Tanler, and D. Fensel. The Web Service Modeling
Toolkit - An Integrated Development Environment for Semantic Web Services. In
Proc. of the 4th European Semantic Web Conf. (ESWC2007), Innsbruck, 2007.

14. H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel. WSML - A Language Frame-
work for Semantic Web Services. In Proc. of the W3C Workshop on Rule Languages
for Interoperability, April 2005.

15. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition
edition, 1987.

16. D. Martin, M. Paolucci, and M. Wagner. Towards semantic annotations of web
services: Owl-s from the sawsdl perspective. In Proc. of European Semantic Web
Conf. (ESWC) workshop OWL-S: Experiences and Directions, 2007.


